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Abstract

Inspired by Diakonikolas and Kane (2016), we reduce the class of problems consisting of
testing whether an unknown distribution over [n] equals a fixed distribution to the special case
in which the fixed distribution is uniform over [n]. Our reduction preserves the parameters of
the problem, which are n and the proximity parameter ¢ > 0, up to a constant factor.

While this reduction yields no new bounds on the sample complexity of either problems,
it provides a simple way of obtaining testers for equality to arbitrary fixed distributions from
testers for the uniform distribution. The reduction first reduces the general case to the case of
“grained distributions” (in which all probabilities are multiples of 2(1/n)), and then reduces
this case to the case of the uniform distribution. Using grained distributions as a pivot of the
exposition, we call attention to this natural class.

An early version of this work appeared as TR16-015 of EC'CC. The original version reproduced some
text from the author’s lecture notes on property testing [8], which were later used as a basis for his
book [9]. The current revision is quite minimal, except for the appendix, which was significantly
revised in order to provide a more transparent exposition.

1 Introduction

Inspired by Diakonikolas and Kane [5], we present, for every fixed distribution D over [n], a simple
reduction of the problem of testing whether an unknown distribution over [n| equals D to the
problem of testing whether an unknown distribution over [n] equals the uniform distribution over
[n]. Specifically, we reduce e-testing of equality to D to €/3-testing of equality to the uniform
distribution over [6n], denoted Usy,.

Hence, the sample (resp., time) complexity of testing equality to D, with respect to the proximity
parameter e, is at most the sample (resp., time) complexity of testing equality to Ug, with respect
to the proximity parameter €/3. Since optimal bounds were known for both problems (cf., e.g., [10,
2, 1, 12, 4, 14]), our reduction yields no new bounds. Still, it provides a simple way of obtaining
testers for equality to arbitrary fixed distributions from testers for the uniform distribution.

The setting at a glance. For any fixed distribution D over [n], we consider the problem of
e-testing equality to D, where the tester is given samples drawn from an unknown distribution X
and is required to distinguish the case that X = D from the case that X is e-far from D, where
the distance is the standard statistical distance. The sample complexity of this testing problem,



depends on D, and is viewed as a function of n and e. We write D C [n] to denote that D ranges
over [n].

Wishing to present reductions between such problems, we need to spell out what we mean
by such a reduction. Confining ourselves to problems of testing equality to fixed distributions,
we say that e-testing equality to D C [n] reduces to €-testing equality to D’ C [n/] if there exists
a randomized process F that maps [n] to [n/] such that the distribution D is mapped to the
distribution D’ and any distribution that is e-far from D is mapped to a distribution that is ¢’-far
from D’. We say that F' maps the distribution X to the distribution Y if Y = F(X), where here
we view the distributions as random variables. Note that the foregoing is a very stringent notion
of reduction between distribution testing problems: Under this notion, a tester T for e-testing
equality to D is derived by invoking a €-tester T” for equality to D’ and providing 7" with the
sample F(i1), ..., F'(is), where iy, ...,is is the sample provided to 7. Still, our main result can be
stated as follows.

Theorem 1 (completeness of testing equality to U,): For every distribution D over [n] and every
e > 0, it holds that e-testing equality to D reduces to €/3-testing equality to Us,, where U,, denotes
the uniform distribution over [m]. Furthermore, the same reduction F' can be used for all e > 0.

Hence, the sample complexity of e-testing equality to D is upper bounded by the sample complexity
of €/3-testing equality to Us,. We mention that in some cases, testing equality to D can be easier
than testing equality to U,,; such natural cases contain grained distributions (see below). (A general
study of the dependence on D of the complexity of testing equality to D was undertaken in [14].)

The reduction at a glance. We decouple the reduction asserted in Theorem 1 into two steps.
In the first step, we assume that the distribution D has a probability function ¢ that ranges
over multiples of 1/m, for some parameter m € N; that is, m - ¢(i) is a non-negative integer
(for every i). We call such a distribution m-grained, and reduce testing equality to any fixed m-
grained distribution to testing equality to the uniform distribution over [m]. This reduction maps ¢
uniformly at random to a set S; of size m-q(i) such that the S;’s are disjoint. Clearly, this reduction
maps the distribution ¢ to the uniform distribution over m fixed elements, and it can be verified
that this randomized mapping preserves distances between distributions.

Since every distribution over [n] is €/2-close to a O(n/¢)-grained distribution, it is stands to
reason that the general case can be reduced to the grained case. This is indeed true, but the
reduction is less obvious than the treatment of the grained case. Actually, we shall use a different
“graining” procedure, which yields a better result (i.e., the result stated above). Specifically, we
present a reduction of e-testing equality to D to €/3-testing equality to some 6n-grained distribution
D', where D' depends only on D. This reduction is described next.

Letting ¢ : [n] — [0,1] denote the probability function of D, the reduction maps i € [n] to
itself with probability W, and otherwise maps ¢ to n + 1. This description suffices when

q(%)
q(i) > 1/2n for every i € [n], since in this case % > 2, and in order to guaranteed this

condition (i.e., ¢(i) > 1/2n for every i € [n]) we use a preliminary reduction that maps i € [n]
to itself with probability 1/2 and maps it uniformity to [n] otherwise. This preliminary reduction
cuts the distance between distributions by a factor of two, and it can be shown that the main
randomized mapping preserves distances between distributions up to a constant factor (of 2/3).



History, credits, and an acknowledgement. The study of testing properties of distributions
was initiated by Batu, Fortnow, Rubinfeld, Smith and White [2]. Testers of sample complexity
poly(1/e) - v/n for equality to U, and for equality to an arbitrary distribution D over [n] were
presented by Goldreich and Ron [10] and Batu et al. [1], respectively, were the presentation in [10]
is only implicit.! The tight lower and upper bound of ©(y/n/e?) on the sample complexity of
both problems were presented in [12, 4, 14] (see also [6, 5]). For a general survey of the area, the
interested reader is referred to Canonne [3].

As stated upfront, our reductions are inspired by Diakonikolas and Kane [5], who presented a
unified approach for deriving optimal testers for various properties of distributions (and pairs of
distributions) via reductions to testing the equality of two unknown distributions that have small
Lo-norm. We note that our reduction from testing equality to grained distributions to testing
equality to the uniform distribution is implicit in [6].

