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Abstract

We give an explicit function h : {0, 1}n → {0, 1} such that any deMorgan formula
of size O(n2.499) agrees with h on at most 1

2 + ε fraction of the inputs, where ε is

exponentially small (i.e. ε = 2−n
Ω(1)

). We also show, using the same technique, that
any boolean formula of size O(n1.999) over the complete basis, agrees with h on at most
1
2 + ε fraction of the inputs, where ε is exponentially small (i.e. ε = 2−n

Ω(1)
).

Our construction is based on Andreev’s Ω(n2.5−o(1)) formula size lower bound that
was proved for the case of exact computation [And87].

1 Introduction

In this paper we shall deal with deMorgan formulas. A deMorgan formula is a boolean for-
mula over the basis B2 = {∨,∧,¬} with fan in at most 2. A deMorgan formula is represented
by a tree such that every leaf is labeled by an input variable and every internal node is la-
beled by an operation from B2. A formula is said to compute a function f : {0, 1}n → {0, 1}
if on input x ∈ {0, 1}n it outputs f(x). The computation is done in the natural way from
the leaves to the root. The size of a formula is defined as the number of leaves it contains.

The research on lower bounds for deMorgan formulas has focused on worst case compu-
tation. A worst case computation of a function f : {0, 1}n → {0, 1} is a computation in
which a formula F has to compute f correctly on every input. Various results for specific
functions with polynomial lower bounds have been obtained in this model. The earliest re-
sults were of [Sub61] that proved an Ω(n1.5) lower bound and [Khr71] that proved an Ω(n2)
lower bound. Later on, Andreev proved an Ω(n2.5−o(1)) lower bound [And87]. Andreev’s
result was gradually improved by [IN93, PZ93], and was further improved by H̊astad to an
Ω(n3−o(1)) lower bound [H̊as98], which is the best known to date.

An approximate computation of a function f : {0, 1}n → {0, 1} by a formula F is a
computation in which F computes f correctly on some fraction larger than 1/2 of the inputs
(rather than on all inputs). Besides being interesting in their own right, lower bounds for
approximate computation have proved useful in many fields of complexity theory, such as
derandomization (e.g, [Nis91, NW94]). Lower bounds for approximate computation are also
known as correlation bounds and average-case hardness.
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In this paper, we focus on lower bounds for approximation by deMorgan formulas. We
construct an explicit function f : {0, 1}n → {0, 1} such that any deMorgan formula of size

at most O(n2.499) computes f correctly on a fraction of at most 1
2

+ 2−n
Ω(1)

of the inputs.
We also show, using the same technique, that any boolean formula of size O(n1.999) over the

complete basis, computes f correctly on at most 1
2

+ 2−n
Ω(1)

fraction of the inputs.

1.1 Techniques

The average-case hard function that we construct is based on a construction known as
Andreev’s function introduced in [And87], and used to prove the lower bounds in [And87,
IN93, PZ93, H̊as98]. Andreev’s function is a function A : {0, 1}n × {0, 1}n → {0, 1} that
works as follows. Split the second input into log n parts of equal size. In each part compute
the XOR of the input bits. Use the resulting log n bits to address an index in the first input
(log n bits are enough to represent a cell in a vector of length n) and return that bit. The
analysis of [And87, IN93, PZ93, H̊as98] relies on the fact that most n bit vectors represent
boolean functions which are hard to compute by formulas of size o(n)/ log log n.

Our construction of a function h : {0, 1}n×{0, 1}n → {0, 1} which is hard to approximate
by deMorgan formulas is a variant of the function A. We first need to make sure that most of
the functions represented by the first input are hard to approximate by deMorgan formulas.
This task is accomplished by a good error correcting code (ECC). We prove that if we
encode the first input with a good ECC, it is almost always correct that the resulting string
represents a function which is hard to approximate by deMorgan formulas of size roughly
o(n)/ log n. This fact is proved using the Johnson bound. Since the first input, after being
encoded, is longer than n bits, we need to split the second input into r > log n parts of
equal size (rather than log n parts as in the function A). In conclusion, applying an ECC
on the first input, and then splitting the second input into r sets of equal sizes, gives the
construction as in Andreev’s function. For a formal definition of h, see Section 4. For a
proof that most strings x ∈ {0, 1}n after being encoded by a good ECC represent functions
which are hard to approximate, see Section 5.

With this construction in mind, we follow the general method introduced by [And87] to
prove the lower bound. [And87] used the shrinkage property of deMorgan formulas proved
by [Sub61]. In the proof of [And87] it was enough that a formula shrinks well in expectation.
Since we are dealing with lower bounds for approximation, we need to improve this shrinkage
property. We show that a formula shrinks well with probability exponentially close to 1. In
order to prove this result, we analyze the shrinkage process in a more delicate way by breaking
it into steps such that in every step only one variable is restricted. Having this process, we
use the Azuma inequality to prove that with very high probability the formula shrinks well.

Although this technique seems natural, we run into technical issues which make the
details of the proof non-trivial. One such technical issue stems from the fact that in order
to get significant results after applying Azuma inequality, we need to keep the difference
between the formula sizes in every two consecutive steps as small as possible. In a formula F
it is possible that a variable appears in many leaves (we call such a variable a heavy variable).
Restricting by a heavy variable makes F shrink by more than one expects when restricting
according to a random variable. In other words the difference between the size of F before
the restriction and the size of F after the restriction may be relatively large. It follows, that
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applying the Azuma inequality on the näıve sequence of random restrictions (at every step
restricting according to a random variable), does not give results which are good enough.

In order to solve this problem we define a random restriction process which at every step
takes into account the structure of the formula as follows. At every step, if there are heavy
variables, it restricts according to one of them, and if there is no heavy variable, it restricts
according to a random variable. We define our steps that go into the Azuma inequality
to contain only those steps in which non-heavy variables were removed. In this way we
ensure that the sequence of chosen steps is both a supermartingale and has bounded (small)
difference. For the formal definition of the process and the proof that deMorgan formulas
shrink well with very high probability see Section 6.

Recall the definition of the hard function h that we construct. h splits the second input
into r parts and XORs each part. These r bits are used to address an entry in the first input
of h after being encoded by an ECC. Recall that the restriction process described above is
not completely random and depends on the structure of the formula. We think of every
variable that was chosen to be restricted because of being heavy, as chosen by an adversary
(rather than at random). Since many of the restricted variables were chosen by an adversary,
one could think that after the restriction process, the adversary can fix a large number of the
parts, with non-negligible probability. If this happens for a large enough number of parts,
then the function h may become easy to approximate. We prove that a large number of parts
remain with at least one variable unassigned, with very high probability. We prove that by
a series of reductions to bins and balls adversary games. For the details see Section 7.

1.2 Related Works

Most of the work on lower bounds for formula size focused on worst-case complexity. The
only explicit average-case lower bound for formulas (that we are aware of) appears in the
work of Santhanam [San10]. In [San10] it is shown that any family of linear-size deMorgan
formulas has correlation of at most 1

2
+ 2−Ω(n) with the parity function. This average-case

lower bound was proved using a concentration bound for random restrictions, an approach
that is very related to our Theorem 6.6. Moreover, the technique from [San10] could be

extended to show a correlation of at most 1
2

+ 2−n
Ω(1)

between any deMorgan formula of size
O(n3/2) and the parity function1.

