Information Theory: Exercise II

1) Let E_{1}, \ldots, E_{m} be such that $E_{m}>\cdots>E_{1}>0$. We say that a random variable X has the Boltzmann distribution with parameter $\beta>0$, if for every i,

$$
\operatorname{Pr}\left[X=E_{i}\right]=\frac{e^{-\beta E_{i}}}{\sum_{j} e^{-\beta E_{j}}}
$$

Let E be such that $E_{1}<E<\sum_{i} E_{i} / m$. Show that among all the distributions p_{1}, \ldots, p_{m} such that $\sum_{i} p_{i} E_{i}=E$, the distribution with maximal entropy is a Boltzmann distribution.
What happens when $E>\sum_{i} E_{i} / m$?
What happens when $E=\sum_{i} E_{i} / m$?
2) Let X be a random variable with distribution $\left(p_{1}, \ldots, p_{m}\right)$, such that for every i the probability p_{i} is a power of 2 (i.e., it is 2^{-k} for some k). Prove that the average code length obtained by Huffman's code in this case is exactly $H(X)$.
3) Prove that the average code length obtained by Huffman's code on any random variable X is $\geq H(X)$.
Hint: use Question 1 from Exercise I.
4) Prove that the average code length obtained by Huffman's code on any random variable X is $\leq H(X)+1$.
Hint: use Question 2 and the optimality of Huffman's code.
5) Assume that you want to generate a random variable X with distribution $\left(p_{1}, \ldots, p_{m}\right)$ by coin-flips as follows:

In each step, based on all previous coin-flips, you can either stop or flip another coin with distribution $(p, 1-p)$ of your choice (where the bias $(p, 1-p)$ is not necessarily the same in all steps). After you stop, you have to output a value in $\{1, \ldots, m\}$ (based on all coin-flips). The requirement is that for every i the probability to output i is p_{i}.

Show that in every procedure as above the expectation of the number of coin flips is at least $H(X)$ and that there exists such a procedure where the expectation of the number of coin flips is at most $H(X)+1$.

