
An Explicit Lower Bound of 5n − o(n) for
Boolean Circuits

Kazuo Iwama †, Oded Lachish ‡, Hiroki Morizumi †, and Ran Raz §?

† Graduate School of Informatics, Kyoto University, Kyoto, JAPAN
{iwama, morizumi}@kuis.kyoto-u.ac.jp

‡ Faculty of Computer Science, Haifa University, Haifa, Israel
loded@cs.haifa.ac.il

§ Faculty of mathematics, Weizmann Institute, Rehovot, Israel
ran.raz@weizmann.ac.il

Abstract. We prove a lower bound of 5n − o(n) for the circuit com-
plexity of an explicit (constructible in deterministic polynomial time)
Boolean function , over the basis U2. That is, we obtain a lower bound of
5n−o(n) for the number of {and, or} gates needed to compute a certain
Boolean function, over the basis {and, or, not} (where the not gates are
not counted). Our proof is based on a new combinatorial property of
Boolean functions, called Strongly-Two-Dependence, a notion that may
be interesting in its own right. Our lower bound applies to any Strongly-
Two-Dependent Boolean function.

1 Introduction

In 1949 Shannon [1] showed that the circuit complexity of almost all Boolean
functions is exponential. Shannon’s proof is based on a counting argument and
hence does not supply an explicit (constructible in deterministic polynomial
time) Boolean function which actually has exponential circuit complexity. Find-
ing lower bounds for explicit Boolean functions in the general (non-restricted)
model is a central problem in computer science, yet only linear lower bounds
have been shown. Lower bounds for explicit Boolean functions were proved for
some restricted models of Boolean circuits (e.g., monotone circuits, constant
depth circuits, etc’).

The following lower bounds were proved for circuits over the base B2, where
B2 is the base that includes all Boolean functions over two Boolean variables.
In 1974 Schnorr [2] proved a lower bound of 2n. Then Paul [4] proved a 2.5n-
lower bound. Stockmeyer [3] gave the same 2.5n bound for a larger family of
functions. Blum [5] improved this bound to 2.75n and in 1984 [6] proved a
lower bound of 3n. All these results where proved by using the so-called “gate-
elimination”approach. The 3n-bound is still the best result for this model.

In this paper, we consider Boolean circuits over the basis U2. The basis U2 is
one of the most common basis for Boolean circuits. It contains all the Boolean
functions over two variables, except for the xor function and its complement.
? research supported by a Israel Science foundation (ISF) grant

Note that any gate over the basis U2 can be replaced by an and gate (or,
equivalently, an or gate), with the optional addition of not gates connected
directly to the inputs of the gate, and directly at the output of the gate. Thus,
any Boolean circuit over U2 can be converted into a Boolean circuit over the
basis {and, or, not}, with the exact same number of gates (when the not gates
are not counted). The circuit complexity of a function over U2 is equivalent to
counting the number of {and, or} gates needed to compute the function (when
the not gates are ignored).

The first lower bound on the size of circuits over the basis U2, was obtained
by Zwick [7] in 1991, he gave a lower bound of 4n−O(1) for functions that belong
to a specific subset of the symmetric Boolean functions. This lower bound was
improved to 4.5n−o(n) by Lachish and Raz [8] after a decade. Lachish and Raz [8]
proved their lower bound for functions in a new family of Boolean functions they
called Strongly-Two-Dependent. One year later Iwama and Morizumi [9] showed
a lower bound of 5n − o(n) for the same family of Boolean functions. As in the
case of Boolean circuits over the basis B2 all these results where proved by using
the so-called “gate-elimination”approach. In this paper we combine the works of
Lachish and Raz [8] and Iwama and Morizumi [9].

2 Boolean Circuits over U2

The basis U2 contains all the Boolean functions over two variables, except for
the the xor function and its complement. Note that any gate over the basis U2

can be replaced by an and gate (or, equivalently, an or gate), with the optional
addition of not gates connected directly to the inputs to the gate and to the
output of the gate. Thus we view the basis U2 as the set of all Boolean functions
f : {0, 1}2 → {0, 1} of the sort

f(x, y) = ((x ⊕ a) ∧ (y ⊕ b)) ⊕ c,
where a, b, c ∈ {0, 1}. In this paper we deal only with Boolean circuits over the
basis U2. A Boolean circuit over the basis U2 is a directed acyclic graph with
nodes of in-degree 0 or 2. Nodes of in-degree 0 are called input-nodes, and each
one of them is labeled by a variable in {x1, · · · , xn} or a constant 0 or 1. Input-
nodes labeled by a constant are called constant-nodes. Nodes of in-degree 2 are
called gate-nodes, and each one of them has two inputs and an output, and is
labeled by a function in U2. There is a single specific node of out-degree 0 called
the output-node. If one input of the gate-node is constant then the output is
constant or depends on the other input, i.e., the same or its negation. In the
former case, the gate-node is called blocked-gate. In the latter case, the gate-
node is called through-gate. For nodes u and v, u → v means that the output
of the node u is directly connected to one of the v’s inputs. u

∗
→ v means that

there is a path from u to v. For a Boolean circuit C, OUTC(v) denotes the set
of gate-nodes, u, such that v → u. Also INC(v) denotes the set of input-nodes,

u, such that u
∗
→ v.

Let X = {x1, · · · , xn} be the set of input-variables. Given an assignment
σ ∈ {0, 1}n to the variables in X , we denote by C(σ) the value of the output
of the circuit C on the assignment xi = σi, 1 ≤ i ≤ n. Similarly, for any node

v in the circuit C, we denote by Cv(σ) the value of the output of the gate-
node v on the assignment xi = σi. We say that two Boolean circuits C1 and
C2 are equivalent (C1 ≡ C2) if they compute the same function. Without loss
of generality, we can assume that for every input-variable xi, there is only one
input-node labeled by xi.

The size of a circuit C is the number of gate-nodes in it. We denote this
number by Size(C). The circuit complexity of a Boolean function F : {0, 1}n →
{0, 1} is the minimal size of a Boolean circuit that computes F . We denote this
number by Size(F). The depth of a node v in a Boolean circuit C is the length of
the longest path from v to the output-node, denoted by DepthC(v). The depth
of a circuit C, Depth(C), is the maximal depth of a node v in the circuit. The
degree of a node v in a Boolean circuit C, denoted by DegreeC(v), is the node’s
out-degree. We denote by Degeneracy(C) the number of input-variables that
have degree one in C. Let x be an input-variable that has degree one in C. Then
a node v is called degenerate if x → v. Otherwise, v is called non-degenerate
or ND. For our lower bound proof, we use the following measure (see the next
section for its purpose):

SD(C) = Size(C) − Degeneracy(C).
Recall that each gate-node v, having inputs x and y, has the functionality

defined by f(x, y) = ((x ⊕ a) ∧ (y ⊕ b)) ⊕ c. If we assign value a to x then the
value of its output is fixed regardless of the other input y. In this case, we say
that fixing x = a blocks the gate-node v or simply x blocks v. Similarly for y.