Independently of our work, Impagliazzo, Meka and Zukerman [IMZ12] also prove a theo-
rem that shows that (in several models of computation) shrinkage occurs with high probabil-
ity (rather than in expectation). Their proof, however, only shows that shrinkage occurs with
probability polynomially close to 1. Their proof is obtained more generally for any model
with shrinkage properties, and in particular for deMorgan formulas. Their theorem is related
to our Theorem 6.6. Moreover, in [IMZ12] the theorem is proved for certain pseudorandom
distributions and is used to construct pseudorandom generators with seed of length O(s)
for deMorgan formulas of size s3−o(1), for boolean formulas of size s2−o(1) over the complete
basis, as well as for several other models. Their result implies the existence of a function
f : {0, 1}n → {0, 1} (which is in NP) such that any deMorgan formula of size n3−o(1) has
correlation of at most 1

2
+ 1

poly(n)
with f . In addition, their technique can be used to prove

1Private communication with the author.
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that any deMorgan formula of size n3−o(1) has correlation of at most 1
2

+ 1
poly(n)

with the

function h that we introduce in this paper (see Section 4).
In addition to these results, we observe that average-case lower bounds of up to Ω(n2−o(1))

for the size of deMorgan formulas also follow from results regarding the degree of approxi-
mating polynomials for deMorgan formulas. Specifically, for every function f : {−1, 1}n →
{−1, 1}, Beals et al. [BBC+01] show that if f has a q-query bounded-error quantum algo-
rithm in the black box model, then there exists a polynomial of degree at most 2q that ap-
proximates f . Moreover, in a line of works in quantum query complexity [FGG08, ACR+07,
RS08, Rei09] it is shown that for every function f : {−1, 1}n → {−1, 1} there is a quantum

query algorithm that computes f in O
(√

L(f) · logn
log logn

)
queries, suffering from a point-wise

error of 1/3, where L(f) denotes the size of the smallest deMorgan formula that computes f .
(We use the standard transformation from Boolean functions to functions over {−1, 1} that
maps 0 to 1 and 1 to -1.) By repeating independent applications of the algorithm, one can

increase the number of queries to O
(
t ·
√
L(f) · logn

log logn

)
and reduce the point-wise error to

2−t. Combining both of these results proves that every function f : {−1, 1}n → {−1, 1} can

be approximated by a polynomial of degree O
(
t ·
√
L(f) · logn

log logn

)
up to point-wise error of

2−t. Since any polynomial p : {−1, 1} → R of degree < n is orthogonal to the monomial

x1x2 . . . xn (over R), it immediately follows that any formula of size o

((
n
t

)2 ·
(

log logn
logn

)2
)

has correlation of at most 1
2

+ 2−t+O(1) with the parity function on n variables (for large
enough t).

2 Preliminaries

We start with some general notations. Throughout the paper we will only consider deMor-
gan formulas and not always explicitly mention it. We denote by [n] the set of numbers
{1, 2, . . . , n}. For i ∈ [n] and for x ∈ {0, 1}n, denote by xi the i-th bit of x.

Boolean Formulas

Definition 2.1. A deMorgan formula is a boolean formula with AND, OR and NOT gates
with fan in at most 2.

Definition 2.2. The size of a formula F is the number of leaves in it and is denoted by
L(F ). For a function f : {0, 1}n → {0, 1}, we will denote by L(f) the size of the smallest
formula computing the function f .

Consider a formula F . Let q be a node in F (q can be either an internal node or a leaf).
We refer to the tree rooted at q as a subformula of F or a subtree of F .

Let xi be a variable that appears as a leaf in a formula F . Let g be a subtree (rooted at
any internal node of F ) of the formula F of the form g = xi ∨ g1 or g = xi ∧ g1 where g1 is a
subformula of g. We call g1 a sibling subtree of a leaf labeled by xi (a sibling subtree of xi,
in short) or a neighbor subtree of xi.
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Average-Case Hardness

Definition 2.3. A function f : {0, 1}n → {0, 1} is said to be (s, ε)-hard if for any deMorgan
formula F of size at most s

Pr
x∈{0,1}n

[F (x) = f(x)] ≤ 1

2
+ ε

Probability

We begin by stating some well known variants of Chernoff bound.

Proposition 2.4 (Chernoff Bound). Let X =
∑n

i=1Xi be a sum of identically distributed
independent random variables X1, . . . , Xn ∈ {0, 1}. Let µ = E[X] =

∑n
i=1 E[Xi]. It holds

that for δ ∈ (0, 1),

Pr[X < (1− δ)µ] ≤ exp
(
−δ2µ/2

)
and

Pr[X > (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
and for a > 0,

Pr[X > µ+ a] ≤ exp(−2a2/n)

We define the concept of a supermartingale.

Definition 2.5. A supermartingale is a sequence of random variables X0, X1, . . . such
that

E[Xi|X0, . . . , Xi−1] ≤ Xi−1

The Azuma inequality (see e.g. in [DP09]) gives a concentration result for the value of
supermartingales that have bounded differences. Formally,

Proposition 2.6 (Azuma Inequality). Let X0, X1, . . . be a supermartingale such that for
every i ∈ {1, 2, . . . } there exists some nonnegative ci such that |Xi −Xi−1| ≤ ci. Then, for
every t > 0 and every k ,

Pr[Xk ≥ X0 + t] ≤ e
−t2

2
∑k
i=1

c2
i

We define hypergeometric distribution.

Definition 2.7 (Hypergeometric Distribution). The hypergeometric distribution H(N,M, n)
describes the number of red balls drawn in an experiment where n balls are sampled without
replacement from a bin containing N balls, M of which are red.

We state a concentration of measure theorem for hypergeometric distributions (see [DP09],
Chapter 7).
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Proposition 2.8. Let H = H(N,M, n) be a hypergeometric distribution as in definition 2.7.
Let X be a random variable distributed according to H. It holds that,

Pr [|X − E[X]| > t] ≤ exp

(
−2(N − 1)t2

(N − n)(n− 1)

)
Using t = εE[X] = εM

N
n we get that

Pr

[∣∣∣∣X − M

N
n

∣∣∣∣ > ε
M

N
n

]
≤ exp

(
−2(N − 1)

(
εM
N
n
)2

(N − n)(n− 1)

)
≤ exp

(
−2

(
1− 1

N

)
ε2

M2n

N(N − n)

)
Assuming N > 2, we get

Pr

[∣∣∣∣X − M

N
n

∣∣∣∣ > ε
M

N
n

]
≤ exp

(
−ε2 M2n

N(N − n)

)
We state Jensen inequality.

Proposition 2.9 (Jensen inequality). If X is a random variable and f is concave, then

E[f(X)] ≤ f(E[X])

Coding Theory

Definition 2.10. A linear code C over {0, 1} that has block length n, dimension k and
minimal distance d is denoted as an [n, k, d]2 code. A linear code C can be thought of as a
linear mapping from k bits to n bits such that every two output strings of the mapping differ
in at least d bits. The mapping procedure is sometimes referred to as the encoding function
of C. The relative distance of C is δ = d/n

Definition 2.11. Let 0 ≤ ρ ≤ 1 and L ≥ 1. A code C ⊂ {0, 1}n is (ρ, L)-list decodable if
for every y ∈ {0, 1}n,

|{c ∈ C |∆(y, c) ≤ ρn}| ≤ L

where ∆ denotes the Hamming distance.

Next, we state the well known Johnson bound for codes with binary alphabet. This
version of the bound was taken from [Rud07] for the case of binary alphabet.

