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Abstract

We construct a 1-round delegation scheme (i.e., argument-system) for every lan-
guage computable in time t = t(n), where the running time of the prover is poly(t) and
the running time of the verifier is n · polylog(t). In particular, for every language in P
we obtain a delegation scheme with almost linear time verification. Our construction
relies on the existence of a computational sub-exponentially secure private information
retrieval (PIR) scheme.

The proof exploits a curious connection between the problem of computation delega-
tion and the model of multi-prover interactive proofs that are sound against no-signaling
(cheating) strategies, a model that was studied in the context of multi-prover interac-
tive proofs with provers that share quantum entanglement, and is motivated by the
physical principle that information cannot travel faster than light.

For any language computable in time t = t(n), we construct a multi-prover interac-
tive proof (MIP) that is sound against no-signaling strategies, where the running time
of the provers is poly(t), the number of provers is polylog(t), and the running time of
the verifier is n · polylog(t).

In particular, this shows that the class of languages that have polynomial-time MIPs
that are sound against no-signaling strategies, is exactly EXP. Previously, this class
was only known to contain PSPACE.

To convert our MIP into a 1-round delegation scheme, we use the method suggested
by Aiello et al . (ICALP, 2000), which makes use of a PIR scheme. This method lacked
a proof of security. We prove that this method is secure assuming the underlying MIP
is secure against no-signaling provers.
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1 Introduction

The problem of delegating computation considers a setting where one party, the delegator
(or verifier), wishes to delegate the computation of a function f to another party, the worker
(or prover). The challenge is that the delegator may not trust the worker, and thus it is
desirable to have the worker “prove” that the computation was done correctly. We require
that verifying this proof is significantly easier than doing the computation itself; that is, the
delegator’s running time is significantly smaller than the time complexity of f . Moreover,
we require that the running time of the worker is not much larger than the time complexity
of f .

The problem of delegating computation became a central problem in cryptography, es-
pecially with the increasing popularity of cloud computing, where weak devices use cloud
platforms to run their computations.

We focus on the problem of constructing one-round delegation protocols, where the del-
egator wants to verify a statement of the form x ∈ L. The delegator sends x to the worker
together with some query q; then the worker computes b = L(x), and based on the query q
provides a non-interactive proof π for the fact that b = L(x). The delegator should be able
to verify the correctness of the proof π very efficiently, and the worker should run in time
polynomial in the time it takes to compute f . Throughout this work (similarly to all previous
works that consider the problem of one-round delegation), the security requirement is against
computationally bounded cheating workers. Namely, we consider the computational setting,
where the security (i.e., soundness) of our scheme relies on a cryptographic assumption, and
the guarantee is that any cheating worker, who cannot break the underlying assumption,
cannot prove the correctness of an incorrect statement.

Previously, [GKR08, KR09] proved that (assuming the existence of a sub-exponentially
secure computational PIR scheme) any function f that can be computed by a LOGSPACE-
uniform circuit C of size t = t(n) and depth d = d(n), has a one-round delegation scheme
where the running time of the verifier is Õ(n + d), and the running time of the prover is
poly(t).1 Note however that for circuits with large depth d this delegation scheme does not
satisfy the efficiency criterion.

A fundamental question is: Do there exist efficient 1-round delegation schemes for all
deterministic computations? There are several works that (partially) answer this question
in the preprocessing model, or under non-falsifiable assumptions.2 We elaborate on these
works in Section 1.4.

In this work, we answer the above question positively, by constructing a 1-round del-
egation scheme for every deterministic computation, assuming a sub-exponentially secure
computational PIR scheme. More specifically, we show a delegation scheme for every lan-

1As is the case with all computationally sound delegation schemes, the runtime of both the prover and
the verifier also grows polynomially with the security parameter. To avoid cluttering of notation, throughout
this introduction, we omit this dependence on the security parameter.

2We note that under non-falsifiable assumptions, there are known positive results even for non-
deterministic computations. The focus of this work is on deterministic computations.
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guage computable in time t = t(n), where the running time of the verifier is n · polylog(t),
and the running time of the prover is poly(t). The underlying assumption is that there exists
a computational PIR scheme (or an FHE scheme) that cannot be broken in time tpolylog(t) for
security parameter k ≤ poly(n).3

Our delegation scheme exploits a connection to the seemingly unrelated model of multi-
prover interactive proof systems (MIP) in which soundness holds even against no-signaling
cheating provers. Loosely speaking, no-signaling provers are allowed to use arbitrary strate-
gies (as opposed to local ones, where the reply of each prover is a function only of her own
input), as long as their strategies cannot be used for communication between any two disjoint
sets of provers.

We show that any MIP that is sound against no-signaling cheating provers can be con-
verted into a 1-round delegation scheme, using a fully-homomorphic encryption scheme
(FHE), or alternatively, using a computational private information retrieval (PIR) scheme.
We elaborate on this connection in Section 1.2.

We then construct a new MIP, for every deterministic language, with soundness against
no-signaling cheating provers. This, together with the transformation above, gives us our
1-round delegation scheme.

1.1 Multi-Prover Interactive Proofs with No-Signaling Provers

The study of MIPs that are secure against no-signaling provers was motivated by the study
of MIPs with provers that share entangled quantum states. Recall that no-signaling provers
are allowed to use arbitrary strategies, as long as their strategies cannot be used for commu-
nication between any two disjoint sets of provers. By the physical principle that information
cannot travel faster than light, a consequence of Einstein’s special relativity theory, it follows
that all the strategies that can be realized by provers that share entangled quantum states
are no-signaling strategies.

Moreover, the principle that information cannot travel faster than light is a central prin-
ciple in physics, and is likely to remain valid in any future ultimate theory of nature, since
its violation means that information could be sent from future to past. Therefore, sound-
ness against no-signaling strategies is likely to ensure soundness against provers that obey a
future ultimate theory of physics, and not only the current physical theories that we have,
that are known to be incomplete.

The study of MIPs that are secure against no-signaling provers is very appealing also
because no-signaling strategies have a simple mathematical characterization.

Loosely speaking, in a no-signaling strategy the answer given by each prover is allowed
to depend on the queries to all other provers, as long as for any subset of provers S, and any
queries given to the provers in S, the distribution of the answers given by the provers in S
is independent of all the other queries. Thus, the answer of each prover can depend on the
queries to all other provers as a function, but not as a random variable.

3In particular, for languages in P we only require a PIR scheme with quasi-polynomial security.
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More formally, fix any MIP consisting of ` provers, and fix any set of cheating provers
{P ∗1 , . . . , P ∗` } who may see each other’s queries (and thus each answer may depend on the
queries sent to all the provers). The provers are said to be no-signaling if for every subset of
provers {P ∗i }i∈S, and for every two possible query sets {qi}i∈[`] and {q′i}i∈[`] such that qi = q′i
for every i ∈ S, it holds that the distributions of answers {ai}i∈S and {a′i}i∈S are identical,
where {ai}i∈S is the the answers of the provers in S corresponding to the queries {qi}i∈[`], and
{a′i}i∈S is the answers of the provers in S corresponding to the queries {q′i}i∈[`]. If we have
the slightly weaker guarantee that these two distributions are statistically close, then we say
that the provers are statistically no-signaling. More specifically, if these two distributions are
δ-close, then we say that the provers are δ-no-signaling. We refer the reader to Section 4.3
for details.

No-signaling strategies were first studied in physics in the context of Bell inequalities by
Khalfin and Tsirelson [KT85] and Rastall [Ras85], and they gained much attention after they
were reintroduced by Popescu and Rohrlich [PR94]. MIPs that are secure against no-signaling
provers were extensively studied in the literature (see for example [Ton09, BLM+05, AII06,
KKM+08, IKM09, Hol09, Ito10]). However, their precise power was unknown. It was known
that they contain PSPACE [IKM09] and are contained in EXP.4 For the case of two provers,
Ito [Ito10] showed that the corresponding complexity class is contained in (and therefore
equal to) PSPACE. Characterizing the exact power of MIPs (with more than two provers)
that are secure against no-signaling provers remained an open problem.

In this work, we solve this open problem by constructing MIPs that are secure against
no-signaling strategies (and more generally, statistically no-signaling strategies), for every
language in EXP. Moreover, in our construction the provers are efficient; i.e., they run in
time that is polynomial in the computation time. Specifically, for any language computable
in time t = t(n), we construct an MIP that is sound against no-signaling strategies, where the
running time of the provers is poly(t), the number of provers is polylog(t), and the running
time of the verifier is n·polylog(t). The fact that our MIP is efficient implies that the resulting
1-round delegation scheme is efficient. We note that the previous construction of MIP that
is sound against no-signaling strategies for PSPACE [IKM09] is inefficient (the provers run
in time exponential in the space of the computation).

1.1.1 The Challenges in Proving Soundness Against No-Signaling Strategies

It is tempting to consider known constructions of MIPs and to try to prove their soundness
against no-signaling strategies. However, known constructions of MIPs are usually for NEXP
(or the scaled down version for NP). Since MIPs that are secure against no-signaling strategies
are contained in EXP, there is no hope to construct such MIPs for NEXP. In particular, all
known MIPs for NEXP (or the scaled down version for NP) are not sound against no-signaling
strategies.

Indeed, often the trivial strategy, where the provers simply choose random answers that
make the verifier accept, is no-signaling. For example, consider the trivial 2-prover interactive

4In a nutshell, one can find the best strategy for the provers by solving an exponential size linear program.
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proof for graph 3-coloring , where the verifier sends each prover a vertex in the graph, where
with probability 1/2 the vertices are the same and with probability 1/2 there is an edge
between these vertices, and the provers reply with the color of these vertices. Suppose the
graph is not 3-colorable. We argue that the “random accepting strategy” is a no-signaling
strategy that is accepted with probability 1. More specifically, the cheating strategy is the
following: If both vertices are the same, choose a random color from the set of three legal
colors, and both provers send this color to the verifier. Otherwise, choose two different
random colors from the set of three legal colors, and each prover sends one of these colors
to the verifier. This strategy is clearly accepted with probability 1. Moreover, it is a no-
signaling strategy, since the distribution of answers of each prover is uniform, independent
of the query to the other prover.

This intuitive argument extends to more sophisticated MIPs and demonstrates the diffi-
culty in proving soundness against no-signaling strategies.

1.2 From Multi-Prover Interactive Proofs to One-Round Delega-
tion

Aiello et al . [ABOR00] suggested a method for converting a 1-round MIP into a 1-round
delegation scheme, by using a PIR scheme (or an FHE scheme).5 In this work, we choose
to use the terminology of FHE schemes (as opposed to PIR schemes), because we find this
terminology to be simpler. However, all our results hold with PIR schemes as well.

In the resulting delegation scheme, the verifier computes all the queries of the MIP verifier,
and sends all these queries to the prover, each encrypted under a fresh key, using an FHE
scheme. The prover then computes the MIP provers’ responses homomorphically over the
encrypted queries, that is, underneath the layer of the FHE scheme.

Unfortunately, shortly after this method was introduced, Dwork et al . [DLN+04] showed
that it may, in general, be insecure. We elaborate further on the work of Dwork et al. and
their connection to no-signaling soundness in Section 1.4.

Motivated by the work of Aiello et al ., Kalai and Raz [KR09] showed that a variant of
this method can be used to securely convert any interactive proof into a one-round argument
system. The idea is simply to have the verifier send all its (say t) messages in the first round,
in the following redundant form: For every i ∈ [t], all the first i messages are encrypted using
a fresh FHE key.6 The work of [KR09], together with the interactive delegation scheme of
Goldwasser et al . [GKR08], gives rise to the 1-round delegation protocol for LOGSPACE-
uniform low-depth circuits, mentioned above.

We show that the method of Aiello et al . [ABOR00] is secure if the underlying MIP
is sound against statistically no-signaling strategies. Thus, we reduce the cryptographic

5Actually, [ABOR00] suggested to use a PCP. However, as pointed out by [DLN+04] an MIP is more
suitable.

6The reason the i’th message is encrypted together with the preceding messages, is since the prover’s
reply may depend on all these messages.
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problem of constructing secure one-round delegation schemes, to the information theoreti-
cal problem of constructing MIP schemes that are secure against statistically no-signaling
provers. Such a reduction allows us to “strip off” the cryptography, and to focus on an
information theoretic question of constructing an MIP that is secure against statistically
no-signaling provers.

This result generalizes the work of [KR09], since any interactive proof can be seen as an
MIP where the verifier sends his first i messages to prover i (it is quite easy to verify that the
resulting MIP is secure against statistically no-signaling cheating provers). Moreover, our
result significantly simplifies the one of [KR09], which implicitly converts the interactive proof
into an MIP scheme and then applies the PIR to the resulting MIP scheme. We believe that
due to the lack of the “correct” terminology, the result of [KR09] was relatively complicated,
whereas this current result is significantly simpler and more general. We refer the reader to
Section 16 for details.

1.3 Summary of Our Results

We show that when applying the method of Aiello et al . [ABOR00] to an MIP that is
sound against statistically no-signaling cheating provers, then the resulting 1-round dele-
gation protocol is secure (assuming that the underlying FHE is secure against attackers of
sub-exponential size).

Informal Theorem 1 (See Theorem 12). Assuming the existence of an FHE scheme with
sub-exponential security, there exists an efficient way to convert any 1-round MIP that is
sound against statistically no-signaling cheating provers into a secure 1-round delegation
scheme, where the running time of the prover and verifier in the delegation scheme are
proportional to the running time of the provers and verifier in the MIP.

Remark. More specifically, the precise assumption needed in Informal Theorem 1 is that
there exists an FHE scheme that, for security parameter k ≤ poly(n), is secure against
adversaries running in time 2O(|a1|+...+|a`|), where |ai| is the answer size of the i’th prover in
the underlying MIP scheme.

Thus, we reduced the cryptographic problem of constructing secure one-round delegation
schemes, to the information theoretical problem of constructing MIP schemes that are secure
against statistically no-signaling provers.

We then construct an efficient MIP, that is sound against statistically no-signaling strate-
gies, for every language in EXP.

Informal Theorem 2 (See Theorem 4). For any language L computable in time t = t(n),
there exists an MIP that is secure against statistically no-signaling adversaries. The (hon-
est) provers in this MIP run in time poly(t), the number of provers and the communication
complexity is polylog(t), and the verifier runs in time n · polylog(t).

8



We note that our MIP has the additional property that the verifier does not need to know
the entire input, but rather only needs to access a few points in the low-degree extension of
the input (we refer the reader to Section 4.6 for the definition of low-degree extension). This
property, which was also a property of the [GKR08] protocol, is important for applications
such as memory delegation [CKLR11].

The above theorem, together with Informal Theorem 1, immediately yields the following
corollary:

Informal Theorem 3 (See Theorems 9-11). Assume the existence of an FHE scheme with
sub-exponential security. Then, there exists a 1-round delegation scheme for any function
computable in time t = t(n). The prover in this delegation scheme runs in time poly(t), the
verifier runs in time n · polylog(t), and the communication complexity is polylog(t).

Remark. As in Informal Theorem 1, the precise assumption needed for the above theorem
is the existence of an FHE scheme that, for security parameter k ≤ poly(n), is secure against
adversaries running in time 2polylog(t).

As a special case, Informal Theorem 2 gives soundness against provers that share an
entangled quantum state, since such provers are no-signaling. This gives a scheme for dele-
gating computation to a group of workers that cannot communicate with each other (where
the parameters are as in Theorem 2). The scheme is information theoretically secure even
if the workers share an entangled quantum state. Moreover, the scheme remains secure in
any future ultimate theory (that may extend quantum theory) as long as the no-signaling
principle remains valid. We note, however, that recent breakthroughs by Ito and Vidick
construct MIPs that are secure against provers that share entangled quantum states, for any
language in NEXP [IV12, Vid13].

The bulk of technical contribution of this work is in proving Informal Theorem 2. As
noted above, proving this theorem requires overcoming several technical hurdles that do not
appear in the classical MIP (or PCP) setting. We refer the reader to Section 3 for an overview
of our techniques for proving this theorem.

Informal Theorem 1 is mainly a conceptual contribution. Its proof is relatively straight-
forward, but we find the connection between the seemingly unrelated concepts of delegation
and no-signaling soundness to be intriguing.

1.4 Related Work

Our work is greatly inspired by the work of Aiello et al . [ABOR00], who propose a gen-
eral methodology of constructing 1-round delegation schemes, by combining an MIP (or a
PCP) with a (computational) PIR scheme. Also very relevant to our work is the work of
Dwork et al . [DLN+04], who proved that this method is not sound, by giving an example of
a PCP for which the resulting one-round delegation scheme is not sound, no matter which
PIR scheme (or FHE scheme) is used.
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Moreover, [DLN+04] define the notion of a “spooky interaction” which is a behavior of
the cheating prover, that on the one hand does not directly contradict the security of the
PIR, yet on the other hand is not consistent with answers based on PIR databases. Using
our terminology, a spooky behavior is exactly a no-signaling distribution on prover answers
that are computed “homomorphically” under the “encrypted” PIR queries.

More importantly, Dwork et al . also argue that the soundness of the [ABOR00] technique
cannot essentially be based on any MIP (or PCP). However, Dwork et al. (and [ABOR00])
were focused on constructing 1-round delegation schemes for non-deterministic languages
(such as languages in NEXP or the scaled down version of NP). Indeed, it is implicitly
shown in [DLN+04] that languages that can be proved by an MIP with soundness against
no-signaling provers are in EXP (and the scaled down version of it is contained in P). Ad-
ditionally, Gentry and Wichs [GW11] recently showed a negative result, proving that there
does not exist a non-interactive delegation scheme for NP with a black-box proof of security
under any falsifiable assumption.7 However, these negative results do not apply to our set-
ting as our delegation scheme is not for all of NP, but rather for languages in P (or, in the
scaled up version, in EXP).

Thus, by focusing on deterministic classes (as opposed to non-deterministic ones), we
manage to show that the [ABOR00] method is indeed sound in some cases.

Related work on computation delegation. Beyond the works of [GKR08, KR09] that
were mentioned earlier, there are many other works on delegating computation that are
less relevant to this work. Let us mention a few. In the interactive setting, Kilian [Kil92]
constructed a 4-message delegation scheme for every function in NEXP. Micali [Mic94]
showed that in the so called random oracle model this result can be made non-interactive,
by relying on the Fiat-Shamir paradigm [FS86]. There are also several results that con-
struct non-interactive delegation schemes under non-falsifiable assumptions (as defined by
Naor [Nao03]). These works include [Gro10, Lip12, BCCT12a, DFH12, GLR11, BCCT12b,
GGPR12] and more. Finally, we mention a series of results that construct non-interactive
delegation scheme in the preprocessing model, where the verifier is efficient only in the amor-
tized setting. These results include [GGP10, CKV10, AIK10, PRV12]. There are many other
results that we do not mention, which consider various different models, or are concerned
with practical efficiency.

1.5 Organization

In Section 2, we formally state our results. In Section 3, we provide a high-level overview
of our techniques. In Section 4, we formally define the notions that we use throughout this
work. In Sections 5 to 8, we construct a base PCP with soundness against no-signaling
strategies for PSPACE. In Sections 9 to 11, we construct the augmented PCP for EXP. In
Sections 12 to 14, we show how to transform this PCP into an MIP. In Section 15, we use

7The model of [GW11] differs from our model in that they allow the prover the additional power of
choosing the instance x after seeing the first message sent by the verifier.
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the tools from all previous sections to prove the main information theoretic result. Finally,
in Section 16 and Section 17, we show how to transform our MIP into an 1-round delegation
scheme.

2 Our Results

We show a general result on MIP proof systems that are secure against no-signaling strategies
and show how to use the latter to construct a new 1-round delegation scheme (a.k.a. 1-round
argument-system).

Theorem 4. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n).
Then, for any integer (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large) universal
constant, there exists an MIP for L with k · polylog(t) provers and with soundness error 2−k

against 2−k·polylog(t)-no-signaling strategies.

The verifier runs in time (n+k2) ·polylog(t) and the provers run in time poly(t, k). Each
query and answer is of length k · polylog(t).

By setting the parameters t = poly(n) and k = polylog(n) we obtain the following corol-
lary:

Corollary 5. If L ∈ P, then there exists an MIP for L with polylog(n) provers, and
with soundness error 2−polylog(n) against 2−polylog(n)-no-signaling strategies. The verifier runs
in time Õ(n) and the provers run in time poly(n). Each query and answer is of length
polylog(n).

By setting t = poly(n) and k =
√
n we obtain the following corollary:

Corollary 6. If L ∈ P, then there exists an MIP for L with Õ(
√
n) provers, and with

soundness error 2−
√
n against 2−Ω̃(

√
n)-no-signaling strategies. The verifier runs in time Õ(n)

and the provers run in time poly(n). Each query and answer is of length Õ(
√
n).

A scaled up result is obtained by setting t = exp(n) and k = poly(n):

Corollary 7. If L ∈ EXP, then there exists an MIP for L with poly(n) provers and with
soundness error 2−poly(n) against 2−poly(n)-no-signaling strategies. The verifier runs in time
poly(n) and the provers run in time exp(n). Each query and answer is of length poly(n).

Having stated our main information-theoretic results, we proceed to state our main cryp-
tographic results. The following theorems rely on the existence of an (S, δ)-secure FHE
scheme, which is an FHE scheme where any poly(S)-size adversary cannot distinguish be-
tween an encryption of any two messages with probability greater than δ (see Section 4.7 for
a formal definition).8

8Alternatively, we can rely on the existence of a sufficiently strong cryptographic private information
retrieval scheme (PIR), see remark at the end of Section 17.
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We first state our general transformation from any MIP that has soundness against no-
signaling strategies into a 1-round argument-system.

Theorem 8 (Simplified; for the full statement see Theorem 12). Suppose that the language L
has an MIP with ε soundness against δ-no-signaling strategies and a total of λ communication
(to all provers). Let τ = τ(n) ≥ λ be a security parameter, where n denotes the input length
of the MIP. For every S = S(τ) ≥ τ such that S ≥ max(n, 2λ) and δ′ = δ′(τ) such that
δ′ ≤ δ/λ, if there exists an (S, δ′) secure FHE, then the language L has a 1-round argument
system with soundness (S, ε).

If the MIP verifier runs in time TV , then the running time of the resulting verifier is
TV + poly(τ). If the running time of each MIP prover is TP , then the running time of the
resulting prover is poly(TP , τ, n). The total communication in the resulting argument-system
is of length poly(τ).

By combining Theorem 4 with Theorem 8 we obtain the following argument-system:

Theorem 9. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n).
Let τ = τ(n) be a security parameter such that log(t) ≤ τ ≤ poly(t). Let S = S(τ) ≥ τ such
that 2(log(t))c ≤ S ≤ 2poly(n) and S ≤ 2max(n,τ), where c is some sufficiently large universal

constant. If there exists an
(
S, 2−

√
logS
)

-secure FHE, then L has a 1-round argument system

with soundness
(
S, 2−

√
log S

polylog(t)

)
. The verifier runs in time n·polylog(t)+poly(τ) and the prover

runs in time poly(t). The total communication is of length poly(τ).

We stress that the running time of the verifier in Theorem 9 only depends poly-logarithmically
on the time that it takes to compute L. We proceed to describe two useful corollaries of
Theorem 9.

By setting t = poly(n), τ = nε and S(τ) = 2(log(τ))c where ε > 0 (resp., c > 0) is a
sufficiently small (resp., large) universal constant and assuming the existence of a quasi-
polynomially secure FHE, we obtain a (cryptographic) delegation scheme for P with quasi-
linear verification and sublinear communication.

Theorem 10. Suppose that L ∈ P. If there exists a
(
2polylog(τ), 2−polylog(τ)

)
-secure FHE, then,

for every constant α > 0, the language L has a 1-round argument system with soundness(
2polylog(n), 2−polylog(n)

)
. The verifier runs in time Õ(n) and the prover runs in time poly(n).

The total communication is of length O(nα).

By setting t = poly(n), τ = (log(n))c and S(τ) = 2τ
ε

where ε > 0 is a sufficiently small
universal constant, c > 0 is a sufficiently large universal constant (that is chosen after ε)
and assuming the existence of a sub-exponentially secure FHE (a stronger assumption than
that in Theorem 10) we obtain a (cryptographic) delegation scheme for P with quasi-linear
verification but only poly-logarithmic communication.

Theorem 11. Suppose that L ∈ P. If there exists a
(

2τ
ε
, 2−τ

ε/2
)

-secure FHE, where ε > 0 is

a sufficiently small universal constant, then L has a 1-round argument system with soundness
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(
2polylog(n), 2−polylog(n)

)
. The verifier runs in time Õ(n) and the prover runs in time poly(n).

The total communication is of length polylog(n).

3 Our Techniques

Our techniques can be separated into two parts. The main technical contribution of this work
is the construction of an MIP that is sound against statistically no-signaling cheating provers,
for any function computable in time t. The number of provers is polylog(t), each prover runs
in time at most poly(t), and the verifier runs in time n · polylog(t). This construction,
described in Section 3.1, is information theoretic, and does not rely on any cryptographic
assumptions.

Then, in Section 3.2 we show how to convert a statistically no-signaling MIP into a one-
round argument (while preserving the parameters, up to polynomial factors). The soundness
of the resulting one-round argument assumes the existence of a fully homomorphic encryption
(FHE) scheme with sub-exponential security.

3.1 Our Statistically No-Signaling MIP

We start by giving an overview of our MIP, and then give the high-level idea for why sound-
ness holds against statistically no-signaling cheating provers. The proof of soundness requires
a different approach than the ones taken to prove classical soundness. Indeed, all known
MIP’s for NEXP (or the scaled down version of NP) are not sound against no-signaling ad-
versaries (see discussion in Section 1.1.1).

The main difference between a classical MIP and a no-signaling MIP is that in a classical
MIP once a prover fixes his random tape (if at all he uses randomness), then his answer is a
deterministic function of his query. This is not the case in the no-signaling setting, since a
prover’s answer can depend on the other queries. It is required that the answer of the prover
is independent of the other queries as a random variable , but it may certainly depend on the
other queries as a function. This makes the soundness proof significantly more challenging.

Before presenting the high level ideas of this proof, we first give a high level overview of
our MIP.

As a first step in the construction of our MIP, we would like to assume for simplicity
that any set of (possibly malicious) provers behave symmetrically; namely, any two subsets
of provers, who are asked the same questions, answer similarly. Of course, we cannot ensure
such a thing, since cheating provers may behave arbitrarily. Instead, this is ensured by
defining a new model of no-signaling PCP, as oppose to no-signaling MIP.

Intuitively, a no-signaling PCP is defined like a classical PCP, but where soundness is
required to hold also against a no-signaling prover, who can see all queries. Loosely speaking,
a no-signaling prover, upon receiving any set of queries Q, may reply with answers, where
each answer may depend on all the queries in Q as a function, but not as a random variable.

13



Namely, for any set of queries Q and for any subset Q′ ⊆ Q, the distribution of the answers
corresponding to the queries Q′, should be independent of queries in Q \Q′.

Formally, a no-signaling prover consists of a family of distributions {AQ}, where there
is one distribution for every “sufficiently small” set of queries Q, and the requirement is
that for every subset of queries Q′ ⊆ Q, the distribution (AQ)|Q′ (which is the distribution
of answers AQ restricted to queries in Q′) is independent of queries in Q \ Q′. More gen-
erally, a δ-no-signaling family of distributions has the property that for every three sets of
queries Q1, Q2, Q

′, such that Q′ ⊆ Q1 and Q′ ⊆ Q2, the distributions (AQ1)|Q′ and (AQ2)|Q′
are δ-close. We emphasize that in a δ-no-signaling PCP we think of a set of queries Q as an
unordered set, thus achieving the desired symmetry; i.e., the answers do not depend on the
order of the queries.

We note, however, that the definition of δ-no-signaling PCP given above, is not complete.
One needs to define what is a “sufficiently small set of queries”. We define it to be all the
query sets with at most kmax queries. kmax is an important parameter. The larger kmax is,
the more limited the cheating provers are.9 We denote such a PCP by (kmax, δ) no-signaling
PCP, and define it formally in Section 4.5. We devote most of the technical sections to
constructing a (kmax, δ)-no-signaling PCP and proving its soundness.

Converting this PCP into a δ-no-signaling MIP is relatively straightforward. The basic
idea is that the MIP verifier emulates the PCP verifier, and sends each query to a random
prover (that was not yet asked any query). Each prover answers by simulating the (honest)
PCP. The parameter kmax corresponds to the number of provers in the resulting MIP. In
this work, kmax = polylog(t), and thus the number of provers in our MIP is polylog(t), and
the verifier in our one-round argument runs in time n · polylog(t).

Overview of our underlying PCP. We present our PCP in two steps. First, we construct
a “base” PCP for languages in PSPACE. Then we show how to augment this PCP, and
construct a PCP for EXP. We prove that both PCPs are sound against statistically no-
signalling strategies.

3.1.1 Our Base PCP.

Let L be a language computable by a (deterministic) Turing machine running in time t(n)
and space s(n) on instances of length n. Our base PCP for L has kmax = Õ(s(n)). This
PCP is similar to known PCPs (in particular, to the PCP of [Sud00]). The main points of
distinction are that in our base PCP each test is repeated k times, where k is a security
parameter, and that our PCP is applied for deterministic computations, rather than for
non-deterministic computations.

Suppose that the prover needs to prove that x ∈ L, where x is an instance of length n.
The underlying PCP consists of several low degree multi-variate polynomials. The first
polynomial is the low-degree extension (defined in Section 4.6) of the entire computation.

9Jumping ahead, we note that in this work kmax = polylog(t).
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More specifically, let Cn be a circuit of size N = O(t(n)s(n)) that computes L on inputs of
length n. It is known that the circuit Cn can be made layered, with O(s(n)) gates in each
layer, and O(t(n)) layers.

Assume that the wires of the circuit are indexed by the numbers 1, . . . , N , in an order
that agrees with the layers of the circuit. In particular, the indexes of wires at layer i are
larger than the indexes of wires at layer i−1. We assume that 1, . . . , n are the indexes of the
n input variables and that N is the index of the output wire. Let x1, . . . , xN be the values
of the N wires of the circuit Cn when computed with input x = (x1, . . . , xn).

The entire computation x1, . . . , xN appears in the PCP encoded using an error correcting
code (specifically, using the low-degree extension encoding), so that if a single bit in the
computation is incorrect it causes a global affect on the encoding.

In addition, the PCP contains several other low-degree multi-variate polynomials, de-
noted by P0, P1, . . . , P`, which are defined in Section 5. In this overview we ignore these
polynomials.

The analysis of our base PCP. The analysis of our base PCP begins with an error
amplification step, where (loosely speaking) we prove that if there exists a (statistically)
no-signaling prover (which is a family of distributions, one for every possible set of queries),
that convinces the PCP verifier to accept a statement of the form Cn(x) = b with some non-
negligible probability, then there exists a (statistically) no-signaling prover that convinces a
different verifier, called, the relaxed verifier, to accept the same statement with probability
close to 1 (i.e., with probability 1− 1

poly(t)
for any polynomial poly).

This error amplification step, which is a crucial step in our proof, is achieved as follows:
Recall that the verifier V repeats each test k times, and accepts if and only if all tests accept.
We define a “relaxed” verifier V ′ that makes the exact same queries as V , but accepts if and
only if for each (repeated) test, at least r of the k repetitions are accepting, where r is a
parameter. Loosely speaking, we prove that if the verifier V accepts with probability ε then

the relaxed verifier accepts with probability 1− Õ(2−r)
ε

, where Õ hides polylog(N) factors.

To prove this we argue that if V and V ′ choose their queries independently then the
probability that V accepts and V ′ rejects is very small. This is true because for each group
of k tests we can first choose the 2k tests for both V and V ′, and only then decide which tests
go to V and which ones go to V ′. Consider the answers for these 2k tests. (It is important
here that kmax is greater than the total number of queries in these 2k tests, so that all these
queries can be asked simultaneously.) If among the 2k tests many are rejected then V rejects
with high probability. On the other hand, if among the 2k tests only few are rejected (say,
less than r) then V ′ always accepts. We refer the reader to Section 6 for details.

In this overview, we ignore the fact that the relaxed verifier is different than the actual
verifier, and assume for simplicity that there is a (statistically) no-signaling prover that
convinces the actual verifier to accept with probability 1− 1

poly(t)
. We will prove that in that

case the statement Cn(x) = b must be correct.

To this end, we first prove that for every (statistically) no-signaling prover, if the PCP
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verifier accepts with probability 1 − 1
poly(t)

, then it must be the case that the distributions

corresponding to queries in {x1, . . . , xN} are locally consistent. More specifically, we prove
that for every gate in the circuit Cn, and for every set of queries that include the two input
wires and the output wire of the gate, the answers of values of the inputs and output wires
are consistent with the gate, with very high probability (say, higher than 1 − 1

t3
). We note

that this guarantee only requires kmax = polylog(t), and in particular the dependence on the
space s is not needed to obtain this local consistency guarantee.10

We note that the local consistency guarantee is only true if variables in {x1, . . . , xN}
are read in a certain way, which uses interpolation and the local decoding properties of the
low-degree extension encoding. In this overview, for simplicity, we completely ignore this
extra complication and assume that the local consistency guarantee holds as stated above.

From a classical perspective, it seems that the local consistency guarantee should imme-
diately imply global consistency, and thus correctness, by applying a straightforward union
bound. However, in the no-signaling setting, this intuition is misleading. The reason is that
in order to apply the union bound we need to consider the probability that all the local
consistency conditions are met simultaneously, and make the following argument:

Pr[correctness] ≥
Pr[all local consistency conditions hold] =

1− Pr[∃ local consistency condition that does not hold] ≥
1−O(t · s) · Pr[a single local consistency does not hold] ≥

1−O(t · s) · 1

t3
≥

1−O
(

1

t

)
.

