Information Theory: Exercise III

1) Prove that the two definitions that we gave for the capacity of the symmetric binary channel coincide. That is, the capacity of the channel according to the general definition is 1 - H(p, 1-p).

2) Consider the following channel: on input $x \in \{0, 1\}$ the channel outputs x with probability 1 - p and a special symbol (say, *) with probability p. What is the capacity of the channel ?

3) Consider the following channel: on input $(x_1, \ldots, x_n) \in \{0, 1\}^n$ the channel erases exactly one of the bits x_1, \ldots, x_n (with probability 1/n each) and outputs the sequence of all the other bits. Show that for any n the capacity of the channel is at least $n - \log n - 1$. What is the capacity of the channel for n = 2?

4) Let Q_1, Q_2 be two arbitrary channels. Let Q be the combined channel, that is, on input (x_1, x_2) where x_1 is an input for Q_1 and x_2 is an input for Q_2 , the channel Q applies the channel Q_1 on x_1 and Q_2 on x_2 . What is the capacity of the channel Q (as a function of the capacities of Q_1, Q_2)?