Proposition 2.12 (Johnson Bound). Let C ⊆ {0, 1}n be an [n, k, d]2 code with relative
distance δ = d/n. It holds that C is (ρ, 2dn)-list decodable for any

ρ <
1

2

(
1−
√

1− 2δ
)
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3 Main Theorems

In this section we state our main theorems.

Theorem 3.1. There exists an explicit function h : {0, 1}n × {0, 1}n → {0, 1} such that for
every deMorgan formula F of size at most O(n2.499), it holds that

Pr
x,y∈{0,1}n

[F (x, y) = h(x, y)] ≤ 1

2
+

1

2nΩ(1)

Theorem 3.2. There exists an explicit function h : {0, 1}n × {0, 1}n → {0, 1} such that for
every formula F of size at most O(n1.999) over the complete basis, it holds that

Pr
x,y∈{0,1}n

[F (x, y) = h(x, y)] ≤ 1

2
+

1

2nΩ(1)

4 Definition of h

In this section we define the function h.
The function h : {0, 1}n×{0, 1}n → {0, 1} that we will consider is defined as follows. Let

r be such that 100 log n ≤ r ≤ o(n). We assume for simplicity that r divides n. Let C be a

[2r, n, d]2 code with relative distance δ = d
2r

. Let r′ = r/4. Assume that d =
(

1
2
− 1

2·2r′−2

)
2r

and δ = 1
2
− 1

2·2r′−2 .

Denote the encoding of x ∈ {0, 1}n using C by EncCx. We may view EncCx both as a truth
table of a function from r bits to 1 bit, or as a vector of length 2r.

Denote by x ∈ {0, 1}n and y ∈ {0, 1}n the first and second inputs of h, respectively. Split
y into parts of size n

r
. For each part calculate the XOR of its bits. Using the resulting r bits,

return the appropriate value, indexed by the binary value of the bits, in EncCx. Formally, for
r as above and for m = n

r
,

h(x, y) = EncCx

 m⊕
j=1

yj,
2m⊕

j=m+1

yj, . . . ,
rm⊕

j=(r−1)m+1

yj


5 Hardness of Most Inputs

In this section we prove two theorems. The first theorem states that for most of the inputs
x ∈ {0, 1}n, EncCx represents a hard to approximate function of r bits.

Theorem 5.1. Recall that r′ = r/4. Let n′ = o(n)
log r

. Denote by H ⊆ {0, 1}n the following set
of vectors.

H =

{
x ∈ {0, 1}n

∣∣∣∣EncCx is

(
n′,

1

2r′/2

)
-hard

}
It holds that for some fixed δ ≤ 2o(n),

|H| ≥ 2n − δ
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The second theorem states that if h(x, y) is easy to compute, then there must be some
x0 ∈ H such that hx0 is also quite easy to compute.

Theorem 5.2. Let δ/2n ≤ ε < 1
2

(the δ is the same δ as in Theorem 5.1). Let F (x, y)
be a formula whose size is s such that Prx,y∈{0,1}n [F (x, y) = h(x, y)] ≥ 1

2
+ ε. Denote by

hx0(y) : {0, 1}n → {0, 1} the function h(x, y) when the input x is fixed to x0. There exists
some x0 ∈ H such that Pry∈{0,1}n [F (x0, y) = hx0(y)] ≥ 1

2
+ ε

2
.

First, we prove the first theorem.

Proof of Theorem 5.1. In order to analyze the size of H, we will use the Johnson bound

stated in Proposition 2.12. Applying it to C we get that for ρ < 1
2

(
1−

√
1− 2

(
1
2
− 1

2·2r′−2

))
=

1
2

(
1−

√
1

2r′−2

)
= 1

2
− 1

2r
′/2 it holds that C is (ρ, poly(2r))-list decodable.

The theorem is proved by counting the number of possible easy to approximate functions
compared to the number of different functions that EncCx can represent.

Denote by D the set of all functions f : {0, 1}r → {0, 1} such that L(f) ≤ n′. We will
now upper bound the size of the set D. Following the calculation in [Juk12] (see Theorem
1.23), we get that for n′ there are at most 4n

′
(2 ·r+2)n

′
< (9r)n

′
different deMorgan formulas

for functions of r variables and with at most n′ leaves.
Think of every function f ∈ D, as above, as a vector of length 2r. For every such

vector, denote by B(f, γ) the hamming ball that contains all vectors whose hamming distance
from f is at most γ2r. From the calculation above, we know that for every function, f ,∣∣∣B (f, 1

2
− 1

2r
′/2

)
∩ C
∣∣∣ ≤ poly(2r). Hence, by a simple union bound,∣∣∣∣∣⋃

f∈D

B

(
f,

1

2
− 1

2r′/2

)
∩ C

∣∣∣∣∣ ≤ poly(2r) · |D| ≤ poly(2r) · 9n′2n′ log r (5.1)

Recall that r ≤ o(n) and n′ = o(n)
log r

. It follows, that there exists some fixed δ = δ(n) ≤ 2o(n)

such that the expression in equation (5.1) is not larger than δ. This implies that |H| is at
least 2n − δ.

Next, we prove the second theorem of this section. We begin with a simple averaging
lemma. The proof of this lemma can be found in the appendix.

Lemma 5.3. Let g, f : {0, 1}m × {0, 1}d−m → {0, 1} be functions, and assume that

Pr
u ∈ {0, 1}m
w ∈ {0, 1}d−m

[g (u,w) = f (u,w)] ≥ γ

Let H ⊆ {0, 1}m. Then, there exists u0 ∈ H such that

Pr
w∈{0,1}d−m

[g (u0, w) = f (u0, w)] ≥ (γ − 1)
2m

|H|
+ 1
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Using this lemma, we can prove Theorem 5.2 that intuitively states that if h(x, y) is easy
to compute, then there must be some x0 ∈ H such that hx0 is also quite easy to compute.

Proof of Theorem 5.2. Let F (x, y) be a formula whose size is s such that
Prx,y∈{0,1}n [F (x, y) = h(x, y)] ≥ 1

2
+ ε. From the averaging lemma (Lemma 5.3) there must

exist some x0 ∈ H such that

Pr
y∈{0,1}n

[F (x0, y) = hx0(y)] ≥
(

1

2
+ ε− 1

)
2n

|H|
+ 1 =

(
ε− 1

2

)
2n

|H|
+ 1

Notice that for ε < 1
2

it holds that ε− 1
2
< 0. Recall that we proved that |H| is at least 2n−δ

which is at least (1− ε) 2n. Plugging this in we get that

Pr
y∈{0,1}n

[F (x0, y) = hx0(y)] ≥ 2ε− 1

2(1− ε)
+ 1 =

1

2− 2ε
>

1

2
+
ε

2

as needed.

6 Shrinkage with High Probability

In this section our goal is to prove that deMorgan formulas shrink well with high probability
(rather than in expectation). For this purpose we consider the restriction process as an
iterative process that restricts only one variable at a time. After breaking up the restriction
process into steps, we use the Azuma inequality to prove that large shrinkage happens with
high probability. Azuma inequality doesn’t work well enough as is on a standard random
restriction process (in which a restriction is done uniformly at random at every step), so
we have to overcome this technical difficulty by defining a more delicate random restriction
process.

We begin with a standard definition and a warm-up application that will be useful during
this section.

Definition 6.1. Let Rk be the set of all partial assignments on n variables which leave exactly
k variables unassigned. The probability distribution of restrictions from Rk is as follows:
randomly choose n− k variables and assign them to be 0 or 1 randomly and independently.

We sketch the proof of the next simple lemma which is just one step of the proof of the
shrinkage property of [Sub61].