A restriction θ is a mapping from a set of n variables to {0, 1, ?}. We apply
a restriction θ to a Boolean function F : {0, 1}n → {0, 1} in the following way:
for any variable xi that is mapped by θ to a constant ai ∈ {0, 1}, we assign ai to
xi. We leave all the other variables untouched. We refer to the resulting Boolean
function by F |θ. We use the similar notation, C|θ, for a Boolean circuit C.

3 Strongly Two Dependent Boolean Functions

Let F : {0, 1}n → {0, 1} be a Boolean function and F [i, j, a, b], 1 ≤ i < j ≤ n,
a, b ∈ {0, 1}, be a Boolean function F |θ[i,j,a,b] where θ[i, j, a, b] is a restriction
that maps xi and xj to a and b, respectively. F is called Two-Dependent if for
any i and j, 1 ≤ i < j ≤ n, F [i, j, 0, 0], F [i, j, 0, 1], F [i, j, 1, 0] and F [i, j, 1, 1]
are all different functions. (For example, if F is a symmetric function then it is
not Two-Dependent since F [i, j, 0, 1] = F [i, j, 1, 0].) Let Xm ⊆ {x1, · · ·xn} be a
set of m variables, and θm be a restriction which maps Xm to {0,1}. Then F is
called (n,k)-Strongly-Two-Dependent if F |θm

is always Two-Dependent for any
0 ≤ m ≤ n−k, any Xm and any θm. (If F is (n,k)-Strongly-Two-Dependant then
F |θm

is obviously (n − m, k)-Strongly-Two-Dependent.) It is proved in [8] that
an (n, k)-Strongly-Two-Dependent Boolean function for any (sufficiently large)
integer n and k = O(log n) can be constructed explicitly at polynomial time by
using a small number of auxiliary variables. We do not present this construction
here since as pointed out by Ingo Wegener a k − mixed Boolean function ([10]
pages 135–137) is also strongly two dependent and Savickỳ and Žák [11] have
shown an explicit construction for such a Boolean Function.

Two-Dependent functions have the following property:

Proposition 3.1. Let F : {0, 1}n → {0, 1} be a Two-Dependent Boolean func-
tion over the set of variables X = {x1, · · · , xn}. Let C be a Boolean circuit
that computes F. Then, the following is never satisfied in C: There exist two
input variables xi, xj such that OUTC(xi) = OUTC(xj) and |OUTC(xi)| =
|OUTC(xj)| = 2 (i.e., xi, xj are connected directly to the same two gate-nodes).

Proof. Let F, C be as in the proposition. Assume for the sake of contradiction
that there exist xi, xj as in the proposition. Without loss of generality, assume
that i = 1 and j = 2. Let v1,v2 be the two different gate nodes, such that,
OUTC(x1) = OUTC(x2) = {v1, v2}. Since v1, v2 are labeled by Boolean functions
from U2 there exist two different restrictions σ1, σ2 that map x1, x2 to {0, 1} and
all other variables to ?, such that Cv1

(σ1) = Cv1
(σ2) and Cv2

(σ1) = Cv2
(σ2).

Note that this is true even if the gates where labeled by Boolean functions from
B2. Thus C |σ1

≡ C |σ2
. Hence the Boolean function C computes is not Two-

Dependent. Yet F is Two-Dependent.

The following two properties are also important in the lower-bound proof.
The first one says that a restriction does not “cut” all the paths from a non-
restricted input-gate to the final output. The second one says that if a gate v is
degenerate, i.e., one of its inputs is connected to xi such that |OUTC(xi)| = 1,
then the other input of v has paths from many different input-gates.

Proposition 3.2. Let F : {0, 1}n → {0, 1} be an (n, k)-Strongly-Two-
Dependent Boolean function over the set of variables X = {x1, · · · , xn}. Let C be
a Boolean circuit that computes F . Then, the following is never satisfied in C:
There exist an input-variable xi, a set X ′ of at most n− k other input-variables
and a restriction θ that maps each input-variable in X ′ to a constant in {0, 1},
such that, in C|θ every path that connects xi to the output-node contains a gate-
node that computes a constant function.

Proof. Let F, C be as in the proposition. Assume for the sake of contradiction
that the case described in the proposition occurs and that xi is the variable for
which the case occurs. Note that for a restriction θ as described in the proposition
C |θ does not depend on the value assigned to xi. Hence the Boolean function
C |θ computes is not Two-Dependent. Yet F |θ is Two-Dependent.

The following corollary is a special case of the previous proposition

Corollary 3.3. Let F : {0, 1}n → {0, 1} be an (n, k)-Strongly-Two-
Dependent Boolean function and let C be a Boolean circuit that computes F.
Let v be a gate-node in C and let v′ be the node such that v′ → v. Assume
that xi → v for an input-variable xi such that DegreeC(xi) = 1 (i.e., the node
v is degenerate.) Then, if the node v′ computes a non constant function, then
|INC(v′)| > n − k.

For the gate-elimination, it is convenient if the circuit does not include re-
stricted cases, i.e., those that do not contribute to the computation process of
the Boolean circuit. The following propositions gives a method of removing such
gates without increasing the SD measure of the circuit.

Proposition 3.4. Let F : {0, 1}n → {0, 1} be a Two-Dependent Boolean func-
tion and let C be a Boolean circuit that computes F. Assume that C contains
one of the following degenerate cases:

1. A gate-node v such that a constant node is connected directly to v.
2. A gate-node v such that for some constant a ∈ {0, 1} and any assignment

σ ∈ {0, 1}n, we have Cv(σ) = a.
3. A gate-node v which is not the output of the circuit such that DegreeC(v) =

0.
4. A gate-node v such that its two inputs are connected to the same gate.
5. An input-variable xi such that |OUTC(xi)| ≥ 2 and there exists u, v ∈

OUTC(xi), u → v.

Then, there exists a Boolean circuit C ′ ≡ C such that SD(C) ≥ SD(C ′) and C ′

does not contain any of the degenerate cases.

Proof. Let C be as in the proposition. We prove the first case, the third case
and the last case. The proof of all the other cases is similar.