Unfortunately, in the no-signaling setting, this type of calculation is not correct, since
it is not clear what it means for all the local consistency conditions to hold simultaneously.
Recall that there is no PCP in the sky, but rather a set of distributions for each set of queries
of size at most kmax. Thus, we can check whether at most kmax local consistency conditions
hold simultaneously, but not more than that, as the relevant random variables are not even
defined simultaneously.

We can still use the local consistency guarantee to argue that up to a small probability of
error, the probability that the output is correct is at least the probability that both children
of the output gate are correct (using the local consistency condition). We can then proceed
by induction, towards the base of the tableau. However, this will incur an exponential (in t)
blowup in the error.

Generally, we cannot afford this exponential blowup in error. Jumping ahead, we note
that curiously, in one of the lemmas for our augmented PCP, we do use this analysis (and

10Jumping ahead, we note that in the base PCP, kmax = Θ̃(s) is required to go from local consistency to
global consistency.
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guarantee) for a specific computation for which the depth of the tableau is relatively small
(O(log s)). We elaborate on this point below.

In the analysis of our base PCP, we solve this problem by taking kmax = Θ̃(s), which
enables us to check the correctness of an entire layer of the tableau simultaneously. More
specifically, we first check the correctness of the input. The local consistency condition
implies that this check passes with probability 1− 1

poly(t)
. Then we check the first two level

simultaneously. This could be done since kmax = Θ̃(s). The local consistency, together with
the correctness of the first level, implies that the second level is correct with probability at

least
(

1− 1
poly(t)

)2

. Then, we check consistency of the second and third levels, and deduce

that the third level is correct with probability
(

1− 1
poly(t)

)3

. This argument continues by

induction until the top layer is reached, and the conclusion is that the computation is correct

with probability
(

1− 1
poly(t)

)t
, which is very close to 1, as desired.

This idea indeed works, however, it results with an MIP with Θ̃(s) provers, and thus with
a one-round argument where the running time of the verifier grows linearly with s. We refer
the reader to Section 7 for the formal analysis.

Our goal is to make kmax independent of s, and thus eliminate the dependency on the
space. Indeed, we manage to “augment” this base PCP, and to prove that our augmented
PCP is secure against statistically no-signaling distributions with kmax = polylog(t). This
gives rise to an MIP where the verifier runs in time n · polylog(t), and where the provers run
in time poly(t). This, in turn, gives rise to our one-round delegation scheme, that achieves
similar parameters.

3.1.2 Our Augmented PCP.

Recall that our base PCP is a proof that the computation of Cn was performed correctly,
where Cn is a layered circuit of size N = O(t(n)s(n)) (consisting of O(t(n)) layers each of
size O(s(n))), that computes L on inputs of length n.

The basic idea behind our augmented PCP is to run the same base PCP on an augmented
circuit, denoted by C ′n. Loosely speaking, the circuit C ′n computes the same function as Cn,
but in C ′n each layer of the circuit is augmented with the low-degree extension of the layer,
and with all the low-degree tests corresponding to lines of the low-degree extension. Namely,
the circuit C ′n is the same as Cn, but where after each layer we insert another circuit, denoted
by CLDE, which takes as input the entire layer, and computes the low-degree extension of the
layer, and performs all the low-degree tests; i.e., for every line in the low-degree extension
it checks that the values on that line correspond to a low-degree univariate polynomial.11 It
is known that CLDE can be made a circuit of size poly(s) and depth O(log s). We refer the
reader to Section 9 for a formal description of our augmented PCP.

11The low-degree tests are seemingly redundant as the values of the low-degree extension were computed
by the circuit. However, since we don’t know that the values are computed correctly, the low-degree tests
will be very important in our analysis.
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The basic idea behind adding the computation of CLDE after each layer, is that now the
PCP verifier can read a single point in the low-degree extension of a layer, and in some sense,
this point contains information about the entire layer. As we argue below, if a random point
in the low-degree extension is correct with high probability, then each value in the layer is
correct with almost the same probability. We elaborate below.

Our analysis. Since our augmented PCP is identical to our base PCP, applied to the aug-
mented circuit C ′n (as opposed to Cn), the analysis of our base PCP implies that if there exists
a (statistically) no-signaling prover that convinces the verifier to accept with probability close
to 1, then local consistency holds with probability close to 1. Namely, for any set of queries
Q of size at most kmax = polylog(t) and for any subset Q′ ⊆ Q of queries corresponding
to variables in the tableau of C ′n, the answers to these queries are locally consistent (i.e.,
they satisfy the constraints imposed by the gates and they satisfy the low-degree tests) with
probability close to 1.

We next show how we go from local consistency to global consistency, without increasing
the size of kmax. To this end, we use the special structure of C ′n; i.e., the fact that it includes
all the low-degree extensions and low degree tests.

Fix any layer in Cn. We first argue that if a random point in the low-degree extension
of this layer has the correct value with high probability, then the value of every point in
the layer is correct with high probability. The idea is the following: Fix any point z in
the layer. Consider the line connecting this point to the random point in the low-degree
extension. The local consistency condition implies that with high probability the values
on this line correspond to a low degree polynomial. Thus, if the value of the point z is
incorrect (with significant probability) then most of the points on the line are incorrect
(with significant probability), and in particular a random point on the line is incorrect (with
significant probability), contradicting our assumption that a random point in the low-degree
extension is correct with high probability.

We use the argument above to prove the correctness of the entire computation. The proof
is by induction on the depth of the tableau of Cn. In what follows, we denote the probability
that local consistency holds by (1 − ε), and the reader should think of ε = 1

poly(t)
. We start

with the base case, and claim that each element in the base of the tableau (where the input
lies) is correct with probability 1−ε. This follows from the local consistency condition. Next
we claim that if each element in a layer is correct with high probability (1 − ε), then any
point in the low-degree extension of the layer is correct with probability (1− ε)poly(s). To this
end, we use the analysis where the error increases exponentially with the depth, and we use
the fact that the depth of CLDE is O(log s).

For the induction step, we claim that if at layer i a random point in the low-degree
extension is correct with some probability p, then a random point in the low-degree extension
of layer i+ 1 is correct with probability ≈ p(1− ε)poly(s). Note that this guarantee is strong
enough for correctness, since by induction we get that a random point in the low-degree
extension of the top layer is correct with probability ≈ (1− ε)t·poly(s) which is close to 1 for
ε = 1

t2·poly(s)
.
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To prove the induction step we use conditional probabilities, and condition on the event
that the value of a random point in the low-degree extension of layer i is indeed correct.
Conditioned on this event, each element in the i-th layer of Cn is correct with probability
(1 − ε) (which is the probability in which local consistency holds). Therefore, conditioned
on this event, each element in the i + 1-th layer of Cn is correct with probability (1 − ε)3.
This implies that, conditioned on this event, each element in the low-degree extension of
the i + 1-th layer is correct with probability (1 − ε)poly(s). Therefore, without conditioning,
the probability that an element in the low-degree extension of the i+ 1-th layer is correct is
p(1− ε)poly(s).

This analysis does not quite work as is, since there is too big of a loss in the correctness
probability when going from a random point in the low-degree extension to a point in the
layer of Cn. We fix this by reading several random points in the low-degree extension (rather
than just one), and we claim that if all of them are correct with some probability then each
point in the layer is correct with essentially the same probability (where the loss here is
exponentially small). We refer the reader to Section 10 for details.

3.2 Converting a Statistically No-Signaling MIP into a One-Round
Delegation Scheme

In this section we show that the method of Aiello et al . [ABOR00], of using a fully homo-
morphic (FHE) scheme to convert a 1-round MIP into a 1-round delegation scheme, is sound
if the underlying MIP is secure against δ-no-signaling provers, where the value of δ affects
the security requirement of the FHE scheme.12

Let us start by recalling their method. Aiello et al . proposed to take any MIP and convert
it into the following 1-round delegation scheme: The verifier computes all the queries that
the MIP verifier would send to the MIP provers, and sends all of these queries to the prover,
each encrypted under a fresh and independent key, using an FHE scheme. The prover then
answers on behalf of each MIP prover, where each answer is computed homomorphically on
the corresponding encrypted query.

As mentioned in the introduction, shortly after this method was introduced, Dwork
et al . [DLN+04] showed that it may, in general, be insecure. In this work, we show that this
method in fact is secure if the underlying MIP is sound against δ-no-signaling provers.

In a nutshell, our result is obtained by proving that if there exists a cheating prover P ∗

that breaks the soundness of the 1-round argument, then this prover can be used to construct
a δ-no-signaling prover PNS that breaks the soundness of the MIP scheme.

The prover PNS uses P ∗ in the obvious way: Given a set of queries (q1, . . . , q`) it encrypts
these queries using fresh and independent keys, and sends the encrypted queries to P ∗; upon
receiving encrypted answers, it decrypts these answers and sends the decrypted answers
(a1, . . . , a`) to the MIP verifier.

12Aiello et al . originally suggested to use a PCP together with a private information retrieval (PIR) scheme
to construct a 1-round delegation scheme.
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Clearly this strategy breaks the soundness of the MIP verifier, but we need to argue that
it is δ-no-signaling. Indeed, we argue that if PNS is not δ-no-signaling then the prover P ∗

can be used to break the underlying FHE scheme. Loosely speaking, by the definition of
δ-no-signaling (see Section 4.3), if PNS is not δ-no-signaling then there is a subset S ⊂ [`]
such that the distribution of the answers (ai)i∈S, conditioned on the corresponding queries
(qi)i∈S, depends on the other queries (qi)i/∈S. In other words, these answers give information
on the other queries. If this is the case, then indeed one can use P ∗ to break the FHE scheme.

We note that the above break may take time exponential in the communication complex-
ity of the underlying MIP scheme, since the information obtained from the answers (ai)i∈S,
is not necessarily efficiently computable. Therefore, we need to assume that the underlying
FHE scheme is secure against adversaries of size 2|a1|+...+|a`|. Thus, if we choose the security
parameter of the FHE scheme to be polynomially related to the communication complexity,
then we need to assume sub-exponential security of the underlying FHE scheme. But one
can choose a larger security parameter (resulting in larger communication complexity in the
1-round delegation scheme), and thus relax the security requirement of the FHE scheme. We
refer the reader to Section 16 for details.

4 Preliminaries

4.1 Notation

For a vector a = (a1, . . . , ak) and a subset S ⊆ [k], we denote by aS the sequence of elements
of a that are indexed by indices in S, that is, aS = (ai)i∈S. In general, we denote by aS a
sequence of elements indexed by S, and we denote by ai the ith coordinate of a vector a.

For a distribution A, we denote by a ∈R A a random variable distributed according to A
(independently of all other random variables).

We will measure the distance between two distributions by their statistical distance,
defined as half the l1-distance between the distributions. We will say that two distributions
are δ-close if their statistical distance is at most δ.

For a field F and an integer `, a line L in F` is an affine function L : F → F`. A plain
M in F` is an affine function M : F2 → F`. We say that the line L is orthogonal to the ith

coordinate if for every t1, t2 ∈ F, we have L(t1)i = L(t2)i, where L(t1)i, L(t2)i denote the ith

coordinate of the points L(t1), L(t2) respectively.

We will sometimes confuse between a set and a multiset. In particular, many times we
will refer to a multiset as a set. For example, when we choose a (multi)set of k elements in
a certain domain.

We will sometimes write Prx Pry instead of Prx,y.
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4.2 Multi-Prover Interactive Proofs

Let L be a language and let x be an input of length n. In a one-round k-prover interactive
proof, k computationally unbounded provers, P1, . . . , Pk, try to convince a (probabilistic)
poly(n)-time verifier, V , that x ∈ L. The input x is known to all parties.

The proof consists of only one round. Given x and her random string, the verifier
generates k queries, q1, . . . , qk, one for each prover, and sends them to the k provers. Each
prover responds with an answer that depends only on her own individual query. That is, the
provers respond with answers a1, . . . , ak, where for every i we have ai = Pi(qi). Finally, the
verifier decides wether to accept or reject based on the answers that she receives (as well as
the input x and her random string).

We say that (V, P1, . . . , Pk) is a one-round multi-prover interactive proof system (MIP)
for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V accepts with probability 1, after
interacting with P1, . . . , Pk.

2. Soundness: For every x 6∈ L, and any (computationally unbounded, possibly cheat-
ing) provers P ∗1 , . . . , P

∗
k , the verifier V rejects with probability ≥ 1−ε, after interacting

with P ∗1 , . . . , P
∗
k , where ε is a parameter referred to as the error or soundness of the

proof system.

Important parameters of an MIP are the number of provers, the length of queries, the
length of answers, and the error.

4.2.1 MIPs with Oracle

We will also consider the model of one-round k-prover interactive proofs with oracle, where
the verifier V is given access to an oracle that computes some fixed function (that may
depend on the language L). We require that all queries, to the oracle and the provers, are
done simultaneously.

For every n, let φn : {0, 1}n′ → {0, 1}n′′ be a function (where n′, n′′ depend on n). We
allow the functions φn to depend on the language L (but not on the input x).

We define a one-round multi-prover interactive proof system for L, relative to the ora-
cle {φn}, exactly as before, except that now the verifier V is a (probabilistic, poly(n)-time)
oracle machine that on input x of length n has free oracle access to the function φn. The
verifier may base her accept/reject decision on queries to the oracle, but the oracle queries
are not adaptive, and we do not allow the queries to the provers to depend on the answers
of the oracle or the queries to the oracle to depend on the answers of the provers. In other
words, we require that all queries, to the oracle and to the provers, are done simultaneously.

We require the same completeness and soundness properties as before.

21



4.3 No-Signaling MIPs

We will consider a variant of the MIP model, where the cheating provers are more powerful.
In the MIP model, each prover answers her own query locally, without knowing the queries
that were sent to the other provers. The no-signaling model allows each answer to depend
on all the queries, as long as for any subset S ⊂ [k], and any queries qS for the provers in S,
the distribution of the answers aS, conditioned on the queries qS, is independent of all the
other queries.

Intuitively, this means that the answers aS do not give the provers in S information about
the queries of the provers outside S, except for information that they already have by seeing
the queries qS.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet of the
answers. For every q = (q1, . . . , qk) ∈ Dk, let Aq be a distribution over Σk. We think of Aq
as the distribution of the answers for queries q.

We say that the family of distributions {Aq}q∈Dk is no-signaling if for every subset S ⊂ [k]
and every two sequences of queries q, q′ ∈ Dk, such that qS = q′S, the following two random
variables are identically distributed:

• aS, where a ∈R Aq

• a′S where a′ ∈R Aq′

If the two distributions are δ-close, rather than identical, we say that the family of distribu-
tions {Aq}q∈Dk is δ-no-signaling.

An MIP, (V, P1, . . . , Pk) for a language L (possibly, relative to an oracle {φn}) is said to
have soundness ε against no-signaling strategies (or provers) if the following (more general)
soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions {Aq}q∈Dk ,
the verifier V rejects with probability ≥ 1 − ε, where on queries q = (q1, . . . , qk) the
answers are given by (a1, . . . , ak) ∈R Aq, and ε is the error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {Aq}q∈Dk , we say
that the MIP has soundness ε against δ-no-signaling strategies (or provers).

4.4 Probabilistically Checkable Proofs

Let L be a language and let x be an input of length n. Intuitively, a probabilistically
checkable proof (PCP) is a proof for x ∈ L that can be verified by reading only a small
number of its symbols.

Formally, a proof is a vector of symbols P ∈ ΣD, where Σ denotes the alphabet of symbols
and D denotes the set of indices. We think of P also as a function P : D → Σ and hence we
think of D as a set of possible queries and we think of Σ as a set of possible answers.
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A PCP verifier V is a probabilistic poly(n)-time Turing machine that is given access to
the input x, as well as an oracle access to the proof P : D → Σ.

Given x and her random string, the verifier generates k queries, q1, . . . , qk ∈ D, and
queries the proof P in all these places to get answers a1 = P (q1), . . . , ak = P (qk). Finally,
the verifier decides wether to accept or reject based on the answers that she receives (as well
as the input x and her random string).

We say that V is a PCP verifier for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, there exists a proof P , such that, the verifier V
accepts with probability 1, after querying P .

2. Soundness: For every x 6∈ L, and any proof P ∗ : D → Σ, the verifier V rejects with
probability ≥ 1− ε, after querying P ∗, where ε is a parameter referred to as the error
or soundness of the proof system.

Important parameters of a PCP are the length of proof, the number of queries, the length
of answers, and the error.

4.4.1 PCPs with Oracle

We will also consider the model of probabilistically checkable proofs with oracle, where the
verifier V is given access to an additional oracle that computes some fixed function (that
may depend on the language L). We require that all queries, to the oracle and to the PCP
proof, are done simultaneously.

For every n, let φn : {0, 1}n′ → {0, 1}n′′ be a function (where n′, n′′ depend on n). We
allow the functions φn to depend on the language L (but not on the input x).

We define a probabilistically checkable proof for L, relative to the oracle {φn}, exactly as
before, except that now the verifier V is a (probabilistic, poly(n)-time) machine with access
to two oracles. The first oracle is the PCP proof P , and in addition, on input x of length n,
the verifier has free oracle access to the function φn. The verifier may base her accept/reject
decision on queries to the oracle φn, but the oracle queries are not adaptive, and we do not
allow the queries to P to depend on the answers of the oracle φn or the queries to the oracle
φn to depend on the answers of P . In other words, we require that all queries, to the oracle
φn and to the PCP proof P , are done simultaneously.

We require the same completeness and soundness properties as before.

4.5 No-Signaling PCPs

We will now define the new notion of PCP with no-signaling soundness, in analogy to MIP
with no-signaling soundness.

We will consider a variant of the PCP model, where the cheating proof is more powerful.
In the PCP model, each query is answered locally, without knowing the other queries. In
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the no-signaling model, we allow each answer to depend on all the queries, as long as for
any subset {q1, . . . , qd} of queries, the distribution of the answers (a1, . . . , ad), conditioned
on the queries {q1, . . . , qd}, is independent of all the other queries.

Formally, denote by D the alphabet of the queries and denote by Σ the alphabet of the
answers. Let kmax be some parameter, which is at least the maximal number of queries made
by the verifier to the proof. For every subset Q = {q1, . . . , qd} ⊂ D, of size |Q| = d ≤ kmax,
let AQ be a distribution over ΣQ. We think of AQ as the distribution of the answers for the
queries {q1, . . . , qd}.

We say that the family of distributions {AQ}Q⊂D,|Q|≤kmax is no-signaling if for every
Q ⊂ D of size at most kmax, and every subset S ⊂ Q, the following two random variables
are identically distributed:

• a ∈R AS

• a′S, where a′ ∈R AQ

If the two distributions are δ-close, rather than identical, we say that the family of distribu-
tions {AQ}Q⊂D,|Q|≤kmax is δ-no-signaling.

A PCP verifier V for a language L (possibly, relative to an oracle {φn}) is said to have
soundness ε against kmax-no-signaling strategies (or proofs) if the following (more general)
soundness property is satisfied:

2. Soundness: For every x 6∈ L, and any no-signaling family of distributions
{AQ}Q⊂D,|Q|≤kmax , the verifier V rejects with probability ≥ 1 − ε, where on queries
Q = {q1, . . . , qk}, the answers are given by aQ ∈R AQ, and ε is the error parameter.

If the property is satisfied for any δ-no-signaling family of distributions {AQ}Q⊂D,|Q|≤kmax ,
we say that the PCP has soundness ε against (kmax, δ)-no-signaling strategies (or proofs).

Note that kmax is an important parameter. The larger kmax is, the more limited the
cheating proofs are. We will typically take kmax to be significantly larger than the maximal
number of queries made by the verifier.

4.5.1 A Note on Ordered versus Unordered Sets

The families of distributions {AQ}Q⊂D,|Q|≤kmax that we consider are defined with unordered
sets Q ⊂ D. However, sometimes we will have ordered sets Q (that is, Q will be a vector
of elements); for example, when we need to know which test to apply on which subset of
queries, it is important that the set of queries is ordered by the order that the queries were
chosen. In these cases, we will abuse notation and denote by Q both the ordered set and
the unordered set that corresponds to it. Thus, we will use the notation AQ to denote the
distribution that corresponds to the unordered set that corresponds to Q. In general, we will
sometimes abuse notation between an ordered set and the unordered set that corresponds
to it.
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4.6 Low Degree Extension

Let F be a field and H ⊂ F a subset of the field. Fix an integer m ∈ N. A basic fact is
that for every function φ : Hm → F, there exists a unique extension of φ into a function
φ̂ : Fm → F (which agrees with φ on Hm; i.e., φ̂|Hm ≡ φ), such that φ̂ is an m-variate
polynomial of degree at most |H| − 1 in each variable. Moreover, for every x ∈ Hm, there
exists a unique m-variate polynomial β̂x : Fm → F of degree |H| − 1 in each variable, such
that for every function φ : Hm → F it holds that

φ̂(z1, . . . , zm) =
∑
x∈Hm

β̂x(z1, . . . , zm) · φ(x).

The function φ̂ is called the low degree extension of φ (with respect to F, H,m).

In the following we assume that all algorithms have access to m, the set H and the field
F. We assume that field operations over F can be computed in time poly-logarithmic in the
field size and space that is logarithmic in the field size.

Proposition 4.1 (Cf., e.g., [Rot09, Proposition 3.2.1]). There exists a Turing machine that
on input x ∈ Hm, runs in time poly(|H|,m, log |F|) and space O(log(|F|) + log(m)), and
outputs the polynomial β̂x : Fm → F defined above, represented as an arithmetic circuit
over F.

Moreover, the arithmetic circuit β̂x can be evaluated in time poly(|H|,m, log(|F|)) and
space O(log(|F|) + log(m)). Namely, there exists a Turing machine with the above time and
space bounds that given an input pair (x, z) ∈ Hm × Fm outputs β̂x(z).

Proof. Consider the function β̂x : Fm → F defined as:

β̂x(z)
def
=
∏
i∈[m]

∏
h∈H\{xi}

zi − h
xi − h

.

For every z ∈ Hm it holds that β̂x(z) = 1 if z = x and β̂x(z) = 0 otherwise. Thus, for every
function φ : Hm → F it holds that

∑
x∈Hm β̂x · φ(x) agrees with φ on Hm. Hence, since β̂x

has degree |H| − 1 in each variable,
∑

x∈Hm β̂x · φ(x) is the (unique) low degree extension of
φ.

Proposition 4.2. Let φ : Hm → F and suppose that φ can be evaluated by a Turing Machine
in time t and space s. Then, there exists a Turing machine that, given as an input a point z ∈
Fm, runs in time |H|m (poly(|H|,m, log(|F|)) +O(t)) and space O(m log(|H|) + s+ log(|F|))
and outputs the value φ̂(z) where φ̂ is the unique low degree extension of φ (with respect to
H,F,m).

Proof. The Turing machine computes

φ̂(z) =
∑
x∈Hm

β̂x(z) · φ(x)

by generating and evaluating β̂x(z) as in Proposition 4.1.
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4.7 Public-Key Encryption and Fully Homomorphic Encryption
(FHE)

A public-key encryption scheme consists of three probabilistic polynomial-time algorithms
(Gen,Enc,Dec). The key generation algorithm Gen, when given as input a security param-
eter 1τ , outputs a pair (pk, sk) of public and secret keys. The encryption algorithm, Enc,
on input a public key pk and a message m ∈ {0, 1}poly(τ), outputs a ciphertext m̂, and the
decryption algorithm, Dec, when given the ciphertext m̂ and the secret key sk, outputs the
original message m (with overwhelming probability). We allow the decryption process to fail
with negligible probability (over the randomness of all algorithms).

Let S : N → N and δ : N → [0, 1] be parameters. A public-key encryption scheme has
security (S, δ) if for every family of circuits {Cτ}τ∈N of size poly(S(τ)), for all sufficiently
large τ and for any two messages m,m′ ∈ {0, 1}poly(τ) such that |m| = |m′|,∣∣∣∣ Pr

(pk,sk)∈RGen(1τ )
[Cτ (pk,Encpk(m)) = 1]− Pr

(pk,sk)∈RGen(1τ )
[Cτ (pk,Encpk(m

′)) = 1]

∣∣∣∣ < δ(τ)

where the probability is also over the random coin tosses of Enc.

Fully homomorphic encryption. The tuple (Gen,Enc,Dec,Eval) is a fully-homomorphic
encryption scheme if (1) (Gen,Enc,Dec) is a public-key encryption scheme, and (2) for every
key-pair (pk, sk), the probabilistic polynomial-time algorithm Eval, on input the public-key
pk, a circuit C : {0, 1}k → {0, 1}`, where k, ` ≤ poly(τ) (and τ is the security parameter),
and a ciphertext m̂ that is an encryption of a message m ∈ {0, 1}k with respect to pk,
outputs a string ψ such that the following two conditions hold:

• Homomorphic Evaluation: Decsk(ψ) = C(m), except with negligible probability
(over the coins of all algorithms).

• Compactness: The length of ψ is polynomial in τ , k and ` (and is independent of
the size of C).

4.8 Interactive Argument Systems

An interactive argument for a language L consists of a polynomial-time verifier that wishes
to verify a statement of the form x ∈ L, and a prover that helps the verifier to decide.
The two parties, given as input x ∈ {0, 1}n, interact and at the end of the interaction the
verifier either accepts or rejects. We require that if x ∈ L then the verifier accepts with high
probability but if x /∈ L, then no computationally bounded prover can convince the verifier
to accept with non-negligible (in n) probability.

We focus on 1-round argument systems. Such an argument-system consists of a single
message sent from the verifier V to the prover P , followed by a single message sent from the
prover to the verifier.
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Let S : N → N and ε : N → [0, 1] be parameters. We say that (V, P ) is a one-round
argument-system with soundness (S, ε) for L if the following two properties are satisfied:

1. Completeness: For every x ∈ L, the verifier V (x) accepts with overwhelming prob-
ability, after interacting with P (x).

2. Soundness: For every family of circuits {P ∗n}n∈N of size poly(S(n)), for all sufficiently
large x /∈ L, the verifier V rejects with probability ≥ 1− ε(|x|), after interacting with
P ∗|x| on common input x.

5 The Base PCP

5.1 The PCP Proof

Let L be a language in DTISP(t(n), s(n)), where poly(n) ≤ t(n) ≤ exp(n) and log(n) ≤
s(n) ≤ poly(n). Let x be an input of length n. Since L ∈ DTISP(t(n), s(n)), for any n
there is a (fanin 2) Boolean circuit Cn of size N = O(t(n)s(n)) that computes L on inputs of
length n. Moreover, the circuit Cn is layered, with O(s(n)) gates in each layer, such that a
child of a gate in layer i+ 1 is either an input variable (or a negation of an input variable) or
a gate in layer i. Moreover, there is a deterministic Turing machine of space O(logN) that
on input n outputs the (description of the) circuit Cn.

Without loss of generality, we assume that in the circuit Cn all negations are on input
variables, and that the two children of any gate in the circuit are different (this property can
be achieved by duplicating each gate in the circuit twice, increasing the number of gates in
each layer by a factor of 2).

Also, we assume that the gates of the circuit are indexed by the numbers 1, . . . , N , in an
order that agrees with the layers of the circuit. In particular, for every gate, the index of the
gate is larger than the indexes of its children. We assume that 1, . . . , n are the indexes of
the n input variables and n + 1, . . . , 2n are the indexes of their negations. We assume that
the circuit has a special output gate indexed by N whose value represents the decision of
whether x ∈ L (we do not assume that there are no other output gates). We assume that
the Turing machine that outputs the (description of the) circuit Cn outputs the vertices in
the order of their index.

Let w1, . . . , wN be variables in {0, 1} that represent the N wires of the circuit Cn, in the
order of their index. In particular, for every gate, the variable that represents the output of
the gate appears after the variables that represent the inputs for the gate. Also, w1, . . . , wn
represent the n input bits, wn+1, . . . , w2n represent the negations of the n input bits, and wN
represents the output of the circuit.

Let ϕC(w1, . . . , wN) be a 3-CNF Boolean formula that checks that w1, . . . , wN is a correct
computation of the circuit Cn (given the input variables and their negations), by checking
that the computation of every gate in the circuit is performed correctly (except for negation
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gates on input variables - and recall that we assume that these are the only negation gates
in the circuit). More precisely, for every (non-negation) gate in the circuit, the formula ϕC
contains four clauses that check that the computation of that gate is performed correctly for
every possibility for the inputs for the gate. For example, if wi represents the output of a
conjunction gate with inputs that are represented by wi1 and wi2 , we will have the following
four clauses in ϕC (and note that indeed each of them can be written as a clause):

(wi1 = 0) ∧ (wi2 = 0)→ (wi = 0),

(wi1 = 0) ∧ (wi2 = 1)→ (wi = 0),

(wi1 = 1) ∧ (wi2 = 0)→ (wi = 0),

(wi1 = 1) ∧ (wi2 = 1)→ (wi = 1).

We have ϕC(w1, . . . , wN) = 1 if and only if w1, . . . , wN is a correct computation of the
circuit Cn (assuming that the input variables are given in w1, . . . , wn, and their negations are
given in wn+1, . . . , w2n).

For a fixed input x = (x1, . . . , xn), let ϕx(w1, . . . , w2n, wN) be a 3-CNF Boolean formula
that checks that (w1, . . . , wn) = (x1, . . . , xn), (wn+1, . . . , w2n) = (¬x1, . . . ,¬xn) and that
wN = 1. More precisely, for every i ∈ [n], the formula ϕx contains a clause that checks that
wi = xi. For example, if xi = 0, we will have the clause (wi = 0) ∨ (wi = 0) ∨ (wi = 0)
that ensures that wi = 0. In the same way, the formula ϕx contains clauses that check that
wn+i = ¬xi, and a clause that checks that wN = 1. We have ϕx(w1, . . . , w2n, wN) = 1 if and
only if (w1, . . . , wn) = (x1, . . . , xn), (wn+1, . . . , w2n) = (¬x1, . . . ,¬xn), and wN = 1.

Let ϕ(w1, . . . , wN) be the 3-CNF Boolean formula ϕC(w1, . . . , wN)∧ϕx(w1, . . . , w2n, wN).
Thus, ϕ(w1, . . . , wN) = 1 if and only if w1, . . . , wN is the computation of the circuit Cn
on the input x = (x1, . . . , xn), and wN = 1. Denote by x1, . . . , xN the computation of
the circuit Cn on the input x = (x1, . . . , xn). Thus, ϕ(w1, . . . , wN) = 1 if and only if
(w1, . . . , wN) = (x1, . . . , xN), and xN = 1.

Note also that since there is a deterministic Turing machine of space O(logN) that on
input n outputs the description of the circuit Cn, there is a deterministic Turing machine of
space O(logN) that on input n outputs the formula ϕC.

Let H = {0, 1, . . . , logN−1} and let m = logN
log logN

, so that N = |H|m. (For simplicity and

without loss of generality we assume that logN and logN
log logN

are integers, larger than 100).

Let ` = 3m+ 3. Let F be a field, such that 4|H|10 ≤ |F| ≤ 8(logN)10.

Since N = |H|m, we can identify [N ] and Hm (say, by the lexicographic order on Hm). In
what follows we will abuse notation and view w1, . . . , wN and x1, . . . , xN as indexed by i ∈ Hm

(rather than i ∈ [N ]). We can hence view x = (x1, . . . , xN) as a function x : Hm → {0, 1}
(given by x(i) = xi, where we identify [N ] and Hm).

Define the multi-variate polynomial X : Fm → F to be the low-degree extension of
x : Hm → {0, 1}.

Let φ : (Hm)3 × {0, 1}3 → {0, 1} be the function where φ(i1, i2, i3, b1, b2, b3) = 1 if and
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only if the clause (wi1 = b1)∨ (wi2 = b2)∨ (wi3 = b3) appears in ϕ. Extend φ to be a function
φ : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m × {0, 1}3. Let φ̂ : F` → F
be the low-degree extension of φ.

Let φC : (Hm)3 × {0, 1}3 → {0, 1} be the function where φC(i1, i2, i3, b1, b2, b3) = 1 if and
only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in ϕC. Extend φC to be a
function φC : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m × {0, 1}3. Let
φ̂C : F` → F be the low-degree extension of φC.

Let φx : (Hm)3 × {0, 1}3 → {0, 1} be the function where φx(i1, i2, i3, b1, b2, b3) = 1 if and
only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in ϕx. Extend φx to be a
function φx : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m × {0, 1}3. Let
φ̂x : F` → F be the low-degree extension of φx.

Since the sets of clauses of ϕC and ϕx are disjoint, we have φ̂ = φ̂x + φ̂C.

Recall that there is a deterministic Turing machine of space O(logN) that on input n
outputs the formula ϕC. Hence, by Proposition 4.2, there is a deterministic Turing machine
of space O(logN) that on input z ∈ F` outputs φ̂C(z). Since φx is Boolean valued and is zero
on all but a fixed set of 2n+ 1 points (specifically, the clauses that verify the correctness of
the inputs and output), its low degree extension φ̂x can be evaluated on a point z ∈ F` in
time n ·polylogN (by using Proposition 4.1 and iterating only over the set of O(n) potentially
non-zero points).