Lemma 6.2. Let f : {0, 1}n → {0, 1} be a function. Let ρ ∈ Rn−1 be a random restriction
that assigns one random variable to 0 or 1 at random. It holds that given L(f),

E
ρ

[L(fρ)] ≤
(

1− 3

2n

)
L(f)

where fρ denotes the function f restricted by ρ.
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Sketch. Observe that in a minimal size deMorgan formula F that computes f , it is not
possible that a sibling of some leaf xi will also contain xi (otherwise, it is not minimal).
In F a random input variable appears L(f)/n times as a leaf in expectation. All of these
disappear after applying the restriction. Moreover, we expect half of their siblings in the
formula to disappear, since this is a deMorgan formula. In total, we stay with a formula of
at most

L(f)− L(f)

n
− L(f)

2n
= L(f)

(
1− 3

2n

)
leaves in expectation, as required by the lemma.

Let f : {0, 1}n → {0, 1} be a function computed by a formula F of size L(F ) = L(f). We
break down the process of large random restrictions into small steps where in each step one
variable is restricted according to some rules that we define later. We restrict the formula
until there are exactly k variables left.

We define a set of restriction rules that will enable us to define a sequence of random
variables that are supermartingale, and on the other hand have bounded difference. This
will be helpful since we need to apply Azuma inequality on a sequence which is required
to be both a supermartingale and has bounded difference. If we use a standard random
restriction (in which we choose uniformly and randomly variables and restrict them) then
we fail to have the bounded differences property.

Recall that k is defined as the number of variables left after the process finish. For every
i ∈ {0, . . . , n − k} define the following. Let fi : {0, 1}n−i → {0, 1} and Fi be a sequence of
functions and formulas, respectively. Assume f0 = f and F0 = F . We define a process where
in every step we assign exactly one variable such that after i steps we denote the resulting
function by fi and the resulting formula by Fi. We stress that for i > 0 the formula Fi is a
result of some restriction of Fi−1.

Let # be a dummy variable that is not part of the inputs to the function f . In each step
i we will have a set Di of dummy leaves #. Initially, D0 = ∅. We denote by F ∗i the formula
Fi combined with the set of dummy leaves, Di.

A restriction (assignment) of a specific variable is (unless otherwise stated) an assignment
of 0 or 1 at random.

Let k′ = nα where α > 0 is a constant that will be defined later. We will have that
2k′ < k. For i ∈ {1, . . . , n− k} denote by Ti the set of variables that appear in Fi−1 at least

t = 200k′L(Fi−1)
n−i+1

times as a leaf. We will refer to these variables as heavy variables. Now we
are ready to define the set of restriction rules.

1. If Ti 6= ∅. Eliminate 3|Di−1|
2(n−i+1)

dummy leaves2. Then, assign the first variable from Ti at
random and restrict the formula.

2. If Ti = ∅. Eliminate 3|Di−1|
2(n−i+1)

dummy leaves. Then, assign a random variable in the
formula. Denote the variable we assigned by xw.

2We assume for simplicity that the number of dummy leaves is divided by 2(n − i + 1). If not, we can
work with fractions of leaves.
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We allow the removal of all appearances of xw from the formula as well as one of the
leaves in a sibling subtree of xw for every appearance of xw. For any additional leaf
that is eliminated due to the restriction, we add a dummy leaf.

This process defines a distribution on restrictions such that after applying it n−k times,
a formula is left with k unassigned variables. Denote this distribution on restrictions by Tk.

We begin by proving that the shrinkage property of formulas after being restricted by
one step of the process defined above still holds, in expectation.

Lemma 6.3. Let i ∈ {1, . . . , n− k}. For a given F ∗i−1,

E[L(F ∗i )] ≤ L(F ∗i−1)

(
1− 1

n− i+ 1

)3/2

Where the expectation is taken over the random process described above.

Proof. Let i ∈ {1, . . . , n − k}. We will analyze each case separately and prove that the
expected size of the formula at step i is bounded by what we need. Recall that F ∗i = Fi∪Di,
hence, L(F ∗i ) = L(Fi) + |Di|.

Case 1 Assume that there is a variable that appears in at least t leaves in the formula
Fi−1. Without loss of generality denote it by xj. Notice that since xj appears more than

t = 200k′L(Fi−1)
n−i+1

times in the formula, L(Fi) ≤ L(Fi−1)
(
1− 200k′

n−i+1

)
≤ L(Fi−1)

(
1− 1

n−i+1

)3/2
.

Using linearity of expectation, it follows that,

E[L(F ∗i )] = E[L(Fi)] + E[|Di|]

≤ L(Fi−1)

(
1− 1

n− i+ 1

)3/2

+ |Di−1|
(

1− 3

2(n− i+ 1)

)
≤ (L(Fi−1) + |Di−1|)

(
1− 1

n− i+ 1

)3/2

= L(F ∗i−1)

(
1− 1

n− i+ 1

)3/2

Case 2 Assume that Ti = ∅. By rule number 2, we restrict Fi−1 according to a random
variable. Denote it by xw. We allow the removal of the leaves labeled by xw as well as one
of the leaves in a sibling subtree of xw, for every appearance of xw. For any additional leaf
that is eliminated due to the restriction, we add a dummy leaf. From Lemma 6.2, we know
that

E[L(F ∗i )] = E[L(Fi)] + E[|Di|]

≤ L(Fi−1)

(
1− 3

2(n− i+ 1)

)
+ |Di−1|

(
1− 3

2(n− i+ 1)

)
= (L(Fi−1) + |Di−1|)

(
1− 3

2(n− i+ 1)

)
≤ L(F ∗i−1)

(
1− 1

n− i+ 1

)3/2

11



Since in both cases E[L(F ∗i )] ≤ L(F ∗i−1)
(
1− 1

n−i+1

)3/2
, the claim follows.

After breaking up the process of restrictions to small steps where in each step where
we apply case 2 the size of the formula decreases by a bounded expression, we can use the
Azuma inequality to prove that with very high probability the formula shrinks well.

Define the following sequence of random variables. Define Z0 = 0. For i ∈ {1, . . . , n−k},

Zi = logL(F ∗i )− logL(F ∗i−1)− 3

2
log

(
1− 1

n− i+ 1

)
Let S1 ⊆ {1, . . . , n− k} be the set that contains indexes of the steps in which we chose

case 1. Denote by S2 ⊆ {0}∪ {1, . . . , n− k} the set of indexes in which we chose case 2. We
will denote the i-th element of S1 by S1

i and the i-th element of S2 by S2
i . Define S2

0 = 0.
Define the following set of random variables. Define Y0 = 0. For i ∈ S2 define

Yi =
∑

j∈S2,j≤i

Zj

Next, we show that since we don’t allow the number of leaves to decrease by too much
in case 2, the sequence has bounded differences.

Lemma 6.4. Let i ∈ {1, . . . , |S2|}. There exists some large enough constant c > 0 such that∣∣∣YS2
i
− YS2

i−1

∣∣∣ ≤ c
k′

n− S2
i + 1

Proof. Let i ∈ {1, . . . , |S2|}. Recall that the YS2
i

sequence was defined only on steps of the
process in which a random variable was restricted (i.e. when case 2 was applied). By the
definition of the process in case 2, we choose some random variable xw and restrict according
to it. We allow the removal of the leaves labeled by xw as well as one of the leaves in a
sibling subtree of xw (for every appearance of xw). For any additional leaf that is eliminated
due to the restriction, we add a dummy leaf.