Let v be a gate-node such that a constant node labeled by a ∈ {0, 1} and a
node labeled by u are connected directly to it. Then either v is a through-gate or
it is blocked. Thus we can remove the gate v from C and get a new circuit C ′ that
computes the same Boolean function as C computes and Size(C) > Size(C ′).
Observe that if u is a degenerate variable in C and a non degenerate in C ′

then Degeneracy(C ′) = Degeneracy(C) − 1 and otherwise Degeneracy(C ′) ≥
Degeneracy(C). Hence SD(C ′) ≤ SD(C).

Let v be a non-output gate-node such that DegreeC(v) = 0. No input variable
of degree one can be connected to v since if there exists such input variable,
the output of C does not depend on the input variable, which contradicts the
assumption that F is a Two-Dependent. Hence we can remove the gate v from
C and get a new circuit C ′ such that SD(C ′) ≤ SD(C).

Let xi be such that |OUTC(xi)| ≥ 2 and there exist u, v ∈ OUTC(xi), u → v.
Let w be the other node such that w → u. Observe that we can disconnect u

from v, connect w to v instead and relabel v in manner such that we get a new
circuit C ′ that computes the same Boolean function as C computes. Since the
number of gates in C and C ′ is the same and Degeneracy(C ′) = Degeneracy(C)
we get that SD(C ′) = SD(C).

Proposition 3.5. Let F : {0, 1}n → {0, 1} be an (n, k)-Strongly-Two-
Dependent Boolean function and let C be a Boolean circuit that computes F.
Then Degeneracy(C) ≤ k, if C does not contain any one of the degenerate
cases of proposition 3.4.

Proof. Let F, C be as in the proposition. Assume for the sake of contradic-
tion that Degeneracy(C) > k. Let v be a degenerate gate-node such that
DepthC(v) ≥ DepthC(u) for every degenerate gate-node u. An input-variable
of degree one is connected directly to v, and let w be the other node which is

connected directly to v. Since we selected v as above none of the input-variable
of degree one is in INC(w) and hence |INC(w)| < n−k. This contradicts Corol-
lary 3.3.

4 The lower bound

4.1 The lower bound

In this section we prove following Lemma 4.1, the lower bound Theorem (The-
orem 4.2) is a direct result of this Lemma.

Lemma 4.1. Let F : {0, 1}n → {0, 1} be an (n, k)-Strongly-Two-Dependent
Boolean function and assume that n − k ≥ k + 4 and n − k ≥ 5. Let C be a
Boolean circuit that computes F. Then, there exists a set of one or two input-
variables X ′ (i.e., |X ′| ≤ 2) and a constant ci ∈ {0, 1} for each xi ∈ X ′ such
that for the restriction θ that maps each variable xi ∈ X ′ to ci, the following is
satisfied: There exists a Boolean circuit C ′ ≡ C|θ such that

SD(C) ≥ SD(C ′) + 5 · |X ′|.

Theorem 4.2. Let F : {0, 1}n → {0, 1} be an (n, k)-Strongly-Two-Dependent
Boolean function such that k = o(n). Then,

Size(F) ≥ 5n − o(n)

Proof. Let C a Boolean circuit that computes F . We generate a sequence of
Boolean circuit C0, ..Cl by iteratively applying Lemma 4.1 to C. (Note that this
is possible by the definition of Strongly-Two-Dependent). More formally, we have
C0 = C and Ci+1 is obtained from Ci by applying Lemma 4.1. We stop when
the number of remaining input-variables is smaller than 2k + 4 or k + 5. By
Lemma 4.1, SD(C) ≥ SD(Cl) + 5n − o(n). By Proposition 3.5, we can assume
that Degeneracy(C) ≤ k. Therefore, Size(C) ≥ 5n − o(n), which immediately
implies the theorem.

4.2 Preliminaries for the Proof of Lemma 4.1

In this and the next sections (4.2 and 4.3), we always treat Boolean circuits which
compute (n, k)-Strongly-Two-Dependent Boolean functions such that n − k ≥
k + 4 and n− k ≥ 5, which is often omitted to mention. Also, we always assume
that the circuits do not include degenerate cases described in Proposition 3.4.
Those nodes can be removed without increasing SD as mentioned in its proof.
Furthermore we can always assume that the number of degenerate variables is
at most k by Proposition 3.5. Our argument in the rest of the paper has the
standard structure, which is explained in the proof of our first lemma:

Lemma 4.3. Suppose that there is an input-variable xi, such that, (i) OUTC(xi)
= {v1, v2, v3} and (ii) OUTC(v1)∪OUTC (v2)∪OUTC(v3) includes at least three
ND gate-nodes. Then SD decreases by at least five by fixing xi appropriately.

x

v v v

3

i

1 2 3

v v v4 5 6

x

v v v

3

i

1 2 3

vv 54

(i)CaseA (ii)CaseB

Fig. 1. Lemma 4.3

v v
31

v

x x x
lji

3

2

Fig. 2. Lemma 4.4

Proof. Since OUTC(v1) ∪ OUTC(v2) ∪ OUTC(v3) includes at least three ND
gate-nodes, considering the following two cases is enough:

Case A OUTC(v1) or OUTC(v2) or OUTC(v3) includes at least two differ-
ent ND gate-nodes: without loss of generality, we can assume that OUTC(v1)
includes such gate-nodes. (see Fig. 1 (i).) One can see that, by fixing x1 ap-
propriately, we can block v1, which allows us to remove v4 and v5, too. v2 and
v3 can also be removed. Note that the gate-nodes v1 to v5 are all different by
Proposition 3.4 and v4 to v5 are ND gates by the assumption of the lemma. v1

to v3 are also ND by Corollary 3.3. Hence removing v1 to v5 does not decrease
Degeneracy(C). (Degeneracy(C) may increase, but that is not important for
us since increasing Degeneracy forces SD to decrease.) To summarize all these
situations, we write as follows (when a gate is removed since its output is fixed
(e.g., by being blocked), we say that the gate is “killed”):

Fix xi s.t. v1 blocked ⇒ Killed: v1, Removed: v1, v2, v3, v4, v5.
Non degenerate: v1, v2, v3 (by Corollary 3.3) v4, v5 (by (ii)) ⇒ Degeneracy:

±0.
Case B Each of OUTC(v1), OUTC(v2) and OUTC(v3) includes at least one

ND gate-node, v4, v5 and v6, respectively, which are all different (see Fig. 1 (ii)).
One can see that, by fixing x1 appropriately, we can block at least two of v1, v2

and v3 regardless of their gate-types. Without loss of generality, we assume that
v1 and v2 are blocked, which allows us to remove v4 and v5, too. v3 can also be
removed. Note that the gate-nodes v1 to v5 are all different by Proposition 3.4
and v4 to v5 are ND gates by the assumption of the lemma. v1 to v3 are also
ND by Corollary 3.3. To summarize:

Fix xi s.t. v1, v2 blocked ⇒ Killed: v1, v2, Removed: v1, v2, v3, v4, v5.
Non degenerate: v1, v2, v3 (by Corollary 3.3) v4, v5 (by (ii)) ⇒ Degeneracy:

±0.