Since for x ∈ L we have ϕ(x1, . . . , xN) = 1, every clause that appears in ϕ is satisfied by
(x1, . . . , xN). Therefore, if x ∈ L, for every z = (i1, i2, i3, b1, b2, b3) ∈ (Hm)3 ×H3 = H`, we
have

φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3) = 0 (1)

Let P0 : F` → F be the multivariate polynomial defined as follows:
For z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3 × F3 = F`,

P0(z) , φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3)

Equation (1) implies that if x ∈ L then P0|H` ≡ 0. Moreover, the fact that X and φ̂ have
degree < |H| in each variable, implies that P0 has degree < 2|H| in each variable, and hence
total degree < 2|H|`.

Next we define P1 : F` → F. For every z = (z1, . . . , z`) ∈ F`, let

P1(z) =
∑
h∈H

P0(h, z2, . . . , z`)z1
h

Note that if x ∈ L then P1|F×H`−1 ≡ 0. More generally, we define by induction P1, . . . , P` :
F` → F where for every z = (z1, . . . , z`) ∈ F`,

Pi(z) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)zi
h

Note that P1, . . . , P`−1 have degree < 2|H| in each variable, and hence total degree
< 2|H|`. Note also that if x ∈ L then Pi|Fi×H`−i ≡ 0, and in particular P` ≡ 0.
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The PCP proof for x ∈ L consists of ` + 1 multivariate polynomials: The polynomial
X : Fm → F and the ` polynomials Pi : F` → F, for i = 0, . . . , ` − 1. To these polynomials
we add the polynomial P` ≡ 0. The polynomial P` is not part of the PCP proof (as it is
the 0 polynomial) and is added just for simplicity of the notation. When the verifier queries
P`(z) she gets 0 automatically.

Let DX = Fm be the domain of X, and let D0, . . . , D` be `+ 1 copies of F`, the domain
of P0, . . . , P`. We view DX , D0, . . . , D` as the domains of X,P0, . . . , P`, respectively. Denote,

D = DX ∪D0 ∪ . . . ∪D`

The set D is the alphabet of queries in the PCP. We will refer to D as the domain of the PCP.

5.1.1 Complexity of the Prover

Note that the entire PCP proof can be generated in time poly(N) = poly(t(n)).

5.2 The PCP Verifier, V

The verifier knows the language L, or more precisely, she knows the Turing machine of
space O(logN) that on input n outputs the description of the circuit Cn. The verifier gets
an input x of length n and she wants to verify that x ∈ L by querying the PCP proof
X,P0, P1, . . . , P`.

We will first assume that the verifier has access to the correct values of the function
φ̂ : F` → F. That is, the verifier can get the correct value of φ̂(z) for free, for as many points
z ∈ F` as she wants.

Let k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , be a security parameter. (The restriction
k ≤ poly(n) is because we would like the running time of the verifier to be at most poly(n)).

Recall that we denote by ai the ith coordinate of a vector a. In particular, for a line
L : F→ F`, a field element t ∈ F and a coordinate i ∈ {1, . . . , `}, we denote by L(t)i the ith

coordinate of the point L(t) ∈ F`. Recall that we say that a line L : F→ F` is orthogonal to
the ith coordinate if for every t1, t2 ∈ F, we have L(t1)i = L(t2)i.

The verifier V makes the following tests on the PCP proof: a Low Degree Test for X;
four types of Low Degree Tests for Pi; a Sum Check for Pi; and a test of Consistency
of X and P0 (the exact tests are described below). We note that we have four types of
low degree tests for Pi, rather than one, just for the simplicity of the analysis. It would be
sufficient to do only one test, similar to the low degree test for X (but repeated on O(k · |F|2)
random lines, rather than k random lines), since all four types of tests that we actually do
(and are formally described below) can be embedded in such a test.

Formally, the verifier V makes the following tests, and accepts if the PCP proof passes
all of them:
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1. Low Degree Test for X: Choose k random lines L1, . . . , Lk : F → Fm. For every
L ∈ {L1, . . . , Lk}, query X on all the points {L(t)}t∈F, and check that the univariate
polynomial X ◦ L : F→ F is of degree < m|H|.

2. Low Degree Test for Pi: Type 1 (fixed L(0)i+1): For every i ∈ {0, . . . , ` − 1}
and every u ∈ F, choose k random lines L1, . . . , Lk : F → F`, such that, every line
L ∈ {L1, . . . , Lk} satisfies L(0)i+1 = u. For every L ∈ {L1, . . . , Lk}, query Pi on all the
points {L(t)}t∈F, and check that the univariate polynomial Pi ◦ L : F→ F is of degree
< 2`|H|.

3. Low Degree Test for Pi: Type 2 (orthogonal to the (i+ 1)th coordinate): For
every i ∈ {0, . . . , `−1}, choose k random lines L1, . . . , Lk : F→ F`, such that, every line
L ∈ {L1, . . . , Lk} is orthogonal to the (i+ 1)th coordinate. For every L ∈ {L1, . . . , Lk},
query Pi on all the points {L(t)}t∈F, and check that the univariate polynomial Pi ◦L :
F→ F is of degree < 2`|H|.

4. Low Degree Test for Pi: Type 3 (fixed L(0)i+1; orthogonal to the ith co-
ordinate): For every i ∈ {1, . . . , ` − 1}, and every u ∈ F, choose k random lines
L1, . . . , Lk : F → F`, such that, every line L ∈ {L1, . . . , Lk} is orthogonal to the ith

coordinate, and satisfies L(0)i+1 = u. For every L ∈ {L1, . . . , Lk}, query Pi on all the
points {L(t)}t∈F, and check that the univariate polynomial Pi ◦ L : F→ F is of degree
< 2`|H|.

5. Low Degree Test for Pi: Type 4 (fixed L(0)i; orthogonal to the (i + 1)th

coordinate): For every i ∈ {1, . . . , ` − 1}, and every u ∈ F, choose k random lines
L1, . . . , Lk : F→ F`, such that, every line L ∈ {L1, . . . , Lk} is orthogonal to the (i+1)th

coordinate, and satisfies L(0)i = u. For every L ∈ {L1, . . . , Lk}, query Pi on all the
points {L(t)}t∈F, and check that the univariate polynomial Pi ◦ L : F→ F is of degree
< 2`|H|.

6. Sum Check for Pi: For every i ∈ {1, . . . , `}, choose k random points in F`. For each
of these points, z = (z1, . . . , z`) ∈ F`, query Pi, Pi−1 on all the points
{(z1, . . . , zi−1, t, zi+1, . . . , z`)}t∈F, and check that for every t ∈ F,

Pi(z1, . . . , zi−1, t, zi+1, . . . , z`) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)t
h

7. Consistency of X and P0: Choose k random points in F`. For each of these points,
z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3×F3 = F`, query P0 on the point z and X on the points
i1, i2, i3, and check that

P0(z) = φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3)
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5.2.1 Complexity of the Verifier

Note that the total number of queries made by V to the PCP proof, as well as the total number
of queries made by V to the function φ̂, are both at most 6k`|F|2. The time complexity of
V is k · polylog(N) = k · polylog(t(n)).

5.3 The Relaxed Verifier, V ′

We will now define another verifier for the PCP proof X,P0, P1, . . . , P`. We will call the new
verifier, the relaxed verifier with parameter r, such that 1 ≤ r < k, and denote it by V ′. As
before, V ′ knows the language L and the input x, and we assume that she has access to the
correct values of the function φ̂ : F` → F.

The verifier V ′ makes the exact same queries as V , but she accepts in some cases where
V rejects.

Recall that V repeated every test k times: The Low Degree Test for X was repeated on
k different lines in Fm. The four types of Low Degree Tests for each Pi (and for three of
these types, for each u ∈ F), were each repeated on k different lines in F`. The Sum Check
for each Pi (for i ∈ {1, . . . , `}) was repeated on k different points in F`. The Consistency of
X and P0 was repeated on k different points in F`.

This gives a partition of all the tests made by V into groups, with exactly k tests in each
group. The verifier V accepted if all the tests in all the groups passed. The relaxed verifier,
V ′, accepts if in each group of k tests at least k− r of the tests pass, that is, at most r tests
fail.

6 Soundness of V ′ versus Soundness of V

In this section we will show that if the verifier V can be fooled to accept x 6∈ L, with very
small probability, then the verifier V ′ can be fooled to accept x 6∈ L with probability very
close to 1. Intuitively, this makes sense because the relaxed verifier V ′ accepts even if she
rejects some of the tests, as long as the number of tests rejected in each group of k tests is
at most r.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , is the security parameter of the PCP,
and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and |F| are
bounded by polylog(N).

We will prove the following lemma.

Lemma 6.1. Assume that V doesn’t have soundness ε against (kmax, δ)-no-signaling strate-
gies, where δ < ε

8·|F|6k`|F|2
. Then, V ′ doesn’t have soundness 1 − (10`|F|2−r + 2δ)/ε against

(k′max, δ
′)-no-signaling strategies, where k′max = kmax − 6k`|F|2, and δ′ = 8δ|F|6k`|F|2/ε.

Let us first sketch the main techniques that we will use in the proof of the lemma:
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The main claim that we will need in order to prove the lemma (Claim 6.2), shows that if
V, V ′ choose their queries independently then the probability that V accepts and V ′ rejects,
when all answers are given by a δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax , is
very small. This will be true because for each group of k tests we can first choose the 2k
tests for both V, V ′ and only then decide which tests go to V and which ones go to V ′. If
among the 2k tests many are rejected then V rejects with high probability. On the other
hand, if among the 2k tests only few are rejected then V ′ always accepts on that group.

We will assume that there exists a δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax
that fools V with probability larger than ε. That is, the verifier V accepts with probabil-
ity > ε, where on queries Q, the answers are given (probabilistically) by AQ ∈R AQ. We
will construct a δ′-no-signaling family of distributions {A′S}S⊂D,|S|≤k′max that fools V ′ with
probability close to 1.

This will be done by fixing a set of queries q for V and answers aq for the queries in q,
such that V accepts on queries q and answers aq. The queries q will be chosen randomly by
the distribution of V , and the answers aq will be chosen randomly by the distribution Aq,
conditioned on the event that V accepts on queries q and answers aq. The family {A′S} will
be the family {AS} conditioned on the event that on queries q the answers are aq.

Formally, for a set S, we denote by Aq∪S|aq the distribution of the random element
A ∈R Aq∪S, conditioned on the event Aq = aq (where we assume that the event Aq = aq
occurs with non-zero probability). Since in Aq∪S|aq we have that the coordinates indexed
by q are fixed to aq, we think of Aq∪S|aq , for simplicity of the notations, as a distribution
over ΣS, rather than over Σq∪S, where Σ = F is the alphabet of the answers, (and note that
in this distribution the coordinates indexed by q ∩ S are fixed to aq∩S). We will define the
family of distributions {A′S} by A′S = Aq∪S|aq .

We assume that for every distribution AS (or A′S) in the family {AS} (or {A′S}), every
query in S ∩D` is answered by 0 with probability 1 (since the polynomial P` was just the 0
polynomial and was added to the PCP proof for simplicity of notations).

6.1 Proof of Lemma 6.1

Proof. Assume that V doesn’t have soundness ε against (kmax, δ)-no-signaling strategies.

Thus, for some x 6∈ L, there exists a δ-no-signaling family of distributions
{AS}S⊂D,|S|≤kmax that fools V with probability larger than ε. That is, the verifier V accepts
with probability > ε, where on queries Q, the answers are given (probabilistically) by AQ ∈R
AQ.

Let Q be the set of queries chosen randomly by the verifier V and let Q′ be the set
of queries chosen independently by the verifier V ′. Thus, Q,Q′ are independent random
variables. Let A ∈R AQ∪Q′ be the (probabilistic) answers for the queries Q ∪Q′.

Let V (Q,AQ) be 1 if V accepts on queries Q and answers AQ, and 0 otherwise. Let
V ′(Q′, AQ′) be 1 if V ′ accepts on queries Q′ and answers AQ′ , and 0 otherwise. (We assume
here that the sets of queries Q,Q′ are ordered by the order that the queries were chosen
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by the verifiers, so that the sets of queries also define which tests are performed on which
queries). We denote by V (Q,AQ) also the event V (Q,AQ) = 1, and in the same way we
denote by V ′(Q′, AQ′) also the event V ′(Q′, AQ′) = 1.

Claim 6.2.
Pr
Q,Q′

Pr
A∈RAQ∪Q′

[V (Q,AQ) ∧ ¬V ′(Q′, AQ′)] ≤ 5`|F| · 2−r

(where r is the parameter of the relaxed verifier V ′).

Proof. Recall that V and V ′ repeated every test k times, and that this gives a partition of
all the tests performed by V and V ′ into groups, with exactly k tests in each group (see
Section 5.3), and the number of groups for each verifier is smaller than 5`|F|.

Let Qi,j be the set of queries chosen randomly by V in order to perform the jth test in the
ith group. Let Q′i,j be the set of queries chosen independently by V ′ in order to perform the
jth test in the ith group. We think of Qi,j, Q

′
i,j also as tests, rather than just sets of queries.

All these tests are performed independently. That is, all the sets in {Qi,j}i,j ∪ {Q′i,j}i,j are
independent, as random variables.

Let Qi be the multiset of tests {Qi,j}j∈[k] and let Q′i be the multiset of tests {Q′i,j}j∈[k].

Let V (Qi, AQi) be 1 if V accepts all the tests in Qi (with answers AQi), and 0 otherwise.
Let V ′(Q′i, AQ′i) be 0 if V ′ rejects more than r tests in Q′i (with answers AQ′i), and 1 otherwise.
As before, we denote by V (Qi, AQi) also the event V (Qi, AQi) = 1, and in the same way we
denote by V ′(Q′i, AQ′i) also as the event V ′(Q′i, AQ′i) = 1.

Note that if both V (Q,AQ) and ¬V ′(Q′, AQ′) occur, then there exists i such that V
accepts all the tests in Qi while V ′ rejects more than r tests in Q′i. Hence,

Pr
Q,Q′,A

[V (Q,AQ) ∧ ¬V ′(Q′, AQ′)] ≤
∑
i

Pr
Q,Q′,A

[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)]

Thus, it remains to bound Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)] by 2−r, for every i.

Fix i. Let Wi = {{Qi,j, Q
′
i,j}}j∈[k]. That is, Wi is the partition of the multiset Qi ∪ Q′i

into pairs {Qi,j, Q
′
i,j}, without specifying for each pair which test is Qi,j and which one is

Q′i,j. Note that we could have chosen Qi, Q
′
i by first choosing Wi and only then specifying

which test in each pair is Qi,j and which one is Q′i,j.

Let r(Wi) be the number of pairs in Wi with at least one test that is rejected by the
verifiers. Note that r(Wi) is a random variable that depends on Q,Q′, A, but conditioned on
Wi it is independent of Qi, Q

′
i (that is, r(Wi) is independent of the specification which test

in each pair is Qi,j and which one is Q′i,j).

We can now bound

Pr
Q,Q′,A

[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)] = E
Wi,r(Wi)

[
Pr

Q,Q′,A
[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, r(Wi)]

]
Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, r(Wi)] is bounded as follows:
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If r(Wi) < r then [V (Qi, AQi)∧¬V ′(Q′i, AQ′i)] doesn’t occur, because ¬V ′(Q′i, AQ′i) doesn’t
occur (because in order for ¬V ′(Q′i, AQ′i) to occur V ′ needs to reject at least r tests in Q′i,
which is impossible when r(Wi) < r). Hence,

Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, (r(Wi) < r)] = 0

For r(Wi) ≥ r,

Pr[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, (r(Wi) ≥ r)] ≤ Pr[V (Qi, AQi) | Wi, (r(Wi) ≥ r)] ≤ 2−r,

where the second inequality follows because for each pair {Qi,j, Q
′
i,j} ∈ Wi, each test goes to

Qi with probability 1/2 (independently at random), so the probability that Qi gets none of
the rejected tests is ≤ 2−r (because when r(Wi) ≥ r, there are at least r pairs with at least
one rejected test in each pair).

We hence have

Pr
Q,Q′,A

[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i)] = E
Wi,r(Wi)

[
Pr

Q,Q′,A
[V (Qi, AQi) ∧ ¬V ′(Q′i, AQ′i) | Wi, r(Wi)]

]
≤ 2−r

We will now proceed with the proof of Lemma 6.1. Recall that we assume that the δ-no-
signaling family of distributions {AS}S⊂D,|S|≤kmax fools V with probability larger than ε.

Recall that Σ = F is the alphabet of the answers. Recall that for a vector aQ ∈ ΣQ,
we denote by AQ∪Q′ |aQ the distribution of the random element A ∈R AQ∪Q′ , conditioned on
the event AQ = aQ, (where we assume that the event AQ = aQ is obtained with non-zero
probability (otherwise we define AQ∪Q′|aQ to be an arbitrary fixed distribution)). Since in
AQ∪Q′|aQ we have that the coordinates indexed by Q are fixed to aQ, we think of AQ∪Q′|aQ ,

for simplicity of the notations, as a distribution over ΣQ′ , rather than over ΣQ∪Q′ (and note
that in this distribution the coordinates indexed by Q ∩Q′ are fixed to aQ∩Q′).

Since {AS} is a δ-no-signaling family of distributions, the distributions of the following
two random variables are δ-close:

• A ∈R AQ∪Q′

• Ã, where the coordinates indexed by Q of Ã are chosen by ÃQ ∈R AQ, and the
coordinates indexed by Q′ of Ã are chosen by ÃQ′ ∈R AQ∪Q′ |ÃQ (and note that on

Q ∩Q′ the vectors ÃQ, ÃQ′ always agree).

Therefore, by Claim 6.2,

5`|F| · 2−r ≥
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Pr
Q,Q′

Pr
A∈RAQ∪Q′

[V (Q,AQ) ∧ ¬V ′(Q′, AQ′)] =

E
Q,Q′

E
A∈RAQ∪Q′

[V (Q,AQ) · (1− V ′(Q′, AQ′))] ≥

E
Q

E
Q′

E
ÃQ∈RAQ

E
ÃQ′∈RAQ∪Q′ |ÃQ

[V (Q, ÃQ) · (1− V ′(Q′, ÃQ′))]− δ =

E
Q

E
ÃQ∈RAQ

[
V (Q, ÃQ) · E

Q′
E

ÃQ′∈RAQ∪Q′ |ÃQ

[1− V ′(Q′, ÃQ′)]

]
− δ

That is,

E
Q

E
ÃQ∈RAQ

[
V (Q, ÃQ) · E

Q′
E

ÃQ′∈RAQ∪Q′ |ÃQ

[1− V ′(Q′, ÃQ′)]

]
≤ 5`|F| · 2−r + δ (2)

The following claim shows that we can fix the values of Q and ÃQ to specific values q
and ãq that satisfy two desired properties. The first property will be used to show that V ′

is fooled with high probability. The second one will be used to show that the new family of
distributions that we will construct is δ′-no-signaling.

Claim 6.3. We can fix a set of queries q, and answers ãq ∈ Σq, such that:

1.

E
Q′

E
ÃQ′∈RAq∪Q′ |ãq

[1− V ′(Q′, ÃQ′)] ≤ (5`|F| · 2−r + δ) · 2

ε

2.
Pr

Ãq∈RAq
(Ãq = ãq) ≥

ε

2 · |Σ||q|

Proof. Consider the conditional distribution of (Q, ÃQ) | V (Q, ÃQ), that is, the distribution
of (Q, ÃQ), where ÃQ ∈R AQ, conditioned on the event V (Q, ÃQ). Fix (q, ãq) randomly
according to this distribution.

By Equation (2) and Markov inequality, and since

Pr
Q

Pr
ÃQ∈RAQ

V (Q, ÃQ) > ε,

the first part of the claim occurs with probability larger than 1/2.

Since PrQ PrÃQ∈RAQ V (Q, ÃQ) > ε and since the number of possibilities for each ãq is

|Σ||q|, the second part of the claim occurs with probability larger than 1/2.

Fix q, ãq from Claim 6.3. Define the family of distributions {A′S}S⊂D,|S|≤k′max by

A′S = Aq∪S|ãq
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(where, as before, Aq∪S|ãq is viewed as a distribution over ΣS). Note also that |q| ≤ 6k`|F|2 =
kmax − k′max.

By the first part of Claim 6.3,

E
Q′

E
A′
Q′∈RA

′
Q′
V ′(Q′, A′Q′) ≥ 1− (10`|F| · 2−r + 2δ)/ε

That is, V ′ is fooled with probability of at least 1− (10`|F| · 2−r + 2δ)/ε.

It remains to prove that {A′S} is a δ′-no-signaling family of distributions.

Claim 6.4. {A′S} is a δ′-no-signaling family of distributions, where δ′ = 8δ|Σ|6k`|F|2/ε.

Proof. Let S1 ⊂ S2 ⊂ D, be such that |S2| ≤ k′max. Denote by (A′S2
)S1 and (AS2)S1 the

projections of the distributions A′S2
,AS2 , respectively, on the coordinates in S1.

We need to prove that the distributions A′S1
and (A′S2

)S1 are δ′-close. Without loss of
generality, assume that q ⊆ S1. Otherwise, just add q to both S1, S2 (this doesn’t change
the distance between the two distributions because, by the definition of A′S1

,A′S2
, we just

added fixed coordinates to each of the two distribution).

Denote by AS1|ãq the distribution of A ∈R AS1 conditioned on the event Aq = ãq, and,
in the same way, denote by AS2|ãq the distribution of A ∈R AS2 conditioned on the event
Aq = ãq, and by (AS2)S1|ãq the distribution of A ∈R (AS2)S1 conditioned on the event
Aq = ãq.

By the definitions, A′S1
= AS1|ãq , and A′S2

= AS2|ãq . Thus, we need to prove that AS1|ãq
and (AS2|ãq)S1 are δ′-close. Since (AS2 |ãq)S1 = (AS2)S1|ãq , we need to prove that AS1 |ãq and
(AS2)S1|ãq are δ′-close.

Since A is a δ-no-signaling family, AS1 and (AS2)S1 are δ-close.

By the second part of Claim 6.3, and since A is a δ-no-signaling family, we have that

Pr
A∈RAS1

(Aq = ãq) ≥
ε

2 · |Σ||q|
− δ

and
Pr

A∈R(AS2
)S1

(Aq = ãq) ≥
ε

2 · |Σ||q|
− δ

The proof of the claim thus follows by Proposition 6.5, with µ = AS1 , ψ = (AS2)S1 , and

α =
ε

2 · |Σ||q|
− δ ≥ ε

4 · |Σ||q|
≥ ε

4 · |Σ|6k`|F|2

Proposition 6.5. Let δ, α be such that 0 < 2δ < α ≤ 1. Let µ, ψ : Ω→ R be two probability
distributions over a finite set Ω, and assume that µ, ψ are δ-close. Let E ⊂ Ω be an event,
such that, µ(E), ψ(E) ≥ α. Denote by µE, ψE the conditional distributions µ, ψ, conditioned
on the event E. Thus, µE, ψE : E → R are probability distributions over E.

Then, µE, ψE are δ′-close, where δ′ = 2δ/α.
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Proof. Denote by µ′ : E → R and ψ′ : E → R the restrictions of µ, ψ to E. That is, for
every e ∈ E, we have µ′(e) = µ(e) and ψ′(e) = ψ(e). Since µ, ψ are δ-close, ‖µ′ − ψ′‖1 ≤
‖µ− ψ‖1 ≤ 2δ, where ‖ · ‖1 denotes the l1-norm.

Assume without loss of generality µ(E) ≥ ψ(E). That is, ψ(E)
µ(E)
≤ 1.

Assume for a contradiction ‖µE − ψE‖1 > 2δ′. Then

δ′ <
1

2

∑
e∈E

|µE(e)− ψE(e)| =
∑

{e|µE(e)≥ψE(e)}

|µE(e)− ψE(e)| ≤

∑
{e|µE(e)≥ψE(e)}

∣∣∣∣µE(e)− ψ(E)

µ(E)
ψE(e)

∣∣∣∣ ≤∑
e∈E

1

µ(E)
|µ(E) · µE(e)− ψ(E) · ψE(e)|

≤ 1

α

∑
e∈E

|µ(E) · µE(e)− ψ(E) · ψE(e)|

Since µ′ = µ(E) · µE, and ψ′ = ψ(E) · ψE, we get δ′ < 2δ/α.

This concludes the proof of Lemma 6.1.

7 Soundness of V ′ in the Base PCP

In this section we will show that the verifier V ′ cannot be fooled to accept x 6∈ L, with
probability close to 1.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , is the security parameter of the PCP,
and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and |F| are
bounded by polylog(N).

We will prove the following lemma.

Lemma 7.1. Assume that kmax ≥ 4sk|F| + 6k`|F|2, where s = O(s(n)) is the maximal
number of gates in a layer of the circuit Cn. Assume that δ < 1

1000N`|F| . Fix ε = 1
100N`|F| , and

note that ε > 10 max
(
δ, 2k
|F|m−2

)
. Assume r < k

20`|F| . Then, V ′ has soundness 1 − ε against

(kmax, δ)-no-signaling strategies.

The rest of the section is devoted for the proof of Lemma 7.1. From now on, through
Section 7, fix s, δ, ε, r to be as in the statement of Lemma 7.1.

As for the parameter kmax, for the proof of Lemma 7.1, we will assume that kmax ≥
4sk|F| + 6k`|F|2. We will assume for a contradiction that for some x 6∈ L, there exists a
δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax that fools V ′ with probability larger
than 1− ε. That is, the verifier V ′ accepts with probability > 1− ε, where on queries Q, the
answers are given (probabilistically) by A ∈R AQ (see Section 7.7).
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However, in most parts of Section 7, a much weaker requirement kmax ≥ 6k`|F|2 will suf-
fice. Hence, for the rest of the section we fix kmax ≥ 6k`|F|2 and denote by {AS}S⊂D,|S|≤kmax
a δ-no-signaling family of distributions that makes V ′ accept x with probability > 1−ε. The
requirement that kmax ≥ 4sk|F| + 6k`|F|2 will only be used in Section 7.7, by Lemma 7.36,
Lemma 7.37 and by the proof of Lemma 7.1 (and the requirement will be noted therein).

Recall that we denote by D the domain of the PCP (that is, the alphabet of queries in
the PCP). Recall that

D = DX ∪D0 ∪ . . . ∪D`,

where DX = Fm is viewed as the domain of X, and D0, . . . , D` are `+ 1 copies of F`, viewed
as the domains of P0, . . . , P`, respectively.

For a set S ⊂ D, |S| ≤ kmax, we will view the answers A ∈R AS as a function A : S → F.
We can view A also as a partial function A : D → F, and we denote by AX , A0, . . . , A` the
restriction of that partial function to DX , D0, . . . , D`, respectively.

Recall that we assume that for every distribution AS in the family {AS}, every query in
S∩D` is answered by 0 with probability 1 (since the polynomial P` was just the 0 polynomial
and was added to the PCP proof for simplicity of notations).

7.1 Some Immediate Claims

Fix kmax, s, δ, ε, r to be as in the statement of Lemma 7.1. Assume for a contradiction that
for some x 6∈ L, there exists a δ-no-signaling family of distributions {AS}S⊂D,|S|≤kmax that
fools V ′ with probability larger than 1− ε.

We will start by stating an immediate corollary of the fact that {AS} is a δ-no-signaling
family.

Claim 7.2. Let S ⊂ D, |S| ≤ kmax be a set generated by some random process. Let A ∈R AS.
Let f(S,A) be a predicate that is satisfied with probability p (where the probability is over
S,A). Let S ′, Q, such that S ′ ⊆ Q ⊂ D, |Q| ≤ kmax, be two sets generated by some random
process, such that the distribution of S ′ is identical to the distribution of S. Let A′ ∈R AQ.
Then the probability that f(S ′, A′S′) is satisfied is between p−δ and p+δ, (where the probability
is over S ′, Q,A′).

Proof. Since {AS} is a δ-no-signaling family, for every fixed sets s = s′ ⊆ q,

Pr
A∈RAs

(f(s, A)) = Pr
A′∈RAq

(f(s′, A′s′))∓ δ

The claim follows by taking expectation over S on the left hand side and expectation over
S ′, Q on the right hand side.

Next we will state seven immediate corollaries of the fact that V ′ accepts with probabil-
ity > 1− ε. The following seven claims correspond to the seven different tests performed by
the verifier V ′. Each claim states that the corresponding test is satisfied with high probabil-
ity.
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Claim 7.3. Low Degree Test for X:
Let L1, . . . , Lk : F → DX be k random lines. Let S = {Lj(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.
Then, with probability > 1− ε− δ, for at least k − r of the lines L ∈ {L1, . . . , Lk}, we have
that A ◦ L : F → F is a univariate polynomial of degree < m|H| (where the probability is
over L1, . . . , Lk, A).

Proof. Note that the set S can be extended to a set Q of queries of the verifier V ′, where Q
is generated by the correct distribution of V ′, and S ⊂ Q is the set of queries for the first
test performed by V ′ (that is, the low degree test for X). Let A′ ∈R AQ. Since V ′ accepts
with probability > 1 − ε on queries Q and answers A′, and in particular this means that
the first test of V ′ passes with probability > 1− ε, we have that A′ satisfies the claim with
probability > 1− ε. Formally:

With probability > 1 − ε, for at least k − r of the lines L ∈ {L1, . . . , Lk}, we have that
A′ ◦ L : F → F is a univariate polynomial of degree < m|H| (where the probability is over
L1, . . . , Lk, Q,A

′).

Since {AS} is a δ-no-signaling family, by Claim 7.2, the same is satisfied for A, rather
than A′, with probability > 1− ε− δ, rather than > 1− ε.

Claim 7.4. Low Degree Test for Pi (fixed L(0)i+1):
Let i ∈ {0, . . . , `−1}. Let u ∈ F. Let L1, . . . , Lk : F→ Di be k random lines, such that, every
line L ∈ {L1, . . . , Lk} satisfies L(0)i+1 = u. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS.
Then, with probability > 1− ε− δ, for at least k − r of the lines L ∈ {L1, . . . , Lk}, we have
that A ◦ L : F → F is a univariate polynomial of degree < 2`|H| (where the probability is
over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 7.3, using the second test performed by V ′ (the low
degree test for Pi, type 1), rather than the first one.

Claim 7.5. Low Degree Test for Pi (orthogonal to the (i+ 1)th coordinate):
Let i ∈ {0, . . . , ` − 1}. Let L1, . . . , Lk : F → Di be k random lines, such that, every line
L ∈ {L1, . . . , Lk} is orthogonal to the (i+ 1)th coordinate. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let
A ∈R AS. Then, with probability > 1− ε− δ, for at least k− r of the lines L ∈ {L1, . . . , Lk},
we have that A◦L : F→ F is a univariate polynomial of degree < 2`|H| (where the probability
is over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 7.3, using the third test performed by V ′ (the low degree
test for Pi, type 2), rather than the first one.

Claim 7.6. Low Degree Test for Pi (fixed L(0)i+1; orthogonal to the ith coordinate):
Let i ∈ {1, . . . , ` − 1}. Let u ∈ F. Let L1, . . . , Lk : F → Di be k random lines, such that,
every line L ∈ {L1, . . . , Lk} is orthogonal to the ith coordinate, and satisfies L(0)i+1 = u.
Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS. Then, with probability > 1− ε− δ, for at least
k − r of the lines L ∈ {L1, . . . , Lk}, we have that A ◦ L : F → F is a univariate polynomial
of degree < 2`|H| (where the probability is over L1, . . . , Lk, A).
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Proof. Similar to the proof of Claim 7.3, using the fourth test performed by V ′ (the low
degree test for Pi, type 3), rather than the first one.

Claim 7.7. Low Degree Test for Pi (fixed L(0)i; orthogonal to the (i+ 1)th coordi-
nate):
Let i ∈ {1, . . . , ` − 1}. Let u ∈ F. Let L1, . . . , Lk : F → Di be k random lines, such that,
every line L ∈ {L1, . . . , Lk} is orthogonal to the (i+ 1)th coordinate, and satisfies L(0)i = u.
Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS. Then, with probability > 1− ε− δ, for at least
k − r of the lines L ∈ {L1, . . . , Lk}, we have that A ◦ L : F → F is a univariate polynomial
of degree < 2`|H| (where the probability is over L1, . . . , Lk, A).

Proof. Similar to the proof of Claim 7.3, using the fifth test performed by V ′ (the low degree
test for Pi, type 4), rather than the first one.

Claim 7.8. Sum Check for Pi:
Let i ∈ {1, . . . , `}. Let z1, . . . , zk ∈ F` be k random points, where zj = (zj,1, . . . , zj,`) ∈ F`. Let
Si and Si−1 be two copies of the set of points {(zj,1, . . . , zj,i−1, t, zj,i+1, . . . , zj,`)}j∈[k],t∈F ⊂ F`,
and view Si as a subset of Di and Si−1 as a subset of Di−1. Let S = Si ∪ Si−1 ⊂ D. Let
A ∈R AS. Then, with probability > 1 − ε − δ, for at least k − r of the indices j ∈ [k], the
following is satisfied for every t ∈ F:

Ai(zj,1, . . . , zj,i−1, t, zj,i+1, . . . , zj,`) =
∑
h∈H

Ai−1(zj,1, . . . , zj,i−1, h, zj,i+1, . . . , zj,`)t
h

(where the probability is over z1, . . . , zk, A).

Proof. Similar to the proof of Claim 7.3, using the sixth test performed by V ′ (the sum check
for Pi), rather than the first one.