It follows that, every leaf labeled by xw can at most eliminate one additional leaf (except
for xw itself). Then,

logL(F ∗S2
i
) ≥ logL(F ∗S2

i−1) + log

(
1− 400k′

n− S2
i + 1

)
It follows that

|YS2
i
− YS2

i−1
| =

∣∣∣∣logL(F ∗S2
i
)− logL(F ∗S2

i−1)− 3

2
log

(
1− 1

n− S2
i + 1

)∣∣∣∣
≤

∣∣∣∣log

(
1− 400k′

n− S2
i + 1

)
− 3

2
log

(
1− 1

n− S2
i + 1

)∣∣∣∣
≤ c

k′

n− S2
i + 1

where the last inequality holds for some large enough constant c > 0 and follows from the
Taylor series for the ln function (recall that 2k′ < k).
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In the following lemma we prove that the sequence is a supermartingale.

Lemma 6.5. For every i ∈ {1, . . . , |S2|}

E[YS2
i
|YS2

0
, YS2

1
, . . . , YS2

i−1
] ≤ YS2

i−1

In other words, the sequence YS2
0
, YS2

1
, YS2

2
, . . . is a supermartingale.

Proof. Let i ∈ {1, . . . , |S2|}. Recall that the Y ’s sequence was defined only on steps of the
process in which a random variable was restricted, as follows.

Yi =
∑

j∈S2,j≤i

Zj

Hence,

E[YS2
i
|YS2

0
, YS2

1
, . . . , YS2

i−1
] =

i∑
j=1

E[ZS2
j
|YS2

0
, YS2

1
, . . . , YS2

i−1
]

= E[ZS2
i
|YS2

0
, YS2

1
, . . . , YS2

i−1
] +

i−1∑
j=1

ZS2
j

Since
∑i−1

j=1 ZS2
j

= YS2
i−1

, it is enough to prove that E[ZS2
i
|YS2

0
, YS2

1
, . . . , YS2

i−1
] ≤ 0. By

Jensen inequality,

E[ZS2
i
|YS2

0
, YS2

1
, . . . , YS2

i−1
] = E[logL(F ∗S2

i
)|YS2

0
, YS2

1
, . . . , YS2

i−1
]−

E[logL(F ∗S2
i−1)|YS2

0
, YS2

1
, . . . , YS2

i−1
]− 3

2
log

(
1− 1

n− S2
i + 1

)
≤ logE[L(F ∗S2

i
)|YS2

0
, YS2

1
, . . . , YS2

i−1
]−

E[logL(F ∗S2
i−1)|YS2

0
, YS2

1
, . . . , YS2

i−1
]− 3

2
log

(
1− 1

n− S2
i + 1

)
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Using Lemma 6.3, we get that,

logE[L(F ∗S2
i
)|YS2

0
, YS2

1
, . . . , YS2

i−1
]− E[logL(F ∗S2

i−1)|YS2
0
, YS2

1
, . . . , YS2

i−1
] =

= E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

logE[L(F ∗S2
i
)|YS2

0
, YS2

1
, . . . , YS2

i−1
, F ∗S2

i−1]−

E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

E[logL(F ∗S2
i−1)|YS2

0
, YS2

1
, . . . , YS2

i−1
, F ∗S2

i−1]

= E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

logE[L(F ∗S2
i
)|F ∗S2

i−1]− E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

E[logL(F ∗S2
i−1)|F ∗S2

i−1]

≤ E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

[
log

(
L(F ∗S2

i−1)

(
1− 1

n− S2
i + 1

)3/2
)]
−

E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

log  L(F ∗S2
i−1)

= E
F ∗
S2
i
−1
|Y
S2

0
,Y
S2

1
,...,Y

S2
i−1

[
log

(
L(F ∗S2

i−1)

(
1− 1

n− S2
i + 1

)3/2
)
− logL(F ∗S2

i−1)

]

=
3

2
log

(
1− 1

n− S2
i + 1

)
which proves the claim.

Recall that the process of random restrictions is executed until the formula is left with
k variables. We are now ready to apply Azuma inequality on the sequence YS2

0
, YS2

1
, . . . and

to prove the main theorem of this section.

Theorem 6.6. Let c be the same constant as in Lemma 6.4. Then,

Pr

[
L(F ∗n−k) < 2

√
2c

(
k

n

)3/2

L(F0)

]
> 1− 2−k/k

′2

Proof of Theorem 6.6. Denote |S2| = M ≤ n − k. Let the sequence of random variables
YS2

0
, . . . , YS2

M
be defined as before. From Lemma 6.4 we know that for every i ∈ [M] it holds

that for some constant c > 0 and large enough n

|YS2
i
− YS2

i−1
| ≤ c · k′

n− S2
i + 1

Using this combined with the fact that the sequence YS2
0
, . . . , YS2

M
is a supermartingale

(Lemma 6.5), we can apply Azuma inequality. For every t ≥ 0

Pr[YS2
M
− YS2

0
≥ t] ≤ exp

 −t2

2
∑M

i=1

(
ck′

n−S2
i +1

)2



14



Notice that for w ≥ 2 it holds that 1
w2 ≤ 1

w−1
− 1

w
. Then,

M∑
i=1

(
ck′

n− S2
i + 1

)2

≤
n−k∑
i=1

(
ck′

n− i+ 1

)2

≤ (ck′)2

n−k∑
i=1

(
1

n− i
− 1

n− i+ 1

)
= (ck′)2

(
1

k
− 1

n

)
≤ (ck′)2

k

It follows that,

Pr[YS2
M
− YS2

0
≥ t] ≤ exp

(
−kt2

2(ck′)2

)
(6.1)

Notice that all the Zi’s for i ∈ S1 correspond to steps in which we chose variables
that appear in many leaves (heavy variables). Then for i ∈ S1 it holds that logL(F ∗i ) −
logL(F ∗i−1) ≤ 3

2
log
(
1− 1

n−i+1

)
. It follows that,

Zi = logL(F ∗i )− logL(F ∗i−1)− 3

2
log

(
1− 1

n− i+ 1

)
≤ 0

Since YS2
0

= 0 we get,

Pr
[
YS2
M
− YS2

0
≥ t
]

= Pr

 ∑
i∈S2\{0}

(
logL(F ∗i )− logL(F ∗i−1)− 3

2
log

(
n− i

n− i+ 1

))
≥ t


≥ Pr

[∑
i∈S1

(
logL(F ∗i )− logL(F ∗i−1)− 3

2
log

(
n− i

n− i+ 1

))
+

∑
i∈S2\{0}

(
logL(F ∗i )− logL(F ∗i−1)− 3

2
log

(
n− i

n− i+ 1

))
≥ t


= Pr

[
n−k∑
i=1

(
logL(F ∗i )− logL(F ∗i−1)− 3

2
log

(
n− i

n− i+ 1

))
≥ t

]

= Pr

[
logL(F ∗n−k)− logL(F ∗0 )− 3

2

n−k∑
i=1

log

(
n− i

n− i+ 1

)
≥ t

]

= Pr

[
logL(F ∗n−k)− logL(F ∗0 )− 3

2
log

(
k

n

)
≥ t

]
= Pr

[
L(F ∗n−k) ≥ 2t

(
k

n

)3/2

L(F0)

]
Combining this with equation (6.1) we get that for t =

√
2c,

Pr

[
L(F ∗n−k) ≥ 2t

(
k

n

)3/2

L(F0)

]
≤ e−k/k

′2 ≤ 2−k/k
′2
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Or, equivalently,

Pr

[
L(F ∗n−k) < 2

√
2c

(
k

n

)3/2

L(F0)

]
> 1− 2−k/k

′2

7 Most Restrictions are Good Enough

We now turn to proving that most restrictions leave at least one variable alive in a large
enough fraction of the r parts that we XOR in h.