Lemma 4.4. Suppose that there is an input-variable xi, such that, (i) OUTC(xi)
= {v1, v2, v3}, (ii) OUTC(v1) includes at least one ND gate-node and (iii)

INC(v2) = {xi, xj} and INC(v3) = {xi, xl} where xj and xl are both input-
variables such that i 6= j, i 6= l. Then, SD decreases by at least five by fixing xi

appropriately.

Proof. See Fig. 2. Three main cases, A, B and C exists:

Case A OUTC(v1) ∩ OUTC(v2) = ∅ and OUTC(v1) ∩ OUTC(v3) = ∅ and
OUTC(v2)∩OUTC(v3) = ∅: See Fig. 3 (i). v4 is an ND gate-node guaranteed by
(ii) above. v4, v5 and v6 are all different gate-nodes by the condition of the case.
v5 and v6 are also ND by Corollary 3.3. (By fixing xi and xj , we can block v5.
Similarly for v6.) Thus, we can apply Lemma 4.3.

Case B OUTC(v1)∩OUTC(v2) 6= ∅ or OUTC(v1)∩OUTC(v3) 6= ∅: without
loss of generality, assume that OUTC(v1) ∩ OUTC(v2) 6= ∅. See Fig. 3 (ii). Two
sub cases exist:

Case B.1 Suppose that we can fix xi such that it blocks v1, v2: There is at
least one ND gate-node, say v6, in OUTC(v1) ∪ OUTC(v2) ∪ OUTC(v4) other
than v4 for the following reason: Suppose that all gate-nodes (except v4) in
OUTC(v1)∪OUTC(v2)∪OUTC(v4) are degenerate. Then by setting appropriate
values to the input-nodes connected to these degenerate nodes and by setting xl

to block v3, all the paths from xi are blocked. Since the number of degenerate
gate-nodes is at most k, this fact contradicts Proposition 3.2. Note that v6 is
obviously different from v1, v2 or v4 and it is also different from v3 whose two
inputs are both input-nodes. To summarize:

Fix xi s.t. v1, v2 blocked ⇒ Killed: v1, v2 → v4, Removed: v1, v2, v3, v4, v6.

Non degenerate: v1, v2, v3 (by Corollary 3.3) v4 (obvious) v6 (mentioned
above)

⇒ Degeneracy: ±0.

Remark The above argument breaks if v4 is the output gate since the paths
from x1 to the output gate can no longer be blocked. However, v4 cannot be the
output gate since it is killed only by fixing a few input nodes. In the following
we often omit mentioning this fact in similar situations.

Case B.2 We can fix xi such that it blocks v1, v3 or v2, v3: Without loss of
generality, we assume that v1 and v3 are blocked.

Fix xi s.t. v1, v3 blocked ⇒ Killed: v1, v3, Removed: v1, v2, v3, v4, v5.

Non degenerate: v1, v2, v3, v5 (by Corollary 3.3) v4 (by (ii))

⇒ Degeneracy: ±0.

Case C OUTC(v2) ∩ OUTC(v3) 6= ∅: v4 is an ND gate-node guaranteed by
(ii) above. See Fig. 3 (iii).

Case C.1 Suppose that we can fix xi such that it blocks v2 and v3: If
OUTC(v5) does not includes v1, OUTC(v5) must include a gate-nodes, say v6,
that is different from v1, v2, v3 or v5 and is ND (by Corollary 3.3 since INC(v5) =
3). Such a case is proved like Case B.1. If OUTC(v5) includes v1, then we fix xi

such that it blocks v2 and v3, which kills v5 and then kills v1 also. To summarize:

Fix xi s.t. v2, v3 blocked ⇒ Killed: v2, v3→v5→v1, Removed: v1, v2, v3, v4, v5.

Non degenerate: v1, v5 (obvious) v2, v3 (by Corollary 3.3) v4 (by (ii))

⇒ Degeneracy: ±0.

Case C.2 We can fix xi such that it blocks v1, v2 or v1, v3: Without loss of
generality, we assume that v1 and v2 are blocked.

Fix xi s.t. v1, v2 blocked ⇒ Killed: v1, v2, Removed: v1, v2, v3, v4, v5.

Non degenerate: v1, v2, v3 (by Corollary 3.3) v4 (by (ii)) v5 (obvious)

⇒ Degeneracy: ±0.

v v
31

v

x x x
lji

3

2

v v v
4 5 6

2+ 2+

v v
31

v

x x x
lji

3

2

v v v
4 6 5

2+ 2+

v v
31

v

x x x
lji

3

2

v v
4 5

2+ 2+

v

6(i)CaseA (ii)CaseB (iii)CaseC

6

Fig. 3. Main cases of Lemma 4.4

v
1

v
2

x x

v... ...

i j

l

Fig. 4. Lemma 4.5

Lemma 4.5. Suppose that there are two input-variables xi, xj , such that
OUTC(xi) ⊇ {v1, v2} and OUTC(xj) ⊇ {v1, v2} and OUTC(xi) ∪ OUTC(xj) 6=
{v1, v2}. Then, OUTC(xi) ∪ OUTC(xj) includes at least one gate-nodes vl such
that vl is different from v1, v2, and OUTC(vl) includes at least one ND gate-node.

Proof. See Fig. 4. Suppose that there are no such vl. Then all gate-nodes, say u,
except v1 and v2 in OUTC(xi)∪OUTC(xj) (if any) are connected to degenerate
nodes. Those degenerate gate-nodes are blocked by their corresponding inputs,
by which we can remove all such u’s. Thus, by setting at most k input variable,
the circuit is converted to C ′ such that (i) C ′ is still Strongly-Two-Dependent
by the definition of Strongly-Two-Dependent and (ii) OUTC(xi) = OUTC(xj) =
{v1, v2}. But this contradicts Proposition 3.1.

