Information Theory: Exercise IV

1) Let G be the complete (undirected) graph with $m=4 n$ vertices. That is, $G=(V, E)$, where V is a set of size $4 n$, and E contains all pairs (i, j), s.t., $i, j \in V$ and $i \neq j$.

Let H be the complete (undirected) tripartite graph with parts of sizes $2 n, n, n$. That is, $H=\left(V_{1} \cup V_{2} \cup V_{3}, E^{\prime}\right)$, where V_{1}, V_{2}, V_{3} are disjoint sets of sizes $2 n, n, n$ (respectively), and E^{\prime} contains all pairs (i, j), s.t., $i \in V_{a}, j \in V_{b}$, where $a \neq b$.

We say that a sequence of graphs H_{1}, \ldots, H_{k} covers a graph G if the nodes of H_{1}, \ldots, H_{k} can be placed on the nodes of G (i.e., the nodes of every H_{i} are mapped one-to-one to the nodes of G), such that, every edge of G is covered by at least one edge of H_{1}, \ldots, H_{k}.

Show that at least $(2 / 3) \cdot \log _{2} m$ copies of H are needed to cover G.
2) Let G be the graph with set of nodes $\{1,2,3\}^{n}$, where two nodes $x, y \in\{1,2,3\}^{n}$ are connected by an edge iff they differ in exactly one coordinate. State and prove an isoperimetric inequality for the graph G. (Similar to the isoperimetric inequality for the discrete cube $\{0,1\}^{n}$).
3) Prove or give a counter example: For every $X_{1}, X_{2}, X_{3}, X_{4}$,

$$
\begin{gathered}
H\left(X_{1}, X_{2}, X_{3}\right)+H\left(X_{1}, X_{2}, X_{4}\right)+H\left(X_{1}, X_{3}, X_{4}\right)+H\left(X_{2}, X_{3}, X_{4}\right) \leq \\
H\left(X_{1}, X_{2}\right)+H\left(X_{1}, X_{3}\right)+H\left(X_{1}, X_{4}\right)+H\left(X_{2}, X_{3}\right)+H\left(X_{2}, X_{4}\right)+H\left(X_{3}, X_{4}\right) .
\end{gathered}
$$

4) Prove or give a counter example: For every $X_{1}, X_{2}, X_{3}, X_{4}$,

$$
\begin{gathered}
H\left(X_{1}, X_{2}, X_{3}\right)+H\left(X_{2}, X_{3}, X_{4}\right)+H\left(X_{3}, X_{4}, X_{1}\right)+H\left(X_{4}, X_{1}, X_{2}\right) \leq \\
1.5 \cdot\left[H\left(X_{1}, X_{2}\right)+H\left(X_{2}, X_{3}\right)+H\left(X_{3}, X_{4}\right)+H\left(X_{4}, X_{1}\right)\right] .
\end{gathered}
$$

5) Prove or give a counter example: For every $X_{1}, X_{2}, X_{3}, X_{4}$,

$$
\begin{gathered}
H\left(X_{1}, X_{2}, X_{3}\right)+H\left(X_{1}, X_{2}, X_{4}\right)+H\left(X_{1}, X_{3}, X_{4}\right)+H\left(X_{2}, X_{3}, X_{4}\right) \leq \\
3 \cdot\left[H\left(X_{1}, X_{2}\right)+H\left(X_{3}, X_{4}\right)\right] .
\end{gathered}
$$

