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Abstract. The concept of proofs-of-knowledge, introduced in the semi-
nal paper of Goldwasser, Micali and Rackoff, plays a central role in vari-
ous cryptographic applications. An adequate formulation, which enables
modular applications of proofs of knowledge inside other protocols, was
presented by Bellare and Goldreich. However, this formulation depends
in an essential way on the notion of expected (rather than worst-case)
running-time. Here we present a seemingly more restricted notion that
maintains the main feature of the prior definition while referring only to
machines that run in strict probabilistic polynomial-time (rather than to
expected polynomial-time).
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This work was completed in May 1998, and was integrated in the author’s work
Foundation of Cryptography as [7, Sec. 4.7.6]. The current revision is intention-
ally minimal.

1 Introduction

The reader is referred to [3] for a discussion of the intuitive notion of a proof-of-
knowledge (cf., [11]), and the previous attempts to define it [4, 13], cumlinating
in the definition presented in [3]. We also assume that the reader is familiar with
the definition given in [3].

The definition given in [3] relies in a fundamental way on the notion of ex-
pected running-time. Throughout the years we remained bothered by this feature,
and while working on [6] we decided to look for an alternative. Specifically, we
present a more stringent definition in which the knowledge extractor is required
to run in strict polynomial-time (rather than in expected polynomial-time). We
call proof systems for which this more stringent definition holds, strong proofs
of knowledge (in contrast to ordinary proofs of knowledge as defined in [3]).

There are two reasons to prefer strong proofs of knowledge over ordinary
ones. Firstly, we feel more comfortable with the notion of strict polynomial-time
than with the notion of expected polynomial-time. For example, it is intuitively
unclear why a machine which runs for time 2n on an 2−n fraction of its coin-tosses
(and in linear time otherwise) should be considered fundamentally different than

a machine which runs for time 2n2

on the same fraction. Secondly, it seems much
more convinient to work (i.e., to compose) strict polynomial-time computations
rather than expected polynomial-time ones. (For further discussion of this issue,
the interested reader is directed to [9].)
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Unfortunately, there seems to be a loss in going from ordinary proofs of
knowledge to strong ones: Not all proofs of knowledge are known to be strong
proofs of knowledge. Furthermore, we conjecture that there are proofs of knowl-
edge that are not strong proofs of knowledge (see Section 4). Still, zero-knowledge
strong-proofs-of-knowledge do exist for all NP-relations, provided that one-way
functions exist.

2 The Definition

We assume that the reader is familiar with the definition of a proof of knowledge
(as presented in [3]) as well as with the underlying motivation.

Definition 1 (System of strong proofs of knowledge): Let R be a binary relation.
We say that an efficient strategy V is a strong knowledge verifier for the relation

R if the following two conditions hold.

– Non-triviality: There exists an interactive machine P such that for every
(x, y) ∈ R all possible interactions of V with P on common-input x and
auxiliary-input y are accepting.

– Strong Validity: There exists a negligible function µ : N 7→ [0, 1] and a
probabilistic (strict) polynomial-time oracle machine K such that for every
strategy P and every x, y, r ∈ {0, 1}∗, machine K satisfies the following
condition:

Let Px,y,r be a prover strategy, in which the common input x, auxil-
iary input y and random-coin sequence r have been fixed, and denote
by p(x) the probability that the interactive machine V accepts, on
input x, when interacting with the prover specified by Px,y,r. Now,
if p(x) > µ(|x|) then, on input x and access to oracle Px,y,r, with
probability at least 1−µ(|x|), machine K outputs a solution s for x.
That is:

If p(x) > µ(|x|), then Pr[(x, KPx,y,r (x))∈R] > 1− µ(|x|). (1)

The oracle machine K is called a strong knowledge extractor.

An interactive pair (P, V ) so that V is a strong knowledge verifier for a relation
R and P is a machine satisfying the non-triviality condition (with respect to V

and R) is called a system for strong proofs of knowledge for the relation R.

Thus, it is required that whenever p(x) > µ(|x|) (i.e., whenever the prover con-
vinces the verifier with non-negiligible probability), the extractor fails with neg-
ligible probability. Our choice to bound the failure probability of the extractor
by the specific negligible function µ (which serves mainly as bound on p(x))
is rather arbitrary. What is important is to have this failure probability be a
negligible function of |x|. Actually, in case membership in the relation R can
be determined in polynomial-time, one may reduce the failure probability from
1 − 1

poly(n) to 2−poly(n), while maintaining the polynomial running-time of the

extractor. Finally, we note that the extractor presented in the next section has
failure probability 0.
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3 On the existence of strong proofs of knowledge

Some zero-knowledge proof (of knowledge) systems for NP are in fact strong
proofs of knowledge. In particular, consider n sequential repetitions of the fol-
lowing basic proof system for the Hamiltonian Cycle (HC) problem (which is
NP-complete). We consider directed graphs (and the existence of directed Hamil-
tonian cycles), and employ a commitment scheme {Cn} as above.