4.3 Proof of Lemma 4.1

Let F : {0, 1}n → {0, 1} be an (n, k)-Strongly-Two-Dependent Boolean function
and assume that n − k ≥ k + 4 and n − k ≥ 5. Let C be a Boolean circuit that
computes F . Let v1 be a gate-node such that Depth(v1) = Depth(C) − 1 (we
can always find such v1). The nodes that are connected to v1 are both input-
variables, say x1 and x2. By Corollary 3.3, DegreeC(x1) ≥ 2, DegreeC(x2) ≥ 2.
Four main cases exist:

Case 1 DegreeC(x1) ≥ 4 or DegreeC(x2) ≥ 4: See Fig. 5. This case is easy.
Fix x1 s.t. v1 blocked ⇒ Killed: v1, Removed: v1, v2, v3, v4, v5.
Non degenerate: v1, v2, v3, v4, v5 (by Corollary 3.3)

⇒ Degeneracy: ±0.
Case 2 DegreeC(x1) = 3 and DegreeC(x2) = 3: Three sub cases exist:
Case 2.1 |OUTC(x1) ∩ OUTC(x2)| = 3: See Fig. 6 (i). v4 is ND by Corol-

lary 3.3. Thus, by Lemma 4.4, SD decreases by at least five by fixing x1 appro-
priately.

Case 2.2 |OUTC(x1) ∩ OUTC(x2)| = 2: See Fig. 6 (ii). By Lemma 4.5,
OUTC(v3) or OUTC(v4) includes an ND gate-node. Without loss of generality,
assume that OUTC(v3) includes an ND gate-node, say v5. Thus, SD decreases
by at least five by fixing x1 by Lemma 4.4.

x

v v v

2

3 4 1

v
5

x

v

1

2

2+4

Fig. 5. Case 1

Case 2.3 |OUTC(x1) ∩ OUTC(x2)| = 1: See Fig. 6 (iii). Let v6 be a gate-
node in OUTC(v1). Without loss of generality, we can assume that DepthC(v6) =
Depth(C) − 2. By the condition of Case 2.3, v1 through v5 are all different. By
Proposition 3.4, v6 is different from v2 through v5. Thus, v1 through v6 are all
different. Four sub cases exist: Let w be a node (6= v1) such that w → v6.

Case 2.3.1 DegreeC(v1) ≥ 2: SD decreases by at least five by fixing x1 such
that v1 is blocked.

Case 2.3.2 DegreeC(v1) = 1 and the node w is equal to v2, v3, v4 or v5:
without loss of generality, assume that w = v2. See Fig. 7. Since DepthC(v6) =
Depth(C) − 2, the nodes that are connected to v2 are both input-variables. By
setting x2 to block v1 and xi to block v2, all the paths from x1 except the path
through v3 are blocked. By this fact and Proposition 3.2, OUTC(v3) includes at
least one ND gate-node. Thus, by Lemma 4.4, SD decreases by at least five by
fixing x1.

Case 2.3.3 DegreeC(v1) = 1 and w is not equal to v2, v3, v4 or v5, and w

is not an input-node (Case 2.3.4 is the case that w is an input-node): Let w

be v7 and see Fig. 8. Since v7 is obviously different from v1 or v6, v1 through
v7 are all different. Note that DepthC(v7) = Depth(C) − 1 since DepthC(v6) =
Depth(C)− 2, which means the nodes connected to v7 are both input-variables.
By Corollary 3.3, the degree of these two input-variables are two or more. In the
following, we only prove the case that DegreeC(v7) = 1. If DegreeC(v7) ≥ 2,
then we can apply Case 1, 2.1, 2.2, 2.3.1, 3 or 4.

x x

v v v

1 2

21 3

33

v4

v v v

v

x x

v

1 2

4

5

3 3

v v v3 1

x

v

1

4

3

1 23 2

x

v

v

2

5

6

3

w

(iii)Case2.3(ii)Case2.2(i)Case2.1

Fig. 6. Sub cases of Case 2

v v v
2 3 1

x
1

x x

v v

v

i 2

3 3

54

6

Fig. 7. Case 2.3.2

x

v v v

1

2 3 1

x

v v

2

4 5

v v
8 9

x x

v

v

v

3 4

7

6

10

3 3

1 1

2+ 2+

Fig. 8. Case 2.3.3

Suppose that there are two ND gate-nodes in OUTC(v2) ∪ OUTC(v3). Since
these gates are obviously different from v6, OUTC(v1)∪OUTC(v2)∪OUTC(v3)
includes three ND gate-nodes. Thus we can apply Lemma 4.3. Otherwise, sup-
pose that OUTC(v2) ∪ OUTC(v3) includes only degenerate nodes. Then we can
block all the paths from x1 by setting the input-nodes corresponding to those
degenerate nodes and x2 (to block v1), which contradicts Proposition 3.2. Thus,
from now on we can assume that OUTC(v2) ∪ OUTC(v3) includes exactly one
ND gate-node, say v8. Suppose that OUTC(v8) includes no ND gate-nodes. Then
the similar contradiction to Proposition 3.2 happens. Thus, OUTC(v8) includes
one or more ND gate-node. Without loss of generality, we can assume that v8 is
in OUTC(v2). Similarly for v9. Also, let v10 be a gate-nodes in OUTC(v6). Now
all gates are illustrated in Fig. 8.

Since v8 is different from v3 by Proposition 3.4 (and others are obvious),
v8 6= v1, v2, v3 or v6. (1)

Similarly
v9 6= v1, v4, v5 or v6. (2)

Since two inputs of v7 are both input-nodes,
v7 6= v8, v9 or v10. (3)

Finally, it is obvious that
v10 6= v1 or v6. (4)

See Table 1, where (1)∗ in the (v1, v8)-entry means that v1 must be different
from v8 and that was claimed in (1) above. (5) in the (v4, v8)-entry means that
the case that v4 = v8 is considered in (5) below. Recall that v1 through v7 are
all different. Now three sub cases exist:

Table 1. Case 2.3.3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v8 (1)∗ (1)∗ (1)∗ (5) (5) (1)∗ (3)∗ - - -

v9 (2)∗ (5) (5) (2)∗ (2)∗ (2)∗ (3)∗ (7) - -

v10 (4)∗ (6) (6) (6) (6) (4)∗ (3)∗ (6) (6) -

Case 2.3.3.1 We can fix x1 such that it blocks v1 and v2 or we can fix x2

such that it blocks v1 and v5: Without loss of generality, we assume that we can
fix x1 such that it blocks v1 and v2. SD decreases by at least five by fixing x1

such that v1 and v2 are blocked.

Case 2.3.3.2 If v1 is blocked, then its output blocks v6: If v6 is killed, then
v7 can be removed since DegreeC(v7) = 1. Therefore:

Fix x1 s.t. v1 blocked ⇒ Killed: v1 → v6, Removed: v1, v2, v3, v6, v7.

Non degenerate: v1, v6, v7 (obvious) v2, v3 (by Corollary 3.3)

⇒ Degeneracy: ±0.

