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Abstract

Given a function f : Fm → F over a finite field F, a low degree tester tests its agreement
with an m-variate polynomial of total degree at most d over F. The tester is usually given
access to an oracle A providing the supposed restrictions of f to affine subspaces of constant
dimension (e.g., lines, planes, etc.). The tester makes very few (probabilistic) queries to f
and to A (say, one query to f and one query to A), and decides whether to accept or reject
based on the replies.

We wish to minimize two parameters of a tester: its error and its size. The error
bounds the probability that the tester accepts although the function is far from a low degree
polynomial. The size is the number of bits required to write the oracle replies on all possible
tester’s queries.

Low degree testing is a central ingredient in most constructions of probabilistically check-
able proofs (PCP s) and locally testable codes (LTCs). The error of the low degree tester
is related to the soundness of the PCP and its size is related to the size of the PCP (or the
length of the LTC).

We design and analyze new low degree testers that have both sub-constant error o(1) and
almost-linear size n1+o(1) (where n = |F|m). Previous constructions of sub-constant error
testers had polynomial size [3, 15]. These testers enabled the construction of PCP s with
sub-constant soundness, but polynomial size [3, 15, 9]. Previous constructions of almost-
linear size testers obtained only constant error [13, 7]. These testers were used to construct
almost-linear size LTCs and almost-linear size PCP s with constant soundness [13, 7, 5, 6, 8].
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1 Introduction

1.1 Low Degree Testing

Let F be a finite field, let m be a dimension and let d be a degree. [A particular setting of
parameters to have in mind is the one used in construction of PCP s and LTCs: a large field F, and a
fairly large degree d, which is, nonetheless, considerably smaller than |F|; specifically, md

|F| ≤ o(1), but

md ≥ |F|1−o(1)].
Define P to be the set of all m-variate polynomials of total degree at most d over F. The

agreement of a function f : Fm → F with a low degree polynomial is

agr(f,P)
def
= max

Q∈P

{
Pr

~x∈Fm
[f(~x) = Q(~x)]

}

Note that agr(f,P) is simply 1−∆(f,P), where ∆ denotes the (normalized) Hamming distance.
A low degree tester is a probabilistic procedure M that is meant to check the agreement of a

function f with a low degree polynomial by making as few queries to f as possible. If f ∈ P,
M should always accept, while if f is far from P (i.e., agr(f,P) is small) M should be likely to
reject.

It is easy to see that when having oracle access only to f , any low degree tester must make
more than d queries. To break this degree barrier, the low degree tester is usually given access
to an additional oracle A providing the supposed restrictions of f to affine subspaces of constant
dimension (e.g., lines, planes, etc.). The convention is that these restrictions in themselves are
polynomials of total degree at most d over the subspaces. The tester is required to satisfy:

• Completeness: If f ∈ P, there is an oracle A that makes the tester accept with prob. 1.

• Soundness: If agr(f,P) is small, then for every oracle A, the tester is not likely to accept.

Rubinfeld and Sudan [16] designed the Line vs. Point tester that makes only two probabilistic
queries. This tester picks independently at random a line l in Fm and a point ~x ∈ l, queries
the oracle A for the (supposed) restriction of f to l (which is simply a univariate polynomial of
degree at most d over F), queries f at ~x, and checks whether the two restrictions are consistent
on ~x, i.e., A(l)(~x) = f(~x).

Low degree testers enabled the construction of Probabilistically Checkable Proofs (PCP s)
[4, 10, 2, 1] and Locally Testable Codes (LTCs) [12, 13], hence their great importance. These
applications motivated further improvements to low degree testing.

Specifically, the following parameters were of interest:

1. Queries: How many queries does the tester make? (should be a constant; preferably 2).

and two more parameters to be thoroughly discussed in the next subsections:

2. Error: How sound is the tester?

3. Size: How many bits are needed to write the oracle replies on all possible queries?
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1.1.1 Error

To prove that a low degree tester is sound, most results address contrapositive arguments of the
following type: assume that the tester accepts with probability γ ≥ γ0 and show the existence
of a low degree polynomial that agrees with f on at least ≈ γ of the points. In this case, we say
that γ0 bounds the error of the tester, since the probability that the tester accepts although
the function is very far from a low degree polynomial is at most γ0.

The first analyses of the Line vs. Point tester [16, 2, 12] only showed that the error of the
tester is bounded away from 1. The error can be amplified to any constant, by a constant
number of repetitions. Nevertheless, to keep the total number of queries constant, one cannot
perform more than a constant number of repetitions.

Only a later, more careful, inspection [3, 15] revealed that there are low degree testers with a
sub-constant error. Specifically, [3, 15] proved claims of the following type for various low degree
testers: there exist (large enough) constants C ≥ 1, a, b ≥ 0, and a (small enough) constant
0 < c ≤ 1, such that the error is at most Cmadb/|F|c. In other words, the error can be made
arbitrarily small by taking m and d to be small enough with respect to |F|. The number of
queries remains 2.

Arora and Sudan [3] proved that the error of the Line vs. Point tester is in fact sub-constant.
Their proof was very algebraic in nature. Raz and Safra [15] proved a sub-constant error for a
slightly different tester, considering planes that intersect by a line, or a plane and a point within
it. Their proof was more combinatorial in nature. The two proofs led to the construction of
PCP s with sub-constant soundness [3, 15, 9].

1.1.2 Size

Let us represent the set of honest oracles by a code. That is, for every polynomial Q : Fm → F of
degree at most d, we have a codeword. The codeword has an entry for every affine subspace s that
the tester may query. This entry contains the oracle’s reply when it is queried regarding s, i.e.,
the restriction of Q to s. The size of a tester is the length (in bits) of a codeword. For instance,
the size of Rubinfeld and Sudans’ Line vs. Point tester [16] is roughly |F|2m (d + 1) log |F|: For
every line (defined by two points), the oracle should provide a univariate polynomial of degree
at most d over F.

Alternatively, we refer to the randomness of the tester, which is the amount of random bits
that the tester requires. For instance, to pick a random line and a random point within it, we
merely have to pick a random point and a random direction in Fm. Hence, the randomness of
the Line vs. Point tester [16] is 2m log |F|.

The size of a tester is measured with respect to n = |F|m. For instance, the size of the Line vs.
Point tester [16] is quadratic n2+o(1). The size of a tester is related to the size of probabilistically
checkable proofs and locally testable codes constructed using it. Hence, Goldreich and Sudan [13]
suggested to improve the Line vs. Point tester by considering a relatively small subset of lines
(instead of all lines). Goldreich and Sudan achieved non-explicit constant error tester of almost-
linear size n1+o(1), instead of quadratic size n2+o(1). Shortly afterwards, Ben-Sasson, Sudan,
Vadhan and Wigderson [7] gave an explicit construction of a constant error Line vs. Point
tester of almost-linear size. Their idea was to choose a line by picking a uniformly distributed
point over Fm (as before), and a direction that is uniformly distributed over a small ε-biased set
within Fm. They showed that the error of this tester is bounded away from 1. Unfortunately,
their elegant analysis is inherently applicable only for acceptance probability γ > 1

2 .
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The work of [13, 7] gave rise to explicit constructions of almost-linear size LTCs and PCP s
with constant soundness [13, 7, 5]. The recent work of Dinur [8] also depicts almost-linear size
LTCs and PCP s with constant soundness, based on the PCP theorem of [2, 1] and the work
of Ben-Sasson and Sudan [6]. Both use low degree testers with constant error. Dinur’s work [8]
also gives new constructions of PCP s and LTCs without low degree testers. However, at this
point, these constructions achieve neither sub-constant error nor almost-linear size.

1.2 Our Contribution: Randomness-Efficient Sub-Constant Error Testers

We design and analyze two low degree testers that have both sub-constant error and almost-
linear size. Potential applications of our constructions are constructions of locally testable
codes and PCP s with sub-constant soundness and almost-linear size (and a constant number
of queries).

Our key idea is to consider a subfield H ⊆ F, and generate subspaces by picking directions
uniformly over Hm, instead of over Fm. The field structure of H allows us to use the combina-
torial approach of Raz and Safra [15], and, more importantly, it allows us to use induction: the
structure of the problem when restricted to affine subspaces of dimension k ≤ m is the same as
its structure in Fm.

As in the analysis of Raz and Safra [15], we abandon the Line vs. Point test, and address
subspaces of dimension larger than 1, rather than lines. Specifically, given access to f and to an
oracle A, our Randomness-Efficient Plane vs. Point tester chooses a plane and a point within
it and checks that they are consistent:

1. Pick uniformly and independently at random ~z ∈ Fm, ~y1, ~y2 ∈ Hm.

2. Accept if either ~y1, ~y2 are linearly dependent, or if the plane p through ~z in directions
~y1, ~y2 satisfies A(p)(~z) = f(~z).