Lastly, we wish to thank Ilias Diakonikolas for numerous email discussions, which were extremely
helpful in many ways.

Organization. In Section 2 we recall the basic context and define the restricted notion of a
reduction used in this work. The core of this work is presented in Section 3, where we prove
Theorem 1. In Section 4 we briefly consider the problem of testing whether an unknown distribution
is grained, leaving an open problem. The appendix addresses a side issue that arises in Section 4.

2 Preliminaries

We consider discrete probability distributions. Such distribution have a finite support, which we
assume to be a subset of [n] for some n € N, where the support of a distribution is the set of
elements assigned positive probability mass. We represent such distributions either by random
variables, like X, that are assigned values in [n] (indicated by writing X € [n]), or by probability
functions like p : [n] — [0,1] that satisfy 3, p(i) = 1. These two representation correspond
via p(i) = Pr[X =1i]. At times, we also refer to distributions as such, and denote them by D.
(Distributions over other finite sets can be treated analogously, but in such a case we may provide
the tester with a description of the set; indeed, n serves as a concise description of [n].)

Recall that the study of “distribution testing” refers to testing properties of distributions. That
is, the object being testing is a distribution, and the property it is tested for is a property of
distributions (equiv., a set of distributions). The tester itself is given samples from the distribution
and is required to distinguish the case that the distribution has the property from the case that the
distribution is far from having the property, where the distance between distributions is defined as
the total variation distance between them (a.k.a the statistical difference). That is, X and Y are
said to be e-close if

%.Z]Pr[X:i]—Pr[Y:iH <, (1)

and otherwise they are deemed e-far. With this definition in place, we are ready to recall the
standard definition of testing distributions.

!Testing equality to U, is implicit in a test of the distribution of the endpoint of a relatively short random walk
on a bounded-degree graph.



Definition 2 (testing properties of distributions): Let D = {D,, }nen be a property of distributions
and s : N x (0,1] — N. A tester, denoted T, of sample complexity s for the property D is a
probabilistic machine that, on input parameters n and €, and a sequence of s(n) samples drawn
from an unknown distribution X € [n|, satisfies the following two conditions.

1. The tester accepts distributions that belong to D: If X is in D, then
Pri17~~~7isNX[T(n7 €501 ny ZS) = 1] > 2/37
where s = s(n,€) and iy, ...,is are drawn independently from the distribution X.

2. The tester rejects distributions that far from D: If X is e-far from any distribution in D,
(i.e., X is e-far from D), then

Pr,-h___ﬂ-sNX[T(n, €] il, vouy is) :0] > 2/3,
where s = s(n,€) and iy, ...,i5 are as in the previous item.

Our focus is on “singleton” properties; that is, the property is {Dj}nen, where D), is a fixed
distribution over [n]. Note that n fully specifies the distribution D,,, and we do not consider the
complexity of obtaining an explicit description of D,, from n. For sake of simplicity, we will consider
a generic n and omit it from the notation (i.e., use D rarher than D,,). Furthermore, we refer to
e-testers derived by setting the proximity parameter to €. Nevertheless, all testers discussed here are
actually uniform with respect to the proximity parameter e (and also with respect to n, assuming
they already derived or obtained an explicit description of D,,).

Confining ourselves to problems of testing equality to distributions, we formally restate the
notion of a reduction used in the introduction. In fact, we explicitly refer to the randomized
mapping at the heart of the reduction, and also define a stronger (i.e., uniform over €) notion of a
reduction that captures the furthermore part of Theorem 1.

Definition 3 (reductions via filters): We say that a randomized process F, called a filter, reduces
e-testing equality to D C [n] to €-testing equality to D’ C [n/] if the following two conditions hold:

1. The filter F maps the distribution D to the distribution D’; that is, p/(i) = Zj p(j)-Pr[F(j)=
i], where p and p’ denote the probability functions of D and D', respectively.

2. The filter F maps any distribution that is e-far from D to a distribution that is € -far from
D’; that is, if q is e-far from D, then ¢ (i) = > 4(4) - Pr[F(j)=i] is €'-far from D',

We say that F reduces testing equality to D C [n] to testing equality to D' C [n/] if, for some constant
¢ and every € > 0, it holds that F reduces e-testing equality to D to €/c-testing equality to D’.

Recall that we say that F' maps the distribution X to the distribution Y if ¥ and F(X) are
identically distributed (i.e., Y = F(X)), where we view the distributions as random variables.
We stress that if F' is invoked ¢ times on the same 4, then the ¢ outcomes are (identically and)
independently distributed. Hence, a sequence of samples drawn independently from a distribution
X is mapped to a sequence of samples drawn independently from the distribution F'(X).



Note (added in revision): As stated in the introduction, Definition 3 captures a natural but
stringent notion of a reduction. First, note that this notion extends to reducing testing any set
of distributions D to testing the set D’ (by requiring that F' maps any distribution in D to some
distribution in D’ while mapping any distribution that is e-far from D to a distribution that is
¢’-far from D’). However, more general definitions may allow the tester of D to use the sample
provided to it in arbitrary ways andinvoke the tester of D’ on an arbitrary sample as long as
it distinguishes distributions in D from distributions that are e-far from D. While such general
definitions are analogous to Cook-reductions, Definition 3 seems analogous to a very restricted
(i.e., “local”) notion of a Karp-reduction.

3 The reduction

Recall that testing equality to a fixed distribution D means testing the property {D}; that is,
testing whether an unknown distribution equals the fixed distribution D. For any distribution D
over [n], we present a reduction of the task of e-testing {D} to the task of €/3-testing the uniform
distribution over [6n].

3.1 Overview

We decouple the reduction into two steps. In the first step, we assume that the distribution D has
a probability function ¢ that ranges over multiples of 1/m, for some parameter m € N; that is,
m - q(7) is a non-negative integer (for every 7). We call such a distribution m-grained, and reduce
testing equality to any fixed m-grained distribution to testing uniformity (over [m]). Next, in the
second step, we reduce testing equality to any distribution over [n] to testing equality to some fixed
6n-grained distribution.

Definition 4 (grained distributions): We say that a probability distribution over [n] having a
probability function q : [n] — [0,1] is m-grained if ¢ ranges over multiples of 1/m; that is, if for
every i € [n] there exists a non-negative integer m; such that q(i) = m;/m.