Case 2.3.3.3 Neither Case 2.3.3.1 nor Case 2.3.3.2 applies: Further sub cases
exist:

Case 2.3.3.3.1 v8 is equal to v4 or v5, or v9 is equal to v2 or v3 (denoted by
(5) in Table 1): Assume that v8 is equal to v4. We can block v4 (= v8) by x2 and
can kill v6 by x3 and x4 (through v7). Since we are now assuming the case that
OUTC(v2)∪OUTC(v3) does not include ND gate-nodes other than v8, this fact
contradicts Proposition 3.2 (all the paths from x1 can be blocked). Similarly for
the case that v5 = v8, v2 = v9 and v3 = v9.

Case 2.3.3.3.2 v10 is equal to v2, v3, v4, v5, v8 or v9 (denoted by (6) in Ta-
ble 1): Assume that v10 is equal to v2. We can block v1 by x2, and we can kill
v2 (= v10) by x3 and x4 since we are now assuming that if v1 is blocked v6

becomes a through-gate. Hence, OUTC(v3) must include an ND gate, say u, by
Proposition 3.2. Recall that we are now assuming that OUTC(v2) ∪ OUTC(v3)
has only one ND gate-node (the other cases were already discussed). Hence u

must be v8, namely, both v2 and v3 are connected to v8.

On the other hand, when we assume that v10 is equal to v3, |INC(v10)| = 4
and hence v10 (= v3) is not connected to a degenerate gate by Corollary 3.3. Since
we are now assuming that OUTC(v2) ∪ OUTC(v3) has only one ND gate-node,
both v2 and v3 are connected to v8.

Let u1 be an ND gate-node in OUTC(v8) which must exist by Proposition 3.2.
Now, if we can fix x1 such that it blocks v1 and v3, then:

Fix x1 s.t. v1, v3 blocked ⇒ Killed: v1, v3, Removed: v1, v2, v3, v6, v8.

Non degenerate: v1, v6, v8 (obvious) v2, v3 (by Corollary 3.3)

⇒ Degeneracy: ±0.

if we can fix x1 such that it blocks v2 and v3, then:

Fix x1 s.t. v2, v3 blocked ⇒ Killed: v2, v3 → v8, Removed: v1, v2, v3, v8, u1.

Non degenerate: v1, v8 (obvious) v2, v3 (by Corollary 3.3) u1 (above)

⇒ Degeneracy: ±0.

Similarly for the case that v4 = v10 and v5 = v10.

Assume that v10 is equal to v8. We can block v1 by x2, and we can kill v8

(= v10) by x3, x4 since we are now assuming that if v1 is blocked v6 becomes a
through-gate. Since we are now assuming the case that OUTC(v2) ∪ OUTC(v3)
includes only one ND gate-node (= v8), this fact contradicts Proposition 3.2 (all
the paths from x1 can be blocked). Similarly for the case that v9 = v10.

Case 2.3.3.3.3 Now one can see that what remains to be considered is the
case that v8 = v9 and the case that all the gates are different. Suppose that v1

through v10 are all different: We block v2 by x1 and v5 by x2. This assignment
kills v6 (Reason: Recall that we cannot block v1 and v2 or v1 and v5 at the same
time. Hence the current value of neither x1 nor x2 blocks v1. Since we are now
assuming that if v1 is blocked, then its output, say z, does not block v6, the
current output of v1 must be z (otherwise v1’s output would be constant), which
does block v6). To summarize:

Fix x1 s.t. v2 blocked and Fix x2 s.t. v5 blocked ⇒

Killed: v1, v2, v5 → v6, Removed: v1, v2, v3, v4, v5, v6, v7, v8, v9, v10.

Non degenerate: v1, v6, v7 (obvious) v2, v3, v4, v5, v10 (by Corollary 3.3)

v8, v9 (above) ⇒ Degeneracy: ±0.

Case 2.3.3.3.4 v8 is equal to v9 (denoted by (7) in Table 1): We can assume
that all the other gate-nodes are different. Recall that OUTC(v8) includes at
least one ND gate-node, say, u2. One can easily see that we can remove this
new gate by the same assignment as Case 2.3.3.3.3.(The output values of its two
parent nodes are both fixed.) If u2 is only such ND gate node and is equal to v3,
then we can again claim that OUTC(v3) includes a new ND gate-node, say, u3,
which is removed by the same assignment. We can continue this argument for
the cases that u2 = v4, u2 = v10, u3 = v4 and so on.

Case 2.3.4 DegreeC(v1) = 1 and w is an input-node: See Fig. 9. By Corol-
lary 3.3, DegreeC(x5) ≥ 2. As before we first show that we can assume that
v1 through v7 are all different. Suppose that v2 = v7. Then, since we can block
v1 by x2 and block v2 (= v7) by x5, OUTC(v3) includes an ND gate-node by
Proposition 3.2. Thus, SD decreases by at least five by fixing x1 appropriately
by Lemma 4.4. Similarly for the case that v3 = v7, v4 = v7 and v5 = v7. Thus,
we can assume that v7 is different from v2, v3, v4 or v5. Since v7 is obviously
different from v1 or v6, v1 through v7 are all different.

Case 2.3.4.1. DegreeC(x5) ≥ 3: Let u6 be a gate-node in OUTC(x5) other
than v6 and v7, and v10 be a gate-node in OUTC(v6). v1, v6, v7, v10 and u6 are
all different by Proposition 3.4. By fixing x5 such that it blocks v6, v1 is removed
since v6 is killed and DegreeC(v1) = 1. To summarize:

Fix x5 s.t. v6 blocked ⇒ Killed: v6, Removed: v1, v6, v7, v10, u6.

Non degenerate: v1, v6 (obvious) v7, v10, u6 (by Corollary 3.3)

⇒ Degeneracy: ±0.

Case 2.3.4.2 DegreeC(x5) = 2: Exactly as before (Case 2.3.3), we can
assume, without loss of generality, that OUTC(v2)∪OUTC(v3) includes exactly
one ND gate-node, say v8 in OUTC(v2). Similarly for v9. Suppose that v7 is equal
to v8. Then, by fixing x5 and x2 such that they block v7 and v1, respectively, we
can imply a contradiction to Proposition 3.2. Thus, v7 is different from v8. v7 is
different from v9 similarly and from v10 by Proposition 3.4. Thus v7 is different
from all the other gate-nodes. Now all gates are illustrated in Fig. 9.