Claim 7.9. Consistency of X and P0:
Let z1, . . . , zk ∈ F` be k random points, where zj = (ij,1, ij,2, ij,3, bj,1, bj,2, bj,3) ∈ (Fm)3 × F3 =
F`. Let S0 = {zj}j∈[k], viewed as a subset of D0, and let SX = {ij,1, ij,2, ij,3}j∈[k], viewed as
a subset of DX . Let S = S0 ∪ SX ⊂ D. Let A ∈R AS. Then, with probability > 1 − ε − δ,
for at least k − r of the points zj ∈ {z1, . . . , zk}, the following is satisfied:

A0(zj) = φ̂(zj) · (AX(ij,1)− bj,1) · (AX(ij,2)− bj,2) · (AX(ij,3)− bj,3)

(where the probability is over z1, . . . , zk, A).

Proof. Similar to the proof of Claim 7.3, using the seventh test performed by V ′ (the con-
sistency of X and P0), rather than the first one.
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7.2 Additional Notation

Let `′ ≥ 0 be an integer. Let M : F2 → F`′ be a plain. For every t1 ∈ F, denote by
M(t1, ∗) : F→ F`′ the line L : F→ F`′ defined by L(t) = M(t1, t). For every t2 ∈ F, denote
by M(∗, t2) : F→ F`′ the line L : F→ F`′ defined by L(t) = M(t, t2).

Let f : F2 → F be a function. For every t1 ∈ F, define f(t1,∗) : F→ F by f(t1,∗)(t) = f(t1, t).
For every t2 ∈ F, define f(∗,t2) : F→ F by f(∗,t2)(t) = f(t, t2).

7.3 Consistency of P0

We will now give a definition that will be central in the rest of the section. Intuitively, a
point z satisfies property Z(ε′, r′) if when taking k lines through it, with high probability,
for most of these lines, the answers correspond to low degree polynomials that “evaluate”
the point z to 0.

Definition 7.10. Property Z(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let i ∈ {0, . . . , `}. Let z ∈ Di.

Let L1, . . . , Lk : F → Di be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = z. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di. Let A ∈R AS.

Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z and A0(z) = 0.

We say that the point z satisfies property Z(ε′, r′) (also denoted z ∈ Z(ε′, r′)) if with
probability ≥ 1−ε′, for at least k−r′ of the lines L ∈ {L1, . . . , Lk}, we have that A0◦L : F→ F
is a univariate polynomial of degree < 2`|H| (where the probability is over L1, . . . , Lk, A).

Our main lemma about property Z(ε′, r′) is that the property is satisfied, with small ε′

and r′, for any point z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H. (Intuitively, this is
analogous to the formula P0|H` ≡ 0, that is satisfied for x ∈ L).

Lemma 7.11. For any z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H, we have z ∈ Z(ε′, r′),
where ε′ = 8`|F|ε, and r′ = 8`|F|r.

The rest of Subsection 7.3 is devoted for the proof of Lemma 7.11.

7.3.1 Proof of Lemma 7.11

First, we define a variant of property Z(ε′, r′), where the random lines are restricted to be
orthogonal to the (i′)th coordinate. (We will use this property only for i′ ∈ {i, i+ 1}).

Definition 7.12. Property Z i′(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let i′ ∈ {1, . . . , `}. Let i ∈ {0, . . . , `}. Let z ∈ Di.

Let L1, . . . , Lk : F → Di be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = z, and L is orthogonal to the (i′)th coordinate. Let S = {Lj(t)}j∈[k],t∈F ⊂ Di.
Let A ∈R AS.
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Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z and A0(z) = 0.

We say that the point z satisfies property Z i′(ε′, r′) (also denoted z ∈ Z i′(ε′, r′)) if with
probability ≥ 1−ε′, for at least k−r′ of the lines L ∈ {L1, . . . , Lk}, we have that A0◦L : F→ F
is a univariate polynomial of degree < 2`|H| (where the probability is over L1, . . . , Lk, A).

Lemma 7.11 will follow easily by Lemma 7.13, Lemma 7.16 and Lemma 7.17.

Lemma 7.13. For every ε1 ≥ 0, every r1 ≥ 0, every i ∈ {1, . . . , ` − 1}, and every z ∈ Di,
if z ∈ Z i+1(ε1, r1) then z ∈ Z i(ε2, r2), where ε2 = ε1 + 3|F|ε, and r2 = r1 + 2|F|r.

Proof. Assume that z ∈ Z i+1(ε1, r1).

Let L1, . . . , Lk : F → Di be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = z, and L is orthogonal to the (i+ 1)th coordinate. Let L′1, . . . , L

′
k : F→ Di be k

random lines, such that for every L′ ∈ {L′1, . . . , L′k}, we have L′(0) = z, and L′ is orthogonal
to the ith coordinate.

Denote by E the event that for every j ∈ [k], the lines Lj, L
′
j are in general position, that

is, the vectors Lj(1)−Lj(0), L′j(1)−L′j(0) span a linear subspace of dimension 2 (as vectors

in Di = F`). Note that the event E occurs with probability of at least 1− k·2
|F|`−2 .

Let M1, . . . ,Mk : F2 → Di be k plains, where Mj(t1, t2) = Lj(t1) +L′j(t2)− z, (where the
addition/substraction are over the vector space Di = F`).

Let S = {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ Di. Let A ∈R AS. Define A0 : S → F by A0(z′) = A(z′)
for z′ 6= z and A0(z) = 0.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F \ {0}, the function A0 ◦Mj(t1, ∗) : F → F is a univariate polynomial
of degree < 2`|H|.

2. For every t2 ∈ F, the function A0 ◦Mj(∗, t2) : F → F is a univariate polynomial of
degree < 2`|H|.

By Proposition 7.14, (applied with f = A0 ◦ Mj and d = 2`|H|), if Mj is good then
A0 ◦ L′j = A0 ◦Mj(0, ∗) : F→ F is a univariate polynomial of degree < 2`|H|.

Proposition 7.14. Let f : F2 → F be a function. Assume that for every t1 ∈ F \ {0}, the
function f(t1,∗) : F → F is a univariate polynomial of degree < d, and for every t2 ∈ F, the
function f(∗,t2) : F → F is a univariate polynomial of degree < d, where d < |F|. Then,
f(0,∗) : F→ F is a univariate polynomial of degree < d.

Proof. For every t2 ∈ F, the function f(∗,t2) : F → F is a univariate polynomial of de-
gree < d. Therefore, there exist a1, . . . , ad ∈ F, (where a1, . . . , ad are the Lagrange interpo-
lation coefficients), such that for every t2 ∈ F, we have f(0, t2) =

∑d
t=1 at · f(t, t2). That is,

f(0,∗) =
∑d

t=1 at · f(t,∗). Since f(1,∗), . . . , f(d,∗) are univariate polynomials of degree < d, their
linear combination f(0,∗) is also a univariate polynomial of degree < d.
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We will show that with high probability, at least k− r2 of the plains M ∈ {M1, . . . ,Mk}
are good (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). By Proposition 7.14, this

implies that with high probability, at least k − r2 of the lines L′ ∈ {L′1, . . . , L′k} satisfy that
A0 ◦ L′ : F→ F is a univariate polynomial of degree < 2`|H| (where the probability is over
L1, . . . , Lk, L

′
1, . . . , L

′
k, A).

Claim 7.15. With probability ≥ 1− ε1 − 2|F|ε− 4|F|δ − 2k
|F|`−2 , for at least k − r1 − 2|F|r of

the indices j ∈ [k], we have that Mj is good.

Proof. For every t1 ∈ F \ {0}, consider the set of lines {Mj(t1, ∗)}j∈[k] and note that this
is a set of k random lines in Di, such that, every line L ∈ {Mj(t1, ∗)}j∈[k] is orthogonal to
the ith coordinate, and satisfies L(0)i+1 = zi+1. Hence, by Claim 7.6, using also Claim 7.2,
with probability > 1 − ε − 2δ, for at least k − r of the indices j ∈ [k], we have that
A ◦Mj(t1, ∗) : F→ F is a univariate polynomial of degree < 2`|H|. If, in addition, the event
E occurs, then A0 ◦Mj(t1, ∗) = A ◦Mj(t1, ∗) and hence A0 ◦Mj(t1, ∗) : F → F is also a
univariate polynomial of degree < 2`|H|.

For every t2 ∈ F \ {0}, consider the set of lines {Mj(∗, t2)}j∈[k] and note that this is a
set of k random lines in Di, such that, every line L ∈ {Mj(∗, t2)}j∈[k] is orthogonal to the
(i + 1)th coordinate, and satisfies L(0)i = zi. Hence, by Claim 7.7, using also Claim 7.2,
with probability > 1 − ε − 2δ, for at least k − r of the indices j ∈ [k], we have that
A ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|. If, in addition, the event
E occurs, then A0 ◦Mj(∗, t2) = A ◦Mj(∗, t2) and hence A0 ◦Mj(∗, t2) : F → F is also a
univariate polynomial of degree < 2`|H|.

Consider the set of lines {Mj(∗, 0)}j∈[k] and note thatMj(∗, 0) = Lj. Since z ∈ Z i+1(ε1, r1),
and using also Claim 7.2, with probability ≥ 1 − ε1 − δ, for at least k − r1 of the indices
j ∈ [k], we have that A0 ◦Mj(∗, 0) : F→ F is a univariate polynomial of degree < 2`|H|.

Recall also that the event E occurs with probability of at least 1− 2k
|F|`−2 .

Adding up all this, by the union bound, we obtain that with probability ≥ 1−ε1−2|F|ε−
4|F|δ − 2k

|F|`−2 , for at least k − r1 − 2|F|r of the indices j ∈ [k], we have that:

1. For every t1 ∈ F \ {0}, A0 ◦Mj(t1, ∗) is a univariate polynomial of degree < 2`|H|.

2. For every t2 ∈ F \ {0}, A0 ◦Mj(∗, t2) is a univariate polynomial of degree < 2`|H|.

3. A0 ◦Mj(∗, 0) is a univariate polynomial of degree < 2`|H|.

That is, with probability ≥ 1 − ε1 − 2|F|ε − 4|F|δ − 2k
|F|`−2 , for at least k − r1 − 2|F|r of the

indices j ∈ [k], we have that Mj is good.

By Proposition 7.14, Claim 7.15 implies that with probability ≥ 1− ε1 − 2|F|ε− 4|F|δ −
2k
|F|`−2 > 1−ε2 +δ, at least k−r2 of the lines L′ ∈ {L′1, . . . , L′k} satisfy that A0◦L′ : F→ F is a

univariate polynomial of degree< 2`|H| (where the probability is over L1, . . . , Lk, L
′
1, . . . , L

′
k, A).

Thus, using Claim 7.2, z ∈ Z i(ε2, r2).

This concludes the proof of Lemma 7.13.
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Lemma 7.16. For every ε1 ≥ 0, every r1 ≥ 0, every i ∈ {0, . . . , ` − 1}, and every z ∈ Di,
if z ∈ Z i+1(ε1, r1) then z ∈ Z(ε2, r2), where ε2 = ε1 + 3|F|ε, and r2 = r1 + 2|F|r.

Proof. Similar to the proof of Lemma 7.13, except that we let L′1, . . . , L
′
k : F → Di be

k random lines, such that for every L′ ∈ {L′1, . . . , L′k}, we have L′(0) = z, (without the
requirement that L′ is orthogonal to the ith coordinate), and we use Claim 7.4 and Claim 7.5,
rather than Claim 7.6 and Claim 7.7, in the proof for the equivalent of Claim 7.15.

Lemma 7.17. Let ε1 ≥ 0. Let r1 ≥ 0. Let i ∈ {1, . . . , `}. Let z = (z1, . . . , z`) ∈ F` be
a point, such that, zi ∈ H. For every t ∈ F, let z(t) = (z1, . . . , zi−1, t, zi+1, . . . , z`) ∈ F`.
Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies property
Z i(ε1, r1). Then the point z, viewed as a point in Di−1, satisfies property Z i(ε2, r2), where

ε2 = ε1
1−γ + 2|F|ε, and r2 = r1

1−γ + |F|r, and γ =
√
|H|
|F| .

Proof. Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies property
Z i(ε1, r1).

Let L1, . . . , Lk : F → F` be k random lines, such that for every L ∈ {L1, . . . , Lk}, we
have L(0) = 0, and L is orthogonal to the ith coordinate.

Denote by E the event that for every j ∈ [k], the line Lj is in a general position (as a line
in F`), that is, it’s image is not a single point. Note that the event E occurs with probability
of at least 1− k

|F|`−1 .

Let M1, . . . ,Mk : F2 → F` be k plains, where Mj(t1, t2) = Lj(t1) + z(t2), (where the
addition is over the vector space F`).

Let Si and Si−1 be two copies of the set of points {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ F`, and view
Si as a subset of Di and Si−1 as a subset of Di−1. Let S = Si ∪ Si−1 ⊂ D. Let A ∈R AS.
Recall that we view A as a function A : S → F, and we denote by Ai, Ai−1 the restriction of
that function to Si, Si−1, respectively.

Define A0
i : Si → F by A0

i (z
′) = Ai(z

′) for z′ 6∈ {z(t)}t∈F, and A0
i (z
′) = 0 for z′ ∈ {z(t)}t∈F.

Define A0
i−1 : Si−1 → F by A0

i−1(z′) = Ai−1(z′) for z′ 6∈ {z(t)}t∈F and A0
i−1(z′) = 0 for

z′ ∈ {z(t)}t∈F.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F, and every t ∈ F,

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

2. For at least |H| values t2 ∈ F, the function A0
i ◦ Mj(∗, t2) : F → F is a univariate

polynomial of degree < 2`|H|.

By Proposition 7.18, (applied with f = A0
i ◦Mj, f

′ = A0
i−1 ◦Mj and d = 2`|H|), if Mj is

good then for every t2 ∈ H, the function A0
i−1 ◦Mj(∗, t2) : F→ F is a univariate polynomial

of degree < 2`|H|.
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Proposition 7.18. Let f : F2 → F and f ′ : F2 → F be two functions. Assume that:

1. For every t1 ∈ F, and every t ∈ F,

f(t1, t) =
∑
h∈H

f ′(t1, h)th

2. For at least |H| values t2 ∈ F, the function f(∗,t2) : F → F is a univariate polynomial
of degree < d.

Then, for every t2 ∈ H, the function f ′(∗,t2) : F→ F is a univariate polynomial of degree < d.

Proof. For every h ∈ H, present the function f ′(∗,h) : F → F as a univariate polynomial (in

the free variable y),

f ′(y, h) = f ′(∗,h)(y) =

|F|−1∑
s=0

ah,s · ys

where ah,0, . . . , ah,|F|−1 ∈ F. Thus, for every y ∈ F, and every t ∈ F,

f(∗,t)(y) = f(y, t) =
∑
h∈H

f ′(y, h)th =
∑
h∈H

|F|−1∑
s=0

ah,s · ys · th =

|F|−1∑
s=0

(∑
h∈H

ah,s · th
)
· ys

Assume for a contradiction that for some s ≥ d, the polynomial
∑

h∈H ah,s · th is not
the identically 0 polynomial, and let s be the largest such index. Since

∑
h∈H ah,s · th is not

identically 0, and its degree is ≤ |H| − 1, it gives 0 on at most |H| − 1 values of t ∈ F.
Hence, the polynomial f(∗,t)(y) is of degree < s for at most |H|−1 values of t ∈ F, which is a
contradiction to the assumption that for at least |H| values t ∈ F, the function f(∗,t) : F→ F
is a univariate polynomial of degree < d.

Thus, for every s ≥ d, the polynomial
∑

h∈H ah,s · th is the identically 0 polynomial. That
is, for every s ≥ d and every h ∈ H we have ah,s = 0. Hence, for every h ∈ H, the function
f ′(∗,h) : F→ F is a univariate polynomial of degree < d.

We will show that with high probability, at least k− r2 of the plains M ∈ {M1, . . . ,Mk}
are good (where the probability is over L1, . . . , Lk, A).

Claim 7.19. With probability ≥ 1− |F|ε− 2|F|δ − k
|F|`−1 − ε1+δ

1−γ , for at least k − |F|r − r1
1−γ

of the indices j ∈ [k], we have that Mj is good, where γ =
√
|H|
|F| .

Proof. First note that for t1 = 0,

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th
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is satisfied trivially (for every j ∈ [k], and every t ∈ F), since A0
i ◦Mj(0, ∗) and A0

i−1◦Mj(0, ∗)
are the identically 0 function (by the definitions).

For every t1 ∈ F \ {0}, consider the set of points {Mj(t1, 0)}j∈[k] and note that this is a
set of k random points in F`, such that the ith coordinate of each of these points is 0, (that is,
all other coordinates of all these points are uniformly distributed and independent random
variables). Note that in Claim 7.8, the ith coordinate of each random point is ignored. Hence,
by Claim 7.8, using also Claim 7.2, with probability > 1 − ε − 2δ, for at least k − r of the
indices j ∈ [k], the following is satisfied for every t ∈ F:

Ai(Mj(t1, t)) =
∑
h∈H

Ai−1(Mj(t1, h))th

If, in addition, the event E occurs, then for every t ∈ F, we have that, A0
i (Mj(t1, t)) =

Ai(Mj(t1, t)) and A0
i−1(Mj(t1, t)) = Ai−1(Mj(t1, t)) and hence

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

(and recall that for t1 = 0 this is satisfied trivially).

Recall that the event E occurs with probability of at least 1− k
|F|`−1 .

Thus, by the union bound, with probability > 1−|F|ε−2|F|δ− k
|F|`−1 , for at least k−|F|r

of the indices j ∈ [k], the following is satisfied for every t1 ∈ F and every t ∈ F:

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th (3)

For every t2 ∈ F, consider the set of lines {Mj(∗, t2)}j∈[k] and note that this is a set
of k random lines, such that for every L ∈ {Mj(∗, t2)}j∈[k], we have L(0) = z(t2), and L
is orthogonal to the ith coordinate. Since z(t2), viewed as a point in Di, satisfies property
Z i(ε1, r1), and using also Claim 7.2, with probability ≥ 1− ε1 − δ, for at least k − r1 of the
indices j ∈ [k], we have that A0

i ◦Mj(∗, t2) : F → F is a univariate polynomial of degree
< 2`|H|.

Since this is true for every t2 ∈ F, by Proposition 7.20, applied with α = ε1 +δ, we obtain
the following for any γ < 1:

with probability ≥ 1− ε1+δ
1−γ , for at least γ|F| values t2 ∈ F we have that for at least k− r1

of the indices j ∈ [k], the function A0
i ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree

< 2`|H|.

Proposition 7.20. Let {Et}t∈F be a set of events, such that, for every t ∈ F, Pr(Et) ≥ 1−α.
Then, for any γ < 1, with probability of at least 1− α

1−γ , at least γ|F| events in {Et}t∈F occur.

Proof. Let It be the characteristic function of the event ¬Et. Let I =
∑

t∈F It. Thus,
E[I] ≤ α|F|. By Markov’s inequality, Pr[I > (1− γ)|F|] < α/(1− γ). Thus, with probability
of at least 1− α/(1− γ), at least γ|F| events in {Et}t∈F occur.
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Thus, with probability ≥ 1− ε1+δ
1−γ , for at least γ|F| values t2 ∈ F we have that for at most

r1 of the indices j ∈ [k], the function A0
i ◦Mj(∗, t2) : F → F is not a univariate polynomial

of degree < 2`|H|.
Since in a {0, 1}-matrix with γ|F| rows and [k] columns, with at most r1 ones in each

row, there are at most γ|F|r1
γ|F|−|H| columns with more than γ|F| − |H| ones (otherwise, the total

number of ones is > γ|F|r1), this implies that with probability ≥ 1 − ε1+δ
1−γ , for at most

γ|F|r1
γ|F|−|H| indices j ∈ [k] we have that for less than |H| of the values t2 ∈ F the function

A0
i ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|.

Combined with Equation (3), by the union bound, with probability > 1− |F|ε− 2|F|δ −
k

|F|`−1 − ε1+δ
1−γ , for at least k − |F|r − γ|F|r1

γ|F|−|H| of the indices j ∈ [k], we have that:

1. For every t1 ∈ F and every t ∈ F:

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

2. For at least |H| of the values t2 ∈ F the function A0
i ◦Mj(∗, t2) : F→ F is a univariate

polynomial of degree < 2`|H|.

That is, with probability ≥ 1− |F|ε− 2|F|δ − k
|F|`−1 − ε1+δ

1−γ , for at least k− |F|r− γ|F|r1
γ|F|−|H|

of the indices j ∈ [k], we have that Mj is good. In particular, for γ =
√
|H|
|F| , we have that

with probability ≥ 1− |F|ε− 2|F|δ − k
|F|`−1 − ε1+δ

1−γ , for at least k − |F|r − r1
1−γ of the indices

j ∈ [k], we have that Mj is good.

By Proposition 7.18, Claim 7.19 implies that with probability ≥ 1−|F|ε−2|F|δ− k
|F|`−1 −

ε1+δ
1−γ > 1 − ε2 + δ, at least k − r2 of the indices j ∈ [k] satisfy that for every t2 ∈ H, the

function A0
i−1 ◦Mj(∗, t2) : F → F is a univariate polynomial of degree < 2`|H|, (where the

probability is over L1, . . . , Lk, A).

Fix t2 = zi. Consider the set of lines {Mj(∗, t2)}j∈[k] and note that this is a set of k
random lines, such that for every L ∈ {Mj(∗, t2)}j∈[k], we have L(0) = z(t2) = z, and L is
orthogonal to the ith coordinate.

With probability > 1 − ε2 + δ, at least k − r2 of the indices j ∈ [k] satisfy that the
function A0

i−1 ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|. Thus, using
Claim 7.2, the point z, viewed as a point in Di−1, satisfies property Z i(ε2, r2).

This concludes the proof of Lemma 7.17.

Combining Lemma 7.17 and Lemma 7.13, we obtain the following lemma.

Lemma 7.21. Let ε1 ≥ 0. Let r1 ≥ 0. Let i ∈ {2, . . . , `}. Let z = (z1, . . . , z`) ∈ F` be
a point, such that, zi ∈ H. For every t ∈ F, let z(t) = (z1, . . . , zi−1, t, zi+1, . . . , z`) ∈ F`.
Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies property
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Z i(ε1, r1). Then the point z, viewed as a point in Di−1, satisfies property Z i−1(ε2, r2), where

ε2 = ε1
1−γ + 5|F|ε, and r2 = r1

1−γ + 3|F|r, and γ =
√
|H|
|F| .

Proof. Follows by applying Lemma 7.17 and then Lemma 7.13.

We can now prove Lemma 7.11.

Proof. Recall that we assume that for every distribution AS in the family {AS}, every query
in S ∩ D` is answered by 0 with probability 1 (since the polynomial P` was just the 0
polynomial and was added to the PCP proof for simplicity of notations). Therefore, any
point z ∈ D`, satisfies property Z`(ε`, r`), where ε` = 0 and r` = 0.

By inductive application of Lemma 7.21, for any i ∈ {1, . . . , ` − 1}, any point z =
(z1, . . . , z`) ∈ Di, such that, zi+1, . . . , z` ∈ H, satisfies property Z i(εi, ri), where εi = εi+1

1−γ +

5|F|ε and ri = ri+1

1−γ + 3|F|r, and γ =
√
|H|
|F| .

In particular, any point z = (z1, . . . , z`) ∈ D1, such that, z2, . . . , z` ∈ H, satisfies property

Z1(ε1, r1), where ε1 ≤ 5`|F|ε
(1−γ)`

< 6`|F|ε and r1 ≤ 3`|F|r
(1−γ)`

< 6`|F|r.

Hence, by Lemma 7.17, any point z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H,
satisfies property Z1(ε0, r0), where ε0 = ε1

1−γ + 2|F|ε < 7`|F|ε, and r0 = r1
1−γ + |F|r < 7`|F|r.

Finally, by Lemma 7.16, any point z = (z1, . . . , z`) ∈ D0, such that, z1, . . . , z` ∈ H,
satisfies property Z(ε′, r′), where ε′ < 8`|F|ε, and r′ < 8`|F|r.

7.4 Consistency of X

In this subsection we will show that, intuitively, when taking a large number of lines through
a point z ∈ DX , with high probability, there exists a value v ∈ F, such that for most of these
lines, the answers correspond to low degree polynomials that “evaluate” the point z to v.

This is stated formally in Lemma 7.25, Lemma 7.27 and Lemma 7.28. The main goal
of the subsection is to prove Lemma 7.27 and Lemma 7.28 (their statements could be read
before reading the rest of the subsection). To prove these lemmas, we will need to first prove
Lemma 7.22 and Lemma 7.25.

Lemma 7.22. Let ε′ = 3|F|ε. Let r′ = 2|F|r. Let z ∈ DX . Let L1, . . . , Lk, L
′
1, . . . , L

′
k : F→

DX be 2k random lines, such that for every L ∈ {L1, . . . , Lk, L
′
1, . . . , L

′
k}, we have L(0) = z.

Let S ′ = {Lj(t)}j∈[k],t∈F ∪ {L′j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS′.
For any v ∈ F, define Av : S ′ → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Then, with probability ≥ 1 − ε′, for at least k − r′ of the indices j ∈ [k], there exists
v ∈ F, such that, both Av ◦ Lj : F → F and Av ◦ L′j : F → F are univariate polynomials of
degree < m|H| (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A).
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Proof. Let L1, . . . , Lk, L
′
1, . . . , L

′
k : F → DX be 2k random lines, such that for every L ∈

{L1, . . . , Lk, L
′
1, . . . , L

′
k}, we have L(0) = z.

Denote by E the event that for every j ∈ [k], the lines Lj, L
′
j are in general position, that

is, the vectors Lj(1)−Lj(0), L′j(1)−L′j(0) span a linear subspace of dimension 2 (as vectors

in DX = Fm). Note that the event E occurs with probability of at least 1− k·2
|F|m−2 .

Let M1, . . . ,Mk : F2 → DX be k plains, where Mj(t1, t2) = Lj(t1) + L′j(t2) − z, (where
the addition/substraction are over the vector space DX = Fm).

Let S = {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ DX . Let A ∈R AS. For any v ∈ F, define Av : S → F
by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F \ {0}, the function A ◦Mj(t1, ∗) : F→ F is a univariate polynomial of
degree < m|H|.

2. For every t2 ∈ F \ {0}, the function A ◦Mj(∗, t2) : F→ F is a univariate polynomial of
degree < m|H|.

By Proposition 7.23, (applied with f = A ◦Mj and d = m|H|), if the event E occurs
and Mj is good then there exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) : F → F and
Av ◦ L′j = Av ◦Mj(0, ∗) : F→ F are both univariate polynomials of degree < m|H|.

Proposition 7.23. Let f : F2 → F be a function. Assume that for every t1 ∈ F \ {0}, the
function f(t1,∗) : F→ F is a univariate polynomial of degree < d, and for every t2 ∈ F \ {0},
the function f(∗,t2) : F → F is a univariate polynomial of degree < d, where d < |F|. For
any v ∈ F, define f v : F2 → F by f v(t1, t2) = f(t1, t2) for (t1, t2) 6= (0, 0) and f v(0, 0) = v.
Then, there exists v ∈ F, such that, f v(0,∗) : F → F and f v(∗,0) : F → F are both univariate
polynomials of degree < d.

Proof. For every t2 ∈ F \ {0}, the function f(∗,t2) : F → F is a univariate polynomial of
degree < d. Therefore, there exist a1, . . . , ad ∈ F, (where a1, . . . , ad are the Lagrange
interpolation coefficients), such that for every t2 ∈ F\{0}, we have f(0, t2) =

∑d
t=1 at ·f(t, t2).

Since f v(t1, t2) = f(t1, t2) for (t1, t2) 6= (0, 0), this implies that for every t2 ∈ F \ {0} and
every v ∈ F, we have f v(0, t2) =

∑d
t=1 at · f v(t, t2).

Let v =
∑d

t=1 at · f(t, 0). Since f v(0, 0) = v, we now have for every t2 ∈ F (including

t2 = 0), f v(0, t2) =
∑d

t=1 at · f v(t, t2). That is, f v(0,∗) =
∑d

t=1 at · f v(t,∗). Since f v(1,∗), . . . , f
v
(d,∗)

are identical to f(1,∗), . . . , f(d,∗) and are hence univariate polynomials of degree < d, their
linear combination f v(0,∗) is also a univariate polynomial of degree < d.

The proof now follows from Proposition 7.14, applied on the function f v (with variables
t1, t2 switched).

We will show that with high probability, at least k − r′ of the plains M ∈ {M1, . . . ,Mk}
are good (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). By Proposition 7.23,
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this implies that with high probability, for at least k − r′ of the indices j ∈ [k], there
exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) : F → F and Av ◦ L′j = Av ◦Mj(0, ∗) :
F → F are both univariate polynomials of degree < m|H| (where the probability is over
L1, . . . , Lk, L

′
1, . . . , L

′
k, A).

Claim 7.24. With probability ≥ 1−2|F|ε−4|F|δ, for at least k−2|F|r of the indices j ∈ [k],
we have that Mj is good.

Proof. For every t1 ∈ F \ {0}, consider the set of lines {Mj(t1, ∗)}j∈[k] and note that this is a
set of k random lines in DX . Hence, by Claim 7.3, using also Claim 7.2, with probability >
1 − ε − 2δ, for at least k − r of the indices j ∈ [k], we have that A ◦Mj(t1, ∗) : F → F is a
univariate polynomial of degree < m|H|.

For every t2 ∈ F\{0}, consider the set of lines {Mj(∗, t2)}j∈[k] and note that this is a set of
k random lines inDX . Hence, by Claim 7.3, using also Claim 7.2, with probability> 1−ε−2δ,
for at least k − r of the indices j ∈ [k], we have that A ◦Mj(∗, t2) : F → F is a univariate
polynomial of degree < m|H|.

Adding up these facts, by the union bound, we obtain that with probability ≥ 1−2|F|ε−
4|F|δ, for at least k − 2|F|r of the indices j ∈ [k], we have that:

1. For every t1 ∈ F \ {0}, A ◦ Mj(t1, ∗) : F → F is a univariate polynomial of degree
< m|H|.

2. For every t2 ∈ F \ {0}, A ◦ Mj(∗, t2) : F → F is a univariate polynomial of degree
< m|H|.

That is, with probability ≥ 1− 2|F|ε− 4|F|δ, for at least k − 2|F|r of the indices j ∈ [k], we
have that Mj is good.

By Proposition 7.23, and since the event E occurs with probability of at least 1− k·2
|F|m−2

Claim 7.24 implies that with probability ≥ 1− 2|F|ε− 4|F|δ− 2k
|F|m−2 > 1− ε′+ δ, for at least

k − r′ of the indices j ∈ [k], there exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) : F → F
and Av ◦ L′j = Av ◦Mj(0, ∗) : F → F are both univariate polynomials of degree < m|H|
(where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). Thus, using Claim 7.2, Lemma 7.22

follows.

Lemma 7.25. Let r′ = 20|F|r. Let ε′ = 4|F|ε. Let z ∈ DX . Let L1, . . . , L2k : F → DX

be 2k random lines, such that for every L ∈ {L1, . . . , L2k}, we have L(0) = z. Let S =
{Lj(t)}j∈[2k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Then, with probability ≥ 1 − ε′, there exists v ∈ F, such that, for at least 2k − r′ of the
indices j ∈ [2k], Av ◦ Lj : F → F is a univariate polynomial of degree < m|H| (where the
probability is over L1, . . . , L2k, A).
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Proof. Let L1, . . . , L2k : F→ DX be 2k random lines, such that for every L ∈ {L1, . . . , L2k},
we have L(0) = z. Let S = {Lj(t)}j∈[2k],t∈F ⊂ DX . Let A ∈R AS. For any v ∈ F, define
Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Denote by E the event that there exists v ∈ F, such that, for at least 2k−r′ of the indices
j ∈ [2k], Av ◦ Lj : F → F is a univariate polynomial of degree < m|H|. We will show that
Pr(E) ≥ 1− ε′, as needed (where the probability is over L1, . . . , L2k, A).

Partition L1, . . . , L2k randomly into L′1, . . . , L
′
k and L′′1, . . . , L

′′
k. Denote by E ′ the event

that for at least k − 2|F|r of the indices j ∈ [k], there exists v ∈ F, such that, both
Av ◦ L′j : F → F and Av ◦ L′′j : F → F are univariate polynomials of degree < m|H|. By
Lemma 7.22, Pr(E ′) ≥ 1− 3|F|ε.

Claim 7.26. Pr(E ′ | ¬E) ≤ 2−|F|r/4

Proof. For every v ∈ F, let Jv be the set of indices j ∈ [2k], such that, Av ◦ Lj : F→ F is a
univariate polynomial of degree < m|H|. Note that for every v 6= v′ ∈ F, Jv ∩ Jv′ = ∅. If the
event ¬E occurs then for every v ∈ F, |Jv| < 2k− r′. Denote by J the largest set Jv and by
J̄ the complement of J in [2k]. Thus, if the event ¬E occurs then |J̄ | > r′.

Given the sets {Jv}v∈F, the probability that E ′ occurs is the probability that when par-
titioning [2k] randomly into k pairs, for at least k − 2|F|r pairs the two indices in the pair
are in the same set Jv. Assuming that |J̄ | > r′, this probability can be bounded by 2−|F|r by
the following argument:

Choose the partition as follows: First choose randomly k′ = r′/2 different indices j1, . . . , jk′
in J̄ . Match the indices j1, . . . , jk′ one by one, each to a random index in [2k] that was still
not chosen. Say that jt ∈ {j1, . . . , jk′} is good if it was matched to an index in a set Jv
such that jt ∈ Jv. Finally, extend the partial partition randomly into a partition of [2k]
into k pairs. Note that the probability for an index jt to be good is at most k

2k−r′ < 0.51,
independently of all previous choices of indices. Thus, the probability that at least k′−2|F|r
indices jt ∈ {j1, . . . , jk′} are good is at most k′ ·

(
k′

2|F|r

)
· 0.51k

′−2|F|r < 2−|F|r/4.