Note that the uniform distribution over [n] is n-grained, and it is the only n-grained distribution
having support [n|. Furthermore, if a distribution D results from applying some deterministic
process to the uniform distribution over [m|, then D is m-grained. On the other hand, any m-
grained distribution must have support size at most m.

3.2 Testing equality to a fixed grained distribution

Fixing any m-grained distribution (represented by a probbaility function) ¢ : [n] — {j/m : j €
NU{0}}, we consider a randomized transformation (or “filter”), denoted F,, that maps the support
of gto S ={(i,j) : i€ [n] A j€[m;]}, where m; = m-q(i). (We stress that, as with any randomized
process considered so far (e.g., any type of randomized algorithm including any tester), invoking the
filter several times on the same input yields independently and identically distributed outcomes.)
Specifically, for every i in the support of ¢, we map i uniformly to S; = {(i,7) : j € [m;]}; that is,
F,(7) is uniformly distributed over S;. If i is outside the support of ¢ (i.e., ¢(i) = 0), then we map
it to (¢,0). Note that |S| = 3,1, mi = > ;e m - (i) = m. The key observations about this filter
are:



1. The filter F; maps q to a uniform distribution: If Y is distributed according to ¢, then Fy,(Y")
is distributed uniformly over S; that is, for every (i, j) € S, it holds that

Pr[Fy(Y) = (i,5)] = Pr[Y =i]-Pr[F(i) = (i,7)]

L 1
= q(i)- ms
N m  m;

which equals 1/m = 1/|S5].

2. The filter preserves the variation distance between distributions: The total variation distance
between Fy(X) and Fy(X') equals the total variation distance between X and X’. This holds
since, for S" = SU{(4,0) : i € [n]}, we have

3" [Pr(F,(X) = (i, /)] - Pr[F,(X) = (i, )]

(i,5)€S8’
= Y |Pr[X =i Pr[F,(i) = (i, /)] - Pr[X’ = i] - Pr[Fy(i) = (i, )]
(i,5)€8’
= ) Pr[F,(i) = (i,j)] - [Pr[X = i] - Pr[X' =]
(i,5)€S8’
= ) |[Pr[X =i] - Pr[X =4]|.
i€[n]

Indeed, this is a generic statement that applies to any filter that maps i to a pair (i, Z;),
where Z; is an arbitrary distibution that only depends on i. (Equivalently, the statement
holds for any filter that maps ¢ to a random variable Z; that only depends on 4 such that the
supports of the different Z;’s are disjoint.)

Noting that a knowledge of ¢ allows to implement F, as well as to map S to [m], yields the following
reduction.

Algorithm 5 (reducing testing equality to m-grained distributions to testing uniformity over [m]):
Let D be an m-grained distribution with probability function q : [n] — {j/m : j € NU{0}}. On
input (n, €11, ...,15), where iy, ...,is € [n] are samples drawn according to an unknow distribution p :
[n] — [0,1], invoke an e-tester for uniformity over [m] by providing it with the input (m,€;4,...,1%)
such that for every k € [s] the sample i) is generated as follows:

1. Generate (i, ji) — Fy(ir).

Recall that if m;, et q(ix) > 0, then ji is selected uniformly in [my], and otherwise
Jr < 0. We stress that if Fy is invoked t times on the same i, then the t outcomes are
(identically and) independently distributed. Hence, the s samples drawn independently from p
are mapped to s samples drawn independently from p’ such that p'((i,7)) = p(i)/m; if j € [my]

and p'((i,0)) = p(i) if m; = 0.

2. If ji, € [my,], then (ig,jx) € S is mapped to its rank in S (according to a fixed order of S),
where S = {(i,j) :i€[n] A j€[m;]}, and otherwise (ix, ji) & S is mapped to m + 1.



(Altertaively, the reduction may just reject if any of the ji’s equals 0.)?

The forgoing description presumes that the tester for uniform distributions over [m] also operates
well when given arbitrary distributions (which may have a support that is not a subset of [m]).
However, any tester for uniformity can be easily extended to do so (see discussion in Section 3.4).
In any case, we get

Proposition 6 (Algorithm 5 as a reduction): The filter F, used in Algorithm 5 reduces e-testing
equality to an m-grained distribution D (over [n]) to e-testing equality to the uniform distribution
over [m|, where the distributions tested in the latter case are over [m + 1]. Furthermore, if the
support of D equals [n] (i.e., q(i) > 0 for every i € [n]), which may happen only if m > n, then the
reduction is to testing whether a distribution over [m] is uniform on [m].

Using any of the known uniformity tests that have sample complexity O(y/n/e?),> we obtain —

Corollary 7 (testing equality to m-grained distributions): For any fized m-grained distribution
D, the property {D} can be e-tested in sample complexity O(\/m/€?).

We note that the foregoing tester for equality to grained distributions is of independent interest,
which extends beyond its usage towards testing equality to arbitrary distributions.

3.3 From arbitrary distributions to grained ones

We now turn to the problem of testing equality to an arbitrary known distribution, represented
by ¢ : [n] — [0,1]. The basic idea is to round all probabilities to multiples of v/n, for an error
parameter v (which will be a small constant). Of course, this rounding should be performed so
that the sum of probabilities equa;ls 1. For example, we may use a randomized filter that, on input

1, outputs 7 with probability OB where m; = |q(i) - n/7v], and outputs n + 1 otherwise. Hence,

if ¢ is distributed according to p, then the output of this filter will be ¢ with probability % -p(i).

This works well if ym;/n ~ ¢(i), which is the case if ¢(i) > v/n (equiv., m; > 1), but may run
into trouble otherwise.

For starters, we note that if ¢(i) = 0, then yma/n

]
or 1 will not do. More generally, suppose that q(ig()e (0,v/n) (e.g., q(i) = 0.4y/n). In this case,
setting m; = 0 means that the filter is oblivious of the probability assigned to this ¢, and does not
distinguish distributions that agree on {7 : ¢(i) > v/n} but greatly differ on {i : ¢(i) < v/n}, which
means that it does not distinguish the distribution associated with ¢ from some distributions that
are 0.1y-far from it.* Hence, we modify the basic idea such to avoid this problem.