Now, we can make exactly the same argument as in Case 2.3.3 excepting: (i)
When v6 is killed, v7 is also killed previously. This time, it is not killed but the
degree of x5 becomes one, which increases Degeneracy(C) by one and decreases
SD by one. (ii) Instead of blocking gate-nodes using x3 and x4, we can now use
x5.

x

v v v

1

2 3 1

x

v v

2

4 5

x

v

5

7

v v8 9

v10

3 3

2

1

v6

Fig. 9. Case 2.3.4

x x

vv v

1 2

1 23

23

4v

x

vv v

1

3 12

3

x

v

v

2

5

4

2

(ii)Case3.2(i)Case3.1

Fig. 10. Sub cases of Case 3

Case 3 DegreeC(x1) = 3 and DegreeC(x2) = 2 or DegreeC(x1) = 2 and
DegreeC(x2) = 3: without loss of generality, assume that DegreeC(x1) = 3 and
DegreeC(x2) = 2. Two sub cases exist:

Case 3.1 |OUTC(x1) ∩ OUTC(x2)| = 2: See Fig. 10 (i). By Lemma 4.5,
OUTC(v3) includes at least one ND gate-node, say v4. By Lemma 4.4, SD de-
creases by at least five by fixing x1 appropriately.

Case 3.2 |OUTC(x1)∩OUTC(x2)| = 1: See Fig. 10 (ii). By Proposition 3.4,
v1, v2, v3, v4 and v5 are all different. As shown below, we can remove only four
gate-nodes but at the same time, we can increases Degeneracy(C) by one:

Fix x1 s.t. v1 blocked ⇒ Killed: v1, Removed: v1, v2, v3, v4.
Non degenerate: v1 (obvious) v2, v3, v4 (by Corollary 3.3), DegreeC′(x2) = 1

⇒ Degeneracy: +1.
Case 4 DegreeC(x1) = 2 and DegreeC(x2) = 2: See Fig. 11. By Proposi-

tion 3.1, OUTC(x1) 6= OUTC(x2). Let v4 be a gate-node in OUTC(v1). Without
loss of generality, we can assume that DepthC(v4) = Depth(C) − 2. By Propo-
sition 3.4, v1 through v4 are all different. Four sub cases exist: Let w be a node
(6= v1) such that w → v4.

x x

v v v

v

1 2

12 3

4

2 2

w

Fig. 11. Case 4

x x

v v v

1 2

12 3

v u4 1

2 2

2+

Fig. 12. Case 4.1

x x

v v v

v

1 2

12 3

4

x
2 2

1

i

Fig. 13. Case 4.2

Case 4.1 DegreeC(v1) ≥ 2: See Fig. 12. By Proposition 3.4, v1, v2, v3, v4

and u1 are all different. To summarize:
Fix x1 s.t. v1 blocked ⇒ Killed: v1, Removed: v1, v2, v4, u1.
Non degenerate: v1 (obvious) v2, v4, u1 (by Corollary 3.3), DegreeC′(x2) = 1

⇒ Degeneracy: +1.

Case 4.2 DegreeC(v1) = 1 and the node w is equal to v2 or v3: See Fig. 13.
Without loss of generality, we can assume that w = v2. Since DepthC(v4) =
Depth(C) − 2, the nodes that are connected to v2 are both input-variables. By
setting x2 to block v1 and xi to block v2, all the paths from xi are blocked,
contradicting Proposition 3.2. Thus, this sub case cannot happen.

Case 4.3 DegreeC(v1) = 1 and w is an input-node: See Fig. 14. By Corol-
lary 3.3, DegreeC(x3) ≥ 2. Let u2 be a gate-node in OUTC(x3) that is different
from v4. Suppose that u2 is equal to v2. By setting x2 to block v1 and setting x3

to block u2 (= v2), all paths from x1 are blocked, contradicting Proposition 3.2.
Thus, u2 is different from v2, and from v3 similarly. Thus, v1 through v4 and u2

are all different. By fixing x3 to block v4, v1 is removed since v4 is killed. Thus:

Fix x3 s.t. v4 blocked ⇒ Killed: v4, Removed: v1, v4, u2.

Non degenerate: v1, v4 (obvious) u2 (by Corollary 3.3),

DegreeC′(x1) = 1 and DegreeC′(x2) = 1 ⇒ Degeneracy: +2.

Note that v2 and/or v3 may also be removed by, e.g., the removed v4, which only
replaces the increase of Degeneracy.

Case 4.4 DegreeC(v1) = 1 and w is not equal to v2 or v3, and w is not an
input-node: Let w be v5 and see Fig. 15. Since v5 is obviously different from v1

or v4, v1 through v5 are all different. Since DepthC(v5) = Depth(C) − 1, the
nodes connected to v5 are both input-variables of degree two or more. In the
following, we only prove the case that DegreeC(x4) = DegreeC(x5) = 2 and
DegreeC(v5) = 1. For the other cases, we can apply the previous cases. Also
note that OUTC(x4) 6= OUTC(x5) by Proposition 3.1.

Assume that v2 is equal to v6. By setting x2 to block v1 and setting x4 to
block v2 (= v6), all paths from x1 are blocked, contradicting Proposition 3.2.
Thus, v2 is different from v6. Similarly for v2 = v7, v3 = v6 and v3 = v7. By
Proposition 3.1, v6 is different from v7, and hence v1 through v7 are all different.

Suppose that OUTC(v2) includes only degenerate nodes. Then we can block
all the paths from x1 by setting the input-nodes corresponding to those degen-
erate nodes and x2 (to block v1), which contradicts Proposition 3.2. Thus, we
can assume that OUTC(v2) includes one or more ND gate-node. Let v8 be one
of such ND gate-nodes. Suppose that OUTC(v2) ∪ OUTC(v8) includes no ND
gate-nodes except v8. Then this again contradicts Proposition 3.2. Thus, we can
assume that OUTC(v2) ∪OUTC(v8) includes one or more ND gate-node except
v8. Similarly for v9. Also, let v10 be a gate-nodes in OUTC(v4). Now all gates
are illustrated in Fig. 15. See Table 2 for the distinctions of gate-nodes.

It is obvious that

v8 6= v1, v2 or v4, v9 6= v1, v3 or v4, v10 6= v1 or v4. (1)

Since two inputs of v5 are both input-nodes,

v5 6= v8, v9 or v10. (2)

Recall that v1 through v7 are all different. Now three sub cases exist:

Case 4.4.1 We can fix x1 so as to block v1 and v2, or x2 so as to block v1

and v3, or x4 so as to block v5 and v6, or x5 so as to block v5 and v7: without
loss of generality, assume that we can fix x1 such that it blocks v1 and v2. It is
easy to see that:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v8 (1)∗ (1)∗ (3) (1)∗ (2)∗ (3) (3) - - -

v9 (1)∗ (3) (1)∗ (1)∗ (2)∗ (3) (3) (5) - -

v10 (1)∗ (4) (4) (1)∗ (2)∗ (4) (4) (6) (6) -
Table 2. Case 4.4.3

Fix x1 s.t. v1, v2 blocked ⇒ Killed: v1, v2, Removed: v1, v2, v4, v8.