Theorem 7.1. Let f :
(
{0, 1}n/r

)r → {0, 1}. We view f as a function whose input variables
are partitioned into r bins with exactly n/r balls in each. Let ρ ∈ Tk be a restriction as
described in Section 6.

Recall that k represents the number of variables left in the formula after the restriction,
and 2k′ < k. Then, with probability at least 1 − r2−k/(4r2) − (log n) · 2−k/k′2 the restriction

leaves at least
(

1− 220 log2 n
k′

)
fraction of the r bins with at least one variable unset.

First, let us prove the following claim that states that if a function f : {0, 1}r → {0, 1}
is very hard to approximate, then it is also hard to approximate when some of its inputs are
fixed.

Lemma 7.2. Let R = p · r where 0 < p ≤ 1. Let ε > 0. Let f : {0, 1}r → {0, 1} be a
function. Let f ′ : {0, 1}R → {0, 1} be a function, which is f restricted to R input bits (that
is, the other r−R bits are fixed to some values). Assume that there exists a formula F ′ such
that

Pr[F ′(x) = f ′(x)] ≥ 1

2
+ ε

It holds that there exists a formula F of size L(F ′) + 2(r −R) such that

Pr[F (x) = f(x)] ≥ 1

2
+

ε

2r−R

Proof. Assume without loss of generality that f depends on x1, . . . , xr ∈ {0, 1} and that
f ′ depends only on x1, . . . , xR. This means that there is some assignment to xR+1, . . . , xr,
denoted by yR+1, . . . , yr such that for every x1, . . . , xR ∈ {0, 1}

f(x1, . . . , xR, yR+1, . . . , yr) = f ′(x1, . . . , xR)

Assume that there exists a formula F ′ of size L(F ′) such that

Pr
x∈{0,1}R

[F ′(x) = f ′(x)] ≥ 1

2
+ ε
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Denote by e ∈ {0, 1} the following value

e = majority{f(x1, . . . , xr) |x1, . . . , xr ∈ {0, 1}, xR+1 . . . xr 6= yR+1 . . . yr}

We construct the following simple formula F for f . On input x ∈ {0, 1}r such that
xR+1 . . . xr = yR+1 . . . yr return F ′(x1, . . . , xR). Otherwise, return e.

Pr
x∈{0,1}r

[f(x) = F (x)] = Pr[xR+1 . . . xr = yR+1 . . . yr] Pr[f(x) = F (x)|xR+1 . . . xr = yR+1 . . . yr] +

Pr[xR+1 . . . xr 6= yR+1 . . . yr] Pr[f(x) = F (x)|xR+1 . . . xr 6= yR+1 . . . yr]

≥ 1

2r−R

(
1

2
+ ε

)
+

(
1− 1

2r−R

)
· 1

2
≥ 1

2
+

ε

2r−R

To perform the check xR+1 . . . xr = yR+1 . . . yr, F only needs additional 2(r−R) leaves. Notice
that the calculation of e is not part of F . It follows that the size of F is L(F ′)+2(r−R).

At this point we are ready to start working on proving Theorem 7.1. Recall the definition
of the hard function h. There are r sets of size n/r such that h XORs every such set. We want
to prove that with high probability not too many sets are completely assigned (restricted)
and then using Lemma 7.2, we will get that with high probability the restricted formula
must still be hard.

We analyze the restriction process by partitioning it into M = log n
k

intervals. We assume
that n and k are powers of 2 for simplicity. The length of the first interval is defined to be
n/2, the length of the second is defined to be n/4 and so on. In general, the length of the i-th
interval (i ∈ [M ]) is defined to be n/2i. Since the process stops when there are k variables
left, the last interval consists of k steps. In total we have M intervals. Denote by Ii = n/2i

the length of the i-th interval. After the M -th interval there are k variables left, which we
will call the leftover variables.

We begin by a simple lemma that states that if we apply a restriction ρ ∈ Tk to a formula
F of size at most n9, it is not possible that too many heavy variables are assigned in one
interval.

Lemma 7.3. Let F be a formula of size at most n9. Let ρ ∈ Tk be a restriction. At any
interval i ∈ [M ], it is not possible that more than 100Ii logn

k′
heavy variables are restricted.

Proof. Let i ∈ [M ]. Assume that more than 100Ii logn
k′

heavy variables are assigned during
interval i. Assume we begin interval i with a formula F ′. Notice that at any step during the
i-th interval there are at least Ii variables in the formula and at most 2Ii that are still not
restricted. So, the size of the formula at the end of the interval is at most

L(F ′)

(
1− 200k′

2Ii

) Ii
k′ 100 logn

= L(F ′)

(
1− 100k′

Ii

) Ii
k′ 100 logn

≤ L(F ′)e−10000 logn

≤ L(F ′)n−10000 < 1

This result means that the size of the formula F is now 0 and it cannot be possible
that an additional heavy variable was restricted. This is a contradiction which proves the
claim.
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From now on we will assume that this is indeed the case. Meaning that, there is no interval
i ∈ [M ] in which more than 100Ii logn

k′
heavy variables were assigned. This assumption is valid,

since the formulas that we will be working with are of size O(n2.499).
Recall that we are trying to prove that not too many parts which h XORs are completely

restricted by a random restriction ρ ∈ Tk. We can restate this problem in equivalent terms
of an adversarial game G, as follows. There are r bins, in each n

r
balls. The goal of the

adversary is to completely empty more than p · r bins. The adversary can choose one of the
following two moves at each step. The first (r-move) is to choose a random ball to remove
(uniformly at random from all the balls that are left). The second (s-move) is to remove a
specific ball that the adversary chooses. The only restriction is that at any interval i ∈ [M ]
(as defined above) the adversary is allowed to apply the s-move only 100Ii logn

k′
times. Recall

that for ρ ∈ Tk we do n− k restriction steps.
We now turn to the analysis of the game. Define the score of adversary A playing game

G by,

scoreAG = Pr [More than p · r bins are completely empty after A plays G]

where the probability is over the random choices made during the game. An optimal player
for the game G is defined as a player that maximizes the score of the game G (over all
adversaries). Denote by scoreG the score of the game G when played by an optimal adversary.

We first prove that we can simulate the restriction process by playing G.

Lemma 7.4. Let f :
(
{0, 1}n/r

)r → {0, 1}. We view f as a function whose input variables
are partitioned into r bins with exactly n/r balls in each.

Pr
ρ∈Tk

[More than p · r bins are completely empty after applying ρ to f ] ≤ scoreG

Proof. In order to prove the claim we present an adversary A that plays the game G and has
exactly the same probability to empty more than p · r bins after playing G as the probability
to empty more than p · r bins after applying ρ to f . In order to prove this lemma we
construct an adversary A that plays G and simulates every step in the execution of the
restriction ρ ∈ Tk. A is defined as follows. If the restriction process decides on Case 1, the
adversary will also choose an s-move and remove the ball corresponding to the restricted
variable. If the restriction process decides on Case 2, then the adversary will also choose to
do an r-move.

It follows from Lemma 7.3 that it is not possible that the restriction process chooses more
than 100Ii logn

k′
of specific variables from interval i ∈ [M ]. This is exactly the limitation for

our adversary A playing G.
Since an optimal adversary for G is at least as good as A, it follows that the probability to

completely empty more than p ·r bins after applying ρ to f is at most scoreG, as needed.