Specifically, we first use a filter that averages the input distribution p with the uniform distri-
bution, and so guarantees that all elements occur with probability at least 1/2n, while preseving
distances between different input distributions (up to a factor of two). Only then, do we apply the

is undefined, and replacing it by either 0

2See farther discussion in Section 3.4.

3Recall that the alternatives include the tests of [12] and [4] or the collision probability test (of [10]), per its
improved analysis in [7].

“Consider, for example, the case that q(i) = 0.4y/n if i € [0.5n] and ¢(i) = (2 — 0.4v)/n otherwise, and any
distribution X such that Pr[X =i] < v/n if ¢ € [0.5n] and Pr[X =] = ¢(¢) otherwise. Then, each of these possible
X’s will be mapped by F' to the same distribution, although such distributions may be 0.1y-far from the distribution
associated with gq.



foregoing proposed filter (which outputs ¢ with probability m;(;’)/ = where m; = [q(i) -n/v], and

outputs n + 1 otherwise). Details follow.

1. We first use a filter F’ that, on input i € [n], outputs ¢ with probability 1/2, and outputs the
uniform distribution (on [n]) otherwise. Hence, if i is distributed according to the distribution
p, then F’(i) is distributed according to p’ = F’(p) such that

- @)

(Indeed, we denote by F’(p) the probability function of the distribution obtained by selecting
i according to the probability function p and outputing F'(7).)

Let ¢ = F'(q); that is, ¢'(1) = 0.5 - q(4) + (1/2n) > 1/2n.

2. Next, we apply a filter F éi, which is related to the filter F, used in Algorithm 5. Letting

m; = |¢'(i) - n/v], on input i € [n], the filter outputs ¢ with probability "Z,%", and outputs

n + 1 otherwise (i.e., with probability 1 — ";i,%")

Note that "};}%n < 1, since m; < ¢'()-n/7. On the other hand, recalling that ¢’(i) > 1/2n and

observing that m;-vy/n > ((¢'(i)-n/v)—1)-v/n = ¢'(n)—(v/n), it follows that "Z;,%n > 1—27.

Now, if 7 is distributed according to the distribution p’, then £ (i) is distributed according
to p” : [n+ 1] — [0, 1] such that, for every i € [n], it holds that

') =) ®
and p"(n+1) =1—= 3", " (9).
Let ¢” denote the probability function related (by F. ;i) to ¢'. Then, for every i € [n], it holds
that ¢" (i) = q’(z’)-”?]iﬁ(’i/)" =m;y/n € {jy/n:j € NU{0}} and ¢"(n+1) = 1-37,cymi-y/n <
7, since m & Dici] M > Dicin)((n/7) -4 (i) —1) = (n/v) —n. Note that if n/v is an integer,
then ¢” is n/~-grained, since in this case ¢" (n+1) = 1—=m-y/n = (n/y—m)-y/n. Furthermore,

if m = n/~, which happens if and only if ¢’(i) = m; -~ /n for every i € [n], then ¢” has support
[n], and otherwise it has support [n + 1].

Combining these two filters, we obtain the desired reduction.

Algorithm 8 (reducing testing equality to a general distribution to testing equality to a O(n)-
grained distributions): Let D be an arbitrary distribution with probability function ¢ : [n] — [0, 1],
and T be an €'-tester for m-grained distributions having sample complexity s(m,€'). On input
(n, €1, ...,15), where iy,...,is € [n] are s = s(O(n),€/3) samples drawn according to an unknow
distribution p, the tester proceeds as follows:

1. It produces a s-long sequence (i, ...,17) by applying F”,(q) o F' to (i1, ...,is), where I and F
are as in Eq. (2)&(3); that is, for every k € [s], it produces i}, < F'(ix) and i} — Flﬂi,(q) (i7,)-

(Recall that F éf depends on a universal constant -y, which we shall set to 1/6.)

8



2. It invokes the €/3-tester T for q" providing it with the sequence (i, ...,i7). Note that this is
a sequence over [n + 1].

Using the notations as in Eq. (2)&(3), we first observe that the total variation distance between
P = F'(p) and ¢ = F'(q) is half the total variation distance between p and ¢ (since p'(i) =
0.5 - p(i) + (1/2n) and ditto for ¢’). Next, we observe that the total variation distance between
p" = Fy(p') and ¢" = F /(') is lower bounded by a constant fraction of the total variation distance
between p’ and ¢'. To see this, let X and Y be distributed according to p’ and ¢, respectively, and
observe that
ST Pr(FL(x) =i - PrlEL(Y) =il = 3 |WG)- My . U
: : q'(i) q'(4)
i€[n] i€[n]
= T ) - )

/
1€[n] q (Z)

min {”;ﬁzz/)" } P —d )]

i€l 1€[n]

Y

As stated above, recalling that ¢’(i) > 1/2n and m; = [(n/v) - ¢'(3)] > (n/7v) - ¢ (i) — 1, it follows
_/n v/n

that 1
mZI’Y‘/n>((n/’Y)'Q(/Z)‘_ )'7/”21 -~ >1-— :1_2,},'
q'(7) q' (i) q' (i) 1/2n
Hence, if p is e-far from ¢, then p’ is €/2-far from ¢’, and p” is €/3-far from ¢”, where we use v < 1/6.
On the other hand, if p = ¢, then p” = ¢”. Noting that ¢” is an n/y-grained distribution, provided
that n/+ is an integer (as is the case for v = 1/6), we complete the analysis of the reduction. Hence,

Proposition 9 (Algorithm 8 as a reduction): The filter Fg,(q) o F' used in Algorithm 8 reduces
e-testing equality to any fized distribution D (over [n]) to e-testing equality to an 6n-grained distri-
bution over [n'], where n' € {n,n + 1} depends on q.> Furthermore, the support of F”,(q) o F'(q)
equals [n'].

Hence, the sample complexity of e-testing equality to arbitrary distributions over [n] equals the
sample complexity of €/3-testing equality to 6n-grained distributions (which is essentially a special
case).