Non degenerate: v1, v4 (obvious) v2 (by Corollary 3.3) v8 (above),

DegreeC′(x2) = 1 ⇒ Degeneracy: +1.

Case 4.4.2 If v1 is blocked then its output blocks v4, or if v5 is blocked
then its output blocks v4: without loss of generality, assume the former. Our
argument is very similar to Case 2.3.3.2. Instead of removing v3 in Case 2.3.3.2,
Degeneracy(C) increase by one since DegreeC′(x2) is one.

Case 4.4.3 Neither Case 4.4.1 or Case 4.4.2 applies: Further sub cases exist:

Case 4.4.3.1 v8 is equal to v3, v6 or v7, or v9 is equal to v2, v6 or v7 (denoted
by (3) in Table 2): We only discuss the case that v8 = v3, v6 or v7 (the other
case is similar). If OUTC(v2) includes an ND gate-node which is different from
v3, v6 or v7, then we can select it as v8 and can apply the other cases. Otherwise,
we can show that each of {v3, v6, v7} must be in OUTC(v2) as follows: Suppose,
for example, that OUTC(v2) ⊇ {v3, v6} but v7 6∈ OUTC(v2). Then we can set x2

to block v3 and x4 to block v6. Also we can set x5 to block v4 since we are now
assuming that we cannot fix x4 such that it blocks both v5 and v6 (i.e., if we
block v6, then v5 becomes a through-gate). Thus all paths from x1 are blocked
(with the help of all other degenerate nodes in OUTC(v2)), which contradicts to
Proposition 3.2. If OUTC(v2) ⊇ {v6} but v3, v7 6∈ OUTC(v2), then we can select
x2 to block v1 and x4 to block v6, which implies the same conclusion as above.
All the other cases are similar. Thus, without loss of generality, we can assume
OUTC(v2) ⊇ {v3, v6, v7} and therefore:

Fix x1 s.t. v2 blocked ⇒ Killed: v2, Removed: v1, v2, v3, v6, v7.

Non degenerate: v1 (obvious) v2, v3, v6, v7 (by Corollary 3.3)

⇒ Degeneracy: ±0.

Case 4.4.3.2 v10 is equal to v2, v3, v6 or v7 (denoted by (4) in Table 2):
Assume that v2 is equal to v10. We can set x2 to block v1 and we can set x4, x5

to block v2 (= v10) (through v5 and v4) since we are now assuming that if v1

is blocked v4 becomes a through-gate. This fact contradicts Proposition 3.2.
Thus, v2 is different from v10. Similarly for the case that v3 = v10, v6 = v10 and
v7 = v10.

Case 4.4.3.3 v1 through v10 are all different: We can prove by the similar
argument as Case 2.3.3.3.3. Namely, v1, v2, v3 and v4 are killed by proper assign-
ments of x1 and x2. Instead of removing v3, v4 of Case 2.3.3.3.3, Degeneracy(C)
increases by two since DegreeC′(x4) and DegreeC′(x5) are both one.

Case 4.4.3.4 v8 is equal to v9 (denoted by (5) in Table 2): We selected v8

such that OUTC(v2)∪OUTC(v8) includes one or more ND gate-node except v8.

Let u3 be such an ND gate-node. This new u3 is removed by setting x1 and x2

to the same values as Case 4.4.3.3, since the killed v2 and v3 also kill v8 (= v9).
Thus the decrease of SD does not change. u3 may be equal to v6, v7 or v10. If we
cannot select u3 that is different from v6 or v7, we can set appropriately all the
input-nodes connected to the degenerate nodes in OUTC(v2)∪OUTC(v8) (if any)
and also set x2 to block v1 and x4 to block v6 and x5 to block v7, which blocks
all paths from x1, a contradiction to Proposition 3.2. If u3 = v10, then we can
find a further new ND gate-node in OUTC(v2)∪OUTC(v8)∪OUTC(u3(= v10))
which is different from v6 or v7 by Proposition 3.2. One can see that this new
gate-node is removed by the same assignment as before.

Case 4.4.3.5 v10 is equal to v8 or v9 (denoted by (6) in Table 2): One can
see our circuit is symmetry between the left-side from x1 and x2 and the right-
side from x4 and x5. Therefore we can repeat exactly the same argument from
Case 4.1 to Case 4.4.3.4 for the right-side instead of the left-side. Since v10 is
now assumed to be equal to v8 or v9, we do not have to consider the case that v10

is equal to gate-nodes below v6 or v7. That concludes the proof of Lemma 4.1.

x x

v v v

1 2

12 3

x

v
u

4

2

3

2 2

1

2+

Fig. 14. Case 4.3

x x x x

v v v

v v

v v v

v

v

1 2 4 5

12 3

4

56 7

8 9

10

2 2 2 2

11

Fig. 15. Case 4.4

References

1. C.E. Shannon. The synthesis of two-terminal switching circuits, Bell Systems Tech.

J., vol 28, pages 59–98, 1949.

2. C. Schnorr. Zwei lineare untere Schranken f
··
ur die Komplexit

··
at Boolescher Funktio-

nen. Computing 13, pp. 155-171, 1974.
3. L. Stockmeyer. On the combinational complexity of certain symmetric Boolean func-

tions. Math. System Theory 10, pp. 323-336, 1977.
4. W. Paul. A 2.5n-lower bound on the combinational complexity of boolean functions.

SIAM J. Comput. 6, pp. 427-443, 1977.
5. N. Blum. A 2.75n-lower bound on the network complexity of boolean functions.

Tech. Rept. A 81/05, Universit
··
at des Saarlandes, 1981.

6. N. Blum. A Boolean function requiring 3n network size. Theoret. Comput. Sci., 28,
pp. 337-345, 1984.

7. U. Zwick. A 4n lower bound on the combinatorial complexity of certain symmet-
ric Boolean functions over the basis of unate dyadic Boolean functions. SIAM J.

Comput. 20, pp. 499-505, 1991.
8. O. Lachish and R. Raz. Explicit lower bound of 4.5n − o(n) for Boolean circuits.

Proc. STOC’01, pp. 399-408, 2001.
9. K. Iwama and H. Morizumi. An explicit lower bound of 5n − o(n) for Boolean

circuits. MFCS 2002, pp. 353-364, 2002.
10. I. Wegener. Branching programs and binary decision diagrams. SIAM Monographs

on Discrete Mathematics and Applications, 1999.
11. P. Savický. and S. Žáck A large lower bound for 1-branching programs. ECCC Rep.

No. 96-030, 1996.