Therefore, Pr(E ′ | ¬E) < 2−|F|r/4.

We can now bound,

1− 3|F|ε ≤ Pr(E ′) ≤ Pr(E ′ | ¬E) + Pr(E) < Pr(E) + 2−|F|r/4

Thus,
Pr(E) > 1− 3|F|ε− 2−|F|r/4 > 1− 4|F|ε

Lemma 7.27. Let r′ = 20|F|r. Let ε′ = 5|F|ε. Let z ∈ DX . Let L1, . . . , Lk : F → DX

be k random lines, such that for every L ∈ {L1, . . . , Lk}, we have L(0) = z. Let S =
{Lj(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.
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Then, with probability ≥ 1 − ε′, there exists v ∈ F, such that, for at least k − r′ of the
indices j ∈ [k], Av ◦ Lj : F → F is a univariate polynomial of degree < m|H| (where the
probability is over L1, . . . , Lk, A).

Proof. Follows immediately by Lemma 7.25 and Claim 7.2.

Lemma 7.28. Let r′ = 40|F|r. Let ε′ = 10|F|ε. Let z ∈ DX . Let L1, . . . , L3k : F → DX

be 3k random lines, such that for every L ∈ {L1, . . . , L3k}, we have L(0) = z. Let S =
{Lj(t)}j∈[3k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Then, with probability ≥ 1 − ε′, there exists v ∈ F, such that, for at least 3k − r′ of the
indices j ∈ [3k], Av ◦ Lj : F → F is a univariate polynomial of degree < m|H| (where the
probability is over L1, . . . , L3k, A).

Proof. Let L1, . . . , L3k : F→ DX be 3k random lines, such that for every L ∈ {L1, . . . , L3k},
we have L(0) = z. Let S = {Lj(t)}j∈[3k],t∈F ⊂ DX . Let A ∈R AS. For any v ∈ F, define
Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v.

Apply Lemma 7.25 twice: once on the set of lines {L1, . . . , L2k}, and once on the set of
lines {Lk+1, . . . , L3k}. By applying Lemma 7.25 twice, and using also Claim 7.2, we know
that with probability ≥ 1− ε′, both of the following are satisfied:

1. There exists v1 ∈ F, such that, for at least 2k − 20|F|r of the indices j ∈ {1, . . . , 2k},
Av ◦ Lj : F→ F is a univariate polynomial of degree < m|H|.

2. There exists v2 ∈ F, such that, for at least 2k−20|F|r of the indices j ∈ {k+1, . . . , 3k},
Av ◦ Lj : F→ F is a univariate polynomial of degree < m|H|.

Note that if both of the above are satisfied then v1 = v2, since 2k − 20|F|r > 3k/2.
Therefore, with probability ≥ 1− ε′, there exists v ∈ F, such that, for at least 3k− 40|F|r of
the indices j ∈ {1, . . . , 3k}, Av ◦Lj : F→ F is a univariate polynomial of degree < m|H|.

7.5 Consistency of X and P0

Let i1, i2, i3 ∈ Hm. Let b1, b2, b3 ∈ {0, 1} be such that φ(i1, i2, i3, b1, b2, b3) = 1, that is, the
clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in the 3-CNF formula ϕ.

In this subsection we will show that, intuitively, when taking a large number of lines
through each of the points i1, i2, i3 ∈ DX , with high probability, there exist values v1, v2, v3 ∈
F, that satisfy (v1 − b1) · (v2 − b2) · (v3 − b3) = 0, and such that:

1. For most of the lines through i1, the answers correspond to low degree polynomials
that “evaluate” the point i1 to v1.

2. For most of the lines through i2, the answers correspond to low degree polynomials
that “evaluate” the point i2 to v2.
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3. For most of the lines through i3, the answers correspond to low degree polynomials
that “evaluate” the point i3 to v3.

This is stated formally in Lemma 7.30. To prove this lemma, we will need to first prove
Lemma 7.29.

Lemma 7.29. Let r′ = 9`|F|r. Let ε′ = 9`|F|ε. Let z = (i1, i2, i3, b1, b2, b3) ∈ (Hm)3 ×H3 =
H` ⊂ F`. We view z as a point in D0. We view i1, i2, i3 ∈ Hm ⊂ Fm as points in DX .

Let L1, . . . , Lk : F → D0 be k random lines, such that for every Lj ∈ {L1, . . . , Lk},
we have Lj(0) = z. For every Lj ∈ {L1, . . . , Lk}, the line Lj is a function Lj : F → F`.
Let L1

j : F → Fm be Lj, restricted to coordinates {1, . . . ,m}. Let L2
j : F → Fm be Lj,

restricted to coordinates {m + 1, . . . , 2m}. Let L3
j : F → Fm be Lj, restricted to coordinates

{2m + 1, . . . , 3m}. We think of L1
j , L

2
j , L

3
j as lines L1

j , L
2
j , L

3
j : F → DX , and note that

L1
j(0) = i1, L

2
j(0) = i2, L

3
j(0) = i3.

Let S0 = {Lj(t)}j∈[k],t∈F ⊂ D0. Let SX = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let S =

S0 ∪ SX ⊂ D. Let A ∈R AS.

Define A0
0 : S0 → F by A0

0(z′) = A0(z′) for z′ 6= z and A0
0(z) = 0. For any i ∈ DX and

v ∈ F, define Ai→vX : SX → F by Ai→vX (i′) = AX(i′) for i′ 6= i and Ai→vX (i) = v.

Then, with probability ≥ 1− ε′, there exist v1, v2, v3 ∈ F, such that, for at least k − r′ of
the indices j ∈ [k], the following is satisfied (where the probability is over L1, . . . , Lk, A):

1. A0
0 ◦ Lj : F→ F is a univariate polynomial of degree < 2`|H|.

2. Ai1→v1
X ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai2→v2
X ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

4. Ai3→v3
X ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

5. φ̂(z) · (v1 − b1) · (v2 − b2) · (v3 − b3) = 0

Proof. Let L1, . . . , Lk : F → D0 be k random lines, such that for every Lj ∈ {L1, . . . , Lk},
we have Lj(0) = z. For every j ∈ [k]: Let L1

j : F → Fm be Lj, restricted to coordinates
{1, . . . ,m}. Let L2

j : F→ Fm be Lj, restricted to coordinates {m+1, . . . , 2m}. Let L3
j : F→

Fm be Lj, restricted to coordinates {2m+1, . . . , 3m}. We view L1
j , L

2
j , L

3
j as L1

j , L
2
j , L

3
j : F→

DX .

Let S0 = {Lj(t)}j∈[k],t∈F ⊂ D0. Let SX = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let

S = S0 ∪ SX ⊂ D. Let A ∈R AS.

Define A0
0 : S0 → F by A0

0(z′) = A0(z′) for z′ 6= z and A0
0(z) = 0. For any i ∈ DX and

v ∈ F, define Ai→vX : SX → F by Ai→vX (i′) = AX(i′) for i′ 6= i and Ai→vX (i) = v.

Denote by E the event that for every j ∈ [k], and every w ∈ {1, 2, 3} the line Lwj is in
a general position (as a line in Fm), that is, it’s image is not a single point. Note that the
event E occurs with probability of at least 1− 3k

|F|m−1 .

54



By Lemma 7.11, using Claim 7.2, with probability ≥ 1−8`|F|ε−δ, for at least k−8`|F|r of
the indices j ∈ [k], we have that A0

0◦Lj : F→ F is a univariate polynomial of degree < 2`|H|.
By Lemma 7.27, using Claim 7.2, with probability ≥ 1 − 5|F|ε − δ, there exists v1 ∈ F,

such that, for at least k − 20|F|r of the indices j ∈ [k], we have that Ai1→v1
X ◦ L1

j : F→ F is
a univariate polynomial of degree < m|H|.

By Lemma 7.27, using Claim 7.2, with probability ≥ 1 − 5|F|ε − δ, there exists v2 ∈ F,
such that, for at least k − 20|F|r of the indices j ∈ [k], we have that Ai2→v2

X ◦ L2
j : F→ F is

a univariate polynomial of degree < m|H|.
By Lemma 7.27, using Claim 7.2, with probability ≥ 1 − 5|F|ε − δ, there exists v3 ∈ F,

such that, for at least k − 20|F|r of the indices j ∈ [k], we have that Ai3→v3
X ◦ L3

j : F→ F is
a univariate polynomial of degree < m|H|.

For every t ∈ F \ {0}, consider the set of points {Lj(t)}j∈[k] and note that this is a set of
k random points in D0. Each point Lj(t) ∈ F` can be written as

Lj(t) = (L1
j(t), L

2
j(t), L

3
j(t), Lj(t)`−2, Lj(t)`−1, Lj(t)`) ∈ (Fm)3 × F3 = F`

where Lj(t)`−2, Lj(t)`−1, Lj(t)` are the last 3 coordinates of Lj(t). By Claim 7.9, using also
Claim 7.2, for every t ∈ F\{0}, with probability > 1− ε−2δ, for at least k− r of the indices
j ∈ [k], we have

A0(Lj(t)) = φ̂(Lj(t)) · (AX(L1
j(t))− Lj(t)`−2) · (AX(L2

j(t))− Lj(t)`−1) · (AX(L3
j(t))− Lj(t)`)

If in addition the event E occurs, this implies that for every v1, v2, v3 ∈ F,

A0
0(Lj(t)) = φ̂(Lj(t))·(Ai1→v1

X (L1
j(t))−Lj(t)`−2)·(Ai2→v2

X (L2
j(t))−Lj(t)`−1)·(Ai3→v3

X (L3
j(t))−Lj(t)`)

Adding up all this, by the union bound, we obtain that with probability ≥ 1− ε′, there
exist v1, v2, v3 ∈ F, such that, for at least k−r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1, . . . , Lk, A):

1. A0
0 ◦ Lj : F→ F is a univariate polynomial of degree < 2`|H|.

2. Ai1→v1
X ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai2→v2
X ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

4. Ai3→v3
X ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

5. For every t ∈ F \ {0},
A0

0(Lj(t)) =

φ̂(Lj(t)) · (Ai1→v1
X (L1

j(t))−Lj(t)`−2) · (Ai2→v2
X (L2

j(t))−Lj(t)`−1) · (Ai3→v3
X (L3

j(t))−Lj(t)`)

Note that since both sides of the equation are polynomials of degree < |F| in the
variable t, the equation must be satisfied for t = 0 as well. Substituting t = 0, since
Lj(0) = z, we have

0 = φ̂(z) · (v1 − b1) · (v2 − b2) · (v3 − b3)
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Lemma 7.30. Let r′ = 9`|F|r. Let ε′ = 9`|F|ε + δ. Let i1, i2, i3 ∈ Hm. We view i1, i2, i3 as
points in DX . Let b1, b2, b3 ∈ {0, 1} be such that φ(i1, i2, i3, b1, b2, b3) = 1, that is, the clause
(wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in the 3-CNF formula ϕ.

Let L1
1, . . . , L

1
k : F → DX be k random lines, such that for every L ∈ {L1

1, . . . , L
1
k},

we have L(0) = i1. Let L2
1, . . . , L

2
k : F → DX be k random lines, such that for every

L ∈ {L2
1, . . . , L

2
k}, we have L(0) = i2. Let L3

1, . . . , L
3
k : F→ DX be k random lines, such that

for every L ∈ {L3
1, . . . , L

3
k}, we have L(0) = i3.

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Then, with probability ≥ 1− ε′, there exist v1, v2, v3 ∈ F, such that, for at least k − r′ of
the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. Ai1→v1 ◦ L1
j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ L2
j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ L3
j : F→ F is a univariate polynomial of degree < m|H|.

4. (v1 − b1) · (v2 − b2) · (v3 − b3) = 0

Proof. Follows immediately by Lemma 7.29, applied for the point z = (i1, i2, i3, b1, b2, b3),
and Claim 7.2.

7.6 Property R(ε′, r′)

Recall that we have a (fanin 2) Boolean circuit Cn of size N = O(t(n)s(n)) that computes L
on inputs of length n. The circuit Cn is layered, with O(s(n)) gates in each layer, such that
a child of a gate in layer i+ 1 is either an input variable (or a negation of an input variable)
or a gate in layer i. Recall that we assume that in the circuit Cn all negations are on input
variables, and that the two children of any gate in the circuit are different.

Recall that the gates of the circuit are indexed by the numbers 1, . . . , N , in an order that
agrees with the layers of the circuit. We assume that 1, . . . , n are the indexes of the n input
variables and n+ 1, . . . , 2n are the indexes of their negations, and that N is the index of the
special output gate.

Recall that ϕ(w1, . . . , wN) is a 3-CNF Boolean formula, such that, ϕ(w1, . . . , wN) = 1 if
and only if w1, . . . , wN is the computation of the circuit Cn on the input x = (x1, . . . , xn),
and wN = 1. Denote by x1, . . . , xN the computation of the circuit Cn on the input x =
(x1, . . . , xn). Thus, ϕ(w1, . . . , wN) = 1 if and only if (w1, . . . , wN) = (x1, . . . , xN), and
xN = 1.
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Recall that since N = |H|m, we identify [N ] and Hm by the lexicographic order on Hm,
and view w1, . . . , wN and x1, . . . , xN as indexed by i ∈ Hm (rather than i ∈ [N ]). We hence
view x = (x1, . . . , xN) as a function x : Hm → {0, 1} (given by x(i) = xi, where we identify
[N ] and Hm).

Recall that φ : (Hm)3 × {0, 1}3 → {0, 1} is a function where φ(i1, i2, i3, b1, b2, b3) = 1 if
and only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in ϕ, and φ̂ : F` → F is
the low-degree extension of φ.

We will now give a definition that will be central in the rest of the section. Intuitively, a
subset B ⊂ Hm ⊂ DX satisfies property R(ε′, r′) if when taking k lines through every point
in B, with high probability, for every point i ∈ B, for most of the lines through the point i,
the answers correspond to low degree polynomials that “evaluate” the point i to xi.

To make sure that the property is well defined, we will limit ourselves to sets B ⊂ Hm

such that k|B||F| ≤ kmax. Since we identify Hm and [N ], we view each set B also as a subset
of [N ]. We will think of every set B also as a subset of DX .

Let B be the set of all subsets B ⊂ [N ], such that, k|B||F| ≤ kmax/2.

Definition 7.31. Property R(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let B ⊂ Hm be such that k|B||F| ≤ kmax. We view B as a subset of
DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

We say that the set B satisfies property R(ε′, r′) (also denoted B ∈ R(ε′, r′)) if with
probability ≥ 1− ε′, for every i ∈ B, for at least k− r′ of the lines L ∈ {Li1, . . . , Lik}, we have
that Ai→xi ◦L : F→ F is a univariate polynomial of degree < m|H| (where the probability is
over {Lij}i∈B,j∈[k], A).

We think of the empty set as satisfying R(ε′, r′) for any ε′, r′.

In all that comes below, we fix
r′ = 9`|F|r

Lemma 7.32. Let i ∈ [2n]. Then, {i} ∈ R(ε′, r′), where ε′ = 10`|F|ε, and r′ = 9`|F|r.

Proof. We will give the proof for i ∈ [n], such that, xi = 0. The proof for i ∈ [n], such that,
xi = 1, and for i ∈ {n+ 1, . . . , 2n} is similar.

Recall that for every i ∈ [n], the formula ϕ contains a clause that checks that wi = xi.
For example, if xi = 0, we have the clause (wi = 0) ∨ (wi = 0) ∨ (wi = 0) that ensures that
wi = 0.

Let L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k : F → DX be 3k random lines, such that for every

line L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, we have L(0) = i.
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Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and Ai→v(i) = v.

By Lemma 7.30, with probability ≥ 1 − 9`|F|ε − δ, there exist v1, v2, v3 ∈ F, such that,
for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. Ai→v1 ◦ L1
j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai→v2 ◦ L2
j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai→v3 ◦ L3
j : F→ F is a univariate polynomial of degree < m|H|.

4. v1 · v2 · v3 = 0.

On the other hand, by Lemma 7.28, with probability ≥ 1 − 10|F|ε, there exists v ∈ F,
such that, for at least 3k − 40|F|r of the lines L ∈ {L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k},

Ai→v ◦ L : F→ F is a univariate polynomial of degree < m|H|.
Thus, by the union bound, with probability ≥ 1 − 9`|F|ε − 10|F|ε − δ, there exist

v1, v2, v3, v ∈ F, such that, v1 · v2 · v3 = 0, and

1. For at least k − r′ of the indices j ∈ [k], Ai→v1 ◦ L1
j : F→ F is a univariate polynomial

of degree < m|H|.

2. For at least k − r′ of the indices j ∈ [k], Ai→v2 ◦ L2
j : F→ F is a univariate polynomial

of degree < m|H|.

3. For at least k − r′ of the indices j ∈ [k], Ai→v3 ◦ L3
j : F→ F is a univariate polynomial

of degree < m|H|.

4. For at least 3k− 40|F|r of the lines L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, Ai→v ◦L :

F→ F is a univariate polynomial of degree < m|H|.

Since, 40|F|r + r′ < k, this implies v = v1 = v2 = v3, and hence v = 0.

Thus, with probability ≥ 1 − 9`|F|ε − 10|F|ε − δ > 1 − ε′ + δ, for at least k − r′ of the
lines L ∈ {L1

1, . . . , L
1
k}, Ai→0 ◦ L : F→ F is a univariate polynomial of degree < m|H|.

The proof of the lemma hence follows by Claim 7.2.

Lemma 7.33. Let i1, i2, i3 ∈ [N ] be such that the gate indexed by i1 in the circuit Cn has
children indexed by i2, i3. Let B ∈ B be such that i2, i3 ∈ B. Assume that B ∈ R(ε′, r′),
where r′ = 9`|F|r. Then B ∪ {i1} ∈ R(ε′′, r′), where ε′′ = ε′ + 9`|F|ε+ 3δ.

Proof. Let B′ = B ∪ {i1}. For every i ∈ B′, let Li1, . . . , L
i
k : F → DX be k random lines,

such that for every L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B′,j∈[k],t∈F ⊂ DX . Let A ∈R AS.
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For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Since the gate indexed by i1 in the circuit Cn has children indexed by i2, i3, the formula
ϕ contains the clause (wi2 = xi2) ∧ (wi3 = xi3)→ (wi1 = xi1).

By Lemma 7.30 and Claim 7.2, with probability ≥ 1−9`|F|ε−2δ, there exist v1, v2, v3 ∈ F,
such that, for at least k − r′ of the indices j ∈ [k], the following is satisfied (where the
probability is over {Lij(t)}i∈B′,j∈[k],t∈F, A):

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

4. (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1)

On the other hand, since the set B satisfies property R(ε′, r′), using Claim 7.2, with
probability ≥ 1 − ε′ − δ, for every i ∈ B: For at least k − r′ of the lines L ∈ {Li1, . . . , Lik},
we have that Ai→xi ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Thus, by the union bound, with probability ≥ 1−ε′−9`|F|ε−3δ, there exist v1, v2, v3 ∈ F,
such that, (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1), and

1. For at least k− r′ of the indices j ∈ [k], Ai1→v1 ◦Li1j : F→ F is a univariate polynomial
of degree < m|H|.

2. For at least k− r′ of the indices j ∈ [k], Ai2→v2 ◦Li2j : F→ F is a univariate polynomial
of degree < m|H|.

3. For at least k− r′ of the indices j ∈ [k], Ai3→v3 ◦Li3j : F→ F is a univariate polynomial
of degree < m|H|.

4. For every i ∈ B, for at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that
Ai→xi ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Since, r′ + r′ < k, this implies v2 = xi2 , v3 = xi3 and hence also v1 = xi1 .

Thus, with probability ≥ 1− ε′ − 9`|F|ε− 3δ,

1. For at least k−r′ of the indices j ∈ [k], Ai1→xi1 ◦Li1j : F→ F is a univariate polynomial
of degree < m|H|.

2. For every i ∈ B, for at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that
Ai→xi ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Thus B′ ∈ R(ε′′, r′)
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Lemma 7.34. Let B1, B2 ∈ B. If B1 ∈ R(ε1, r
′) and B2 ∈ R(ε2, r

′) then B1∪B2 ∈ R(ε′, r′),
where ε′ = ε1 + ε2 + 2δ.

Proof. Follows immediately by the union bound and (two applications of) Claim 7.2.

Lemma 7.35. Let B1, B2 ∈ B. If B1 ⊂ B2 and B2 ∈ R(ε2, r
′) then B1 ∈ R(ε1, r

′), where
ε1 = ε2 + δ.

Proof. Follows immediately by Claim 7.2.

7.7 Proof of Lemma 7.1

Lemma 7.1 will be superseded by Lemma 10.1. We include its proof since: (1) it is simpler
than the proof of Lemma 10.1, (2) it allows for a more modular proof and (3) what remains
to be shown is relatively short.

For the rest of Section 7, we assume that kmax ≥ 4sk|F| + 6k`|F|2. We assume for
a contradiction that for some x 6∈ L, there exists a δ-no-signaling family of distributions
{AS}S⊂D,|S|≤kmax that fools V ′ with probability larger than 1 − ε. That is, the verifier V ′

accepts with probability > 1−ε, where on queries Q, the answers are given (probabilistically)
by A ∈R AQ.

For every i ∈ {2n, . . . , N}, define Bi ∈ B as follows: Bi contains all the indexes 2n < i′ ≤
i, such that, in the circuit Cn, the gate indexed by i′ is either in the same layer as the gate
indexed by i, or in the previous layer. Note that B2n = ∅ (this was added for the simplicity
of the notation) and recall that we think of the empty set as satisfying R(ε′, r′) for any ε′.

Lemma 7.36. Assume that kmax ≥ 4sk|F| + 6k`|F|2. Let i ∈ {2n + 1, . . . , N}. If Bi−1 ∈
R(ε′, r′), where r′ = 9`|F|r, then Bi ∈ R(ε′′, r′), where ε′′ = ε′ + 30`|F|ε.

Proof. Denote by i1, i2 the indexes of the two children of the gate indexed by i in the
circuit Cn. Note that {i1, i2} ⊂ [2n] ∪ Bi−1. Denote B′ = {i1, i2} ∩ [2n]. Note also that
Bi ⊆ Bi−1 ∪ {i}.

By Lemma 7.32 and Lemma 7.34, B′ ∈ R(20`|F|ε+ 2δ, r′).

Hence, by Lemma 7.34, B′ ∪Bi−1 ∈ R(ε′ + 20`|F|ε+ 4δ, r′).

Hence, by Lemma 7.33, B′ ∪Bi−1 ∪ {i} ∈ R(ε′ + 29`|F|ε+ 7δ, r′).

Hence, by Lemma 7.35, Bi ∈ R(ε′ + 29`|F|ε+ 8δ, r′).

Lemma 7.37. Assume that kmax ≥ 4sk|F|+6k`|F|2. Then, BN ∈ R(ε′, r′), where r′ = 9`|F|r
and ε′ = 30N`|F|ε = 0.3.

Proof. Follows immediately by an inductive application of Lemma 7.36, and since ε =
1

100N`|F| .
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Proof of Lemma 7.1

Proof. Let r′ = 9`|F|r.
Consider the point N ∈ [N ], viewed as a point in Hm ⊂ DX . Recall that the formula ϕ

contains a clause (wN = 1) ∨ (wN = 1) ∨ (wN = 1) that checks that wN = 1.

Let L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k : F → DX be 3k random lines, such that for every

line L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, we have L(0) = N .

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define AN→v : S → F by AN→v(i′) = A(i′) for i′ 6= N and AN→v(N) = v.

By Lemma 7.30, with probability ≥ 1 − 9`|F|ε − δ, there exist v1, v2, v3 ∈ F, such that,
for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):

1. AN→v1 ◦ L1
j : F→ F is a univariate polynomial of degree < m|H|.

2. AN→v2 ◦ L2
j : F→ F is a univariate polynomial of degree < m|H|.

3. AN→v3 ◦ L3
j : F→ F is a univariate polynomial of degree < m|H|.

4. (v1 − 1) · (v2 − 1) · (v3 − 1) = 0.

On the other hand, by (three applications of) Lemma 7.37 and Claim 7.2:

1. With probability ≥ 1 − 0.3 − 2δ, for at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we

have that AN→xN ◦ L : F→ F is a univariate polynomial of degree < m|H|.

2. With probability ≥ 1 − 0.3 − 2δ, for at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we

have that AN→xN ◦ L : F→ F is a univariate polynomial of degree < m|H|.

3. With probability ≥ 1 − 0.3 − 2δ, for at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we

have that AN→xN ◦ L : F→ F is a univariate polynomial of degree < m|H|.

Thus, by the union bound, with probability > 0.1−9`|F|ε−7δ > 0, there exist v1, v2, v3 ∈
F, such that, (v1 − 1) · (v2 − 1) · (v3 − 1) = 0, and

1. For at least k− r′ of the indices j ∈ [k], AN→v1 ◦L1
j : F→ F is a univariate polynomial

of degree < m|H|.

2. For at least k− r′ of the indices j ∈ [k], AN→v2 ◦L2
j : F→ F is a univariate polynomial

of degree < m|H|.

3. For at least k− r′ of the indices j ∈ [k], AN→v3 ◦L3
j : F→ F is a univariate polynomial

of degree < m|H|.
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4. For at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN→xN ◦ L : F→ F is a

univariate polynomial of degree < m|H|.

5. For at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN→xN ◦ L : F→ F is a

univariate polynomial of degree < m|H|.

6. For at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN→xN ◦ L : F→ F is a

univariate polynomial of degree < m|H|.

Since, r′ + r′ < k, this implies xN = v1 = v2 = v3, and hence xN = 1. Thus, the original
input x is in the language L.

8 Soundness of V in the Base PCP

Lemma 8.1 will be superseded by Lemma 11.1. We include its proof for completeness.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , is the security parameter of the PCP,
and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and |F| are
bounded by polylog(N).

Lemma 8.1. For a security parameter k ≤ poly(n), such that 4|F|4 ≤ k ≤ N , fix the
following parameters: Let r = k

40`|F| . Let ε = 2−r/2. Let kmax = 4sk|F| + 12k`|F|2, where

s = O(s(n)) is the maximal number of gates in a layer of the circuit Cn. Let δ = 1

|F|8k`|F|2
.

Then, V has soundness ε against (kmax, δ)-no-signaling strategies.

Proof. Assume for a contradiction that V doesn’t have soundness ε against (kmax, δ)-no-
signaling strategies. By Lemma 6.1, since δ < ε

8·|F|6k`|F|2
, we know that V ′ (with parameter r)

doesn’t have soundness 1− ε′ against (k′max, δ
′)-no-signaling strategies, where k′max = kmax−

6k`|F|2 = 4sk|F| + 6k`|F|2, and δ′ = 8δ|F|6k`|F|2/ε < 1

|F|k`|F|2
, and ε′ = (10`|F|2−r + 2δ)/ε <

1
100N`|F| .

Hence V ′ (with parameter r) doesn’t have soundness 1− ε′ against (k′max, δ
′)-no-signaling

strategies, where k′max = 4sk|F|+ 6k`|F|2, and δ′ = 1

|F|k`|F|2
, and ε′ = 1

100N`|F| .

This contradicts Lemma 7.1.

9 The Augmented PCP

In this section we describe the construction of the augmented PCP system, based on the base
PCP system described in Section 5.

Let L be a language in DTISP(t(n), s(n)), where poly(n) ≤ t(n) ≤ exp(n) and max(n, log(t(n))) ≤
s(n) ≤ t(n). Let x be an input of length n. Since L ∈ DTISP(t(n), s(n)), for any n there
is a (fanin 2) Boolean circuit Cn of size N = O(t(n)s(n)) that computes L on inputs of
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length n. Moreover, the circuit Cn is layered, with at most t = O(t(n)) layers that consist of
s = O(s(n)) gates each. For simplicity, we think of the input variables x1, . . . , xn and their
negations as being included in each layer of Cn (since s ≥ n this property can be achieved
by increasing s by a constant factor)

We augment each circuit Cn to produce a circuit C ′n as follows.

Let G be a finite field of characteristic 2 and size |G| = Θ(log2 s). Fix an arbitrary set
HG ⊂ G of size |HG| = log s and a dimension mG = log s

log log s
(such that |HG|mG = s and

mG · |HG| < |G|−1
2

). (For simplicity and without loss of generality we assume that log s and
log s

log log s
are integers). We construct a circuit CLDE : {0, 1}s → {0, 1}poly(s) by the following

two-step process:

1. Given an input α ∈ {0, 1}s, the circuit CLDE first computes the LDE α̂ of α w.r.t.
G, HG,mG. Recall that the polynomial α̂ : GmG → G is the (unique) individual degree
|HG|−1 polynomial that agrees with α on HmG

G (when α is interpreted as the truth table
of a function α : HmG

G → {0, 1}), see Section 4.6. Denote the output of this step by α′.
We note that α′ can be computed by a Boolean circuit of size poly(|G|mG) = poly(s)
and depth O

(
mG · log(|G|) + logmG · polylog(|G|)

)
= O(log(s)) (see Appendix A).

2. As its second (seemingly redundant) step, the circuit CLDE verifies that the restriction
of α′ to every line L : G → GmG is a degree mG|HG| univariate polynomial. That is,
for every line L, the circuit CLDE checks that the function α′ ◦ L is a degree mG|HG|
univariate polynomial. For every such line L there is a corresponding output bit of
CLDE that equals 1 if α′ ◦L has low degree and 0 otherwise. (Indeed, if α′ is in fact the
LDE of α then every output bit of CLDE should have value 1.)

We note that testing the degree of a univariate function f : G→ G can be done by a
Boolean circuit of size poly(|G|) = polylog(s) and depth polylog(|G|) = polylog(log(s)).

We denote by d the depth of CLDE and note that d = O(log s). We also note that the circuit
CLDE has size poly(s) but if that size is smaller than 2d ·s·log5(t) then we (artificially) increase
the size of CLDE to be 2d · s · log5(t) while maintaining the depth d (by simply adding dummy
gates).13 We assume that CLDE contains no negation gates, but may contain arbitrary fan-in
2 Boolean gates. We also note that CLDE can be generated by a Turing machine in space
O(log s).

The circuit C ′n is constructed by adding to Cn the computation of CLDE on every layer of Cn.
Thus, the circuit C ′n is composed of t layers, where each layer consists of the corresponding
layer of Cn and the computation of CLDE on that layer. That is, the first layer consists
of the first layer of Cn and the computation of CLDE on the first layer of Cn and for each
µ ∈ {2, . . . , t}, the µ-th layer of C ′n consists of the computation of the µ-th layer of Cn from
the (µ−1)-th layer of C ′n and the computation of CLDE of the µ-th layer of Cn. We denote the
size of C ′n by N ′. Recall that the input variables x1, . . . , xn and their negations are included

13This step can actually be avoided and we do it solely for convenience.
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in each layer of Cn. Thus, the layer µ of C ′n can be computed directly from layer µ− 1 of C ′n.
Note that C ′n has depth t · d and that

s · t · 2d · log5(t) ≤ N ′ ≤ poly(N).

We call the gate indexed by N ′ the special output gate and note that its value represents
the decision of whether x ∈ L. We also assume without loss of generality that in the circuit
C ′n all negations are on input variables, and that the two children of any gate in the circuit
are different (this property can be achieved by duplicating each gate in the circuit twice,
increasing the number of gates in each layer by a factor of 2). Note however that C ′n contains
arbitrary fan-in 2 Boolean gates. Lastly, we note that there exists an O(logN ′) space Turing
machine that on input n ∈ N outputs the circuit C ′n.

For every layer µ ∈ [t] we denote by βµ ⊂ [N ′] the set of indices of gates in C ′n that are
associated with the LDE of the µ-th layer of Cn. For z ∈ GmG , we denote by βµ[z] ⊂ βµ the
set of indices of the log2 |G| gates associated with the point z in the computation of the LDE

of layer µ in C ′n. For a sequence of indices Z ⊂ GmG we denote by βµ[Z]
def
= ∪z∈Zβµ(z).

We construct the formulas ϕ, ϕC, ϕx, as well as the parameters H, F, m and `, exactly as
in Section 5 but with respect to the circuit C ′n (of size N ′) rather than Cn (of size N). We
also construct the corresponding functions φ, φC′ , φx and φ̂, φ̂C′ , φ̂x as in Section 5.

In addition, we construct a formula ϕextra(w1, . . . , wN ′) as follows. For every i ∈ [N ′], the
formula ϕextra contains a (seemingly redundant) clause that verifies that wi has a Boolean
value. Additionally, for every µ ∈ [t], we add to ϕextra clauses that verify that each one of
the output gates of the corresponding CLDE circuit of layer µ has value 1. In other words,

ϕextra(w1, . . . , wN ′) =∧
i∈[N ′]

(
(wi = 0) ∨ (wi = 0) ∨ (wi = 1)

)
∧

∧
i is output gate of CLDE

(
(wi = 1) ∨ (wi = 1) ∨ (wi = 1)

)
.

Let φextra : (Hm)3×{0, 1}3 → {0, 1} be the function where φextra(i1, i2, i3, b1, b2, b3) = 1 if
and only if the clause (wi1 = b1)∨ (wi2 = b2)∨ (wi3 = b3) appears in ϕextra. Extend φextra to
be a function φextra : H3m+3 → {0, 1} by setting it to be 0 for inputs outside of H3m×{0, 1}3.
Let φ̂extra : F` → F be the low-degree extension of φextra.