Figure 1: Randomness-Efficient Plane vs. Point Tester

Note that the same plane p goes through many points ~z ∈ Fm and in many directions ~y1, ~y2 ∈
Hm. However, the oracle’s reply A(p) depends on the plane p, and not on its representation
given by ~z and ~y1, ~y2.

For H = F, the Randomness-Efficient Plane vs. Point Tester is exactly the Plane vs. Point
tester of Raz and Safra [15]. However, in our work the more interesting case is |H| ≤ |F|o(1). In
this case, the tester requires only m log |F|+2m log |H| = m log |F| (1+o(1)) bits of randomness.
This corresponds to an almost linear size n1+o(1) (recall that n = |Fm|). The tester is randomness
efficient in comparison to all known testers with sub-constant error, such as the tester of Arora
and Sudan [3] that requires 2m log |F| bits of randomness and the tester of Raz and Safra [15] that
requires 3m log |F| bits of randomness. As to testers with constant error : that of Ben-Sasson,
Sudan, Vadhan and Wigderson [7] requires m log |F| + polylog(m, log |F|) bits of randomness,
which is (usually) less than the randomness of our tester, but the difference is only in the
dependence of the low order term in m.

The tester is clearly complete, namely, if there exists a polynomial Q : Fm → F of degree at
most d, such that for every ~x ∈ Fm, f(~x) = Q(~x), and for every affine subspace s, the oracle A
replies A(s) = Q|s, then the tester accepts with probability 1. We show that the tester is also
sound : if the tester accepts with probability γ then f agrees with a polynomial of total degree
at most md on at least γ − ε of the points in Fm, where ε ≤ const ·m

(
8

√
1
|H| + 4

√
md
|F|

)
. Note
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that the analysis works for any acceptance probability γ. In particular, this means that when γ
is significantly larger than ε, say γ ≥ 100ε, f agrees with a polynomial of total degree at most
md on at least ≈ γ of the points. [Even if H = F, the constants 4 and 8 in the error expression
appear to improve on the results of [3, 15], where unspecified constants were given].

The downside of the Randomness-Efficient Plane vs. Point tester is that it only allows us to
argue something about the agreement of the oracle with a polynomial of a relatively low degree
md, rather than d. Hence, we design another tester that has essentially the same parameters,
but ensures agreement with a polynomial of degree at most d.

The additional consideration that comes into play when designing the new tester is degree
preservation. We want the total degree of a polynomial not to decrease when restricted to most
of the subspaces queried by the tester. We achieve this by picking one of the directions for
the subspace (rather than the base-point) uniformly from Fm. In order to keep the size almost
linear, this tester considers linear subspaces (i.e., affine subspaces through the origin), rather
than general affine subspaces. A related technique was previously used by [7].

Specifically, given access to f and to an oracle A, the Randomness-Efficient Subspace vs.
Point tester chooses a three dimensional subspace and a point within it and checks that they
are consistent:

1. Pick uniformly and independently at random ~z ∈ Fm, ~y1, ~y2 ∈ Hm.

2. Accept if either ~z, ~y1, ~y2 are linearly dependent, or if the linear subspace s spanned by
~z, ~y1, ~y2 satisfies A(s)(~z) = f(~z).

Figure 2: Randomness-Efficient Subspace vs. Point Tester

This tester uses the same number of random bits as the Randomness-Efficient Plane vs.
Point tester m log |F| + 2m log |H|, and its size is only slightly larger (as the answer size is
larger: the oracle should provide polynomials over three-dimensional subspaces rather than
two-dimensional subspaces). For this small price, we manage to prove a stronger soundness
claim: if the Randomness-Efficient Subspace vs. Point tester accepts with probability γ, then
f agrees with a polynomial of total degree at most d (rather than md) on at least γ − ε of the
points in Fm, where ε ≤ const·m

(
8

√
1
|H| + 4

√
md
|F|

)
. This follows rather easily from the soundness

of the Randomness-Efficient Plane vs. Point tester together with an argument showing that the
degree of the recovered polynomials must in fact be at most d.

There is a tradeoff between the size of the testers and their error. To make the size as small
as possible, one wishes to minimize |H|. In particular, to get an almost-linear size, one needs
to take |H| ≤ |F|o(1). On the other hand, to make the error as small as possible, one wishes to
maximize |H|. In particular, to get a sub-constant error, one needs to take |H| ≥ ω(m8).

All finite fields are isomorphic to GF (pk) for a prime p and a natural number k. All subfields
of GF (pk) are isomorphic to GF (pr) for r|k. For a wide family of finite fields GF (pk) there
are subfields of suitable sizes (see [14, 11] for analysis of the distribution of k’s with suitable
divisors). Though, indeed, not every finite field is such. We wish to emphasize that in the
settings that interest us (e.g., construction of PCP s), we get to choose the field. For instance,
we can take F = GF (2r1·r2) for appropriate r1, r2.
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1.3 Sampling

A basic step in our proof is the analysis of the sampling properties of affine subspaces with
directions over a subfield. This analysis may be of independent interest.

By sampling we refer to assertions of the following nature: if one colors a large enough fraction
of the points in Fm green then a subspace (e.g., a line) picked at random is likely to hit the
green points in almost their true fraction.

First, let us consider the non-randomness-efficient setting. For instance, consider choosing
a line by picking a point and a direction independently at random from Fm. The indicator
variables “is the i’th point on the line green?” for i = 1, . . . , |F| are pairwise independent. Thus,
one can easily bound the variance of the number of green points on a line. This yields a sampling
property by Chebyshev’s inequality (see, e.g., [3]).

In the randomness-efficient setting, more subtle arguments are needed. For instance, consider
the work of Ben-Sasson, Sudan, Vadhan and Wigderson [7]. They use an ε-biased set S ⊆ Fm,
and choose a line by independently picking a uniformly distributed base-point in Fm and a
uniformly distributed direction in S. They show that almost pairwise independence still holds,
and this allows them to bound the variance, by bounding the covariances.

Our set of directions is Hm, which does not have a small bias (when H  F). Nevertheless,
we are still able to prove a sampling property. We observe that we can directly bound the
variance of the number of green points on a line by analyzing the convolution of two relatively
simple functions. We do this by means of Fourier analysis. The difference between the previous
approaches and our approach is that instead of giving one bound for the probability that two
points i 6= j on a line are green for every i 6= j, we directly bound the average probability over
all pairs i 6= j.

The extension to higher dimensional subspaces is a relatively simple consequence of the
analysis for lines.

1.4 Proof Outline

We first prove the soundness of the Randomness-Efficient Plane vs. Point tester, and then
deduce the soundness of the Randomness-Efficient Subspace vs. Point tester from it. Thereof,
we only consider the first. Assume that the Randomness-Efficient Plane vs. Point tester, given
access to input function f : Fm → F and oracle A, accepts with probability γ. Let us prove the
existence of a polynomial over Fm of degree at most md that agrees with f on at least γ − ε of
the points, for ε ≤ const ·m

(
8

√
1
|H| + 4

√
md
|F|

)
.

1.4.1 Reformulating our goal

First, let us reformulate the problem in a more convenient manner. For dimensions k, m, where
k ≤ m, let Sm

k be the family of all affine subspaces of dimension k in Fm that are of the type
we are interested in. Namely, a k-dimensional affine subspace s ⊆ Fm is in Sm

k if it can be

written as s =
{
~z +

∑k
i=1 αi~yi

∣∣ (α1, . . . , αk) ∈ Fk
}

for some point ~z ∈ Fm and some linearly
independent directions ~y1, . . . , ~yk ∈ Hm (where the linear independence is over F).

We can express (up to very small additive errors) the acceptance probability of the tester
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given access to f : Fm → F and A as follows:

Pr [tester accepts] ≈ Pr
s∈Sm

2 ,~x∈s
[A(s)(~x) = f(~x)]

= E
s∈Sm

2

[
Pr
~x∈s

[A(s)(~x) = f(~x)]
]

For an affine subspace s and a degree d, let Qs,d be the set of polynomials of degree at most
d over s. It is evident from the last expression that an oracle A that optimizes the acceptance
probability of the tester on input f assigns each subspace s ∈ Sm

2 a polynomial Q ∈ Qs,d that
maximizes the agreement Q(~x) = f(~x) on points ~x ∈ s. Hence, for every dimension m, function
f : Fm → F, dimension k and degree d, consider the average agreement of f with degree d over
subspaces s ∈ Sm

k ,

agrk,m
d (f)

def
= E

s∈Sm
k

[
max

Q∈Qs,d

{
Pr
~x∈s

[Q(~x) = f(~x)]
}]

Then,
γ = Pr [tester accepts] . agr2,m

d (f)

For every m, the space Fm is the only affine subspace of dimension m in Fm, and Hm contains
a basis for Fm, so Sm

m = {Fm}. Thus, for every dimension m, function f : Fm → F, degree d
and fraction γ, agrm,m

d (f) ≥ γ means that there exists Q : Fm → F of degree at most d, such
that Pr~x∈Fm [Q(~x) = f(~x)] ≥ γ.