Digest. One difference between the filter underlying Algorithm 5 and the one underlying Algo-
rithm 8 is that the former preserves the exact distance between distributions, whereas the later
only preseves them up to a constant factor. The difference is reflected in the fact that the first
filter maps the different ¢’s to distributions of disjoint support, whereas the second filter (which is
composed of the filters of Eq. (2)&(3)) maps different i’s to distributions of non-disjoint support.
(Specifically, the filter of Eq. (2) maps every ¢ € [n] to a distribution that assigns each ¢’ € [n]
probability at least 1/2n, whereas the filter of Eq. (3) typically maps each i € [n] to a distribution
with a support that contains the element n + 1.)

STypically, n’ = n + 1. Recall that n’ = n if and only if D itself is 6n-grained, in which case the reduction is not
needed anyhow.



3.4 From arbitrary distributions to the uniform one

Combining the reductions stated in Propositions 6 and 9, we obtain a proof of Theorem 1.

Theorem 10 (Theorem 1, restated) For every probability function q : [n] — [0,1] the filter Fy» o
Fl’é,(q) o F', where ¢" = Fg,(q) o F'(q) is as in Algorithm 8 and Fyr is as in Algorithm 5, reduces
e-testing equality to q to €/3-testing equality to the uniform distribution over [6n].

Proof: First, setting v = 1/6 and using the filter F. '(q) © F’, we reduce the problem of e-testing
equality to ¢ to the problem of €/3-testing equality to the 6n-grained distribution ¢”, while noting
that the distribution ¢” has support [n], where n’ € {n,n + 1} (depending on ¢). Note that the
latter assertion relies on the furthermore part of Proposition 9. Next, using the furthermore part
of Proposition 6, we note that F» reduces €/3-testing equality to ¢” to €/3-testing equality to the
uniform distribution over [6n]. W

Observe that the proof of Theorem 10 avoids the problem discussed right after the presentation
of Algorithm 5, which refers to the fact that testing equality to an m-grained distribution ¢ : [n] —
[0,1] is reduced to testing whether distributions over [n] are uniform over [m], where in some cases
n’ € [n,n + m] rather than n’ = m. These bad cases arise when the support of ¢ is a strict subset
of [n], and it was avoided since we applied the filter of Algorithm 5 to distributions ¢” : [n'] — [0,1]
that have support [n/]. Nevertheless, it is nice to have a reduction from the general case of “testing
uniformity” to the special case, where the general case refers to testing whether distributions over
[n] are uniform over [m], for any n and m, and the special case mandates that m = n. Such a
reduction is provided next.

Theorem 11 (testing uniform distributions, a reduction between two versions): There exists a
simple filter that maps Uy, to Us,y,, while mapping any distribution X that is e-far from U, to a
distribution over [2m] that is €/2-far from Usy,. We stress that X is not necessarily distributed over
[m] and remind the reader that U, denotes the uniform distribution over [n].

Thus, this filter reduces e-testing whether distributions over [n] are uniform over [m] to ¢/2-testing
whether distributions over [2m] are uniform over [2m)].

Proof: The filter, denoted F', maps ¢ € [m] uniformly at random to an element in {i, m +}, while
mapping any @ ¢ [m| uniformly at random to an element in [m]. Observe that any distribution over
[n] is mapped to a distribution over [2m] and that F'(U,,) = Us,,. Note that F' does not necessarily
preserve distances between arbitrary distributions over [n] (e.g., both the uniform distribution over
[2m] and the uniform distribution over [m] U [2m + 1,3m] are mapped to the same distribution),
but (as shown next) F' preserves distances to the relevant uniform distributions up to a constant
factor. Specifically, note that

1
> Pr[F(X)=i] — Pr[Uy =i]| = 5 > [Pr[X =i] - Pr[Up, =]
i€[m+1,2m)| i€[m]

and

> IPr[F(X)=i] = Pr[lUam=il| > Pr[F(X) € [m]] - Pr[Usn € [m]]

1€[m]

10



_ <% Pr[X € [m]] + Pr[X ¢ [m]]> _ %

1 . .
= 3 > [Pr[X =i] - Pr[Upy, =i]|,
ig[m]

since 0.5-Pr[X € [m]]+Pr[X & [m]] > 0.5. Hence, the total variation distance between F'(X) and
Us,, is at least half the total variation distance between X and U,,,. I

4 On the complexity of testing whether a distribution is grained

A natural question that arises from the interest in grained distributions refers to the complexity of
testing whether an unknown distribution is grained. Specifically, given n and m (and a proximity
parameter €), how many samples are required in order to determine whether an unknown distribu-
tion X over [n] is m-grained or e-far from any m-grained distribution. This question can be partially
answered by invoking the results of Valiant and Valiant [13]. Specifically, for an upper bound we
use their “learning up to relabelling” algorithm, which may be viewed as a learner of histograms
(which is what it actually does). Recall that the histogram of the probability function p is defined
as the multiset {p(i) : ¢ € [n]} (equiv., as the set of pairs {(v,m) : m = |{i€[n] : p(i)=v}| > 0}).

Theorem 12 (learning the histogram [13, Thm. 1]):% There exists an O(e™2 - n/logn) time al-
gorithm that, on input n,e and O(e~2 - n/logn) samples drawn from an unknown distribution
p:[n] — [0,1], outputs, with probability 1 — 1/poly(n), a histogram of a distribution that is e-close
to p.

The implication of this result on testing any label-invariant property of distributions is immediate,
where a property of distribution D is called label-invariant if for every distribution p : [n] — [0, 1]
in D and every permutation 7 : [n] — [n] it holds that pom is in D. In our case, the tester consists
of employing the algorithm of Theorem 12 with proximity parameter €/2 and accepting if and only
if the output fits a histogram of a distribution that is €/2-close to being m-grained. The same
holds with respect to estimating the distance from the set of m-grained distributions (which can
be captured as a special case of label-invariant properties). Hence, we get

Corollary 13 (testing whether a distribution is grained): For every n,m € N, the set of m-grained
distributions over [n] has a tester of sample complezity O(e=2-n/logn). Furthermore, the distance
of an unkown distribution to the set of m-grained distributions over [n] can be approximated up to
an additive error of € using the same number of samples.

We comment that it seems that, using the techniques of [13], one can reduce the complexity to
O(e72 -n//logn'), where n’ = min(n,m). (For the case of testing, this is shown in the appendix,
using a reduction.) On the other hand, for m € [Q(n),O(n)], the above distance approximator is
optimal, whereas it makes no sense to consider m > n/e (since any distribution over [n] is e-close
to being n/e-grained). The negative result follows from the corresponding result of Valiant and
Valiant [13].