Construction 2 (Basic proof system for HC):

– Common Input: a directed graph G = (V, E) with n
def
= |V |.

– Auxiliary Input to Prover: a directed Hamiltonian Cycle, C ⊂ E, in G.
– Prover’s first step (P1): The prover selects a random permutation, π, of

the vertices of G, and commits to the entries of the adjacency matrix of the
resulting permuted graph. That is, it sends an n-by-n matrix of commitments
such that the (π(i), π(j))th entry is Cn(1) if (i, j) ∈ E, and Cn(0) otherwise.

– Verifier’s first step (V1): The verifier uniformly selects σ ∈ {0, 1} and sends
it to the prover.

– Prover’s second step (P2): If σ = 0, then the prover sends π to the verifier
along with the revealing (i.e., preimages) of all n2 commitments. Otherwise,
the prover reveals to the verifier only the commitments to the n entries that
correspond to C; that is, it reveals the (π(i), π(j))th entry if and only if
(i, j) ∈ C. (By revealing a commitment c, we mean supply a preimage of c

under Cn; i.e., a pair (σ, r) so that c = Cn(σ, r).)
– Verifier’s second step (V2): If σ = 0, then the verifier checks that the revealed

graph is indeed isomorphic, via π, to G. Otherwise, the verifier just checks
that all revealed values are 1 and that the corresponding entries form a simple
n-cycle. (Of course in both cases, the verifier checks that the revealed values
do fit the commitments.) The verifier accepts if and only if the corresponding
condition holds.

The reader may easily verify that sequentially repeating the basic protocol for
n times yields a zero-knowledge proof system for HC, with soundness error 2−n.
We argue that the resulting system is also a strong proof of knowledge of the
Hamiltonian cycle. Intuitively, the key observation is that each application of
the basic proof system results in one of two possible situations depending on the
verifier’s choice, σ. In case the prover answers correctly in both cases, we can
retrieve an Hamiltonian cycle in the input graph. On the other hand, in case the
prover fails in both cases, the verifier will reject regardless of what the prover
does from this point on. This observation suggests the following construction of a
strong knowledge extractor (where we refer to repeating the basic proof systems
n times and set µ(n) = 2−n).

Strong knowledge extractor for Hamiltonian cycle: On input G and access to
the prover-strategy oracle P ∗, we proceed in n iterations, starting with i = 1.
Initially, T (the transcript so far), is empty.
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1. Obtain the matrix of commitments, M , from the prover strategy (i.e., M ←
P ∗(T )).

2. Obtain the prover’s answer to both possible verifier moves; that is, for every
σ ∈ {0, 1}, obtain the corresponding answer Aσ ← P ∗(T, σ). Each of these
answers may be correct (i.e., passing the corresponding verifier check) or not.

3. If both answers are correct, then we recover a Hamiltonian cycle. In this case
the extractor outputs the cycle and halts.

4. In case a single answer, say the one for value σ, is correct and i < n, we let
T ← (T, σ), and proceed to the next iteration (i.e., i ← i + 1). Otherwise,
we halt with no output.

Note that we reach iteration i only if and only if in each of the prior i−1 iterations
a single verifier choice is answered correctly (and we have appended this choice
in T ). Hence, if the extractor halts with no output in iteration i < n, then the
verifier (in the real interaction) accepts with probability zero (since in iteration
i both verifier choices yield incorrect answers). Similarly, if the extractor halts
with no output in iteration n, then the verifier (in the real interaction) accepts
with probability at most 2−n (since at most one choine is answered correctly).
Thus, whenever p(G) > 2−n, the extractor succeeds in recovering a Hamiltonian
cycle (with probability 1).

4 Postscript

This section was added in the current revision and provides some support for
conjectures made explicitly or implicitly in the original text.

Regarding our conjecture that there exist proofs-of-knowledge that are not
strong proofs-of-knowledge, partial evidence is provided by subsequent work
of Barak, Lindell, and Vadhan [1, 2]. Both work refer to constant-round zero-
knowledge protocols (for sets outside BPP), and the seperation relies on the
existence of such protocols (under standard computational assumptions) that
are (ordinary) proofs of knowledge for NP-relations.

1. Barak and Lindell [1] show that such prtotocols cannot have a strict proba-
bilistic polynomial-time black-box extractor, which implies that they cannot
be proven to be strong proofs-of-knowledge in a black-box manner. (Still,
recall that non-black-box extractors may exist.)

2. Barak, Lindell, and Vadhan [2] show that if (exponentially) strong one-way
permutations exist, then such prtotocols cannot have a strict probabilistic
polynomial-time extractor, which implies that they cannot be strong proofs-
of-knowledge.

The existence of constant-round zero-knowledge protocols that are (ordinary)
proofs of knowledge for NP-relations can be based on standard intractability
assumptions: See Feige and Shamir [5] for the case of argument systems and
Lindell [12] for the case of proof systems.
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