We conclude that our goal can be reformulated as showing that large average agreement over
planes implies large average agreement over Fm. More accurately, for every function f : Fm → F
and fraction 0 ≤ γ ≤ 1,

agr2,m
d (f) ≥ γ ⇒ agrm,m

md (f) ≥ γ − ε

1.4.2 Main idea

Our proof is by induction on the dimension k. We assume that agr2,m
d (f) ≥ γ, and show that

for every dimension 2 ≤ k ≤ m,

agrk,m
kd (f) ≥ γ − k

m
· ε

Fix a dimension k such that agrk−1,m
(k−1)d(f) ≥ γ − k−1

m · ε, and let us outline how the induction
step is done.

Consider any affine subspace s ∈ Sm
k . Assume s contains the point ~z ∈ Fm and is in

directions ~y1, . . . , ~yk ∈ Hm, where ~y1, . . . , ~yk are linearly independent over F. The directions
within s, {~x1 − ~x2 | ~x1, ~x2 ∈ s}, are precisely

∑k
i=1 αi~yi for ~α = (α1, . . . , αk) ∈ Fk. Moreover,

since H is a subfield of F,

~α ∈ Hk ⇔
k∑

i=1

αi~yi ∈ Hm

Therefore (unlike the construction of [7] via ε-biased sets), the families of affine subspaces we
consider preserve the following two properties enabling induction:

1. Self-similarity: Every affine subspace s ∈ Sm
k is mapped onto Fk (via the natural bijec-

tion ~α ∈ Fk ↔ ~z +
∑k

i=1 αi~yi ∈ s), such that the directions the tester considers (namely,
the vectors in Hm) that are also in s are mapped onto Hk.
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2. Uniformity: For every dimension k′ ≤ k, each subspace s ∈ Sm
k contains exactly the

same number of subspaces s′ ∈ Sm
k′ , and each subspace s′ ∈ Sm

k′ is contained in exactly the
same number of subspaces s ∈ Sm

k .

Let f|s : Fk → F denote the restriction of f to s; namely, for every (α1, . . . , αk) ∈ Fk, let
f|s(α1, . . . , αk) = f(~z +

∑k
i=1 αi~yi).

Consider some degree d′ and dimension k′ ≤ k. By self-similarity and uniformity,

agrk
′,m

d′ (f) = E
s∈Sm

k

[
agrk

′,k
d′ (f|s)

]
(1)

Thus, it is sufficient (as we see shortly) to show that for every function f : Fk → F and every
fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k

kd (f) ≥ γ − ε

m
(2)

The inductive step is then completed applying the induction hypothesis as well as 1 and 2 above:

agrk,m
kd (f) = E

s∈Sm
k

[
agrk,k

kd (f|s)
]

≥ E
s∈Sm

k

[
agrk−1,k

(k−1)d(f|s)−
ε

m

]

= agrk−1,m
(k−1)d(f)− ε

m

≥ γ − k

m
· ε

1.4.3 Proving (2)

By an adaptation of an idea by Raz and Safra [15], we can prove that there exists a small error
δ ¿ ε/m, such that for every function f : Fk → F and every fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k

2(k−1)d(f) ≥ γ2 − δ

The idea of Raz and Safra [15] centers around a construction of a consistency graph. The vertices
of the graph are the affine subspaces of dimension (k−1) within Fk (namely, hyperplanes). The
edges of the graph indicate whether there is an agreement between assignments of degree (k−1)d
polynomials to the hyperplanes. Due to its algebraic structure, the graph has a combinatorial
property called almost-transitivity. It allows us to use a graph-theoretic lemma originally proven
in [15], and go up from dimension (k − 1) to dimension k.

The reduction to the graph-theoretic setting introduces a certain deterioration of the degree
and agreement parameters. The degree doubles (from (k− 1)d to 2(k− 1)d, rather than to kd)
and the agreement is raised to the power of two (from γ to γ2 − δ, rather than to γ − ε/m).
We cannot tolerate either deterioration, since they ultimately cause an exponential decay in k.
Hence, we apply steps of what we call consolidation to retain the desired parameters. Similar
techniques were already used in previous works, and they rely on the sampling properties we
discussed above.

8



1.5 Organization

We state the main theorems regarding the completeness and soundness of our testers in section 2.
The rest of the paper is devoted to proving these theorems. We start with some preliminary
definitions and propositions in section 3. We discuss basic properties of affine subspaces with
directions over a subfield in section 4. We prove sampling properties in section 5. This allows
us to prove consolidation claims in section 6. We present and analyze the consistency graph in
section 7 and use it for going up one dimension in section 8. The soundness of the Randomness-
Efficient Plane vs. Point tester is proven via induction in section 9. We show that the soundness
of the Randomness-Efficient Subspace vs. Point tester follows in section 10. For the sake of
self-containment, we give the proof of the combinatorial lemma of [15] in the appendix.

2 Our Results

2.1 Notation

In all that follows, we consider a finite field F, a subfield H ⊆ F, a dimension m, and a degree d.
Given vectors ~y1, . . . , ~yk ∈ Fm, we define the linear subspace they span by span{~y1, . . . , ~yk} def

=
{a1~y1 + . . . + ak~yk | a1, . . . , ak ∈ F}. We say that ~y1, . . . , ~yk are linearly independent, and denote
ind(~y1, . . . , ~yk), if for every a1, . . . , ak ∈ F, if

∑k
i=1 ai~yi = 0 then a1 = · · · = ak = 0. Throughout

the paper we will refer to span over F (and not over a subfield, even if the vectors are over
a subfield). Note that vectors ~y1, . . . , ~yk ∈ Hm are linearly independent over H if and only if
~y1, . . . , ~yk ∈ Hm are linearly independent over F.

Given two sets A,B ⊆ Fm, we define A+B
def
= {~x + ~y | ~x ∈ A, ~y ∈ B }. Given a point ~x ∈ Fm

and a set A ⊆ Fm, define ~x+A
def
= {~x}+A. A k-dimensional affine subspace in the vector space

Fm is defined by a base-point ~x ∈ Fm and k linearly independent directions, ~y1, . . . , ~yk ∈ Fm, as

affine(~x; ~y1, . . . , ~yk)
def
= ~x + span{~y1, . . . , ~yk}

Points are 0-dimensional affine subspaces. Lines are 1-dimensional affine subspaces. Planes are
2-dimensional affine subspaces. Every affine subspace can be equivalently represented by many
choices of vectors ~x; ~y1, . . . , ~yk, but, clearly, there is a linear transformation between every two
representations of the same affine subspace.

An m-variate polynomial over a field F is a function Q : Fm → F of the form

Q(x1, . . . , xm) =
∑

i1,...,im

ai1,...,imxi1
1 · · ·xim

m

where all the coefficients ai1,...,im are in F. The degree of Q is deg Q
def
= max

{∑m
j=1 ij | ai1,...,im 6= 0

}
,

where the degree of the identically zero polynomial is defined to be 0.
The restriction of a polynomial Q : Fm → F to an affine subspace s represented as s =

affine(~x; ~y1, . . . , ~yk) is a polynomial in k variables, Q|s(α1, . . . , αk)
def
= Q(~x + α1~y1 + . . . + αk~yk).

We will sometimes wish to refer to a polynomial Q defined over an affine subspace s without
specifying the subspace’s representation, in which case we will use the notation Q(~x) for a point
~x ∈ s. Note that the degree of a polynomial does not depend on the representation.
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2.2 Oracles

We assume an oracle A that given any affine subspace s in Fm, provides a polynomial A(s) of
degree at most d defined over s. For the sake of simplicity, we do not refer to both an oracle
A and a function f : Fm → F as in the introduction. Instead, we assume that f ’s values on
points ~x are given by A(~x). Our testers query A only on affine subspaces of constant dimension.
However, for the analysis, it will be convenient to consider oracles queried regarding higher
dimensional affine subspaces as well. Hence, an oracle A is defined to provide a value for any
affine subspace.

For a polynomial Q : Fm → F, we will use the notation (Q ≡ A)(s) to indicate that Q and A
agree on a subspace s, i.e., for every ~x ∈ s, Q(~x) = A(s)(~x).