Valiant and Valiant [13] stated this result for the “relative earthmover distance” (REMD) and commented that
the total variation distance up to relabelling is upper bounded by REMD. This claim appears as a special case of [15,
Fact 1] (using 7 = 0), and a detailed proof appears in [11].
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Theorem 14 (optimality of Theorem 12, [13, Thm. 2]):" For every sufficiently small ¢ > 0, there
exist two distributions p1,ps : [n] — [0, 1] that are indistinguishable by any label-invariant algorithm
that takes O(e~'n/logn) samples although py is e-close to the uniform distribution over [n] and ps
is e-close to the uniform distribution over some set of n/2 elements.

Let us spell out that, in the current context, an algorithm A is called label-invariant if for every per-
mutation 7 : [n] — [n] and every sample i1, ..., is, it holds that A(n, €;i1, ...,i5) = A(n, e;w(i1), ..., w(is)).
Indeed, when estimating the distance to a label-invariant property, we may assume (w.l.o.g.) that
the algorithm is label-invariant. Combining Theorem 14 with the latter fact, we get —

Corollary 15 (optimality of Corollary 13): For any m € [Q2(n),O(n)], estimating the distance
to the set of m-grained distributions over [n| up to a sufficiently small additive constant requires
Q(n/logn) samples.

Similarly, tolerant testing in the sense of distinguishing distributions that are e;-close to being
m-grained from distributions that are eo-far from being m-grained requires 2(n/logn) samples, for
any constant es € (0,1/(2 - |2m/n])) and €; € (0, €2).

Proof: The case of m = n/2 follows by invoking Theorem 14, while observing that p; is e-close to
being m-grained, whereas py is e-close to a distribution that is (0.499 —¢)-far from being m-grained,®
where p1,p2 and € are as in Theorem 14. Hence, distinguishing the distributions ps and p; (in a
label-invariant manner) is reducible to (0.499 — 2¢)-testing the set of distributions that are e-close
to be m-grained, which implies that the latter task has sample complexity Q(n/logn).

For m < n/2, we invoke Theorem 14 while resetting n to 2m, which means that we consider
distributions over [n] with a support that is a subset of [2m]. (So the lower bound is Q(m/logm) =
Q(n/logn), where the inequality uses m = Q(n).)

For m > n/2 (equiv., n < 2m), we show a reduction of the distinguishing task underlying
Theorem 14 to the testing problem at hand. Specifically, let ¢ = [2m/n]|, and assume that t €
[2,0(1)] divides m (otherwise use |m/t| instead of m/t, and reduce testing (¢ - |m/t])-grained
distributions to testing m-grained distributions).” Consider a randomized filter, denoted Fy ¢, that
maps i € [m/t] to (m/t) 4+ ¢ with probability 1/t and otherwise maps it to itself, but always maps
i € [n]\ [m/t] toi— (m/t). Then:

e [, maps the uniform distribution over [m/t] to an m-grained distribution, since ¢5(j) def

Pr[Fmi(Uny) = j] equals Pr[U,,,, = j] - (t = 1)/t = (t —1)/m if j € [m/t] and equals
Pr(Upn =7 — (m/t)] -1/t =1/mif j € [(m/t) + 1,2m/t].

e [, maps the uniform distribution over [2m/t] to a distribuition that is (0.999/2t)-far from

being m-grained, since ¢4 (j) def Pr[F i (Usmse) = j] equals Pr[Us,, =7+ (m/t)]+Pr[Usy, /=
jl-@t—=1)/t = (2t — 1)/2m if j € [m/t] and equals Pr[Us,,, =j — (m/t)] - 1/t = 1/2m if
Jj € l(m/t) +1,2m/t].

"Like in Footnote 6, we note that Valiant and Valiant [13] stated this result for the “relative earthmover distance”
(REMD) and commented that the total variation distance up to relabelling is upper bounded by REMD. This claim
appears as a special case of [15, Fact 1] (using 7 = 0), and a detailed proof appears in [11].

8The constant 0.499 stands for an arbitrary large constant that is smaller than 0.5. Recall that the definition of
0-far mandates that the relevant distance be greater than 6.

9For example, the reduction may use a filter that maps i € [n] to itself with probability ¢ - [m/t]/m and maps it
to n otherwise.
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Applying the filter F,, ; to the distributions p; and py of Theorem 14 (while setting n = 2-m/t), we
obtain distributions p}, and p) such that p), is e-close to being m-grained, whereas p/ is ((0.999/2¢) —
¢)-far from being m-grained, since filters can only decrease the distance between distributions.!®
Hence, distinguishing the distributions ps and p; (over [2m/t]) is reducible to ((0.999/2t) — 2¢)-
testing the set of distributions that are e-close to being m-grained, which implies that the latter
task has sample complexity Q((2m/t)/log(2m/t)). (The claim follows by recalling that 1/t = Q(1),
sincem=0(n).) N

Open Problems. Note that Corollary 15 does not refer to testing, but rather to distance approx-
imation, and there are natural cases in which the complexity of testing a property of distributions is
significantly lower than the corresponding distance approximation task (cf. [10] versus [13]). Hence,
we ask —

Open Problem 16 (the sample complexity of testing whether a distribution is grained): For
any m and n, what is the sample complexity of testing the property that consists of all m-grained
distributions over [n].

This question can be generalized to properties that allow m to reside in some predetermined set
M, where the most natural case is that M is an interval, say of the form [m/, 2m/].

Open Problem 17 (Problem 16, generalized): For any finite set M C N and n € N, what is the
sample complexity of testing the property that consists of all distributions over [n| that are each
m-grained for some m € M.

Appendix: Reducing testing m-grained distributions (over [n]) to
the case of n = O(m)

Recall that Corollary 13 asserts that for every n,m € N, the set of m-grained distributions over
[n] has a tester of sample complexity O(e~2-n/logn). As commented in the main text, we believe
that using the techniques of [13] one can reduce the complexity to O(¢~2 - n//logn’), where n’ =
min(n, m). Here we show an alternative proof of this result. Specifically, we shall reduce e-testing
m-grained distributions over [n] to §(¢)-testing m-grained distributions over [O(m)], and apply
Corollary 13.