Since there is an O(logN ′) space deterministic Turing machine that on input n outputs
ϕextra, by Proposition 4.2, the function φ̂extra can be computed in O(logN ′) space.

Let ϕ′ = ϕ ∧ ϕextra and let φ′ : (Hm)3 × {0, 1}3 → {0, 1} be the function where
φ′(i1, i2, i3, b1, b2, b3) = 1 if and only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3)
appears in ϕ′. Extend φ′ to be a function φ′ : H3m+3 → {0, 1} by setting it to be 0 for inputs
outside of H3m × {0, 1}3. Let φ̂′ : F` → F be the low-degree extension of φ′.

Since the sets of clauses of ϕ and ϕextra are disjoint, we have φ̂′ = φ̂+ φ̂extra = φ̂x + φ̂C′ +
φ̂extra.

The PCP proof (i.e., the polynomialsX,P0, . . . , P`) is constructed exactly as in Section 5.1
except that we use the circuit C ′n and the formula ϕ′ (rather than Cn and ϕ). The PCP verifier
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V (resp., the relaxed verifier V ′) is constructed exactly as in Section 5.2 (resp., Section 5.3)
with respect to the new PCP proof.

10 Soundness of V ′ in the Augmented PCP

In this section we will show that the relaxed verifier V ′ cannot be fooled to accept x 6∈ L,
with probability close to 1.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N ′, is the security parameter of the PCP,
and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and |F| are
bounded by polylog(N ′).

Recall that t is the depth of the (original) circuit Cn and that d = O(log s) is the depth
of the circuit CLDE. We will prove the following lemma.

Lemma 10.1. Assume that kmax ≥ kpolylog(s) log(t)|F| + 6k`|F|2. Assume that δ <
1

1000N ′`|F| . Fix ε = 1
100N ′`|F| , and note that ε > 10 max

(
δ, 2k
|F|m−2

)
. Assume r < k

20`|F| . Then,

V ′ has soundness 1− ε against (kmax, δ)-no-signaling strategies.

The rest of the section is devoted to the proof of Lemma 10.1. From now on, through
Section 10, fix kmax, δ, ε, r to be as in the statement of Lemma 10.1 and fix

r′ = 9`|F|r

(note that r′ < k/2). We also fix a parameter

ν = 10(log(t) + d).

We will assume for a contradiction that for some x 6∈ L, there exists a δ-no-signaling
family of distributions {AS}S⊂D,|S|≤kmax that fools V ′ with probability larger than 1 − ε.
That is, the verifier V ′ accepts with probability > 1 − ε, where on queries Q, the answers
are given (probabilistically) by A ∈R AQ.

10.1 Reading Multiple Points Together

Let B ⊆ Hm and let α : B → {0, 1}. We think of B as specifying a subset of the variables
of the formula ϕ′ and of α as an assignment to B. We say that α is consistent with respect
to B if it satisfies all the clauses of ϕ′ in which only variables in B appear.

Lemma 10.2. Let B ⊆ Hm such that 3k|F||B| < kmax.

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i. Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.
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Then, with probability ≥ 1 − 200|B|3`|F|ε, there exists α : B → {0, 1} that is consistent
with respect to B, such that for every i ∈ B, for at least k− r′ of the indices j ∈ [k], it holds
that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H| (where the probability
is over {Lij}i∈B,j∈[k], A).

Proof. For every i ∈ B, let Li1, . . . , L
i
k, L

i
k+1, . . . , L

i
2k, L

i
2k+1, . . . , L

i
3k : F→ DX be 3k random

lines, such that for every L ∈
{
Lij
}
j∈[3k]

, we have L(0) = i. Let S = {Lij(t)}i∈B,j∈[3k],t∈F ⊂
DX . Let A ∈R AS.

By Lemma 7.28, using also Claim 7.2, for every i ∈ B, with probability ≥ 1− 10|F|ε− δ,
there exists vi ∈ F, such that, for at least 3k− r′ of the indices j ∈ [3k], Ai→vi ◦Lij : F→ F is
a univariate polynomial of degree < m|H| (where the probability is over {Lij}i∈B,j∈[3k], A).14

Let ψ = (wi1 = b1 ∨ wi2 = b2 ∨ wi3 = b3) be a clause in ϕ′ such that i1, i2, i3 ∈ B.
By Lemma 7.30 (using also Claim 7.2), with probability ≥ 1 − 9`|F|ε − 2δ there exist

v
(ψ)
1 , v

(ψ)
2 , v

(ψ)
3 ∈ F such that for at least k − r′ of the indices j ∈ [k] it holds that:

1. Ai1→v
(ψ)
1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v
(ψ)
2 ◦ Li2k+j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v
(ψ)
3 ◦ Li32k+j : F→ F is a univariate polynomial of degree < m|H|.

4. (v
(ψ)
1 − b1) · (v(ψ)

2 − b2) · (v(ψ)
3 − b3) = 0.

By the union bound, and since B contains at most 8|B|3 clauses, with probability ≥
1−|B|(10|F|ε+ δ)−8|B|3(9`|F|ε+2δ) > 1−100|B|3`|F|ε, for every i ∈ B there exists vi ∈ F
and for every clause ψ = (wi1 = b1 ∨ wi2 = b2 ∨ wi3 = b3) in ϕ′ that contains only variables

from B, there exist v
(ψ)
1 , v

(ψ)
2 , v

(ψ)
3 ∈ F such that:

1. For at least 3k−r′ of the indices j ∈ [3k], Ai→vi ◦Lij : F→ F is a univariate polynomial
of degree < m|H|.

2. For at least k − r′ of the indices j ∈ [k],

(a) Ai1→v
(ψ)
1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

(b) Ai2→v
(ψ)
2 ◦ Li2k+j : F→ F is a univariate polynomial of degree < m|H|.

(c) Ai3→v
(ψ)
3 ◦ Li32k+j : F→ F is a univariate polynomial of degree < m|H|.

(d) (v
(ψ)
1 − b1) · (v(ψ)

2 − b2) · (v(ψ)
3 − b3) = 0.

14We note that the statement of Lemma 7.28 refers to a smaller value of r′ but of course, in particular, it
also holds for larger values of r′.
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where the probability is over {Lij}i∈B,j∈[3k], A. But since r′ + r′ < k, the latter implies that

for every clause ψ = (wi1 = b1 ∨ wi2 = b2 ∨ wi3 = b3) it holds that v
(ψ)
1 = vi1 , v

(ψ)
2 = vi2 and

v
(ψ)
3 = vi3 and in particular, (vi1 − b1) · (vi2 − b2) · (vi3 − b3) = 0. Furthermore, since for every
i ∈ B there is a clause of the form i1 = i2 = i3 = i and b1 = b2 = 0 and b3 = 1 (indeed,
these clauses were added in ϕextra to ensure a Boolean value), for every i ∈ B it holds that
vi · vi · (vi − 1) = 0 and so vi ∈ {0, 1}.

Thus, with probability ≥ 1−100|B|3`|F|ε, there exists an assignment α : B → {0, 1} that
is consistent with respect to B such that for every i ∈ B, for at least 3k − r′ of the indices
j ∈ [3k] it holds that Ai→α(i) ◦ Lij : F → F is a univariate polynomial of degree < m|H|
(where the probability is over {Lij}i∈B,j∈[3k], A).

The lemma follows from Claim 7.2.

10.2 The Main Lemma

Fix a layer µ ∈ [t] of the circuit C ′n. Recall that:

• βµ ⊂ [N ′] refers to the set of indices of gates in C ′n that are associated with the LDE of
the µ-th layer of Cn.

• For every point z ∈ GmG we denote by βµ[z] ⊂ βµ the set of indices of the log2 |G|
gates associated with the point z in the computation of the LDE of layer µ in C ′n. For

a sequence Z ⊂ GmG we denote by βµ[Z]
def
= ∪z∈Zβµ(z).

• The values x1, . . . , xN ′ denote the computation of the circuit C ′n on the input (x1, . . . , xn).

Lemma 10.3. Let λ ∈ βµ be a fixed point and let Z = (z1, . . . , zν) be a sequence of ν points,
where each point zi is uniformly distributed in GmG.

Let B = βµ[Z] ∪ {λ}. We view the random variable B as being distributed over subsets
of Hm ⊂ DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Let η > 0. Suppose that with probability ≥ 1− η, for every i ∈ βµ[Z], for at least k − r′
of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate polynomial of
degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Then, with probability ≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν, for every i ∈ {λ} ∪ βµ[Z], for
at least k − r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate
polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).
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Proof. Let z0 ∈ GmG be the point such that λ ∈ βµ[z0] (i.e., λ belongs to the block associated
with the point z0). Let Z = (z1, . . . , zν) be a sequence of ν uniformly distributed points in
GmG . For every i ∈ [ν], let Lz0,zi : G→ GmG be the line Lz0,zi(t) = (zi − z0) · t+ z0 (i.e., the
line that passes through the points z0 and zi).

For every line Lz0,zi let Bz0,zi ⊂ [N ′] be the indices of all gates that are associated with
the verification in C ′n that the LDE of layer µ restricted to the line Lz0,zi is a degree mG|HG|
univariate polynomial (recall that such gates are a part of the CLDE circuit of the µ-th layer of
C ′n, see Section 9). Let B′ = ∪i∈[ν]Bzo,zi . Note that |B′| = ν ·polylog(s) (since the verification
can be implemented by a Boolean circuit of size polylog(s), see Section 9).

For every assignment α : B′ → {0, 1}, we denote by αG : GmG → G the partial function15

αG(ζ)
def
= α(βµ[ζ]) ∈ {0, 1}log2 |G| (where αG is only defined over ∪i∈[ν]

{
Lz0,zi(u) : u ∈ G

}
).

We say that α is consistent (w.r.t. the sequence Z) if for every i ∈ [ν] the function αG ◦Lz0,zi
is a degree mG|HG| (univariate) polynomial. We say that the assignment α : B′ → {0, 1} is
correct at the point ζ ∈ ∪i∈[ν]

{
Lz0,zi(u) : u ∈ G

}
if for every i ∈ βµ(ζ) ⊆ B′ it holds that

α(i) = xi. We say that the assignment α is correct at a sequence of points if it is correct at
every point in the sequence.

For every i ∈ B′, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i. Let S = {Lij(t)}i∈B′,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Since the CLDE circuit of layer µ verifies that each line Lz0,zi has low degree, by applying
Lemma 10.2 to the set B′ (while noting that 3k|F||B′| < kmax) we have that, with probabil-

ity ≥ 1−200(ν ·polylog(s)
)3
`|F|ε, (over {Lij}i∈B′,j∈[k], A), there exists a consistent assignment

α : B′ → {0, 1} such that for every i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds
that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H| .

On the other hand, by the lemma’s hypothesis (using also Claim 7.2), with probability ≥
1 − η − δ (over Z, {Lij}i∈B′,j∈[k], A), for every i ∈ βµ[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H|.

Let E be the event that there exists a consistent assignment α : B′ → {0, 1} that is
correct on Z such that for every i ∈ B′, for at least k− r′ of the indices j ∈ [k], it holds that
Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

By the union bound (and using the fact that r′ + r′ < k),

Pr[E] ≥ 1− η − polylog(s) · ν3`|F|ε.

where the probability is over Z, {Lij}i∈B′,j∈[k], A.

Let E ′ be the event there exists a consistent assignment α : B′ → {0, 1} that is incorrect

15We use α(βµ[ζ]) to denote the element in G that is obtained by considering the assignment α applied to
the gates indexed by βµ[ζ] in C′n and interpreting the resulting log2 G string as the corresponding element in
G.
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at the point z0 such that for every i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds
that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

Consider the event E ∧ E ′. If both E and E ′ occur then, by their definitions:

1. There exists a consistent assignment α : B′ → {0, 1} that is correct on Z such that for
every i ∈ B′, for at least k− r′ of the indices j ∈ [k], it holds that Ai→α(i) ◦Lij : F→ F
is a univariate polynomial of degree < m|H|.

2. There exists a consistent assignment α′ : B′ → {0, 1} that is incorrect at the point
z0 such that for every i ∈ B′, for at least k − r′ of the indices j ∈ [k], it holds that
Ai→α

′(i) ◦ Lij : F→ F is a univariate polynomial of degree < m|H|.

However, since r′ + r′ < k the assignment α must agree with α′ on every i ∈ B′. Thus, if
the event E ∧ E ′ occurs then there exists a single consistent assignment α : B′ → {0, 1}
that is correct on Z and incorrect at the point z0 such that for every i ∈ B′, for at least
k − r′ of the indices j ∈ [k], it holds that Ai→α(i) ◦ Lij : F→ F is a univariate polynomial of
degree < m|H|.

We proceed to compute the probability that the event E ∧E ′ occurs. First observe that
the sequence Z can be generated by using the following random process. First a sequence
Z ′ = (z′1, . . . , z

′
ν) of ν uniformly random points in GmG is selected. For every i ∈ [ν], let

Lz0,z′i(t) = (z′i − z0)t + z0 be the line that passes through the points z0 and z′i. For every
i ∈ [ν], the point zi is selected by choosing at random ui ∈ G\{0} and setting zi = Lz0,z′i(ui).
Note that each one of the sequences Z and Z ′ is a sequence of ν uniformly distributed points
in GmG .

Let χ : B′ → {0, 1} denote the assignment of correct values to B′. That is, for every
i ∈ B′, it holds that χ(i) = xi. Note that Z ′ already determines the set B′ and that
Z ′, {Lij}i∈B′,j∈[k], A already determine whether the event E ′ occurs (regardless of the choice of
Z). Furthermore, if Z ′, {Lij}i∈B′,j∈[k], A are such that the event E ′ occurs, then the assignment
α (guaranteed by E ′) is consistent and incorrect at the point z0. Thus, for every i ∈ [ν] the
two polynomials αG ◦ Lz0,z′i and χG ◦ Lz0,z′i differ (at the point 0) and have degree at most

mG|HG|. Hence, the two polynomials can agree on at most mG|HG| < |G|−1
2

points, or in
other words, for every i ∈ [ν] the assignment α is correct on less than half of the points on
the line Lz0,z′i . Thus, we have:

Pr
Z,{Lij}i∈B′,j∈[k],A

[E ∧ E ′] = E
Z′,{Lij}i∈B′,j∈[k],A

[
Pr

u1,...,uν
[E ∧ E ′]

]
= Pr[E ′] · E

Z′,{Lij}i∈B′,j∈[k],A

[
Pr

u1,...,uν
[E ∧ E ′]

∣∣∣∣E ′]+

Pr[¬E ′] · E
Z′,{Lij}i∈B′,j∈[k],A

[
Pr

u1,...,uν
[E ∧ E ′]

∣∣∣∣¬E ′]
However, if Z ′, {Lij}i∈B′,j∈[k] and A are such that ¬E ′ occurs then Pru1,...,uν [E ∧ E ′] = 0.
On the other hand, by the foregoing discussion, if Z ′, {Lij}i∈B′,j∈[k], and A are such that E ′
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occurs then Pru1,...,uν [E ∧ E ′] ≤ 2−ν . Thus:

Pr
Z,{Lij}i∈B′,j∈[k],A

[E ∧ E ′] ≤ Pr[E ′] · 2−ν ≤ 2−ν

and so

Pr[E ∧ ¬E ′] = Pr[E]− Pr[E ∧ E ′] ≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν .

In other words, with probability 1−η−polylog(s) ·ν3`|F|ε−2−ν , there exists a consistent
assignment α : B′ → {0, 1} that is correct on Z and on z0 such that for every i ∈ B′, for at
least k−r′ of the indices j ∈ [k], it holds that Ai→α(i) ◦Lij : F→ F is a univariate polynomial
of degree < m|H|. The lemma follows by Claim 7.2.

10.3 Some Useful Claims

Claim 10.4. Let S ⊂ D, |S| ≤ kmax be a set generated by some random process. Let A ∈R
AS. Let g(S,A) be a predicate such that PrA,S[g(S,A)] ≥ 1/2. Let f(S,A) be a predicate
such that PrA,S[f(S,A) | g(S,A)] = p. Let S ′, Q, such that S ′ ⊆ Q ⊂ D, |Q| ≤ kmax, be two
sets generated by some random process, such that the distribution of S ′ is identical to the
distribution of S. Let A′ ∈R AQ. Then,

p− 4δ ≤ Pr
A′,S′,Q

[
f(S ′, A′S′) | g(S ′, A′S′)

]
≤ p+ 4δ

.

Proof. Denote:

a
def
= Pr

S,A∈RAs
[f(S,A) ∧ g(S,A)]

b
def
= Pr

S,A∈RAs
[g(S,A)]

c
def
= Pr

Q,S′,A′∈RAQ
[f(S ′, A′S′) ∧ g(S ′, A′S′)]

d
def
= Pr

Q,S′,A′∈RAQ
[g(S ′, A′S′)]

By Claim 7.2, |a− c| < δ and |b− d| < δ (and in particular d ≥ 1/2− δ > 0.4 and therefore
the conditional probability space in the lemma’s conclusion is non-empty). Note that:

a

b
= Pr

S,A∈RAs
[f(S,A) | g(S,A)]

c

d
= Pr

Q,S′,A′∈RAQ
[f(S ′, A′S′) | g(S ′, A′S′)].
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Using elementary manipulations we have that,∣∣∣a
b
− c

d

∣∣∣ =
|ad− bc|

bd
=
|ad− cd+ cd− bc|

bd
≤ d|a− c|+ c|d− b|

bd
≤ |a− c|

b
+
|d− b|
b
·c/d ≤ 4δ

where the last inequality uses also the hypothesis that b ≥ 1/2 and the fact that c ≤ d.

Claim 10.5. Let γ ≥ 0 and let A and B be events over the same probability space such that
Pr[A] ≥ 1− γ and Pr[B] ≥ 1

2
. Then Pr[A|B] ≥ 1− 2γ.

Proof.

Pr[A|B] =
Pr[A ∧B]

Pr[B]
≥ Pr[A] + Pr[B]− 1

Pr[B]
≥ 1− γ

Pr[B]
≥ 1− 2γ.

Claim 10.6. Let γ, η < 1 and let A and B be events over the same probability space such
that Pr[B] ≥ 1− γ and Pr[A|B] ≥ 1− η. Then Pr[A] ≥ 1− γ − η.

Proof.
Pr[A] ≥ Pr[A ∧B] = Pr[A|B] · Pr[B] ≥ (1− γ)(1− η) ≥ 1− γ − η.

Claim 10.7 (Union Bound under Conditioning). Let A,B and C be events over the same
probability space, such that C has non-zero probability. Then:

Pr[A ∨B|C] ≤ Pr[A|C] + Pr[B|C].

Proof.

Pr[A ∨B|C] =
Pr[(A ∨B) ∧ C]

Pr[C]
≤ Pr[(A ∧ C)] + Pr[(B ∧ C)]

Pr[C]
= Pr[A|C] + Pr[B|C].

10.4 The Property Rµ and making Progress under Conditioning

We will now give two definitions that will be central in the rest of the section. The first
definition is analogous to the definition of the property R (Definition 7.31) in Section 7.6.

Definition 10.8. Property Rµ(ε′, r′):
Let µ ∈ [t], ε′ ≥ 0 and r′ ≥ 0.

Let B ⊆ [N ′] such that (|B|+ν · log2 |G|)·k|F| < kmax. Let Z be a sequence of ν uniformly
distributed points in GmG. Let B′ = B ∪ βµ[Z]. We view both B and B′ as being distributed
over subsets of Hm ⊆ DX .

For every i ∈ B′, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.
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Let S = {Lij(t)}i∈B′,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H|.

We say that the set B satisfies property Rµ(ε′, r′) (also denoted B ∈ Rµ(ε′, r′)) if, con-
ditioned on the event E, with probability ≥ 1 − ε′, for every point i ∈ B, for at least k − r′
of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F→ F is a univariate polynomial of
degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

To ensure that Rµ is well defined, if Pr[E] = 0, then no set B is said to satisfy Rµ(ε′, r′).

Definition 10.9. p-good layers:
Let µ ∈ [t]. Let Z be a sequence of ν uniformly distributed points in GmG.

For every i ∈ βµ[Z], let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈βµ[Z],j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

We say that the layer µ is p-good for p ∈ [0, 1] if, with probability ≥ p, for every point
i ∈ βµ[Z], for at least k−r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦L : F→ F is a
univariate polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈βµ[Z],j∈[k], A).

Lemma 10.10. Let i1, i2, i3 ∈ [N ′] be such that the gate indexed by i1 in the circuit C ′n has
children indexed by i2, i3. Let µ ∈ [t] be a 0.9-good layer. If {i2}, {i3} ∈ Rµ(ε′, r′), then
{i1} ∈ Rµ(ε′′, r′) where ε′′ = 2ε′ + 34`|F|ε.

Proof. Let Z be a sequence of ν uniformly distributed points in GmG . Let B = {i1, i2, i3} ∪
βµ[Z]. We view B as being distributed over subsets of Hm ⊆ DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree <
m|H|. Since µ is a 0.9-good layer (using also Claim 7.2), the event E occurs with probability
≥ 0.9− δ > 1/2 (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Since {i2} ∈ Rµ(ε′, r′), using also Claim 10.4, conditioned on the event E occurring, with
probability ≥ 1 − ε′ − 4δ for at least k − r′ of the lines L ∈ {Li21 , . . . , Li2k }, we have that
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Ai2→xi2 ◦ L : F → F is a univariate polynomial of degree < m|H| (where the probability is
over Z, {Lij}i∈B,j∈[k], A).

Similarly, since i3 ∈ Rµ(ε′, r′), conditioned on the event E occurring, with probability
≥ 1−ε′−4δ for at least k−r′ of the lines L ∈ {Li31 , . . . , Li3k }, we have that Ai3→xi3◦L : F→ F is
a univariate polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Since the gate indexed by i1 in the circuit C ′n has children indexed by i2, i3, the formula
ϕ contains the clause (wi2 = xi2) ∧ (wi3 = xi3)→ (wi1 = xi1). Thus, by Lemma 7.30 (using
also Claim 7.2), with probability ≥ 1− 9`|F|ε− 2δ, there exist v1, v2, v3 ∈ F, such that, for
at least k − r′ of the indices j ∈ [k],

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

4. (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1)

Thus, using Claim 10.5, conditioned on the event E occurring, with probability ≥ 1 −
18`|F|ε− 4δ, there exist v1, v2, v3 ∈ F, such that, for at least k − r′ of the indices j ∈ [k],

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.

4. (v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1).

Thus, by the union bound under conditioning (Claim 10.7), conditioned on the event E
occurring, with probability ≥ 1 − 2ε′ − 18`|F|ε − 12δ, there exist v1, v2, v3 ∈ F, such that
(v2 = xi2) ∧ (v3 = xi3)→ (v1 = xi1) and:

• For at least k − r′ of the lines L ∈ {Li21 , . . . , Li2k }, we have that Ai2→xi2 ◦ L : F→ F is
a univariate polynomial of degree < m|H|.

• For at least k − r′ of the lines L ∈ {Li31 , . . . , Li3k }, we have that Ai3→xi3 ◦ L : F→ F is
a univariate polynomial of degree < m|H|.

• For at least k − r′ of the indices j ∈ [k],

1. Ai1→v1 ◦ Li1j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2 ◦ Li2j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ Li3j : F→ F is a univariate polynomial of degree < m|H|.
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Since r′+r′ < k, this implies that v2 = xi2 , v3 = xi3 and hence v1 = xi1 . Thus, conditioned
on the event E occurring, with probability ≥ 1− 2ε′ − 18`|F|ε− 12δ > 1− 2ε′ − 30`|F|ε, for
at least k−r′ of the lines L ∈ {Li11 , . . . , Li1k }, we have that Ai1→xi1 ◦L : F→ F is a univariate
polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

The lemma follows by an application of Claim 10.4.

If C is a circuit, we say that a subset B of the gates of C is a sub-circuit of C if for every
gate g ∈ B either both of its children are in B or both are not in B. Gates in B whose
children are not in B are called input gates of B and gates in B who are not children of any
gate in B are called output gates of B. We say that the sub-circuit B has depth ∆ if the
longest path from an output gate of B to an input gate of B is of length ∆.

Using Lemma 10.10, we are ready to prove the following lemma.

Lemma 10.11. Let B ⊂ [N ′] be a sub-circuit of C ′n of depth ∆ with input gates BI ⊂ B and
output gates BO ⊂ B, such that (|BO| + ν · log2 |G|) · k|F| < kmax. Let µ ∈ [t] be a 0.9-good
layer of the circuit. If for all i ∈ BI it holds that {i} ∈ Rµ(ε′, r′) then BO ∈ Rµ (ε′′, r′),
where ε′′ = |BO| · 2∆ · (2ε′ + 38`|F|ε).

Proof. For every i ∈ BO, by iterated applications of Lemma 10.10, it holds that {i} ∈
Rµ

(
2∆ · (2ε′ + 34`|F|ε) , r′

)
. The lemma follows from |BO| applications of Claim 10.4, and

the union bound under conditioning (Claim 10.7).

We also prove (simpler) variants of Lemma 10.10 and Lemma 10.11 with respect to
the property R (rather than Rµ), see Definition 7.31. Recall that, intuitively, a subset
B ⊂ Hm ⊂ DX satisfies property R(ε′, r′) if when taking k lines through every point in B,
with high probability, for every point i ∈ B, for most of the lines through the point i, the
answers correspond to low degree polynomials that “evaluate” the point i to xi.

Lemma 10.12. Let i1, i2, i3 ∈ [N ′] be such that the gate indexed by i1 in the circuit C ′n
has children indexed by i2, i3. If {i2}, {i3} ∈ R(ε′, r′), then {i1} ∈ R(ε′′, r′) where ε′′ =
2ε′ + 15`|F|ε.

Proof. If {i2}, {i3} ∈ R(ε′, r′), then by Lemma 7.34, it holds that {i2, i3} ∈ R(2ε′ + 2δ, r′).
Since the gate indexed by i1 in the circuit C ′n has children indexed by i2, i3, by Lemma 7.33,
it holds that {i1, i2, i3} ∈ R(2ε′ + 9`|F|ε+ 5δ, r′). The lemma follows from Lemma 7.35.

Lemma 10.13. Let B ⊂ [N ′] be a sub-circuit of C ′n of depth ∆ with input gates BI ⊂ B and
output gates BO ⊂ B, such that |BO|k|F| < kmax. If for all i ∈ BI it holds that {i} ∈ R(ε′, r′)
then BO ∈ R (ε′′, r′), where ε′′ = |BO| · 2∆ · (2ε′ + 16`|F|ε).

Proof. For every i ∈ BO, by iterated applications of Lemma 10.12, it holds that {i} ∈
R
(
2∆ · (2ε′ + 15`|F|ε) , r′

)
. The lemma follows from |BO| applications of Claim 7.2, and the

union bound.
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10.5 Proof of Lemma 10.1

In this section we complete the proof of Lemma 10.1. We first show that if layer µ− 1 is a
good layer then layer µ is also good. Then we derive that the top layer is good and use that
to contradict our assumption that x /∈ L.

Lemma 10.14. Let µ ∈ [t] be a 0.9-good layer. Then, for every λ ∈ βµ it holds that
λ ∈ Rµ(ε′, r′), where ε′ = polylog(s) · ν3`|F|ε+ 2−ν+1.

Proof. Let λ ∈ βµ. Let Z be a sequence of ν uniformly distributed points in GmG . Let
B = {λ} ∪ βµ[Z].

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A). Suppose that Pr[E] = 1 − η
for some η ∈ [0, 1]. Note that by the hypothesis that µ is 0.9-good, using also Claim 7.2,
η < 0.1 + δ < 1/2.

Denote by E ′ ⊂ E the event that for every point i ∈ {λ} ∪ βµ[Z], for at least k − r′ of
the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of
degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A). By Lemma 10.3, Pr[E ′] ≥
1− η − polylog(s) · ν3`|F|ε− 2−ν .

Thus, the probability that the event E ′ occurs conditioned on the event E is at least:

Pr[E ′|E] =
Pr[E ′]

Pr[E]
≥ 1− η − polylog(s) · ν3`|F|ε− 2−ν

1− η
≥ 1− polylog(s) · ν3`|F|ε− 2−ν+1

(where the last inequality follows from the fact that η ≤ 1/2) and the lemma follows.

Lemma 10.15. Let µ ∈ [t− 1] be a 0.9-good layer. Then, for every set B ⊆ βµ+1 of points
that belong to layer µ+1, such that (|B|+ν ·log2 |G|)·k|F| < kmax, it holds that B ∈ Rµ(ε′, r′),
where ε′ = |B| · 2d ·

(
polylog(s) · ν3`|F|ε+ 2−ν+3

)
.

Proof. Consider the sub-circuit that computes layer µ + 1 from layer µ. Recall that this
sub-circuit has depth d + 1 and first computes the µ + 1-th layer of Cn, in depth 1, and
then applies a CLDE circuit, of depth d (see Section 9). Let BI ⊆ βµ be the variables
associated with the inputs of this sub-circuit. By Lemma 10.14, for every λ ∈ BI it holds
that λ ∈ Rµ(polylog(s) · ν3`|F|ε+ 2−ν+1, r′).

The lemma follows from Lemma 10.11.
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Lemma 10.16. If a layer µ ∈ [t− 1] is (1− ε′)-good, for some ε′ < 0.1, then the layer µ+ 1
is (1− ε′′)-good, where ε′′ = ε′ + 2d · polylog(s) ·

(
ν4`|F|ε+ 2−ν/2

)
.

Proof. Let Z and Z ′ be two sequences of ν uniformly distributed points in GmG . Let B =
βµ[Z] ∪ βµ+1[Z ′]. We view B as being distributed over subsets of DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βµ[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H| (where the probability is over {Z,Z ′, Lij}i∈B,j∈[k], A). By the hypothesis that µ is
(1− ε′)-good, and using Claim 7.2, the event E occurs with probability ≥ 1− ε′ − δ.

By Lemma 10.15 (using the fact that ε′ < 0.1), it holds that βµ+1[Z ′] ∈ Rµ

(
(log2 G ·

ν) · 2d ·
(
polylog(s) · ν3`|F|ε+ 2−ν+3

)
, r′
)

. In other words, conditioned on the event E, with

probability ≥ 1 − 2dpolylog(s) ·
(
ν4`|F|ε + 2−ν/2

)
, for every point i ∈ βµ+1[Z ′], for at least

k−r′ of the lines L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦L : F→ F is a univariate polynomial
of degree < m|H| (where the probability is over Z,Z ′, {Lij}i∈B,j∈[k], A).

However, since E occurs with high probability, we can remove the conditioning as follows.
Toward this end, we apply Claim 10.6 and obtain that with probability ≥ 1−2d ·polylog(s) ·(
ν4`|F|ε + 2−ν/2

)
− ε′ − δ, for every point i ∈ βµ+1[Z ′], for at least k − r′ of the lines

L ∈ {Li1, . . . , Lik}, we have that Ai→xi◦L : F→ F is a univariate polynomial of degree < m|H|
(where the probability is over Z,Z ′, {Lij}i∈B,j∈[k], A). The lemma follows by Claim 7.2.

Recall that 1, . . . , n are the indexes of the n input variables and n + 1, . . . , 2n are the
indexes of their negations.

Lemma 10.17. The first layer of C ′n is (1− ε′)-good, where ε′ = 2dpolylog(s) · ν`|F|ε.

Proof. By Lemma 7.32, for every i ∈ [2n] it holds that {i} ∈ R
(
10`|F|ε, r′

)
. Let C(1)

LDE be

the CLDE circuit of the first layer of C ′n. Note that the inputs of C(1)
LDE are associated with the

variables i ∈ [2n] and that C(1)
LDE has depth d. Thus, by Lemma 10.13, for every sequence of

ν points Z in GmG it holds that β1[Z] ∈ R
((
ν · log2(|G|)

)
· 2d · polylog(s) · `|F|ε, r′

)
and the

lemma follows.

Lemma 10.18. The top layer of C ′n (i.e., the t-th layer) is (1− ε′)-good, where ε′ ≤ t · 2d ·
polylog(s)

(
ν4`|F|ε+ 2−ν/2

)
.

Proof. By induction, using Lemma 10.17 and Lemma 10.16.
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Recall that N ′ is the index of the special output gate.

Lemma 10.19. {N ′} ∈ R(ε′, r′), where ε′ = t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
.

Proof. Let Z be a sequence of ν uniformly distributed points in GmG . Let B = {N ′}∪βt[Z].
Note that the point N ′ belongs to layer t. We view B as being distributed over subsets of
Hm ⊆ DX .

For every i ∈ B, let Li1, . . . , L
i
k : F → DX be k random lines, such that for every

L ∈ {Li1, . . . , Lik}, we have L(0) = i.

Let S = {Lij(t)}i∈B,j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any i ∈ DX and v ∈ F, define Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and
Ai→v(i) = v.

Denote by E the event that for every point i ∈ βt[Z], for at least k − r′ of the lines
L ∈ {Li1, . . . , Lik}, we have that Ai→xi ◦ L : F → F is a univariate polynomial of degree
< m|H|. By Lemma 10.18, and using Claim 7.2, the event E occurs with probability at least
1− t · 2d · polylog(s)

(
ν4`|F|ε+ 2−ν/2

)
.