Now we can assume that the adversary plays G which simulates the random process. We
will now prove that in G the adversary A can choose the specific balls at the end of every
interval, while not decreasing scoreAG.

Lemma 7.5. Let i ∈ [M ] be an interval. Assume that A is playing G and makes the
following two consecutive moves in interval i. First, it removes a specific ball (an s-move).
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Then, it chooses a random ball and removes it (an r-move). We claim that if A plays them
in a reverse order, scoreAG can only increase.

Proof. Let A1 be an adversary playing G. Assume that during interval i ∈ [M ] adversary
A1 first removes a specific ball (s-move) and then a ball at random (r-move). Without loss
of generality, denote the variable (corresponding to the ball) that A1 removed in the s-move
by x1. Observe that the choice of the random ball is done at random from the remaining
balls after removing the ball corresponding to the variable x1.

We will construct an adversary A2 with scoreA2
G ≥ scoreA1

G which does the choice above
in a reverse order, as follows. A2 completely simulates the execution of A1 until the point
A1 chooses x1. At that point A2 chooses a random ball (corresponding to some variable).
If the chosen variable happens to be x1, then from that point A2 can simulate the exact
same execution of A1 (without even using his additional s-move). On the other hand, if the
chosen variable is not x1, then A2 chooses in its s-move the ball corresponding to x1. We
can see that scoreA2

G ≥ scoreA1
G , as needed.

By repeated applications of this lemma together with Lemma 7.3, we get,

Corollary 7.6. Let A be an optimal adversary playing G. Let i ∈ [M ] be some interval.
We can assume that during the interval i the optimal adversary A first does all the r-moves
and then it does at most 100Ii logn

k′
s-moves.

Recall that after the M -th interval (M = log n
k
) there are k balls left and the adversary

is not allowed to remove any of them. Recall that we call the k variables, that are left after
the M -th interval, the leftover variables (when we speak about balls and bins, we call them
leftover balls).

Our next goal is to define a sequence of games such that the first game in the sequence
is a game in which all the r-moves are done before the s-moves.

First, denote by GM+1 the game G. For j ∈ {0, . . . ,M − 1} define a game GM−j in
which the adversary AM−j has the same rules as G except that it is not allowed to remove
any specific balls in all intervals i such that M − j ≤ i ≤ M , but instead, after it restricts
n−k variables (that is, after the M -th interval), it is allowed to remove additional 110·j·k·logn

k′

specific balls from the leftover balls.
We prove that we can switch from GM+1 to G1 with only small loss in the score by doing

it in small steps as follows.

Lemma 7.7. Let j ∈ [M ]. It holds that,

scoreGj ≥ scoreGj+1
− 2−k/(k

′2)

Proof. Let Aj and Aj+1 be two adversaries playing Gj and Gj+1, respectively. Assume Aj+1

is an optimal adversary. We prove that Aj can simulate with high probability the execution
of Aj+1. The idea is that until the j-th interval (excluding the j-th interval itself) Aj can
simulate the game played by Aj+1 exactly. During interval j, Aj will only mark the specific
balls that Aj+1 removes using s-moves (recall that Aj is not allowed to remove them).

Recall that in the j-th interval the adversary Aj+1 chooses
100Ij logn

k′
specific balls. Recall

that we have at the end of the M -th interval k balls and recall that at the end of the j-th
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interval, there are Ij balls. We claim that since all the choices of Aj, starting in the (j+1)-th
interval, until the M -th interval (including) are r-moves, and since we are left with k leftover
balls, the expected number of the marked balls which are not removed (at the random steps

until the end of the M -th interval) is at most
100Ij logn

k′
· k
Ij

= 100k logn
k′

.

Denote by Q the number of marked balls that are not chosen before the end of the
M -th interval. Notice that Q is distributed according to a hypergeometric distribution

H
(
Ij,

100Ij logn

k′
, k
)

(see Definition 2.7). Due to Proposition 2.8, we get that

Pr

[
Q ≥ (1 + 0.1)

100 · k · log n

k′

]
≤ exp

−0.12
(

100·Ij ·logn

k′

)2

k

(Ij − k)Ij


= exp

(
−100 · Ij · k · log2 n

(Ij − k)k′2

)
≤ exp

(
−k
k′2

)
≤ 2−k/(k

′2)

We got that with probability at most 2−k/(k
′2) more than E = 110·k·logn

k′
of the specific balls

that Aj+1 chooses, are not randomly chosen by Aj before reaching the end of the M -th
interval. Recall that Aj has additional 110k logn

k′
specific choices of balls to remove (over the

amount that Aj+1 has) from the leftover variables. The additional choices can be used to
remove the E balls that were not removed until the end of the M -th interval. So, we got
that with probability at least 1− 2−k/(k

′2) adversary Aj can simulate the execution of Aj+1.
In other words,

scoreGj ≥ score
Aj
Gj
≥ scoreGj+1

− 2−k/(k
′2)

Notice that the game G1 by definition is a game in which the adversary first does all
the random choices of balls to remove until the end of the M -th interval. After the M -th
interval it is allowed to remove at most 110k log2 n

k′
specific balls from the leftover balls. By

Lemma 7.7 it follows that (recall that there are at most log n intervals)

Corollary 7.8. It holds that,

scoreG1 ≥ scoreG − (log n) · 2−k/k′

With the order of removals in mind, we can bound the number of bins an optimal ad-
versary A1 playing G1 can completely empty. We do this by first bounding (with high
probability) the number of balls removed from each bin during the M intervals. Then we
show that every adversary A1 playing G1 cannot eliminate too many bins using at most(

110·k·log2 n
k′

)
balls that it can eliminate from the leftover balls.

We bound the number of balls from a specific bin that stay after the M -th interval.
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Lemma 7.9. Let i ∈ [r]. Denote by Bi the amount of balls from the i-th bin that are not
removed during the first (n− k) r-moves (random removal steps) in the game G1.

Pr

[
Bi <

k

2r

]
≤ 2−k/(4r

2)

Proof. Notice that Bi is distributed according to a hypergeometric distribution H(n, n
r
, k).

From Proposition 2.8, we get that

Pr

[
Bi <

(
1− 1

2

)
k

r

]
≤ exp

(
−

(
n
r

)2
k

4(n− k)n

)
≤ exp

(
− k

4r2

)
≤ 2−k/(4r

2)

which proves the claim.

We are now ready to prove the main theorem of this section.

Proof of Theorem 7.1. Let f :
(
{0, 1}n/r

)r → {0, 1}. We view f as a function whose domain
consists of r bins with exactly n/r balls in each. Let ρ ∈ Tk be a restriction as described in
Section 6.

From Lemma 7.9 we know that with probability at most 2−k/(4r
2) a specific bin has less

than k
2r

balls left in it after playing all M intervals of G1. So with probability at least

1− r2−k/(4r2) all the bins contain at least k
2r

balls at the end of the random choices part.

We let the adversary to complete its set of moves by removing 110k log2 n
k′

specific balls
from the leftover balls. Since in all bins there are at least k

2r
balls, it can remove at most

110k log2 n
k′
k
2r

= 220r log2 n
k′

bins.