2.3 Low Degree Testers

Define two predicates for our two testers: for ~z ∈ Fm and ~y1, ~y2 ∈ Hm chosen uniformly at
random, let:

1. PlanePointA(~z, ~y1, ~y2): ~y1, ~y2 are linearly dependent or A(affine(~z; ~y1, ~y2))(~z) = A(~z)

2. SpacePointA(~z, ~y1, ~y2): ~z, ~y1, ~y2 are linearly dependent or A(affine(~0;~z, ~y1, ~y2))(~z) = A(~z)

2.4 Soundness

To prove that a tester is sound we assume that it accepts with probability γ when given access
to an oracle A and show the agreement of A with a low degree polynomial. Specifically, for a
sub-constant ε, we prove two claims, which we argue to be essentially equivalent:

1. (decoding) There exists a low degree polynomial that is consistent with the oracle A on
at least γ − ε of the points.

2. (list decoding) For every 0 < δ < 1, there exists a short list of t = t(δ) low degree
polynomials that explains all the tester’s success, but δ + ε (explanation follows).

When saying that a list of polynomials explains almost all the success, we mean that with high
probability over the random bits of the tester (i.e., over the choice of a subspace and a point
within it), either the tester rejects or one of the polynomials agrees with the oracle on the
subspace and on the point. There is a tradeoff between the amount of success explained and
the length of the list: the more one wishes to explain – the longer the list is.

We wish ε to be as small as possible. The parameter ε we achieve depends on md
|F| . This

comes from the use of the Schwartz-Zippel lemma. It also depends on 1
|H| which is the price we

pay for considering the subfield H instead of the entire field F.
The statement for the Randomness-Efficient Plane vs. Point tester is as follows. Note that

we make no effort to optimize the constants.

Theorem 1 (Plane vs. Point Soundness). Fix a dimension m ≥ 2, a field F, a subfield

H ⊆ F and a degree d. Denote ε
def
= 27m

(
8

√
1
|H| + 4

√
md
|F|

)
. For every oracle A and every success

probability 0 < γ ≤ 1, satisfying

Pr
~z∈Fm,~y1,~y2∈Hm

[
PlanePointA(~z, ~y1, ~y2)

]
= γ

The following hold:
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1. (Decoding) There exists a polynomial Q : Fm → F with deg Q ≤ md, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε

2. (List decoding) For every δ > 2ε, there exist t ≤ 2/δ polynomials Q1, . . . , Qt : Fm → F
with deg Qi ≤ md, such that

Pr
~z∈Fm,~y1,~y2∈Hm

[¬PlanePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~z; ~y1, ~y2))
] ≥ 1− δ − 2ε

We prove a similar theorem for the Randomness-Efficient Subspace vs. Point tester. Note
that for this tester we manage to show agreement with polynomials of degree at most d, rather
than md.

Theorem 2 (Subspace vs. Point Soundness). Fix a dimension m ≥ 3, a field F, a subfield

H ⊆ F and a degree d. Denote ε
def
= 27m

(
8

√
1
|H| + 4

√
md
|F|

)
. For every oracle A and every success

probability 0 < γ ≤ 1, satisfying

Pr
~z∈Fm,~y1,~y2∈Hm

[
SpacePointA(~z, ~y1, ~y2)

]
= γ

The following hold:

1. (Decoding) There exists a polynomial Q : Fm → F with deg Q ≤ d, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − 3ε

2. (List decoding) For every δ > 3ε, there exist t ≤ 2/δ polynomials Q1, . . . , Qt : Fm → F
with deg Qi ≤ d, such that

Pr
~z∈Fm,~y1,~y2∈Hm

[
¬SpacePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~0;~z, ~y1, ~y2))

]
≥ 1− δ − 3ε

It is interesting to note that our sampling arguments also imply a converse to the above theo-
rems: if there exists a polynomial Q : Fm → F with deg Q ≤ d, such that Pr~x∈Fm [Q(~x) = A(~x)] ≥
γ, then there exists an oracle A′ agreeing with A on the points and assigning affine subspaces
polynomials of degree at most d, such that both our testers accept with probability at least
γ − ε when given access to A′.

3 Preliminaries

3.1 Orthogonality and Vector Spaces

Given a vector ~y ∈ Fm, we write ~y = (y1, . . . , ym). For a series of vectors ~y1, . . . , ~yk, we write
for every 1 ≤ i ≤ k, ~yi = (yi,1, . . . , yi,m).

We define an inner-product between two vectors ~x, ~y ∈ Fm as (~x, ~y)
def
=

∑m
i=1 xi · yi. We say

that ~x, ~y are orthogonal if (~x, ~y) = 0.

Proposition 3.1. For every ~y 6= ~0 ∈ Fm, for every c ∈ F,

Pr
~z∈Hm

[(~z, ~y) = c] ≤ 1
|H|
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Proof. As ~y 6= ~0 ∈ Fm, there exists 1 ≤ i ≤ m such that yi 6= 0. For every fixing of all ~z’s
coordinates but the i’th, the condition (~z, ~y) = c uniquely determines zi to some scalar in F.
This scalar may or may not be in the subfield H, but, in any case, there exists at most one
possibility for zi ∈ H.

Proposition 3.2. For every ~y 6= ~0 ∈ Fm, for every k < m,

Pr
~y1,...,~yk∈Hm

[~y ∈ span{~y1, . . . , ~yk} | ind(~y1, . . . , ~yk)] ≤ 1
|H|

Proof. Consider uniformly distributed linearly independent ~y1, . . . , ~yk ∈ Hm. Pick uniformly
and independently at random a vector ~z 6= ~0 ∈ Hm that is orthogonal to ~y1, . . . , ~yk (there exist
such vectors since k < m). Note that for every ~y ∈ span{~y1, . . . , ~yk} it holds that (~z, ~y) = 0. By
proposition 3.1, since ~z is uniformly distributed over Hm \ {~0}, this happens with probability
at most 1

|H| .

Proposition 3.3. For every subset A ⊆ Fm, if

Pr
~y∈Fm

[~y ∈ A] >
1
|F|

then there exist linearly independent ~y1, . . . , ~ym ∈ Fm, such that for every 1 ≤ i ≤ m, ~yi ∈ A.

Proof. Let us prove by induction that for every 0 ≤ k ≤ m there exist linearly independent
~y1, . . . , ~yk ∈ Fm, such that for every 1 ≤ i ≤ k, ~yi ∈ A. For k = 0, the claim trivially holds.
Suppose that the claim holds for k < m, and let ~y1, . . . , ~yk be the appropriate vectors. Clearly,

Pr
~y∈Fm

[~y ∈ span{~y1, . . . , ~yk}] =
|F|k
|F|m ≤ 1

|F|
Thus, there exists ~y ∈ A such that ~y1, . . . , ~yk, ~y are linearly independent.

3.2 Polynomials

The Schwartz-Zippel lemma shows that different low degree polynomials differ on most points,

Proposition 3.4 (Schwartz-Zippel). For two different polynomials Q,P : Fm → F with
deg Q,deg P ≤ d,

Pr
~x∈Fm

[Q(~x) = P (~x)] ≤ d

|F|
The Schwartz-Zippel lemma can be viewed as showing the unique-decoding property of the

Reed-Muller code. This immediately implies a list decoding property, namely, that only few
polynomials can agree with a function on many of the points.

We include a simple proof of that property for the sake of self-containment.

Proposition 3.5 (list decoding of Reed-Muller). For every function f : Fm → F, if there
are t different polynomials Q1, . . . , Qt : Fm → F such that for every 1 ≤ i ≤ t,

1. deg Qi ≤ d

2. Pr~x∈Fm [f(~x) = Qi(~x)] ≥ ρ
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where ρ ≥ 2
√

d
|F| , then t ≤ 2

ρ .

Proof. For every 1 ≤ i ≤ t, let Ai
def
= {~x ∈ Fm | f(~x) = Qi(~x)}. By inclusion-exclusion,

|Fm| ≥
∣∣∣∣∣

t⋃

i=1

Ai

∣∣∣∣∣ ≥
t∑

i=1

|Ai| −
∑

i6=j

|Ai ∩Aj |

By Schwartz-Zippel, for every 1 ≤ i 6= j ≤ t, |Ai ∩Aj | ≤ d
|F| · |Fm|. Therefore, by the premise,

|Fm| ≥ tρ |Fm| −
(

t

2

)
d

|F| |F
m|

By the bound on ρ, t ≤ 2
ρ .

4 Affine Subspaces With Directions Over a Subfield

In this section we prove basic facts regarding affine subspaces in Fm that are spanned by di-
rections over a subfield H ⊆ F. All the properties we prove for such subspaces are well known
when H = F.

For 0 ≤ k ≤ m, consider the set of representations of affine subspaces with directions over a
subfield,

Rm
k

def
= {(~z; ~y1, . . . , ~yk) | ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, ind(~y1, . . . , ~yk)}

The corresponding set of affine subspaces is

Sm
k

def
= {affine(r) | r ∈ Rm

k }

First we would like to assert that every subspace in Sm
k is associated with the same number

of tuples in Rm
k , and that every subspace in Sm

k contains the same number of subspaces in Sm
k′

for k′ ≤ k,

Proposition 4.1 (uniformity). For every dimension k, there is a number T = T (k), such
that for every s ∈ Sm

k , |{r ∈ Rm
k | s = affine(r)}| = T .