The reduction will consist of using a deterministic filter f : [n] — [k], where kK = O(m), which
will be selected uniformly at random among all such filters. We stress that this is fundamentally
different from the randomized filters F' used in the main text. Specifically, when applying F' several
times to the same input, we obtained outcomes that are independently and identically distributed,
whereas when we apply a function f (which is selected at random) several times to the same input
we obtain the same output.

Note that applying any function f : [n] — [k] to any m-grained distribution yields an m-grained
distribution. Our main result is that, for any distribution X over [n] that is e-far from being m-
grained, for almost all functions f : [n] — [O(m)], the distribution f(X) is Q(e)-far from being
m-grained.

10That is, p4 is e-close to g4, which is m-grained, since ps is e-close to the uniform distribution over [m /t]. Likewise,
pl is e-close to g1, which is (0.999/2t)-far from being grained, since ps is e-close to the uniform distribution over
[2m/t].
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Lemma 18 (relative preservation of distance from m-grained distributions): For all sufficiently
small ¢ > 0 and all sufficiently large n and m, the following holds. If a distribution X over |n]
is e-far from being m-grained, then, with probability at least 1 — 36¢ over the choice of a function
f[n] — [m/c], the distribution f(X) is 0.05 - e-far from being m-grained.

Hence, we obtain a randomized reduction of the general problem of testing m-grained distributions
(over [n]) to the special case of n = O(m), where the reduction consists of selecting at random a
function f : [n] — [m/c| and using it as a (deterministic) filter for reducing the general problem to
its special case.

Proof: Let k = m/c and let p : [n] — [0,1] denote the probability function that describes X.
Define r : [n] — [0,1/m) such that (i) = p(i) — |[m - p(i)] /m. Denoting by Ag(p) the statistical
distance between p and the set of m-grained distributions (i.e., half the norm-1 distance), we have

2-Ac(p) > 3 min(r(i), (1/m) - r(i) (4)
2-Agp) < 2- Y min(r(i), (1/m) — r(0)) (5)

where Eq. (4) is due to the need to transform each p(7) to a multiple of 1/m and Eq. (5) is justified
by a two-step correction process in which we first round each p(i) to the closest multiple of 1/m, and
then we correct the resulting function so that it sums up to 1 (while keeping its values as multiples of
1/m).!' Hence, using Eq. (5). the lemma’s hypothesis implies that Diefn min(r(é), (1/m) —r (i) >
€. We shall prove the lemma by lower-bounding (w.h.p.) the corresponding sum that refers to
the distribution f(X), when f is selected at random. Specifically, for p'(j) = 2 fiy=j P(1), we
shall lower-bound the probability that »;cpmin(r'(j), (1/m) —r'(§)) > 0.1 - €, where r'(j) =
p'(j) — [m - p'(j§)]/m, and then apply Eq. (4).

Before doing so, we introduce a few notations. Firstly, we let s(i) = min(r (i), (1/m) — r(3)),
and let § = Zie[n] s(i), which is greater than e by the hypothesis. Next, we let H = {i € [n] :
p(i) > 1/3m} denote the set of “heavy” elements in X. We observe that |H| < 3m and that for
every i € H ey [n] \ H it holds that s(i) = 7(i) = p(i), since p(i) < 1/2m holds for every i € H.
We consider two cases, according to whether or not the sum ),z p(7) is smaller than 0.5 - 4.

Claim 18.1 (the first case): Suppose that ), p(i) < 0.5-6. Then, with probability at least
1 — 16¢ over the choice of f, it holds that f(X) is 0.1e-far from being m-grained.

Proof: In this case ) ;. s(i) > 0.5- 0, and we shall focus on the contribution of f(H) to the
distance of f(X) from being m-grained. We shall show that, for almost all functions f, much of
this weight is mapped (by f) in a one-to-one manner, and that the elements in H do not change
by much the weight mapped by f to f(H). Specifically, we consider a uniformly selected function
f :[n] — [k], and the following two good events defined on this probability space.

1. The first (good) event is that the function f maps at least 0.20 of the s(i)-mass of the i’s in
H to distinct images. Intuitively, this is very likely given that the total s(i)-mass of i’s in H

"Specifically, let ¢ : [n] — [0,2) be the function resulting from the first step (i.e., q(i) = |m - p(i)]/m if r(i) <
1/2m and q(i) = [m-p(i)]/m otherwise). Then, § = ey 190 = p()| = 32, min(r(i), (1/m) — r(i)) and
11— Zie[n] q(2)] < 6.
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is greater than 0.5 and that |H| < k. Formally, denoting by Hy the (random variable that
represents the) set of ¢ € H that satisfy f(i) € f(H \ {i}) (i.e., for every i € Hy it holds that

f7Y(f@@) N H = {i}), we claim that Pry [Zier s(i) > 0.25} >1—c

To see this, we first note that, for every i € H, conditioned on the values assigned to H \ {i},
the probability that f(i) ¢ f(H \ {i}) is at least W > 1—|H|/k > 0.9, where the
inequality is due to |H| < 3m < 0.1k. Hence, each i € H contributes s(i) < 1/2m to the sum
(of s(i)’s with 4 € Hy) with probability at least 0.9, also when conditioned on all other values
assigned by f. It follows that Prj [Eier s(i) > 0.2(5] > 1 — ¢, where the (typical) case of

8 = w(1/m) is straightforward.!'?

2. The second (good) event is that the function f does not map much p(i)-mass of i’s in H

to the images occupied by H. Again, this is very likely given that |H| < k. Specifically,
observe that Ef [Zieﬁ:f(i)ef(H) p(z)] < |—I,;” Y e P(i) < 3c-§/2, since p(i) = s(i) for
every i € H (and |H| < 3m and k = m/c). Letting Sy = > it fiye o P(i), we get

Pr[S; < 0.16] > 1 - %%2 —1 _15¢.