Since by our setting of parameters t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
< 0.1, the layer t is

0.9 good and so, by Lemma 10.14, it holds that N ′ ∈ Rt(polylog(s) · ν3`|F|ε+ 2−ν+1, r′). In
other words, conditioned on the event E, with probability ≥ 1− polylog(s) · ν3`|F|ε− 2−ν+1,
for at least k − r′ of the lines L ∈ {LN ′1 , . . . , LN

′

k }, we have that AN
′→xN′ ◦ L : F → F is a

univariate polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A).

Hence, by Claim 10.6, with probability ≥ 1 − t · 2d · polylog(s)
(
ν4`|F|ε + 2−ν/2

)
, for at

least k− r′ of the lines L ∈ {LN ′1 , . . . , LN
′

k }, we have that AN
′→xN′ ◦L : F→ F is a univariate

polynomial of degree < m|H| (where the probability is over Z, {Lij}i∈B,j∈[k], A). The lemma
follows by Claim 7.2.

Proof of Lemma 10.1

The following proof is similar to the proof of Lemma 7.1 (in Section 7.7) but differs in the
actual parameters, and in the use of Lemma 10.19 (rather than Lemma 7.37).

Proof. Consider the point N ′ ∈ [N ′], viewed as a point in Hm ⊂ DX . Recall that the formula
ϕ′ contains a clause (wN ′ = 1) ∨ (wN ′ = 1) ∨ (wN ′ = 1) that checks that wN ′ = 1.

Let L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k : F → DX be 3k random lines, such that for every

line L ∈ {L1
1, . . . , L

1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k}, we have L(0) = N ′.

Let S = {L1
j(t), L

2
j(t), L

3
j(t)}j∈[k],t∈F ⊂ DX . Let A ∈R AS.

For any v ∈ F, define AN
′→v : S → F by AN

′→v(i′) = A(i′) for i′ 6= N ′ and AN
′→v(N ′) = v.

By Lemma 7.30, with probability ≥ 1 − 9`|F|ε − δ, there exist v1, v2, v3 ∈ F, such that,
for at least k − r′ of the indices j ∈ [k], the following is satisfied
(where the probability is over L1

1, . . . , L
1
k, L

2
1, . . . , L

2
k, L

3
1, . . . , L

3
k, A):
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1. AN
′→v1 ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

2. AN
′→v2 ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

3. AN
′→v3 ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

4. (v1 − 1) · (v2 − 1) · (v3 − 1) = 0.

On the other hand, by (three applications of) Lemma 10.19 and Claim 7.2:

1. With probability ≥ 1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
− δ, for at least k − r′ of the

lines L ∈ {L1
1, . . . , L

1
k}, we have that AN

′→xN′ ◦ L : F → F is a univariate polynomial
of degree < m|H|.

2. With probability ≥ 1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
− δ, for at least k − r′ of the

lines L ∈ {L2
1, . . . , L

2
k}, we have that AN

′→xN′ ◦ L : F → F is a univariate polynomial
of degree < m|H|.

3. With probability ≥ 1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
− δ, for at least k − r′ of the

lines L ∈ {L3
1, . . . , L

3
k}, we have that AN

′→xN′ ◦ L : F → F is a univariate polynomial
of degree < m|H|.

Thus, by the union bound, with probability ≥ 1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
> 0,

there exist v1, v2, v3 ∈ F, such that, (v1 − 1) · (v2 − 1) · (v3 − 1) = 0, and

1. For at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN

′→v1 ◦ L : F→ F is a
univariate polynomial of degree < m|H|.

2. For at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN

′→v2 ◦ L : F→ F is a
univariate polynomial of degree < m|H|.

3. For at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN

′→v3 ◦ L : F→ F is a
univariate polynomial of degree < m|H|.

4. For at least k − r′ of the lines L ∈ {L1
1, . . . , L

1
k}, we have that AN

′→xN′ ◦ L : F→ F is
a univariate polynomial of degree < m|H|.

5. For at least k − r′ of the lines L ∈ {L2
1, . . . , L

2
k}, we have that AN

′→xN′ ◦ L : F→ F is
a univariate polynomial of degree < m|H|.

6. For at least k − r′ of the lines L ∈ {L3
1, . . . , L

3
k}, we have that AN

′→xN′ ◦ L : F→ F is
a univariate polynomial of degree < m|H|.

Since, r′ + r′ < k, this implies that xN ′ = v1 = v2 = v3, and hence xN ′ = 1. Since by our
setting of parameters

1− t · 2d · polylog(s)
(
ν4`|F|ε+ 2−ν/2

)
> 0,

the original input x is in the language L.
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11 Soundness of V in the Augmented PCP

This section is similar to Section 8, but with respect to the augmented PCP.

Recall that k ≤ poly(n), such that 4|F|4 ≤ k ≤ N ′, is the security parameter of the PCP,
and that 1 ≤ r < k is the parameter of the relaxed verifier V ′. Recall that ` and |F| are
bounded by polylog(N ′).

Lemma 11.1. For a security parameter k ≤ poly(n), such that 4|F|4 ≤ k ≤ N ′, fix the
following parameters: Let r = k

40`|F| . Let ε = 2−r/2. Let kmax = k · polylog(s) · log(t)|F| +
12k`|F|2. Let δ = 1

|F|8k`|F|2
. Then, V has soundness ε against (kmax, δ)-no-signaling strategies.

The proof of Lemma 11.1 is similar to the proof of Lemma 8.1, but based on Lemma 10.1
(rather than Lemma 7.1).

Proof. Assume for a contradiction that V doesn’t have soundness ε against (kmax, δ)-no-
signaling strategies. By Lemma 6.1, since δ < ε

8·|F|6k`|F|2
, we know that V ′ (with parameter r)

doesn’t have soundness 1− ε′ against (k′max, δ
′)-no-signaling strategies, where k′max = kmax−

6k`|F|2 = k · polylog(s) · log(t)|F| + 6k`|F|2, and δ′ = 8δ|F|6k`|F|2/ε < 1

|F|k`|F|2
, and ε′ =

(10`|F|2−r + 2δ)/ε < 1
100N ′`|F| .

Hence V ′ (with parameter r) doesn’t have soundness 1− ε′ against (k′max, δ
′)-no-signaling

strategies, where k′max = k · polylog(s) · log(t)|F|+ 6k`|F|2, and δ′ = 1

|F|k`|F|2
, and ε′ = 1

100N ′`|F| .

This contradicts Lemma 10.1.

12 From No-Signaling PCP to No-Signaling MIP

In this section we show how to transform a PCP that has soundness against (kmax, δ)-no-
signaling strategies into an analogous MIP that uses kmax provers and has soundness against
δ-no-signaling strategies.

Recall that a PCP (resp., MIP) relative to an oracle φn : {0, 1}n′ → {0, 1}n′′ is a PCP
(resp., MIP) in which the verifier has oracle access to the function φn (see Section 4).

Lemma 12.1. Let L be a language and suppose that L has a PCP with soundness ε against
(kmax, δ)-no-signaling strategies relative to an oracle {φn : {0, 1}n′ → {0, 1}n′′}n (where n is
the input length). Let D be the query alphabet, Σ be the answer alphabet, k ≤ kmax be the
number of PCP queries and ` be the number of oracle queries. Then, L has an MIP relative
to the same oracle {φn} with soundness ε against δ-no-signaling strategies. The MIP uses
kmax provers, query alphabet D, answer alphabet Σ and ` oracle queries.

Furthermore, if the running time of the PCP verifier is TV then the running time of the
MIP verifier is O (TV + kmax · (log |D|+ log |Σ|)) and if the PCP proof can be generated in
time TP then the running time of each of the MIP provers is O(TP ).
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Proof. Let V be the PCP verifier for L and let GP be an algorithm that on input x ∈ L
generates the PCP proof P = GP (x). We use V and GP to construct an MIP for L (relative
to the oracle {φn}) that is sound against δ-no-signaling strategies.

We think of the PCP verifier V as being composed of two algorithms V1 and V2. The
first algorithm, V1, on input x of length n and a random string r generates a set Q ⊂ D of k
queries to the PCP and a set Qφ ⊂ {0, 1}n

′
of ` queries to the oracle. The second algorithm,

V2, given x, the same random string r, the k answers A ∈ ΣQ (of the PCP) and oracle
answers Aφ ∈ ({0, 1}n′′)Qφ , decides whether to accept the proof. We also assume (without
loss of generality) that the algorithm GP is deterministic. (Since completeness holds with
probability 1, we can de-randomize GP by fixing its random string arbitrarily.)

We first describe the kmax (honest) MIP provers’ strategies and then proceed to describe
the MIP verifier’s strategy. Given an input x ∈ L, each MIP prover (individually) computes
the (deterministic) PCP proof P = GP (x) and given a query q ∈ D just answers with P (q).

The MIP verifier, on input x and a random string r, first runs V1(x, r) to obtain a set of k
PCP queries Q = {q1, . . . , qk} and ` oracle queries Qφ. The set Q is then used to construct a
sequence w ∈ Dkmax of kmax queries as follows. Initially, every entry of w is set to an arbitrary
fixed value z ∈ D. Then, the verifier embeds the k queries of Q at random in w (which is of
length kmax ≥ k). Formally, for every set Q ⊂ D, every 1-to-1 function π : Q → [kmax] and
every subset S ⊆ Q, let wS,π ∈ Dkmax be defined as follows. For every i ∈ [kmax], if there
exists q ∈ S such that i = π(q) then (wS,π)i = q and otherwise (wS,π)i = z. The verifier
chooses at random a 1-to-1 function π : Q → [kmax] and sets w = wQ,π. The verifier then
sends w to the kmax provers where prover i gets wi. Simultaneously, the verifier queries the
oracle φn at the points Qφ.

Once the kmax provers respond with their answers α ∈ Σkmax (where the answer of the ith

prover is αi) and the oracle responds with Aφ, the MIP verifier constructs A ∈ ΣQ by setting
Aq = απ(q) for every q ∈ Q. Formally, for every S ⊆ Q, let TS,π : Σkmax → ΣS be defined as
(TS,π(α))q = απ(q) for every q ∈ S. The verifier sets A = TQ,π(α) and outputs the result of
V2 on input (x, r, A,Aφ).

To see that (perfect) completeness holds, observe that the honest MIP provers (that get
queries in Q) answer according to the PCP. Likewise, the oracle queries and answers are
also exactly as in the PCP and therefore if x ∈ L then V2 accepts and we obtain perfect
completeness. We proceed to show that soundness holds against δ-no-signaling strategies.

Suppose that for some x /∈ L, there exists a δ-no-signaling family of distributions
A = {Au}u∈Dkmax that makes the MIP verifier accept with probability at least ε. By the
construction of the MIP system this implies that:

Pr
α∈RAw,r,π

[V2(x, r, A,Aφ) = 1] ≥ ε (4)

where (Q,Qφ) is the output of V1(x, r), the function π : Q → [kmax] is the random 1-to-1
function, w = wQ,π, A = TQ,π(α), and Aφ are the answers of the oracle φn on the points Qφ.

We use A to construct a family of distributions B = {BQ}Q⊂D,|Q|≤kmax that violates
the (kmax, δ)-no-signaling soundness of the PCP. For every set Q of size at most kmax, the
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distribution BQ is defined by first sampling a random 1-to-1 function π : Q→ [kmax], setting
w = wQ,π, then sampling α from Aw and outputting TQ,π(α). Note that for every b ∈ ΣQ it
holds that

Pr
β∈RBQ

[β = b] = E
π

[
Pr

α∈RAw
[A = b]

]
,

where π : Q→ [kmax] is a random 1-1 function, w = wQ,π and A = TQ,π(α).

We first show that the family of distributions B = {BQ}Q⊂D,|Q|≤kmax fools the PCP verifier
into accepting with probability at least ε, and then proceed to show that B is δ-no-signaling.
Indeed, by the definition of B,

Pr
β∈RBQ,r

[V2(x, r, β, Aφ) = 1] = Pr
α∈RAw,r,π

[V2(x, r, A,Aφ) = 1]

where (Q,Qφ) is the output of V1(x, r), the function π : Q → [kmax] is the random 1-to-1
function, w = wQ,π, A = TQ,π(α), and Aφ are the answers of the oracle φn on the points Qφ.
Thus, by Eq. (4), the PCP verifier accepts x /∈ L with probability at least ε.

The next claim shows that B is δ-no-signaling and therefore we have a contradiction to
our assumption that the PCP has ε-soundness against (kmax, δ)-no-signaling strategies.

Claim 12.2. The family of distributions B = {BQ}Q⊂D,|Q|≤kmax is δ-no-signaling.

Proof. To show that B is δ-no-signaling we need to show that for every Q ⊂ D of size at
most kmax and every S ⊂ Q it holds that

1

2

∑
b∈ΣS

∣∣∣∣ Pr
β∈RBS

[β = b]− Pr
β∈RBQ

[βS = b]

∣∣∣∣ ≤ δ.

For every b ∈ ΣS it holds that

Pr
β∈RBS

[β = b] = E
π′

[
Pr

α′∈RAw′
[TS,π′(α

′) = b]

]
= E

π

[
Pr

α∈RAw
[TS,π(α) = b]

]
= E

π

[
Pr

α∈RAw
[(TQ,π(α))S = b]

]
(5)

where π′ : S → [kmax] and π : Q → [kmax] are random 1-to-1 functions, w′ = wS,π′ and
w = wS,π, the second equality follows from the fact that π, restricted to S, is distributed
identically to π′, and the last equality follows from the fact that TS,π(α) = (TQ,π(α))S.

On the other hand, using elementary operations and linearity of expectation, for every
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b ∈ ΣS it holds that

Pr
β∈RBQ

[βS = b] =
∑

b′∈ΣQ s.t. b′S=b

Pr
β∈RBQ

[β = b′]

=
∑

b′∈ΣQ s.t. b′S=b

E
π

[
Pr

α∈RAw′′
[TQ,π(α) = b′]

]

= E
π

 ∑
b′∈ΣQ s.t. b′S=b

Pr
α∈RAw′′

[TQ,π(α) = b′]


= E

π

[
Pr

α∈RAw′′
[(TQ,π(α))S = b]

]
, (6)

where π : Q → [kmax] is a random 1-1 function and w′′ = wQ,π. Using Eq. (5) and Eq. (6),
we obtain that:

1

2

∑
b∈ΣS

∣∣∣∣ Pr
β∈RBS

[β = b]− Pr
β∈RBQ

[βS = b]

∣∣∣∣ =
1

2

∑
b∈ΣS

∣∣∣∣Eπ
[

Pr
α∈RAw

[(TQ,π(α))S = b]− Pr
α′′∈RAw′′

[(TQ,π(α′′))S = b]

]∣∣∣∣
≤ E

π

[
1

2

∑
b∈ΣS

∣∣∣∣ Pr
α∈RAw

[(TQ,π(α))S = b]− Pr
α′′∈RAw′′

[(TQ,π(α′′))S = b]

∣∣∣∣
]

= E
π

[
1

2

∑
b∈ΣS

∣∣∣∣ Pr
α∈RAw

[απ(S) = b]− Pr
α′′∈RAw′′

[α′′π(S) = b]

∣∣∣∣
]

≤ δ,

where π : Q→ [kmax] is a random 1-1 function, w = wS,π, w′′ = wQ,π and the last inequality
follows from the fact that wπ(S) = w′′π(S) and our assumption that A is δ-no-signaling. Thus,
B is δ-no-signaling. This concludes the proof of Claim 12.2

This concludes the proof of Lemma 12.1

13 A No-Signaling MIP for PSPACE with an Inefficient

Prover

In this section we construct MIP protocols that have no-signaling soundness for languages
that can be computed in bounded space. The protocol’s (honest) provers are inefficient and
run in time exponential in the space bound. This protocol will prove useful in Section 14
where we apply it to logspace computations (so that the provers run in polynomial time).
We note that a similar result was obtained both by [KR09] and (independently) by [IKM09].

As a first step we show how to construct MIPs with no-signaling soundness for languages
in IP (Lemma 13.1). We later use (a strong version, due to [GKR08], of) the IP = PSPACE
[LFKN92, Sha92] theorem to obtain the required result (Lemma 13.3).
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Lemma 13.1. If a language L has an `-round public-coin interactive proof-system with
soundness ε (and perfect completeness), then for every δ ≥ 0, the language L has a 1-round
`-prover MIP with soundness ε + δ` against δ-no-signaling strategies. If Λ is the length of
the longest message in the interactive proof then the MIP has query and answer alphabet
{0, 1}`·Λ.

Furthermore, if the running time of the interactive-proof verifier is TV then the running
time of the MIP verifier is O(` · TV ). If the running time of the interactive-proof prover is
TP then the running time of each MIP prover is O(` · TP ).

Proof. Let δ ≥ 0 and let (P, V ) be an `-round public-coin interactive proof for a language
L. Let Λ be the length of the longest message in the interactive proof. Let mi denote the
message sent from the verifier to the prover in the ith round and let bi denote the prover’s
response to mi. Since the protocol is public-coin, we assume that the messages m1, . . . ,m`

are generated by the verifier in the beginning of the protocol and in particular, they do
not depend on the prover’s answers. We also assume without loss of generality that the
honest prover’s response bi to the ith message mi depends only on mi and x (and not on
m1, . . . ,mi−1).16 We construct a 1-round MIP (V ′, P ′1, . . . , P

′
`) with δ no-signaling soundness

for L as follows.

The verifier V ′ generates the ` messages m1, . . . ,m` and for every i ∈ [`], it sends mi to
the prover P ′i . The prover P ′i answers the query mi by bi which is computed by the next
message function of P at round i and with respect to mi and x. To decide whether to accept,
the verifier V ′ simply runs V (x,m1, . . . ,m`, b1, . . . , b`).

To show that (perfect) completeness holds, observe that for x ∈ L the probability that
V ′ outputs 1 after interacting with P ′1, . . . , P

′
` equals the probability that V outputs 1 after

interacting with P . We proceed to prove that no-signaling soundness holds.

Suppose toward a contradiction that there exists a δ-no-signaling cheating strategy {Aq}q∈({0,1}Λ)`

that breaks the soundness of V ′ with probability ε + δ`. We use the latter to construct a
cheating prover P ∗ for the interactive proof that breaks soundness with probability at least ε
(contradicting our assumption on the soundness of V ).

The cheating prover P ∗ is defined as follows. Given V ’s first message m1, the cheating
prover selects at random (b

(1)
1 , . . . , b

(1)
` ) ∈R Am1,∗,...,∗, where ∗ denotes an arbitrary fixed string

(e.g., the string 0Λ). It saves only b1
def
= b

(1)
1 and sends b1 to the verifier. The verifier answers

with m2. After receiving m2, the prover selects (b
(2)
1 , . . . , b

(2)
` ) ∈R Am1,m2,∗,...,∗ conditioned on

b
(2)
1 = b1. It saves only b2

def
= b

(2)
2 and sends b2 to the verifier. Generally, after getting the ith

message mi, the prover selects (b
(i)
1 , . . . , b

(i)
` ) ∈R Am1,...,mi,∗,...,∗ conditioned on b

(i)
1 , . . . , b

(i)
i−1 =

b1, . . . , bi−1 and sends bi
def
= b

(i)
i to the prover.

Before proceeding we note that in the above process it might happen that the conditional
probability space is empty. In such a case the prover P ∗ just sends a special symbol ⊥.

16This can be easily achieved by having the verifier resend its previous messages at every round. Note
that this increases the length of each message by a factor of `.
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We show that for every ` messages m1, . . . ,m`, the distribution of the answers b1, . . . , b`
described above is δ`-close to the distribution Am1,...,m` . This follows from the following
claim by setting i = `.

Claim 13.2. Fix ` messages m1, . . . ,m` ∈ ({0, 1}Λ)`. Let Bi denote the distribution of the
first i elements in Am1,...,mi,∗,...,∗. Then, for every 0 ≤ i ≤ `, the distribution (b1, . . . , bi) is
δi-close to Bi.

Proof. We prove the claim by induction. The base case i = 0 is trivial and so we proceed to
the inductive step. Suppose that the claim holds for some i. For every β1, . . . , βi ∈ {0, 1}Λ,
consider the random variable Xi+1(β1, . . . , βi) defined by the following random process: select
(z1, . . . , zi+1) according to the distribution Bi+1 conditioned on z1, . . . , zi = β1, . . . , βi and
output zi+1. As before, if the conditional probability space is empty then output ⊥.

Note that by the definition of P ∗, the message bi+1 is distributed exactly asXi+1(b1, . . . , bi).
Therefore, by the inductive hypothesis, the distributions

• b1, . . . , bi+1; and

• Bi, Xi+1(Bi)

are δi-close. Since A is δ-no-signaling, the distribution Bi is δ-close to the distribution
obtained by taking the i first elements of Bi+1. Therefore, the distributions

• Bi, Xi+1(Bi); and

• Bi+1

are δ-close. Thus, (b1, . . . , bi+1) and Bi+1 are δ(i + 1)-close. This completes the proof of
Claim 13.2.

By our assumption, the soundness of V ′ is violated with probability ε + δ` when the
answers that it receives are distributed according to Am1,...,m` . Therefore, by Claim 13.2, the
soundness of V is violated with probability at least ε when it receives the answers b1, . . . , b`,
in contradiction to our assumption on the soundness of V .

Using Lemma 13.1, we can prove the following useful lemma.

Lemma 13.3. If L can be computed by a Turing machine in space s
def
= s(n) ≥ n (where

n is the input length) then, for every t ≥ 1, the language L has a poly(s)-prover MIP with
soundness poly(s) · 2−t against 2−t-no-signaling strategies. The query and answer alphabets
are {0, 1}t·poly(s).

Furthermore, the verifier runs in time t·poly(s) and the (honest) provers run in time t · poly(2s).
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Proof. Goldwasser et al. [GKR08] (see also [Rot09, Corollary 3.4.8]) show that if L can be
computed in space s, then L has a poly(s)-round public-coin interactive proof with soundness
error 1

2
. The verifier’s running time is poly(s) and the prover’s running time is poly(2s). The

length of each message is poly(s).17

To this base protocol we apply a O(t)-fold parallel repetition (see, e.g., [Gol08, Exercise
9.1] or [Gol99, Appendix C.1]) which produces a poly(s)-round public-coin interactive proof
with soundness error 2−2t. The verifier’s running time is t · poly(s) and the prover’s running
time is t · poly(2s). The length of each message is t · poly(s). The lemma follows by applying
Lemma 13.1 with δ = 2−t.

14 Simulating an MIP Oracle

In this section we show that if a language L has an MIP with soundness against no-signaling
strategies relative to an oracle {φn} and the function {φn} can be computed by a Turing
machine that uses only a small amount of space, then the oracle can essentially be simulated
and L has an MIP with soundness against no-signaling strategies without an oracle.

Lemma 14.1. Let L be a language and suppose that L has an MIP relative to an oracle
{φn : {0, 1}n′ → {0, 1}n′′}n (where n is the input length) with soundness error ε against δ-
no-signaling strategies. Let k be the number of provers and ` be the number of oracle queries
used by the MIP. Suppose further that the function {φn} can be computed by a Turing machine
in linear space (i.e., in space O(n′)). Then, for every t ≥ 1, the language L has an MIP
protocol without an oracle that has soundness ε+ ` · poly(n∗) · 2−t, where n∗ = n′ + log(n′′),
against min(δ, 2−t)-no-signaling strategies. The resulting MIP uses k + ` · poly(n∗) provers.

Furthermore, if the original MIP verifier runs in time TV then the resulting verifier runs
in time TV +O(` · t · poly(n∗)). If the original MIP provers run in time TP then the resulting
provers run in time TP + O(` · t · poly(2n∗)). If the original MIP has query alphabet D and
answer alphabet Σ then the resulting MIP has query alphabet D ∪ {0, 1}t·poly(n∗) and answer
alphabet Σ ∪ {0, 1}t·poly(n∗).

The high level approach is to use Lemma 13.3 to transform each oracle query into an
additional MIP with no-signaling soundness and to show that composing these MIP protocols
maintains the no-signaling soundness. The rest of this section is devoted to the (straightfor-
ward and somewhat tedious) proof of Lemma 14.1.

Simulating a single query. To prove Lemma 14.1, we first show that if the oracle can be
computed by an MIP protocol with soundness against no-signaling strategies, then the oracle
queries can be removed one by one (Lemma 14.2). For simplicity and since it suffices for our
purposes, in the following we replace the oracle φn : {0, 1}n′ → {0, 1}n′′ with an equivalent

17Indeed, the advantage in using the [GKR08] protocol is that the running time of the prover is poly(2s)
rather than 2poly(s) as in the classical [LFKN92, Sha92] protocol.
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oracle φ′n : {0, 1}n∗ → {0, 1} that returns Boolean valued answers, where n∗ = n′ + log(n′′).
The oracle φ′n on input (z, i) ∈ {0, 1}n′+log(n′′) simply outputs the i-th bit of φn(z).

We note that the requirement in Lemma 14.2 will be that the oracle function {φ′n} can
be computed, rather than decided, by an MIP protocol (with soundness against no-signaling
strategies). This means that both the language Lφ′ = {z ∈ {0, 1}n∗ : φ′n(z) = 1} and
the complement language Lφ′ have MIP protocols with no-signaling soundness. However,
it will be convenient for us to assume that there is a single protocol for computing {φ′n}
with no-signaling soundness, a notion that will be defined next. Indeed, as will be shown in
Claim 14.5, the existence of MIP protocols with no-signaling soundness for both Lφ′ and Lφ′
implies a single protocol for computing {φ′n}.

Multi-prover protocols for computing a function. In a one-round k-prover interac-
tive protocol for computing a function f : {0, 1}∗ → {0, 1}∗, there are k computationally
unbounded provers, P1, . . . , Pk, that try to convince a (probabilistic) polynomial-time veri-
fier, V , of the value of f(x) where the input x ∈ {0, 1}∗ is known to all parties.

The interaction is similar to that in a one-round MIP (see Section 4.2). Given x and
her random string, the verifier generates k queries, q1, . . . , qk, one for each prover, and sends
them to the k provers. The provers respond with answers a1, . . . , ak. Finally, the verifier,
based on the answers that she receives (as well as the input x and her random string), either
outputs a value (which is supposed to equal f(x)) or outputs a special abort symbol ⊥.

Denote byD the query alphabet and by Σ the answer alphabet. We say that (V, P1, . . . , Pk)
is a one-round k-prover protocol for computing f , with soundness ε against δ-no-signaling
strategies, if the following two properties are satisfied:

1. Completeness: For every x ∈ {0, 1}∗, the verifier V outputs f(x) with probability 1,
after interacting with P1, . . . , Pk.

2. Soundness: For every x ∈ {0, 1}∗, and any δ-no-signaling family of distributions
{Aq}q∈Dk (where Aq is distributed over Σk, for every q ∈ Dk), with probability ≥ 1−ε,
the verifier V outputs either f(x) or ⊥, where on queries q = (q1, . . . , qk) the answers
are given probabilistically by (a1, . . . , ak) ∈R Aq.

We are now ready to state and prove Lemma 14.2.

Lemma 14.2. Let L be a language and suppose that L has an MIP relative to an oracle
{φ′n : {0, 1}n∗ → {0, 1}}n (where n is the input length) with soundness ε against δ-no-
signaling strategies. Let k be the number of provers and ` > 0 be the number of oracle
queries used by the MIP. Suppose further that the function {φ′n} can be computed by a one-
round k′-prover protocol with soundness ε′ against δ′-no-signaling strategies. Then, L has
an MIP relative to the same oracle {φ′n} with ε′′ soundness against δ′′-no-signaling strategies
where ε′′ = ε + ε′ + δ′′ and δ′′ = min(δ, δ′). The resulting MIP uses k + k′ provers but only
`− 1 oracle queries.
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Furthermore, if the original MIP verifier for L runs in time TV , and the verifier of the
MIP for {φ′n} runs in time T ′V , then the resulting verifier runs in time TV +O(T ′V + k′n∗). If
the provers of the MIP for L run in time TP and the provers of the MIP for {φ′n} run in time
T ′P then the resulting provers run in time TP + O(T ′P + n∗). If the original MIP has query
alphabet D and answer alphabet Σ and the oracle MIP has query alphabet D′ and answer
alphabet Σ′ then the resulting MIP has query alphabet D′′ = D ∪ ({0, 1}n∗ ×D′) and answer
alphabet Σ′′ = Σ ∪ Σ′. 18

The high level idea is that if the oracle can be computed by a no-signaling MIP pro-
tocol then an oracle query can just be simulated by adding sufficiently many provers and
running the multi-prover protocol for the oracle function with the additional provers. The
no-signaling soundness property guarantees that revealing the oracle query to the provers
does not harm soundness (too much).

Proof of Lemma 14.2. Let (V, P1, . . . , Pk) be the MIP for L relative to the oracle {φ′n :
{0, 1}n∗ → {0, 1}} that has soundness ε against δ-no-signaling strategies. Let D be the
query alphabet and Σ the answer alphabet. Let (V ′, P ′1, . . . , P

′
k′) be the k′-prover interactive-

protocol for computing {φ′n} with soundness ε′ against δ′-no-signaling strategies. Recall that
this means that when interacting with the honest provers, V ′(z) outputs φ′n(z) (with proba-
bility 1) and that no δ′-no-signaling cheating strategy can convince V ′(z) to output anything
other than φ′n(z) or ⊥, with probability greater than ε′. Let D′ be the query alphabet and
Σ′ the answer alphabet of (V ′, P ′1, . . . , P

′
k′). Let Σ′′ = Σ ∪ Σ′. It will be convenient for us to

extend the answer alphabets of both protocols to Σ′′.19

Since we deal with 1-round protocols, it will be convenient to think of each one of our
verifiers as being composed of two algorithms (that share their randomness) - the query
generation step and the verification step. Specifically, we think of V as being composed of
two algorithms V1 and V2. The first algorithm, V1, on input x and a random string r, outputs
a sequence of k prover-queries q ∈ Dk and a sequence of ` oracle-queries q′ ∈ ({0, 1}n∗)`.
The second algorithm, V2, on input x, the same random string r, prover answers a ∈ (Σ′′)k

and oracle answers b ∈ {0, 1}` outputs a bit representing whether x ∈ L. Similarly, we
think of V ′ as being composed of two algorithms V ′1 and V ′2 . The first algorithm, V ′1 , on
input q∗ ∈ {0, 1}n∗ and a random string s, outputs a sequence of k′ queries w ∈ (D′)k

′
.

The second algorithm, V ′2 , on input q∗, the same random string s, and answers z ∈ (Σ′′)k
′
,

outputs the result (which is supposed to be equal to φ′n(q∗)).

We construct an MIP protocol for L with only ` − 1 oracle queries (but using k + k′

provers) as follows. The verifier V ′′ is composed of two steps, where V ′′1 denotes the query
generation step and V ′′2 denotes the verification step. The first algorithm, V ′′1 , on input x and
the random string (r, s), first invokes V1(x, r) to obtain k prover-queries q = (q1, . . . , qk) ∈ Dk

and ` oracle-queries q′ = (q′1, . . . , q
′
`) ∈ ({0, 1}n∗)`. For every i ∈ [k], the query qi is sent

directly to the i-th prover and the oracle queries q′2, . . . , q
′
` are sent directly to the oracle

18Note that we do not assume that D ∩ ({0, 1}n∗ ×D′) = ∅ nor that Σ ∩ Σ′ = ∅.
19This can be done by having the verifiers reject immediately if they see symbols that are not in their

original alphabets.
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φ′n. The query q∗
def
= q′1 is handled differently (to avoid an additional oracle query). The

k′ additional prover queries are generated by invoking V ′1(q∗, s), to obtain a sequence of k′

queries w = (w1, . . . , wk′) ∈ (D′)k
′
. For every i ∈ [k′] the query (q∗, wi) is sent to the

(k + i)-th prover.

We denote the query alphabet by D′′
def
= D∪({0, 1}n∗×D′). For every sequence ω ∈ (D′)k

′

we denote by ω(q∗)
def
= (q∗, ω1), . . . , (q∗, ωk′) ∈ (D′′)k

′
. Thus, the sequence of queries sent by

the verifier is (q,w(q∗)) ∈ (D′′)k+k′ .

The honest provers operate as follows. The first k provers operate exactly the same as
the provers P1, . . . , Pk in the original MIP for L. That is, for every i ∈ [k], the i-th prover, on

input x and query qi, answers with ai = Pi(x, qi). We denote a
def
= (a1, . . . , ak) ∈ (Σ′′)k. The

last k′ provers answer their queries as follows. For every i ∈ [k′], the (k+ i)-th prover, given

the query (q∗, wi), answers its query with zi = P ′i (q
∗, wi). We denote z

def
= (z1, . . . , zk′) ∈

(Σ′′)k
′
.

To decide whether to accept, on input x, the random string (r, s), prover answers (a, z) ∈
(Σ′′)k+k′ , and oracle answers b2, . . . , b` ∈ {0, 1}, the algorithm V ′′2 first recomputes q∗ from

x and r and computes b∗
def
= V ′2(q∗, s, z). If b∗ = ⊥, then V ′′2 rejects. Otherwise, V ′′2 outputs

the result of V2(x, r, a,b), where b = (b∗, b2, . . . , b`). In other words, the verifier computes
the result of the original verification process when the answers to q are a, the answer to
the first oracle query is b∗ and the answers to the rest of the oracle queries q′2, . . . , q

′
` are

(respectively) b2, . . . , b`.

We first argue that the resulting MIP has perfect completeness and then proceed to prove
soundness against δ′′-no-signaling strategies. To show that completeness holds, observe that
when the verifier V ′′ interacts with the honest provers on input x ∈ L, since the protocol
(V ′, P ′1, . . . , P

′
k′) has perfect completeness, it holds that b∗ = φ′n(q∗) and therefore V ′′2 runs

V2 with the correct oracle answers. The completeness of the protocol follows from the
completeness of (V, P1, . . . , Pk).