Proposition 4.2 (uniformity downwards). For every dimensions k′ ≤ k, there is a number
T = T (k, k′), such that for every s ∈ Sm

k ,
∣∣{s′ ∈ Sm

k′ | s′ ⊆ s
}∣∣ = T .

To prove both assertions we introduce an additional notation allowing us to refer to affine
subspaces in Sm

k as isomorphic copies of Fk. Fix an affine subspace together with a representation
for it, s = affine(~z; ~y1, . . . , ~yk). For a representation r = (~α0; ~α1, . . . , ~αk′) of an affine subspace
within Fk, we define the representation r relative to (the representation of) the space s by

rs
def
=

(
~z +

k∑

i=1

~α0,i~yi ;
k∑

i=1

~α1,i~yi, . . . ,
k∑

i=1

~αk′,i~yi

)

Note that since ~y1, . . . , ~yk are linearly independent, if two representations r, r′ are the same
relative to a subspace s, rs = r′s, then they are the same representation r = r′.
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Denote the corresponding relative affine subspace:

affines(r)
def
= affine(rs)

Note that for every r, affines(r) ⊆ s. Moreover, if affine(r) = affine(r′) then affines(r) =
affines(r′). Now, the above two propositions follow from the following proposition:

Proposition 4.3. For every subspace s ∈ Sm
k , for every dimension k′ ≤ k,

S1
def
= |{r ∈ Rm

k′ | affine(r) ⊆ s}| =
∣∣∣Rk

k′

∣∣∣ def
= S2

Proof. Fix a subspace s ∈ Sm
k and fix a tuple (~z; ~y1, . . . , ~yk) ∈ Rm

k with s = affine(~z; ~y1, . . . , ~yk).

1. S1 ≥ S2: for every tuple r = (~α0; ~α1, . . . , ~αk′) ∈ Rk
k′ , the tuple rs satisfies rs ∈ Rm

k′ and
affine(rs) ⊆ s.

2. S1 ≤ S2: for every tuple r ∈ Rm
k′ satisfying affine(r) ⊆ s, there exists exactly one α =

(~α0; ~α1, . . . , ~αk′), ~α0, ~α1, . . . , ~αk′ ∈ Fk, ind(~α1, . . . , ~αk′), such that r = αs. Since r ∈ Rm
k′

and ~y1, . . . , ~yk ∈ Hm, also ~α1, . . . , ~αk′ ∈ Hk.

Every subspace in Sm
k is contained in the same number of subspaces in Sm

k′ for k′ ≥ k,

Proposition 4.4 (uniformity upwards). For every dimensions k ≤ k′ ≤ m, there is a
number T = T (m, k, k′), such that for every subspace s ∈ Sm

k ,
∣∣{s′ ∈ Sm

k′
∣∣ s′ ⊇ s

}∣∣ = T

Proof. Let us introduce an additional piece of notation: Lm
k′ is the set of all linear subspaces of

dimension k′ in Fm spanned by vectors from Hm.
Fix s = affine(~z; ~y1, . . . , ~yk) ∈ Sm

k . Since ~y1, . . . , ~yk ∈ Hm are linearly independent, the
proposition will clearly follow if we prove the following:

S1
def
=

∣∣{s′ ∈ Sm
k′

∣∣ s′ ⊇ s
}∣∣ =

∣∣{Y ′ ∈ Lm
k′

∣∣ Y ′ ⊇ {~y1, . . . , ~yk}
}∣∣ def

= S2

1. S1 ≤ S2: Let s′ = affine(~z′; ~y′1, . . . , ~y
′
k′) ∈ Sm

k′ , (~z′; ~y′1, . . . , ~y
′
k′) ∈ Rm

k′ , s′ ⊇ s. Let Y ′ =
span

{
~y′1, . . . , ~y

′
k′

}
. Clearly, Y ′ is in Lm

k′ and Y ′ is uniquely defined by s′, s′ = ~z′ + Y ′. It
holds that ~z ∈ s ⊆ s′ = ~z′ + Y ′, thus ~z′ ∈ ~z + Y ′, and, hence, s′ = ~z + Y ′. Let 1 ≤ i ≤ k.
It holds that ~z + ~yi ∈ s ⊆ s′. This implies that ~z + ~yi ∈ ~z +Y ′. Hence, ~yi ∈ Y ′. Therefore,
{~y1, . . . , ~yk} ⊆ Y ′.

2. S1 ≥ S2: Let Y ′ ∈ Lm
k′ , Y ′ ⊇ {~y1, . . . , ~yk}. Clearly, ~z + Y ′ ∈ Sm

k′ and s ⊆ ~z + Y ′.

Uniformity is so important because it allows us to count in several manners. A simple
argument of this nature is that the fraction of affine subspaces s ∈ Sm

k satisfying some condition
is exactly the same as the fraction of r ∈ Rm

k such that affine(r) satisfies the condition. Let us
demonstrate a more sophisticated argument of this nature. Fix k′ ≤ k. Suppose that we have
a predicate R indicating whether an affine subspace s ∈ Sm

k and an affine subspace s′ ∈ Sm
k′

contained in it, s′ ⊆ s, satisfy some relation. Then,

E
s

[
Pr

s′⊆s

[
R(s, s′)

]]
= E

s′

[
Pr

s⊇s′

[
R(s, s′)

]]

A useful representation of affine subspaces is given in the following proposition,

14



Proposition 4.5 (affine subspaces as solutions of linear equations). Let s = affine(~z; ~y1, . . . , ~yk) ∈
Sm

k , let ~α1, . . . , ~αm−k ∈ Hm be (m− k) linearly independent vectors orthogonal to ~y1, . . . , ~yk ∈
Hm. Then,

s = {~x ∈ Fm | ∀1 ≤ j ≤ m− k, (~x, ~αj) = (~z, ~αj)}

Proof. Fix ~x ∈ s. Hence, there exists ~c ∈ Fk such that ~x = ~z +
∑k

i=1 ci~yi. For every 1 ≤ j ≤
m− k,

(~x, ~αj) =

(
~z +

k∑

i=1

ci~yi, ~αj

)
= (~z, ~αj) +

k∑

i=1

ci · (~yi, ~αj) = (~z, ~αj)

Thus, s ⊆ {~x ∈ Fm | ∀1 ≤ j ≤ m− k, (~x, ~αj) = (~z, ~αj)}. The proposition follows noticing that,
in addition, the two sets are of size

∣∣Fk
∣∣.

Using this dual representation, we can easily conclude closure under intersection,

Proposition 4.6 (closure under intersection). If s1 ∈ Sm
k(1) and s2 ∈ Sm

k(2) where s1∩s2 6= φ,
then there exists k(3) such that s1 ∩ s2 ∈ Sm

k(3).

Proof. For i ∈ {1, 2}, denote si = affine(~z(i); ~y(i)
1 , . . . , ~y

(i)

k(i)), where ~y
(i)
1 , . . . , ~y

(i)

k(i) ∈ Hm. Let

~α
(i)
1 , . . . , ~α

(i)

m−k(i) ∈ Hm be (m−k(i)) linearly independent vectors orthogonal to ~y
(i)
1 , . . . , ~y

(i)

k(i) . Let

~z(3) ∈ s1∩s2, and let ~α
(3)
1 , . . . , ~α

(3)

m−k(3) ∈ Hm be a maximal subset of linearly independent vectors

among ~α
(1)
1 , . . . , ~α

(1)

m−k(1) , ~α
(2)
1 , . . . , ~α

(2)

m−k(2) . By proposition 4.5 applied on s1 and s2 and by the

definition of intersection, s1 ∩ s2 =
{
~x ∈ Fm

∣∣∣ ∀1 ≤ j ≤ m− k(3), (~x, ~α
(3)
j ) = (~z(3), ~α

(3)
j )

}
∈

Sm
k(3) .

5 Affine Subspaces With Directions Over A Subfield Sample
Well

We say that an affine subspace s in Fm samples a set A ⊆ Fm well if the fraction of points
from A contained in it, i.e., |s∩A|

|s| , is approximately |A|
|Fm| . We say that a distribution D on affine

subspaces in Fm samples well, if no matter how one fixes a large enough subset A ⊆ Fm, a
random subspace s ∼ D samples A well with high probability. In this section we use Fourier
analysis to show that the distributions induced by our testers sample well.