Assuming that the two good events occur (which happens with probability at least 1—6¢), it follows
that at least 0.20 of the s(-)-mass of H is mapped by f to distinct images and at most 0.16 of the
mass of H is mapped to these images. Hence, f(X) corresponds to a probability function p’ such
that /(i) = p'(i) — |m - p'(i)] /m satisfies

S wmin( @), (1/m) — @) > Y s@— S pl)
i€Hy i€Hy i€H: f(i)ef(H)
> 0.20 —0.16,

where Hy = {i € H : f~}(f(i))NH = {i}} (as above). Hence, recalling that § > €, with probability
at least 1 — 16¢ over the choice of f, it holds that f(X) is 0.le-far from being m-grained. m

Claim 18.2 (the second case): Suppose that o' def > icap(i) > 0.5-6. Then, with probability at
least 1 — 36¢ over the choice of f, it holds that f(X) is 0.05e-far from being m-grained.

Proof: In this case Y, 7 s(i) > 0.5 -0, and we shall focus on the contribution of f(H) to the
distance of f(X) from being m-grained. We shall show that, for almost all functions f, much of
this weight is mapped (by f) to [k]\ H and that the mass of the elements of H is distributed almost

128pecifically, letting ¢; = ¢;(f) denote the contribution of i € H to Zier s(4), we have E[¢;] > 0.9 - s(¢) and
V[¢:] < E[¢7] < s(i)/2m. Hence, Pr Y, ;¢ <0.20] < &%, since E [Y, 5 ¢:] > 0.456. This suffices for
d = w(1/m). Actually, the same argument holds if 7, _, 5(1)% = 0(6?). In general (esp., if Yien 5(1)% = Q(6%)), for

a sufficiently small ¢’ > 0, we define H' ' {i € H:s(i) >’ - ¢}, and consider two cases.
(a) If > ,cp\pr8(i) > 0.3 -6, then we use H \ H' instead of H, while noting that Pr [ZieH\H, G < 0.26] <
% < ¢, since E [ZieH\ Q} > 0.276 and V[32, pp g G] < /6 - 6.
(b) I3,y s(i) > 0.2-6, then we use H' instead of H, while noting that the probability that |f(H')| < |H'| is at
most (1/;) -(1/k) < c.
(We proceed with H replaced by either H' or H \ H'.)
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uniformly. Specifically, we first show that more than half of the probability mass of H is mapped
disjointly of H. That is,

Prf:[n]_)[k] Z p(Z) >0.5-6 >1—6¢ (6)
i€H:f(i) ¢ f (H)

where the probability is taken uniformly over all possible choices of f. The proof is similar to the
analysis of the second event in the proof of Claim 18.2. Specifically, we consider random variables
¢i’s such that ¢; = p(3) if f(i) € f(H) and {; = 0 otherwise, and observe that E[(;] > k—TIH\ -p(i) >
(1 —3¢) - p(i) (since |H| < 3m and m = ck). Thus, E [}, .7 ¢] = (1 —3¢) - & and Eq. (6) follows
by Markov Inequality while using » . 5 ¢ < > .. p(i) = ¢'. This holds also if we fix the values
of f on H and condition on it, which is what we do from this point on. Hence, we fix an arbitrary
sequence of value for f(H), and consider the uniform distribution of f conditioned on this fixing
as well as on the event in Eq. (6).

Actually, we decompose f : [n] — [k] into three parts, denoted f’, f” and f”, that represents
its restriction to the three-way partition of [n] into (H, B, G) such that B = {i € H : f(i) € f(H)}
(and G = {i € H : f(i) ¢ f(H)}); indeed, f' : H — [k] is the restriction of f to H, whereas
f":B — f(H)and f” : G — [k]\ f(H) are its restrictions to the two parts of H. We fix arbitrary
f'*H — [kl and f” : B— f'(H), where B = {i € H : f"(i) € f'(H)}, such that >,z p(i) < 0.5,
while bearing in mind that such fixing (of f’ and f”) arise from the choice of a random f with
probability at least 1 — 6¢. Our aim will be to show that, with high probability over the choice of
/"G — [k]\ f(H), it holds that

> p(i) > 0.45'. (7)

i€G 1" (D)eJ (f)

where J(f") def {j € [k : Xieq.pr()=; P(i) < 0.8/m}. (Recall that for any i € G C H it holds
that p(i) = r(i) = s(i) < 1/3m.) This would imply that, with high probability, the distance of
f(X) from being m-grained is at least

1 08
: N1 08) ‘ .
Z min Z p(3) , e > Z 0.25 Z p(7)
JeJ (") if""(i)=j JeJ(f) if""(i)=J
> 0.25-0.48 > 0.0506,

where the first inequality is due to the fact that p/(j) et Prlf(X)=j] = X icq.pr @)= P(i) < 0.8/m

for every j € J(f") and so min(p'(j),0.2/m) > p'(j)/4. So all that remains is to show that Eq. (7)
holds with high probability over the choice of f”.

Letting K’ e [k] \ f(H), we start by observing that, for every i € G, it holds that

. 08 1
Prymcow (i) ¢ J(f")] < Prpmg_x Z p(t) > m 3m
LLeG\{i}: " (O)=F""(3)
= Prpgop [P0 eicK s Y p0) >
FrG=K ’ 3m

LeG\{i}: " (=7
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3m 1

< 2

- 14 |K|
3ck 1

< 22

- 14 k-—3ck

where the equality can be seen by first fixing f”'-values for all elements in G\ {i} and then selecting
f"(¢) uniformly in K’. Assuming that ¢ < 0.4/4.2, we get Prm.q_.x/[f" (1) & J(f")] < 3¢, and it
follows that

E .Gk Yoo p@)| = Y Prpmarlf() € I - pli)
i€G ! ()T (f) i€G
= > 3c-pli)
e
< 3¢-d

since Y .o p(i) < D egp(i) = &', Tt follows that Prym.g_x [zieG:fm(i)gJ(f///)p(i) > 0.1(5’} is
upper-bounded by 3¢/0.1 = 30c. Recalling that >, 5 p(i) < 0.50', which implies ", p(i) > 0.5,
this implies that Eq. (7) holds with probability at least 1 — 30c¢ (over the choice of f”'). Lastly,
recall that Y. 5 p(i) < 0.50', where B = {i € H : f"(i) € f'(H)}, holds with probability at least
1 — 6¢ (over the choice of f/ and f”). The claim follows, since (as argued above) Eq. (7) implies
that f(X) is 0.050-far from being m-grained (and § >¢). ®

Combining Claims 18.1 and 18.2, the lemma follows. i
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