To show that δ′′-no-signaling soundness holds, assume for a contradiction that there exists
some δ′′-no-signaling cheating strategy {A(χ,ω)}(χ,ω)∈(D′′)k+k′ that fools V ′′ into accepting
x /∈ L with probability ε′′. That is,

Pr
r,s

(a,z)∈RA(q,w(q∗))

[
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

]
≥ ε′′

where q, q∗,w, b2, . . . , b` are constructed as above. Using elementary manipulations we have
that
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ε′′ ≤ Pr
r,s

(a,z)∈RA(q,w(q∗))

[
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

]
= Pr

r,s
(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ 6= φ′n(q∗)

)]
+

Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
≤ Pr

r,s
(a,z)∈RA(q,w(q∗))

[
b∗ /∈ {φ′n(q∗),⊥}

]
+

Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
(7)

where q, q∗,w, b2, . . . , b` are as above and b∗ = V ′2(q∗, s, z). Lemma 14.2 follows from the
following two claims (Claim 14.3 and Claim 14.4), that analyze the last two terms separately.

Claim 14.3.
Pr
r,s

(a,z)∈RA(q,w(q∗))

[b∗ /∈ {φ′n(q∗),⊥}] < ε′

Proof. Suppose otherwise. That is:

Pr
r,s

(a,z)∈RA(q,w(q∗))

[
V ′2(q∗, s, z) /∈ {φ′n(q∗),⊥}

]
≥ ε′.

Then, by an averaging argument, there exists a fixed value of r for which:

Pr
s

(a,z)∈RA(q,w(q∗))

[
V ′2(q∗, s, z) /∈ {φ′n(q∗),⊥}

]
≥ ε′ (8)

where q, q∗ are fixed (based on the value of r), and w = V ′1(q∗, s). For the rest of the proof
of Claim 14.3, we use r,q, q∗ to refer to the foregoing fixed values.

We construct a δ′-no-signaling strategy B = {Bω}ω∈(D′)k′ that on input q∗, fools V ′ into
outputting a value that is neither φ′n(q∗) nor ⊥, with probability ≥ ε′, contradicting our
assumption on the soundness of (V ′, P ′1, . . . , P

′
k′). For every ω ∈ (D′)k

′
, the distribution Bω

is defined by sampling (a, z) ∈R A(q,ω(q∗)) and outputting z.

To show that B violates the δ′-no-signaling soundness of (V ′, P ′1, . . . , P
′
k′), note that by

Eq. (8), the probability that V ′2 , on input q∗, the random string s and given answers z ∈R Bw,
where w = V ′1(q∗, s), outputs a value that is neither φ′n(q∗) nor ⊥ is at least ε′.

We proceed to show that B is δ′-no-signaling. Let S ⊂ [k′] and ω, ω′ ∈ (D′)k
′
, such that

ωS = ω′S. Suppose that the statistical distance between zS and z′S is more than δ, where
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z ∈R Bω and z′ ∈R Bω′ . Hence,

δ′ <
1

2

∑
β∈(Σ′′)S

∣∣∣∣ Pr
z∈RBω

[zS = β]− Pr
z′∈RBω′

[z′S = β]

∣∣∣∣
=

1

2

∑
β∈(Σ′′)S

∣∣∣∣∣ Pr
(a,z)∈RA(q,ω(q∗))

[zS = β]− Pr
(a′,z′)∈RA(q,ω′(q∗))

[z′S = β]

∣∣∣∣∣ . (9)

Let S ′ = {k + i : i ∈ S}. Then, by Eq. (9) the projections of the distributions A(q,ω(q∗))

and A(q,ω′(q∗)) to coordinates in S ′ are δ′-far. Since (q, ω(q∗))S′ = (q, ω′(q∗))S′ and δ′′ ≤ δ′,
this contradicts our assumption that A is δ′′-no-signaling.

This concludes the proof of Claim 14.3.

Claim 14.4.

Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
< ε+ δ′′

Proof. Suppose otherwise. Thus, by the definition of V ′′2 ,

ε+ δ′′ ≤ Pr
r,s

(a,z)∈RA(q,w(q∗))

[(
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

)
∧
(
b∗ = φ′n(q∗)

)]
= Pr

r,s
(a,z)∈RA(q,w(q∗))

[
V ′′2 (x, (r, s), (a, z), (b2, . . . , b`)) = 1

∣∣ b∗ = φ′n(q∗)
]
· Pr

r,s
(a,z)∈RA(q,w(q∗))

[
b∗ = φ′n(q∗)

]
= Pr

r,s,
(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

∣∣ b∗ = φ′n(q∗)
]
· Pr

r,s
(a,z)∈RA(q,w(q∗))

[
b∗ = φ′n(q∗)

]
= Pr

r,s,
(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

]
(10)

where q,q′, q∗,w, b∗ are as above, and φ′n(q′) = (φ′n(q′1), . . . , φ′n(q′`)) (i.e., the correct oracle
answers).

We argue that Eq. (10) contradicts the δ-no-signaling soundness of V . Toward this
end, we construct a cheating strategy B = {Bχ}χ∈Dk that fools V into accepting x /∈ L,
with probability ≥ ε. Let σ ∈ (D′′)k

′
be an arbitrary fixed value. For every χ ∈ Dk, the

distribution Bχ is defined by sampling (a, z) ∈R A(χ,σ) and outputting a.

We first show that B is δ-no-signaling and proceed to show that it violates the soundness
of (V, P1, . . . , Pk). Let S ⊂ [k] and χ, χ′ ∈ Dk such that χS = χ′S. Suppose toward a
contradiction that the statistical distance between aS and a′S is more than δ, where a ∈R Bχ
and a′ ∈R Bχ′ . Hence,

δ <
1

2

∑
β∈(Σ′′)S

∣∣∣∣ Pr
a∈RBχ

[aS = β]− Pr
a′∈RBχ′

[a′S = β]

∣∣∣∣
=

1

2

∑
β∈(Σ′′)S

∣∣∣∣∣ Pr
(a,z)∈RA(χ,σ)

[aS = β]− Pr
(a′,z′)∈RA(χ′,σ)

[a′S = β]

∣∣∣∣∣ .
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In particular, the projections of the distributions A(χ,σ) and A(χ′,σ) to coordinates in S are
δ-far. Since (χ, σ)S = (χ′, σ)S and δ′′ ≤ δ, this contradicts our assumption that A is δ′′-no-
signaling.

We proceed to show that {Bχ}χ∈Dk fools V into accepting x /∈ L with probability ≥ ε.
Assume for a contradiction that

Pr
r,

a′∈RBq

[V2(x, r, a′, φ′n(q′)) = 1] < ε. (11)

where q,q′ are as above. Combining Eq. (10) and Eq. (11) we have that:

E
r,s

[
Pr

(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

]
− Pr

(a′,z′)∈RA(q,σ)

[
V2(x, r, a′, φ′n(q′)) = 1

]]
> δ′′

where q, q∗,q′, φ′n(q′) are as above and w = V ′1(q∗, s).

By an averaging argument, there exist fixed values for r and s such that:

Pr
(a,z)∈RA(q,w(q∗))

[
V2(x, r, a, φ′n(q′)) = 1

]
− Pr

(a′,z′)∈RA(q,σ)

[
V2(x, r, a′, φ′n(q′)) = 1

]
> δ′′ (12)

where q, q∗,q′, φ′n(q′) and w are fixed based on the fixed values of r and s.

Equation (12) gives a statistical test that distinguishes between the projections of the
distributions A(q,σ) and A(q,w(q∗)) to coordinates in [k] with gap > δ′′, contradicting our
assumption that A is δ′′-no-signaling. Hence, B fools V into accepting x /∈ L with probability
≥ ε. This concludes the proof of Claim 14.4.

This concludes the proof of Lemma 14.2.

To prove Lemma 14.1 we also need the following straightforward claim.

Claim 14.5. Let L be a language and suppose that both L and L (i.e., the complement
language of L) have MIP protocols with soundness ε against δ-no-signaling strategies. Assume
that each of the MIP protocols uses k provers. Then, there exists a 2k-prover interactive
protocol for computing the function L(x) : {0, 1}∗ → {0, 1}, where L(x) = 1 if and only
if x ∈ L, with soundness ε against δ-no-signaling strategies. If both of the original MIP
protocols use query alphabet D and answer alphabet Σ then the resulting 2k-prover protocol
has query alphabet D and answer alphabet Σ ∪ {⊥}, where ⊥ /∈ Σ is a special symbol.

Furthermore, if each of the original MIP verifiers runs in time TV then the resulting
verifier runs in time O(TV + k · log(|Σ|)) and if each of the original MIP (honest) provers
runs in time TP then the resulting provers run in time O(TP + TL + log(|Σ|)), where TL is
the time that it takes for a Turing machine to compute L(x).

Proof. Let (V, P1, . . . , Pk) be the MIP for L and let (V ′, P ′1, . . . , P
′
k) be the MIP for L. We

assume that V and V ′ are composed of two algorithms, a query generation algorithm and
a verification algorithm. The query generation algorithm V1 (resp., V ′1) on input x and a
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random string r (resp., r′), outputs k queries q = (q1, . . . , qk) ∈ Dk (resp., q′ = (q′1, . . . , q
′
k) ∈

Dk). The verification algorithm V2 (resp., V ′2), on input x, the same random string r (resp.,
r′) and k answers a = (a1, . . . , ak) ∈ Σk (resp., a′ = (a′1, . . . , a

′
k) ∈ Σk), outputs a bit

representing whether to accept or reject the statement x ∈ L (resp., x /∈ L).

We construct a 2k-prover protocol for computing L as follows. The first k provers are
the same as P1, . . . , Pk except that they first verify that x ∈ L. If x /∈ L, then they answer
with the special symbol ⊥. Similarly, the last k provers are the same as P ′1, . . . , P

′
k except

that they first verify that x /∈ L. If x ∈ L, then they send the special symbol ⊥.

On input x and a random string (r, r′) the query generation algorithm V ′′1 computes
q = V1(x, r) and q′ = V ′1(x, r′), where q,q′ ∈ Dk. For every i ∈ [k], the query qi is sent to
the i-th prover and the query q′i is sent to the (k + i)-th prover. Given the provers’ answers
(a, a′) ∈ (Σ ∪ {⊥})k+k, the verification algorithm V ′′2 works as follows:

1. If V2(x, r, a) = 1 and all the entries of a′ are equal to ⊥, then output 1 and halt.20

2. If V ′2(x, r′, a′) = 1 and all the entries of a are equal to ⊥, then output 0 and halt.

3. Output ⊥ and halt.

To see that completeness holds note that if x ∈ L then the last k provers will send ⊥
and, by the completeness of (V, P1, . . . , Pk) the verifier will output 1. If x /∈ L then the first
k provers will send ⊥ and, by the completeness of (V ′, P ′1, . . . , P

′
k), the verifier will output 0.

We proceed to show that soundness against δ-no-signaling strategies holds.

Fix x ∈ {0, 1}∗ and assume toward a contradiction that there exists a δ-no-signaling
strategy {A(u,u′)}(u,u′)∈Dk+k such that

Pr
r,r′

(a,a′)∈RA(q,q′)

[V ′′2 (x, (r, r′), (a, a′)) /∈ {L(x),⊥}] ≥ ε,

where q = V1(x, r) and q′ = V ′1(x, r′). For simplicity let us assume that x /∈ L. The case
that x ∈ L is handled analogously (using the soundness of V ′, rather than the soundness of
V ). Thus,

Pr
r,r′

(a,a′)∈RA(q,q′)

[V ′′2 (x, (r, r′), (a, a′)) /∈ {0,⊥}] ≥ ε.

In particular, by the definition of V ′′:

Pr
r,r′

(a,a′)∈RA(q,q′)

[V2(x, r, a) = 1] ≥ ε. (13)

where q = V1(x, r) and q′ = V ′1(x, r′).

20If one of the entries of a (resp., a′) is ⊥, then we define V2(x, r,a) = 0 (resp., V ′2(x, r′,a′) = 0).
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By an averaging argument, Eq. (13) implies that there exists a fixed value of r′ such that

Pr
r

(a,a′)∈RA(q,q′)

[V2(x, r, a) = 1] ≥ ε. (14)

where q′ = V ′1(x, r′) is a fixed value and q = V1(x, r). For the rest of the proof of Claim 14.5
we fix r′ and q′ as above.

We use A to construct a δ-no-signaling strategy B = {Bu}u∈Dk that fools V into accepting
x /∈ L with probability ≥ ε. For every u ∈ Dk, the distribution Bu is defined by sampling
(a, a′) ∈R A(u,q′) and outputting a.

We first show that B violates the soundness of V2 and then show that it is δ-no-signaling.
Indeed, by the definition of B and using Eq. (14) it holds that

Pr
r

a∈RBq
[V2(x, r, a) = 1] = Pr

r
(a,a′)∈RA(q,q′)

[V2(x, r, a) = 1] ≥ ε.

We proceed to show that B is δ-no-signaling. Let S ⊂ [k] and let u1, u2 ∈ Dk such that
(u1)S = (u2)S, and suppose that the statistical distance between (a1)S and (a2)S is more
than δ, where a1 ∈R Bu1 and a2 ∈R Bu2 . Then:

δ <
1

2

∑
β∈ΣS

∣∣∣∣ Pr
a1∈RBu1

[(a1)S = β]− Pr
a2∈RBu2

[(a2)S = β]

∣∣∣∣
=

1

2

∑
β∈ΣS

∣∣∣∣∣ Pr
(a1,a′1)∈RA(u1,q

′)

[(a1)S = β]− Pr
(a2,a′2)∈RA(u2,q

′)

[(a2)S = β]

∣∣∣∣∣ .
Thus, the projections of the distributions A(u1,q′) and A(u2,q′) to coordinates in S are δ-far.
Since (u1,q

′)S = (u2,q
′)S, this contradicts our assumption that A is δ-no-signaling.

This concludes the proof of Claim 14.5.

Using Lemma 13.3, Lemma 14.2 and Claim 14.5 we are ready to prove Lemma 14.1.

Proof of Lemma 14.1. As a first step we replace the oracle {φn : {0, 1}n′ → {0, 1}n′′} with
a Boolean valued oracle {φ′n : {0, 1}n∗ → {0, 1}}, where n∗ = n′ + log(n′′), by having the
oracle φ′n on input (z, i) ∈ {0, 1}n′+log(n′′) simply output the i-th bit of φn(z). Note that this
step increases the number of oracle queries from ` to ` · log(n′′).

Fix t ≥ 1. Since {φ′n} can be computed in linear (i.e., O(n∗)) space, by Lemma 13.3, the
language Lφ′ = {z ∈ {0, 1}∗ : φ′(z) = 1} has a poly(n∗)-prover MIP with soundness error
poly(n∗) ·2−t against 2−t-no-signaling strategies. The verifier runs in time t ·poly(n∗) and the
(honest) provers run in time t ·poly(2n∗). The query and answer alphabets are {0, 1}t·poly(n∗).
Similarly, the complement language Lφ′ can also be computed in space O(n∗) and so it has
an MIP with the same parameters.

Thus, by Claim 14.5, there exists a poly(n∗)-prover interactive protocol for computing
{φ′n} with soundness poly(n∗) · 2−t against 2−t-no-signaling strategies. The verifier of the
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resulting protocol runs in time t · poly(n∗) and the provers run in time t · poly(2n∗). The
query and answer alphabets are {0, 1}t·poly(n∗).

The lemma follows by applying Lemma 14.2 iteratively ` · log(n′′) times to the original
MIP for L to remove all of the oracle queries. The resulting MIP has soundness ε+`·poly(n∗)·(
2−t + min(δ, 2−t)

)
against min(δ, 2−t)-no-signaling provers. The MIP uses k + ` · poly(n∗)

provers. The verifier runs in time TV + O(` · t · poly(n∗)) and each prover runs in time
TP + O(` · t · poly(2n∗)). The query alphabet is D ∪ {0, 1}t·poly(n∗) and the answer alphabet
is Σ ∪ {0, 1}t·poly(n∗).21

15 Proof of Theorem 4

Using the tools developed in the previous sections, we are finally ready to prove Theorem 4.

Theorem 4. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n).
Then, for any integer (log t)c ≤ k ≤ poly(n), where c is some (sufficiently large) universal
constant, there exists an MIP for L with k · polylog(t) provers and with soundness error 2−k

against 2−k·polylog(t)-no-signaling strategies.

The verifier runs in time (n+k2) ·polylog(t) and the provers run in time poly(t, k). Each
query and answer is of length k · polylog(t).

Proof. Let L ∈ DTIME(t(n)), where poly(n) ≤ t(n) ≤ exp(n). Then, L ∈ DTISP(t(n), s(n))
where max(n, log(t(n))) ≤ s(n) ≤ t(n). Fix t = t(n) and s = s(n).

Let Cn be a circuit on n inputs of size N = O(t · s) that computes L and let C ′n be the
augmented circuit of size N ′ = poly(N), as described in Section 9. Let the parameters ` and
F be as defined in Section 9.

Let k′ ≤ poly(n) be an integer such that 4|F|4 ≤ k′ ≤ N ′. Consider the augmented PCP
of Section 9, with respect to C ′n, and the security parameter k′. Since 4|F|4 ≤ k′ ≤ N ′,
by Lemma 11.1, the PCP verifier has soundness ε′ against (kmax, δ

′)-no-signaling strategies
where:

21Note that the alphabet sizes do not increase on every iteration.
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|F| ≤ 8(log(N ′)10

` = 3
log(N ′)

log log(N ′)
+ 3

r =
k′

40`|F|
ε′ = 2−r/2

kmax = k′ · polylog(s) · log(t)|F|+ 12k′`|F|2

δ′ =
1

|F|8k′`|F|2
.

Recall that this PCP is relative to an oracle φ̂′ : F` → F (see Section 5 and Section 9).
As noted in Section 5.2.1, the total number of PCP queries as well as the total number
of oracle queries is at most 6k′`|F|2 ≤ k′polylogN ′ and the running time of the verifier is
k′polylogN ′. As noted in Section 5.1.1 (see also Section 9), the PCP can be generated in time
poly(N ′). The query alphabet is of size at most poly(N ′) and the answer alphabet is of size
|F| ≤ polylogN ′.

As a first step, we transform the PCP into an MIP. By applying Lemma 12.1, we obtain
an MIP (relative to the same oracle) with soundness ε′ against δ′-no-signaling strategies. The
MIP uses kmax ≤ k′polylogN ′ provers and k′polylogN ′ oracle queries. The query and answer
alphabets remain unchanged. The running time of the MIP verifier is: O(k′polylogN ′ +
kmax logN ′) ≤ k′polylogN ′. The running time of each MIP prover is poly(N ′).

Recall that φ̂′ = φ̂x + φ̂C′ + φ̂extra where φ̂x, φ̂C′ , φ̂extra are the low degree extensions
of φx, φC′ and φextra respectively (see Section 5 and Section 9). As our second step, we
replace the use of the oracle φ̂′ in the MIP with the oracle φ̂C′ + φ̂extra. This is done by
replacing each oracle query φ̂′(z), by first querying the new oracle (φ̂C′+φ̂extra)(z) and adding
φ̂x(z), which is computed directly by the verifier, to the result. As noted in Section 5, the
function φ̂x can be evaluated in time n · polylogN ′. Thus, the resulting verifier runs in time
k′polylogN ′ + npolylogN ′ and all other parameters of the MIP remain unchanged.

At this point we apply Lemma 14.1 to obtain an MIP without an oracle. Note that, as
pointed out in Section 5 (resp., Section 9), the function φ̂C′ (resp., φ̂extra) can be computed
in space that is linear in its input (i.e., O(log(|F|`)) = O(logN ′) space). Therefore, we can
apply Lemma 14.1, with respect to a parameter t = log2(1/δ′), to obtain an MIP without an
oracle that has soundness ε against δ-no-signaling strategies where

ε = ε′ + k′δ′polylogN ′

δ = δ′

The resulting MIP uses k′polylogN ′ provers. The resulting MIP verifier runs in time

(n+ k′)polylogN ′ +O(k′polylogN ′ log(1/δ)polylogN ′) ≤ (n+ k′2)polylogN ′
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and the resulting provers run in time

poly(N ′) +O(k′polylogN ′ · log(1/δ) · poly(2O(logN ′))) ≤ poly(N ′).

The query alphabet is of size poly(N ′) + 2log(1/δ)·polylog(N ′) ≤ 2k
′·polylogN ′ and the answer al-

phabet is of size polylogN ′ + 2log(1/δ)·polylog(N ′) ≤ 2k
′·polylogN ′ .

The theorem follows by setting k′ = k · polylogN ′ and noting that N ′ = poly(t).22

16 From No-Signaling MIP’s to One Round Arguments

In this section we show how to transform any MIP that has soundness against no-signaling
strategies into a 1-round argument system, using a fully-homomorphic encryption scheme
(FHE) (or alternatively, a computational private information retrieval (PIR) scheme).

Theorem 12. Suppose that the language L has an ` prover MIP that has ε soundness against
δ-no-signaling strategies. Let D be the query alphabet and Σ be the answer alphabet of the
MIP. Let τ = τ(n) ≥ max (`, log(|Σ|), log(|D|)) be a security parameter, where n denotes
the input length of the MIP. For every S = S(τ) ≥ τ such that S ≥ max(n, 2` log(|Σ|)) and
δ′ = δ′(τ) such that δ′ ≤ δ/`, if there exists an (S, δ′)-secure FHE, then the language L has
a 1-round argument system with soundness (S, ε).

If the MIP verifier runs in time TV , then the running time of the resulting verifier is
TV + TFHE(τ) where TFHE is a polynomial that depends only on the encryption scheme (and
not on the language L). If the running time of each MIP prover is TP , then the running time
of the resulting prover is poly

(
TP , τ, n

)
. The total communication in the resulting argument-

system is of length poly(τ).

Proof. Let (V, P1, . . . , P`) be an ` prover MIP for L with soundness ε against δ-no-signaling
strategies. Let D be the query alphabet and Σ be the answer alphabet. Since (V, P1, . . . , P`)
is a 1-round protocol, it will be convenient for us to think of V as being composed of two
algorithms that use the same randomness, V1 and V2. The first algorithm, V1, on input x and
the random string r outputs a sequence of ` queries q ∈ D`. The second algorithm, V2, on
input x, the same random string r and answers a ∈ Σ` outputs a bit that represents whether
it believes that x ∈ L. We assume without loss of generality that the provers algorithms
P1, . . . , P` are deterministic.

Let (Gen,Enc,Dec,Eval) be an FHE and let τ = τ(n) be a security parameter. We use
the MIP and FHE to construct an argument system (V ′, P ′) as follows. The verifier, given as
input x, first invokes V1 on input x and a random string r to obtain a sequence of ` queries
q = (q1, . . . , q`) ∈ D`. Then, for every i ∈ [`], the verifier invokes Gen(1τ ), where τ = τ(|x|),
to obtain a key-pair (pki, ski). The verifier then runs Encpki(qi) to obtain a ciphertext q̂i, for

22Note that we assumed that k′ < N ′. If this is not the case then we can increase N ′ by adding sufficiently
many dummy gates to the circuit C′n.
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every i ∈ [`]. We denote pk = (pk1, . . . , pk`), and q̂
def
= (q̂1, . . . , q̂`). The verifier sends (pk, q̂)

to P ′.

The prover P ′ is given as input x and a message (pk, q̂) from the verifier. For every
i ∈ [`], let Cx,i : D → Σ be a Boolean circuit that on input q computes the function
Pi(x, q). For every i ∈ [`], the prover P ′ computes âi = Eval(pki, Cx,i, q̂i). The prover sends

â
def
= (â1, . . . , â`) to the verifier.

The verifier V ′, given the message â from the prover, computes ai = Decski(âi), for every
i ∈ [`]. The verifier outputs the result of V2(x, (a1, . . . , a`), r), where r is the same random
string used by V1 to generate the queries.

We proceed to show that (V ′, P ′) is an argument system with soundness (S, ε) (see
definition in Section 4.8).

Completeness. Let x ∈ L. By the construction and the correctness of the FHE protocol,
for every i ∈ [`] it holds that ai = Pi(x, qi), with overwhelming probability. When V2 is
invoked with the answers of the honest provers P1, . . . , P`, by the (perfect) completeness of
the MIP, the verifier V outputs 1. Hence, V ′ accepts with overwhelming probability.

Soundness. Let {P ∗n}n∈N be a family of circuits of size at most poly(S(n)) such that there
exist infinitely many x /∈ L such that

Pr[(P ∗|x|, V
′)(x) = 1] > ε, (15)

where (P ∗|x|, V
′)(x) denotes the output of V ′ after interacting with the prover P ∗|x| on common

input x (and the probability is over the random coins of V ′). We show a contradiction by
constructing a δ-no-signaling (cheating) strategy that fools the underlying MIP verifier V
into accepting some x /∈ L with probability greater than ε.

For every x /∈ L, consider an MIP prover strategy A(x) def
= {A(x)

q }q∈D` , where for every

q = (q1, . . . , q`) ∈ D`, the distribution A(x)
q is sampled as follows. First, for every i ∈ [`]

invoke Gen(1τ ), where τ = τ(|x|), to obtain (pki, ski) and compute q̂i ∈R Encpki(qi). Then,
compute â = (â1, . . . , â`) ∈R P ∗|x|(x, (pk, q̂)), where pk = (pk1, . . . , pk`) and q̂ = (q̂1, . . . , q̂`),

and for every i ∈ [`], set ai = Decski(âi). Finally, output a
def
= (a1, . . . , a`).

By the definition of A(x) and V ′ and using Eq. (15), for infinitely many x /∈ L, it holds
that

Pr
r

a∈RA
(x)
q

[V2(x, a, r) = 1] = Pr
[
(P ∗|x|, V

′)(x) = 1
]
> ε

where q = V1(x, r). It remains to be shown that for all sufficiently large x /∈ L, the strategy
A(x) is δ-no-signaling.

We need to prove that for all sufficiently large x, every S ⊆ [`], and every two sequences
of queries q = (q1, . . . , q`) ∈ D` and q′ = (q′1, . . . , q

′
`) ∈ D` such that qS = q′S (i.e., qi = q′i

for all i ∈ S), the following two distributions are δ-close:
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• aS where a ∈R A(x)
q ; and

• a′S where a′ ∈R A(x)
q′ .

Toward this end, assume for a contradiction that for infinitely many x this is not the case.
That is, for infinitely many x, there exist corresponding S, q, q′ and a distinguisher Dx such
that ∣∣∣ Pr

a∈RA
(x)
q

[Dx(aS) = 1]− Pr
a′∈RA

(x)

q′

[Dx(a′S) = 1]
∣∣∣ > δ. (16)

Since Dx takes as input a string of length at most ` · log(|Σ|), it can be implemented by a
circuit of size at most poly(2`·log(|Σ|)). We use {Dx}x to construct a family of circuits {Cτ}τ
that breaks the security of the underlying FHE scheme.

For every x as above and for τ = τ(|x|), let Cτ be a circuit that takes as input a set
of public-keys {pki}i∈[`]\S (with respect to security parameter τ) and a set of ciphertexts
{ci}i∈[`]\S. We show that the circuit Cτ distinguishes between the case that (1) each ci was
sampled from Encpki(qi); and the case that (2) each ci was sampled from Encpki(q

′
i). The

circuit Cτ works as follows:

1. For every i ∈ S, sample (pki, ski) ∈R Gen(1τ ) and ci ∈R Encpki(qi). Set pk =
(pk1, . . . , pk`) and c = (c1, . . . , c`) (note that for i /∈ S, the values pki and ci are
given as input to the circuit).

2. Compute â
def
= (â1, . . . , â`) = P ∗|x|(x, pk, c), where P ∗|x|(x, pk, c) denotes the output of

P ∗|x| given as input x and a message (pk, c). (Note that x is fixed inside the description

of Cτ .)

3. For every i ∈ S, set ai = Decski(âi).

4. Output Dx(aS) where aS = (ai)i∈S.

Note that Cτ has size poly
(
2`·log(|Σ|), τ, S(τ), |x|

)
≤ poly(S(τ)).

By Eq. (16), the circuit Cτ distinguishes between the two cases with probability δ for
infinitely many values of τ . By a standard hybrid argument we obtain a circuit that breaks
the semantic security of the encryption scheme with distinguishing gap at least δ/` ≥ δ′(τ)
in contradiction to our assumption. Thus, we obtain that for all sufficiently large x /∈ L, the
prover strategy A(x) is δ-no-signaling and the lemma follows.

17 Delegation for P

Using all the results above, we are ready to prove Theorem 9.

Theorem 9. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n).
Let τ = τ(n) be a security parameter such that log(t) ≤ τ ≤ poly(t). Let S = S(τ) ≥ τ such
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that 2(log(t))c ≤ S ≤ 2poly(n) and S ≤ 2max(n,τ), where c is some sufficiently large universal

constant. If there exists an
(
S, 2−

√
logS
)

-secure FHE, then L has a 1-round argument system

with soundness
(
S, 2−

√
log S

polylog(t)

)
. The verifier runs in time n·polylog(t)+poly(τ) and the prover

runs in time poly(t). The total communication is of length poly(τ).

Proof. Suppose that L ∈ DTIME(t(n)), where t = t(n) satisfies poly(n) ≤ t ≤ exp(n). Let
τ = τ(n) be a security parameter such that log(t) ≤ τ ≤ poly(t). Let S = S(τ) such

that 2(log(t))c
′′
≤ S ≤ 2poly(n) and S ≤ 2max(n,τ), where c′′ = 2(c + c′), the constant c is as

in Theorem 4 and c′ is some sufficiently large universal constant. Let δ
def
= 2−

√
logS and

k
def
=

√
logS

(log(t))c′
. Note that by the restriction on S, and our setting of k and δ, it holds that:

1. (log(t))c ≤ k ≤ poly(n).

2. S ≥ max
(
n, 2k

2polylog(t)
)

.

3. δ ≤ 2−kpolylog(t).

(where the latter two conditions are obtained by setting c′ to be a sufficiently large constant).

By applying Theorem 4 (with respect to the parameter k) to the language L, we obtain
an MIP for L with k ·polylog(t) provers and with soundness error 2−k against 2−k·polylog(t)-no-
signaling strategies. The verifier of the MIP runs in time (n+ k2) · polylog(t) and the provers
run in time poly(t, k). Each query and answer is of length k · polylog(t).

Assume that there exists an (S, δ)-secure FHE. By Theorem 12 (and our setting of k,
S and δ), we obtain that L has a 1-round argument system with soundness (S, 2−k). The
running time of the verifier is n · polylog(t) + poly(τ) and the running time of the prover is
poly(t). The total communication is of length poly(τ).

Replacing FHE with PIR. As noted in the introduction, Theorem 12 and Theorem 9
can be based on the assumption that a (sufficiently hard) PIR scheme exists rather than a
full-blown FHE. Indeed, instead of encrypting the MIP queries, the verifier can send them
encapsulated inside PIR queries. The prover, instead of homomorphically evaluating the
MIP prover algorithm on encrypted queries, can pre-compute the answers to every possible
query and answer according to a corresponding PIR database. However, one must be careful
since in the straightforward implementation, the running time of the prover is exponential
in the communication complexity of the underlying MIP. This is a real concern in our
protocol since the MIP has poly-logarithmic communication complexity (which translates to
a quasi-polynomial running time of the prover). We resolve this issue by noting that the next
message function of the prover depends only on a logarithmic number of bits and therefore
the PIR database can be constructed in polynomial-time.
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A Computing LDE over Characteristic 2 Fields

Recall that G is a finite field of characteristic 2, HG ⊆ G is an arbitrary subset of G and mG
is the dimension.

Proposition A.1. There exists a Turing Machine that runs in time poly(|G|mG) and space
O
(
mG·log(|G|)+polylog(|G|)

)
and outputs a Boolean circuit of depth O

(
mG·log(|G|)+logmG·

polylog(|G|)
)

and size poly(|G|mG) that on input a truth table of a function α : HmG
G → {0, 1}

outputs the truth table of the LDE α̂ : GmG → G of α.
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Proof. By the proof of Proposition 4.1,

α̂(z) =
∑

x∈HmG
G

β̂x(z) · α(x) (17)

where each β̂x can be computed by an arithmetic circuit (over G) of depth O(log(mG) +
log(|HG|)) and size poly(|HG|,mG) and each arithmetic circuit can be generated (by a Turing
Machine) in time poly(|HG|,mG, log |G|) and in space O(log(|G|) + log(mG)).

Since the field operations can be implemented by Boolean circuits of depth polylog(|G|)
and size polylog(|G|), we can replace each arithmetic circuit by a Boolean circuit of depth
polylog(|G|) · log(mG) and size poly(|HG|,mG, log(|G|)). Each Boolean circuit can be gener-
ated in time poly(|HG|,mG, log(|G|)) and in space O(polylog(|G|) + log(mG)).

The sum of the terms in Eq. 17 can be computed by an arithmetic circuit of depth
O(log(|HG|mG)) and size O(|HG|mG). Moreover, since addition over G can be computed by a
constant depth (fan-in 2) Boolean circuit (because G has characteristic 2), the sum can be
computed by a Boolean circuit of depth O(log(|HG|mG)) and size polylog(|G|) · O(|HG|mG).
The latter Boolean circuit can be generated in time polylog(|G|) · O(|HG|mG) and space
O(log(|HG|mG)).
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