5.1 Fourier Transform

Let (G, +) be a finite Abelian group. Consider functions from the group to the complex numbers
f : G → C. One example for such a function is the indicator function of a subset A ⊆ G,

IA(x)
def
=





1 x ∈ A

0 otherwise

Similarly, the indicator function of a multi-set assigns each x ∈ G its multiplicity.
We define an inner-product between functions f, g : G → C as

〈f, g〉 def
=

1
|G|

∑

x∈G

f(x)g(x)
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A character of G is a homomorphism χ : G → C∗, where C∗ is the multplicative group of the
complex numbers. Namely, for every x, y ∈ G,

χ(x + y) = χ(x) · χ(y)

Every group G trivially has the identically 1 function as a character.
It can be shown that the set of all characters of G forms an orthonormal basis for the space of

all functions f : G → C under the predefined inner-product. Hence, every function f : G → C
can be equivalently represented as f(x) =

∑
χ f̂(χ) · χ(x), where f̂(χ)

def
= 〈f, χ〉 is called the

Fourier coefficient of f corresponding to the character χ. The linear transformation from f to
f̂ is called the Fourier transform of f .

We will need two basic facts regarding the Fourier transform:

Proposition 5.1 (Parseval’s identity). For two functions f, g : G → C,

〈f, g〉 = |G| · 〈f̂ , ĝ〉 =
∑
χ

f̂(χ)ĝ(χ)

Define the convolution of two functions, f, g : G → C, denoted (f ∗g) : G → C, as (f ∗g)(x)
def
=

1
|G|

∑
y∈G f(y)g(x− y).

Proposition 5.2 (convolution formula). Fix two functions, f, g : G → C. For every char-
acter χ of G,

(̂f ∗ g)(χ) = f̂(χ) · ĝ(χ)

We focus on the additive group G = Fm for some finite field F = GF (pk). The field F is also
viewed as a vector space of dimension k over the field GF (p).

Denote ωp = e2πi/p the p’th primitive root of unity in C. For every α ∈ Fm, there is a
character χα : Fm → C,

χα(x)
def
= ω

Pm
i=1(αi,xi)

p

Note that we view αi, xi as vectors in GF (p)k. Their inner product is in GF (p) and so is the
sum in the above expression.

For a function f : Fm → C, we denote its Fourier coefficient corresponding to the character
χα by f̂(α).

5.2 Sampling Lemma

In this subsection we prove our basic lemma via Fourier analysis. Given z, y ∈ Fm and a subset
A ⊆ Fm, define Xz,y to be the number of c ∈ F satisfying z + c · y ∈ A. Clearly, the expectation
of Xz,y when picking independently at random z ∈ Fm and y ∈ Hm is |F| · |A|

|Fm| . We bound the
variance of Xz,y, implying that it is concentrated around its expectation.

Lemma 5.3. For any subset A ⊆ Fm of density µ = |A|/|Fm|,

Var
z∈Fm,y∈Hm

[Xz,y] ≤ |F|2 µ

|H|
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Proof. If we denote the indicator function of A by IA, and the indicator function of the multi-set
{c · y | c ∈ F} by IFy, we can express:

Xz,y =
∑

x∈Fm

IA(x)IFy(z − x) = |Fm| · (IA ∗ IFy)(z)

Hence, by Parseval’s identity and the convolution formula,

E
z∈Fm,y∈Hm

[
X2

z,y

]
=

1
|Fm| |Hm| ·

∑

y∈Hm

∑

z∈Fm

(|Fm| (IA ∗ IFy)(z))2

=
|Fm|2
|Hm| ·

∑

y∈Hm

∑

α∈Fm

∣∣∣ ̂(IA ∗ IFy)(α)
∣∣∣
2

=
|Fm|2
|Hm| ·

∑

y∈Hm

∑

α∈Fm

∣∣∣ÎA(α)
∣∣∣
2
·
∣∣∣ÎFy(α)

∣∣∣
2

By definition, for any set S ⊆ Fm, ÎS(~0) = |S|
|Fm| , hence,

E
z∈Fm,y∈Hm

[
X2

z,y

]
=

|Fm|2
|Hm| ·

∑

y∈Hm




∣∣∣ÎA(~0)
∣∣∣
2
·
∣∣∣ÎFy(~0)

∣∣∣
2
+

∑

α 6=~0∈Fm

∣∣∣ÎA(α)
∣∣∣
2
·
∣∣∣ÎFy(α)

∣∣∣
2




=
( |F| |A|
|Fm|

)2

+
∑

α 6=~0∈Fm




∣∣∣ÎA(α)
∣∣∣
2
· |F

m|2
|Hm|

∑

y∈Hm

∣∣∣ÎFy(α)
∣∣∣
2




We will show that |Fm|2
|Hm| ·

∑
y∈Hm

∣∣∣ÎFy(α)
∣∣∣
2
≤ |F|2

|H| . Let us see how the lemma follows. Using this
bound and applying Parseval’s identity again we get,

E
z∈Fm,y∈Hm

[
X2

z,y

] ≤
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

∑

α 6=~0∈Fm

∣∣∣ÎA(α)
∣∣∣
2

≤
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

1
|Fm| ·

∑

z∈Fm

|IA(z)|2

=
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

|A|
|Fm|

By linearity of expectations,

E
z∈Fm,y∈Hm

[Xz,y] =
|F| |A|
|Fm|

Therefore,

Var
z∈Fm,y∈Hm

[Xz,y] = E
z,y

[
X2

z,y

]− E
z,y

[Xz,y]
2

≤
( |F| |A|
|Fm|

)2

+
|F|2
|H| ·

|A|
|Fm| −

( |F| |A|
|Fm|

)2

= |F|2 µ

|H|
We conclude that proving the lemma boils down to proving the following:
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Claim 5.3.1. For every α 6= ~0 ∈ Fm,

1
|Hm| ·

∑

y∈Hm

∣∣∣ÎFy(α)
∣∣∣
2
≤ |F|2

|Fm|2 ·
1
|H|

Proof. Assume F = GF (pk). Fix some α 6= ~0 ∈ Fm.

∣∣∣ÎFy(α)
∣∣∣ = |〈IFy, χα〉| =

∣∣∣∣∣
1
|Fm| ·

∑

z∈Fm

IFy(z)ω−
Pm

i=1(αi,zi)
p

∣∣∣∣∣ =

∣∣∣∣∣
1
|Fm| ·

∑

c∈F
ω
−Pm

i=1(αi,c·yi)
p

∣∣∣∣∣

Multiplication by a field element a ∈ F in the field F = GF (pk) corresponds to a linear trans-
formation in the vector space GF (p)k. That is, for every a ∈ F, there exists a k× k matrix Ma

over GF (p), such that for every b ∈ F = GF (p)k, a · b = Mab. Hence,

m∑

i=1

(αi, c · yi) =
m∑

i=1

(αi,Myic)

=
m∑

i=1

(MT
yi

αi, c)

= (
m∑

i=1

MT
yi

αi, c)

Thus, for every y ∈ Hm,

∣∣∣ÎFy(α)
∣∣∣ =





0
∑m

i=1 MT
yi

αi 6= ~0

|F|
|Fm| otherwise

Assume 1 ≤ i ≤ m is such that αi 6= ~0 ∈ GF (p)k. Note that for every a1 6= a2 ∈ F, we know
that MT

a1
αi 6= MT

a2
αi (For every b 6= 0 ∈ F, a1 · b 6= a2 · b. Thus, for every b 6= ~0 ∈ GF (p)k,

(Ma1 −Ma2)b 6= ~0 and for every b 6= ~0 ∈ GF (p)k, MT
a1

b−MT
a2

b = (Ma1 −Ma2)
T b 6= ~0). Hence,

for every v ∈ GF (p)k, there exists at most one a ∈ H for which MT
a αi = v. In particular,

Pr
~y∈Hm


MT

yi
αi = −

∑

j 6=i

MT
yj

αj


 ≤ 1

|H|

The claim follows. (of claim 5.3.1)

5.3 Affine Subspaces Sample Well

Using the sampling lemma (lemma 5.3), we can prove that the uniform distribution over lines
in Sm

1 samples well. Note that the sampling lemma does not show exactly this, as it considers
y uniformly distributed over Hm, instead of over Hm \ {~0}.
Lemma 5.4. For any A ⊆ Fm of density µ = |A|/|Fm|,

Var
l∈Sm

1

[ |l ∩A|
|l|

]
≤ µ

|H|
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Proof. Note that the probability that a random point in Fm is in A is the same as the expected
fraction of points in A on a random line in Sm

1 ,

E
p∈Sm

0

[ |p ∩A|
|p|

]
= E

l∈Sm
1

[ |l ∩A|
|l|

]
= µ

but the variance may only decrease when considering lines rather than points,

Var
p∈Sm

0

[ |p ∩A|
|p|

]
≥ Var

l∈Sm
1

[ |l ∩A|
|l|

]

