Information Theory: Exercise V

1) Let $X \in\{1, \ldots, m\}$ be a random variable with distribution $q=\left(q_{1}, \ldots, q_{m}\right)$. Let E be an event that depends only on X, such that, $\operatorname{Prob}[E]=\alpha$. Let $p=\left(p_{1}, \ldots, p_{m}\right)$ be the distribution of X conditioned on the event E. What can you say about $D(p \| q)$?
2) Let $X \in\{1, \ldots, m\}$ be a random variable with distribution $q=\left(q_{1}, \ldots, q_{m}\right)$. Let E be any event, such that, $\operatorname{Prob}[E]=\alpha$. Let $p=\left(p_{1}, \ldots, p_{m}\right)$ be the distribution of X conditioned on the event E. What can you say about $D(p \| q)$?
3) Let $X \in\{1, \ldots, m\}$ be a random variable with distribution $q=\left(q_{1}, \ldots, q_{m}\right)$ and let $Y \in\{0,1\}$ be a random variable. Let $p_{0}=\left(p_{0,1}, \ldots, p_{0, m}\right)$ be the distribution of X conditioned on $Y=0$ and let $p_{1}=\left(p_{1,1}, \ldots, p_{1, m}\right)$ be the distribution of X conditioned on $Y=1$. Show that $\operatorname{Prob}[Y=0] \cdot D\left(p_{0} \| q\right)+\operatorname{Prob}[Y=1] \cdot D\left(p_{1} \| q\right)=I(Y ; X)$.
4) Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables with distribution $(p, 1-p)$. Show that with high probability, the Kolmogorov complexity of the sequence of bits X_{1}, \ldots, X_{n} is n. $H(p, 1-p) \pm o(n)$.
(That is, show that for every $\epsilon>0$ there exists n_{0} such that if $n>n_{0}$ then with high probability the Kolmogorov complexity of X_{1}, \ldots, X_{n} is between $n \cdot[H(p, 1-p)-\epsilon]$ and $\left.n \cdot[H(p, 1-p)+\epsilon]\right)$.