We get that (in G1) with probability at least 1− r2−k/(4r2) we are left with at least one

ball in r − 220r log2 n
k′

bins. Since this is correct for the game G1, from Lemma 7.7, it follows

that with probability at least 1 − r2−k/(4r
2) − (log n) · 2−k/k′2 there is at least one ball in

r − 220r log2 n
k′

bins when the adversary plays G.
Recall that G was based on our restriction process (Lemma 7.4). Hence, it follows that

with probability at least 1 − r2−k/(4r
2) − (log n) · 2−k/k′2 at most a fraction of 220 log2 n

k′
of

the r bins in the definition of f are completely restricted after the process of the restriction
ρ ∈ Tk.

8 Proof of Main Theorem 3.1

Proof of Theorem 3.1. Let τ > 0 be a small constant. Set r = nτ , ε = 4 · 2−r + 2 · 2−r/12 and
k = n10τ , k′ = nτ/100.

Let h : {0, 1}n×{0, 1}n → {0, 1} be the function that is defined in Section 4. Let F (x, y)
be a formula of size L(F (x, y)) such that

Pr
x,y∈{0,1}n

[F (x, y) = h(x, y)] ≥ 1

2
+ ε.
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Recall the set H from Theorem 5.1. By Theorem 5.2 we know that there exists some x0 ∈ H
such that

Pr
y∈{0,1}n

[F (x0, y) = hx0(y)] ≥ 1

2
+ ε/2.

Let ρ be a random restriction distributed according to Tk. Denote by hx0(y)|ρ the function
hx0(y) restricted by ρ. Denote by F (x0, y)|ρ the formula F (x0, y) restricted by ρ. Denote by
Sρ ⊆ [n] the subset of coordinates that are unassigned by ρ. Since once a variable is chosen
to be restricted it is randomly assigned, it follows that,

E
ρ∈Tk

Pr
y∈{0,1}Sρ

[F (x0, y)|ρ = hx0(y)|ρ] ≥
1

2
+ ε/2 (8.1)

Denote by A ⊆ Tk the subset of restrictions that shrink well. Formally, ρ ∈ A ⇐⇒
L(F (x0, y)|ρ) ≤ 2

√
2c
(
k
n

)3/2
L(F (x0, y)) (where c is the same constant as in Theorem 6.6).

By Theorem 6.6, it follows that

Pr
ρ∈Tk

[ρ ∈ A] ≥ 1− 2−k/k
′2 ≥ 1− 2−n

τ

Denote by B ⊆ Tk the subset of restrictions that leave at least a
(

1− 220 log2 n
k′

)
fraction of

the bins with at least one ball unassigned. By Theorem 7.1, it follows that

Pr
ρ∈Tk

[ρ ∈ B] ≥ 1− r2−k/(4r2) − (log n) · 2−k/k′
2

≥ 1− 2−n
τ

With these bounds, equation (8.1) can be rewritten as

1

2
+ ε/2 ≤ Pr

ρ∈Tk
[ρ ∈ A ∩B] · E

ρ∈Tk|ρ∈A∩B
Pr

y∈{0,1}Sρ
[F (x0, y)|ρ = hx0(y)|ρ] +

Pr
ρ∈Tk

[ρ 6∈ A ∩B] · E
ρ∈Tk|ρ 6∈A∩B

Pr
y∈{0,1}Sρ

[F (x0, y)|ρ = hx0(y)|ρ]

≤ E
ρ∈Tk|ρ∈A∩B

Pr
y∈{0,1}Sρ

[F (x0, y)|ρ = hx0(y)|ρ] + 2 · 2−nτ

We got,

E
ρ∈Tk|ρ∈A∩B

Pr
y∈{0,1}Sρ

[F (x0, y)|ρ = hx0(y)|ρ] ≥
1

2
+ ε/2− 2 · 2−nτ =

1

2
+ 2−r/12

Consequently, there must exist some ρ ∈ A ∩B for which

Pr
y∈{0,1}Sρ

[F (x0, y)|ρ = hx0(y)|ρ] ≥
1

2
+ 2−r/12

First, ρ ∈ A, so the formula shrinks well after applying ρ. In other words,

L(F (x0, y)|ρ) ≤ 2
√

2c

(
k

n

)3/2

L(F (x0, y))
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which means that

L(F (x0, y)) ≥ 2−
√

2c
(n
k

)3/2

L(F (x0, y)|ρ) (8.2)

Second, ρ ∈ B, thus there is at most 220 log2 n
k′

≤ 1
24

fraction of the r XORs that are
completely eliminated. The others contain at least one variable that is alive. Applying
Lemma 7.2, gives us that there exists a formula of size L(F (x0, y)|ρ) + 2r that computes

hx0(y) with probability at least 1
2

+ 2−r/12

2r/24 ≥ 1
2

+ 1
2r/8

.
Recall that hx0(y) is the function represented by EncCxo . By the definition of H in

Theorem 5.1, we get that every formula computing EncCxo with probability at least 1
2

+ 1
2r/8

must be of size at least Ω(n′), for n′ = n
log2 n

. Hence, L(F (x0, y)|ρ) > Ω(n′) − 2r = Ω(n′).

Plugging this into equation (8.2) we get,

L(F (x, y)) ≥ L(F (x0, y)) ≥ 2−
√

2c
(n
k

)3/2

Ω(n′) ≥ Ω(n2.499)

for small enough τ .

9 Proof of Main Theorem 3.2

Proof of Theorem 3.2. The proof of this statement follows the lines of the proof for deMorgan
formulas, except for a minor change. For formulas over the complete basis, there is no
(known) non-trivial shrinkage property, so the constant 3/2 needs to be changed to 1 in
Lemma 6.2 and all subsequent claims in Section 6.
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Appendix

Proof of Lemma 5.3. Denote by U,W the uniform independent random variables for u ∈
{0, 1}m and w ∈ {0, 1}d−m, respectively. Denote by E(u,w) the characteristic function of
the event g (u,w) = f (u,w). Denote by H̄ = {0, 1}m \H.
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γ ≤ Pr
u ∈ {0, 1}m
w ∈ {0, 1}d−m

[g (u,w) = f (u,w)]

=
∑

u∈{0,1}m,w∈{0,1}d−m
Pr[W = w,U = u] · E(u,w)

=
∑

u∈{0,1}m
Pr[U = u] ·

∑
w∈{0,1}d−m

Pr[W = w] · E(u,w)

=
∑

u∈{0,1}m
Pr[U = u] · EW [E(u,W )]

=
∑
u∈H

Pr[U = u] · EW [E(u,W )] +
∑
u∈H̄

Pr[U = u] · EW [E(u,W )]

=
1

2m

∑
u∈H

EW [E(u,W )] +
1

2m

∑
u∈H̄

EW [E(u,W )]

≤ 1

2m

∑
u∈H

EW [E(u,W )] +
1

2m

∑
u∈H̄

1

=
1

2m

∑
u∈H

EW [E(u,W )] +
|H̄|
2m

Rearranging the inequality, we get that(
γ − |H̄|

2m

)
2m ≤

∑
u∈H

EW [E(u,W )]

By an averaging argument, we can finally state that there exists at least one u0 ∈ H such
that

EW [E(u0,W )] ≥

(
γ − |H̄|

2m

)
2m

|H|
=
γ2m − |H̄|
|H|

=
γ2m − 2m + |H|

|H|
= (γ − 1)

2m

|H|
+ 1

as needed.

25


	Introduction
	Techniques
	Related Works

	Preliminaries
	Main Theorems
	Definition of h
	Hardness of Most Inputs
	Shrinkage with High Probability
	Most Restrictions are Good Enough
	Proof of Main Theorem 3.1
	Proof of Main Theorem 3.2