Hence, since Var [X] = E
[
(X −E [X])2

]
and by linearity of expectations,

Var
z∈Fm,y∈Hm

[
1
|F| ·Xz,y

]
=

1
|H|m · Var

p∈Sm
0

[ |p ∩A|
|p|

]
+

(
1− 1

|H|m
)
· Var

l∈Sm
1

[ |l ∩A|
|l|

]

≥ 1
|H|m · Var

l∈Sm
1

[ |l ∩A|
|l|

]
+

(
1− 1

|H|m
)
· Var

l∈Sm
1

[ |l ∩A|
|l|

]

= Var
l∈Sm

1

[ |l ∩A|
|l|

]

The lemma follows from lemma 5.3.
Using the analysis for dimension 1, we can bound the variance of the hitting rate for any

larger dimension,

Lemma 5.5. Fix dimensions k and m, 1 ≤ k ≤ m. For any A ⊆ Fm of density µ = |A|/|Fm|,

Var
s∈Sm

k

[ |s ∩A|
|s|

]
≤ µ

|H|

Proof. Pick s ∈ Sm
k and additional r ∈ Rk

1 independently at random. Denote by l = affines(r)
the line within s corresponding to r (the notation affines was introduced in section 4). By
uniformity, l is uniformly distributed in Sm

1 . Hence, by lemma 5.4,

Var
s

[ |s ∩A|
|s|

]
= Var

s

[
E
r

[ |l ∩A|
|l|

]]

≤ Var
s,r

[ |l ∩A|
|l|

]

≤ µ

|H|

We can now bound the deviation of the hitting rate from its expected value,

Corollary 5.6 (sampling). Fix dimensions k and m, 1 ≤ k ≤ m. Fix A ⊆ Fm of density
µ = |A| / |Fm|. Then, for any ε > 0,

Pr
s∈Sm

k

[∣∣∣∣
|s ∩A|
|s| − µ

∣∣∣∣ ≥ ε

]
≤ µ

ε2 |H|

Proof. Apply Chebyshev’s inequality on lemma 5.5.
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5.4 Linear Subspaces Sample Well

We can similarly prove that linear subspaces with one direction chosen from Fm and all other
directions chosen from Hm sample well. We will need this lemma to analyze the Randomness-
Efficient Subspace vs. Point tester.

Lemma 5.7. Fix dimensions k and m, 1 ≤ k < m. Fix a set A ⊆ Fm of density µ = |A|/|Fm|.
Pick uniformly ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, such that ~z, ~y1, . . . , ~yk are linearly independent. Denote
s = affine(~0;~z, ~y1, . . . , ~yk). Then,

E
s

[( |s ∩A|
|s| − µ

)2
]
≤ µ

|H| +
1
|F|

Proof. Pick an additional scalar α ∈ F independently at random. Let sα = affine(α~z; ~y1, . . . , ~yk).
Note that sα is distributed in Sm

k as follows: with probability 1
|F| , sα is uniformly distributed

in the set of affine subspaces in Sm
k through the origin; with probability 1− 1

|F| , sα is uniformly
distributed in the set of affine subspaces in Sm

k that do not contain the origin. Therefore,

E
s,α

[( |sα ∩A|
|sα| − µ

)2
]

≤ 1 · E
s∈Sm

k

[( |s ∩A|
|s| − µ

)2
]

+
1
|F| · 1

= Var
s∈Sm

k

[ |s ∩A|
|s|

]
+

1
|F|

By lemma 5.5,

E
s,α

[( |sα ∩A|
|sα| − µ

)2
]

≤ µ

|H| +
1
|F|

By Jensen inequality,

E
s

[( |s ∩A|
|s| − µ

)2
]

≤ E
s,α

[( |sα ∩A|
|sα| − µ

)2
]

The lemma follows.
We can now bound the deviation of the hitting rate from its expected value,

Corollary 5.8 (sampling). Fix dimensions k and m, 1 ≤ k < m. Fix a set A ⊆ Fm of density
µ = |A|/|Fm|. Pick uniformly ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, such that ~z, ~y1, . . . , ~yk are linearly
independent. Denote s = affine(~0;~z, ~y1, . . . , ~yk). Then, for any ε > 0,

Pr
s

[∣∣∣∣
|s ∩A|
|s| − µ

∣∣∣∣ ≥ ε

]
≤ 1

ε2
·
(

µ

|H| +
1
|F|

)

Proof. Apply Markov inequality on lemma 5.7.

6 Consolidation

In this section we show that weak low degree testing claims imply strong low degree testing
claims. Specifically, we are interested in the following (for exact definitions, see the next sub-
sections):
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1. decoding/list decoding : by decoding we refer to finding a single polynomial Q : Fm → F
agreeing with the oracle on many of the points. By list-decoding we refer to finding a short
list of polynomials Q1, . . . , Qt : Fm → F explaining almost all the acceptance probability
of a tester.

2. consistency : we are able to construct polynomials Q : Fm → F agreeing with the oracle
on some fraction of the points, and wish to find polynomials agreeing with the oracle on
a larger fraction of the points.

3. degree: we are able to construct polynomials Q : Fm → F of degree at most d′ ≥ d, and
wish to find polynomials of degree at most d.

We call such arguments consolidating arguments. They are standard in the low degree testing
literature (see, e.g., [3, 15, 9]), however, they require some adaptation to our new setting. In
the following subsections we provide the statements and the proofs of the exact claims we need.

6.1 From Decoding to List-Decoding

If we have a way to decode, then we can list-decode by repeatedly applying decoding. In our
setting, it is easy to force the decoding process to output a polynomial that differs from existing
polynomials, by modifying the oracle.

Lemma 6.1 (from decoding to list-decoding). Assume |F| ≥ 4. Fix a distribution D over
affine subspaces of dimension k > 0 in Fm. Fix a function f : R→ R, and a degree d′ such that
d ≤ d′ ≤ |F| − 3. If
decoding:
for every success probability 0 < γ ≤ 1 and oracle A,

(much consistency)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

implies

(a relatively-low degree polynomial that slightly agrees with the oracle)
There exists a polynomial Q : Fm → F, with deg Q ≤ d′, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ f(γ)

Then
list-decoding:
for every success probability 0 < γ ≤ 1 and oracle A,

(much consistency)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

implies

(almost all consistency is explained by a relatively short list),

Fix ε0
def
=

√
d′
|F| . For every ε0 < δ < 1, such that δ′ def

= f (δ − ε0)− ε0 ≥ 2ε0, there exists a

list of t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F with deg Qi ≤ d′, such that
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E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ

Proof. Assume on way of contradiction that decoding holds and there exists an oracle A for
which the premise of list-decoding holds as well, however there exists ε0 < δ < 1 satisfying
f (δ − ε0)− ε0 ≥ 2ε0, such that there is no list-decoding for δ.

Let Q1, . . . , Qt : Fm → F be all polynomials of degree at most d′ for which

Pr
~x∈Fm

[Qi(~x) = A(~x)] ≥ δ′

By proposition 3.5, t ≤ 2/δ′. By our assumption, Q1, . . . , Qt is not a list-decoding for δ. Note
that t ≤ 1/ε0.

When picking a subspace s ∼ D and a point ~x uniformly distributed in s, define the following
events:

1. C : A(s)(~x) = A(~x) (consistent).

2. P : ∃i ∈ [t], A(~x) = Qi(~x) (point explained).

3. S : ∃i ∈ [t], (Qi ≡ A)(s) (subspace explained).

In these notations, the contradicting assumption implies that there is much consistency within
unexplained subspaces,

Pr
s,~x

[C ∧ ¬S] = 1− Pr
s,~x

[¬C ∨ S] = 1−E
s

[
Pr
~x

[¬C ∨ S]
]

> δ

By the Schwartz-Zippel lemma, an unexplained subspace is rarely consistent with explained
points,

Pr
s,~x

[C ∧ P |¬S] ≤ td′

|F| ≤
1
ε0
· ε20 = ε0

Thus, there is much consistency on unexplained points,

Pr
s,~x

[C ∧ ¬P ] ≥ Pr
s,~x

[C ∧ ¬P ∧ ¬S]

= Pr
s,~x

[C ∧ ¬S]− Pr
s,~x

[C ∧ P ∧ ¬S]

≥ Pr
s,~x

[C ∧ ¬S]− Pr
s,~x

[C ∧ P |¬S]

> δ − ε0

Pick an arbitrary polynomial Q′ : Fm → F with deg Q′ = d′ + 1. Define a new oracle A′
as follows: A′ assigns Q′(~x) to all explained points ~x, and agrees with A on all other affine
subspaces. Hence,

E
s∼D

[
Pr
~x∈s

[A′(s)(~x) = A′(~x)
]] ≥ Pr

s∼D,~x∈s

[A(s)(~x) = A(~x) ∧ A(~x) = A′(~x)
]

≥ Pr
s,~x

[C ∧ ¬P ]

> δ − ε0
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Thus, by decoding, there exists a polynomial Q, deg Q ≤ d′, agreeing with A′ on many of the
points

Pr
~x∈Fm

[A′(~x) = Q(~x)
] ≥ f (δ − ε0)

The polynomials Q and Q′ are necessarily distinct (they do not have the same degree). Thus,
by the Schwartz-Zippel lemma,

Pr
~x∈Fm

[A′(~x) = Q(~x) ∧ A′(~x) 6= A(~x)
] ≤ Pr

~x∈Fm

[
Q′(~x) = Q(~x)

] ≤ d′ + 1
|F| ≤ ε0

Hence,

Pr
~x∈Fm

[A(~x) = Q(~x) = A′(~x)
]

= Pr
~x∈Fm

[A′(~x) = Q(~x)
]− Pr

~x∈Fm

[A′(~x) = Q(~x) ∧ A′(~x) 6= A(~x)
]

≥ f(δ − ε0)− ε0

= δ′

Therefore,

Pr
~x∈Fm

[A(~x) = Q(~x)] ≥ Pr
~x∈Fm

[A(~x) = Q(~x) = A′(~x)
] ≥ δ′

Hence, there exists i ∈ [t] such that Q = Qi. However, if this is the case,

δ′ ≤ Pr
~x∈Fm

[A(~x) = Qi(~x) = A′(~x)
] ≤ Pr

~x∈Fm

[
Q′(~x) = Q(~x)

] ≤ ε0

Contradiction.
We can additionally demand that each member of the list decoding agrees with the oracle on

many of the subspaces, i.e., there are no non-useful members in the list,

Lemma 6.2 (pruning the list). Fix a distribution D over affine subspaces in Fm. For every
0 < ε < 1 and oracle A, if Q1, . . . , Qt : Fm → F are t > 0 polynomials satisfying

(almost all consistency is explained by the list)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ

then there exists a sublist T ⊆ [t], such that

1. (each polynomial agrees with the oracle on many of the subspaces)
for every i ∈ T ,

Pr
s∼D

[(Qi ≡ A)(s)] >
ε

t

2. (still almost all consistency is explained by the list)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i ∈ T (Qi ≡ A)(s)]
]
≥ 1− δ − ε
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Proof. We prun the given list Q1, . . . , Qt by throwing away any polynomial Qi, for which the
first item does not hold. In other words,

T
def
=

{
i ∈ [t]

∣∣∣∣ Pr
s∼D

[(Qi ≡ A)(s)] >
ε

t

}

By the union bound, Prs∼D [∃i ∈ [t] \ T, (Qi ≡ A)(s)] ≤ t · ε
t = ε. For a subspace s ∼ D and a

point ~x uniformly distributed in s, define the following events:

1. C : A(s)(~x) = A(~x) (consistent).

2. B : ∃i ∈ [t], (Qi ≡ A)(s) (explained before).

3. N : ∃i ∈ T, (Qi ≡ A)(s) (explained now).

In these notations, we have (e.g., by observing the appropriate Venn diagram),

E
s

[
Pr
~x

[¬C ∨N ]
]

= Pr
s,~x

[¬C ∨N ]

≥ Pr
s,~x

[¬C ∨B]− Pr
s,~x

[B ∧ ¬N ]

≥ 1− δ − ε

6.2 Consistency Consolidation

In this subsection, we prove a lemma allowing us to deduce that a significant consistency γ
together with a list-decoding for it imply that at least one of the polynomials in the list agrees
with the oracle on almost γ fraction of the points. The lemma requires that the distribution over
affine subspaces would sample well (see section 5). Together with lemma 6.1 that transforms
decoding into list decoding, this lemma allows us to improve the consistency we manage to
recover.

We phrase a rather general lemma addressing distributional oracles, instead of oracles. We say
that Ã is a distributional oracle, if it assigns each affine subspace s a distribution over functions
f : s → F (not necessarily a single polynomial of degree at most d over s). Our semantic even
permits the distribution to produce a null function with some probability. We interpret a null
function as one that does not satisfy any property of the form “the function evaluates to...”
(and hence satisfies every property of the form “the function does not evaluate to...”).

Lemma 6.3 (from list-decoding to decoding). Fix a distribution D over affine subspaces
that samples well, i.e., there exists ∆ : [0, 1] → [0, 1], such that for every set A ⊆ Fm, for every
0 < ε < 1,

Pr
s∼D

[∣∣∣∣
|s ∩A|
|s| − |A|

|Fm|

∣∣∣∣ ≥ ε

]
≤ ∆(ε)

Let A denote an oracle, and let Ã denote a distributional oracle. Assume

1. (the oracles are significantly consistent)

EeA
[

E
s∼D

[
Pr
~x∈s

[
Ã(s)(~x) = A(~x)

]]]
≥ γ
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2. (most consistency is explained by a relatively short list)
There exist t functions f1, . . . , ft : Fm → F, such that,

EeA
[

E
s∼D

[
Pr
~x∈s

[
Ã(s)(~x) 6= A(~x) ∨ ∃i (fi ≡ Ã)(s)

]]]
≥ 1− δ

For any 0 < ε < 1 such that ε ≥ t ·∆(ε), there exists 1 ≤ i ≤ t, such that

Pr
~x∈Fm

[fi(~x) = A(~x)] ≥ γ − δ − 2ε

Proof. Assume, on way of contradiction, that for every 1 ≤ i ≤ t, Pr~x∈Fm [fi(~x) = A(~x)] <
γ − δ − 2ε. Let us bound the consistency towards a contradiction to the first item of the
premise. For every 1 ≤ i ≤ t, define the set of points explained by fi,

Ai
def
= {~x ∈ Fm | fi(~x) = A(~x)}

For every 1 ≤ i ≤ t, note that µi
def
= |Ai|

|Fm| < γ − δ − 2ε.
As D samples well, for every 1 ≤ i ≤ t, a random subspace s ∼ D is not likely to hit Ai much

more than it is expected,

Pr
s∼D

[ |s ∩Ai|
|s| ≥ µi + ε

]
≤ ∆(ε) ≤ ε

t

By the union bound,

Pr
s∼D

[
∃i ∈ [t],

|s ∩Ai|
|s| ≥ γ − δ − ε

]
≤ ε

For a random oracle assignment Ã, a subspace s ∼ D and a uniformly distributed point ~x ∈ s
chosen independently at random, define the following events:

1. B : ∃i ∈ [t], |s ∩Ai| ≥ (γ − δ − ε) · |s| (bad subspace).

2. C : Ã(s)(~x) = A(~x) (consistent).

3. E : ∃i ∈ [t], (fi ≡ Ã)(s) (explained).

In these notations, we have established that

PreA,s,~x
[C ∧ E] = PreA,s,~x

[C ∧ E ∧ ¬B] + PreA,s,~x
[C ∧ E ∧B]

≤ PreA,s,~x
[C|E ∧ ¬B] + Pr

s
[B]

< (γ − δ − ε) + ε

= γ − δ

The second item of the premise implies

PreA,s,~x
[C] = PreA,s,~x

[C ∧ ¬E] + PreA,s,~x
[C ∧ E]

< δ + (γ − δ)
= γ

This contradicts the first item of the premise.
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6.3 Degree Consolidation

Degree consolidation shows that if one reconstructs a polynomial of not too large degree that
agrees with the oracle on many of our subspaces then the polynomial’s true degree is, in fact,
low. The reason is that the polynomial’s degree does not decrease much when restricted to
almost all our subspaces.

First we prove a lemma allowing us to deduce degree d if one of the directions of our subspaces
is distributed over Fm (rather than Hm). This is used only in the analysis of the Randomness-
Efficient Subspace vs. Point tester.

Lemma 6.4 (degree d consolidation). Fix dimensions k and m, 0 ≤ k < m. Fix an oracle
A assigning polynomials of degree at most d to all affine subspaces. Suppose that a polynomial
Q : Fm → F satisfies the following for some 0 ≤ δ ≤ 1:

1. deg Q ≤ δ |F|.
2. When picking independently at random ~z ∈ Fm and ~y1, . . . , ~yk ∈ Hm such that ~z, ~y1, . . . , ~yk

are linearly independent,

Pr
~z,~y1,...,~yk

[
(Q ≡ A)(affine(~0;~z, ~y1, . . . , ~yk))

]
> δ +

1
|F|

Then, deg Q ≤ d.

Proof. Assume on way of contradiction that deg Q > d. Consider linearly independent ~z ∈ Fm

and ~y1, . . . , ~yk ∈ Hm. Denote s = affine(~0;~z, ~y1, . . . , ~yk), and observe the polynomial

Q|s(α0, α1, . . . , αk)

Note that each of the coefficients of this polynomial can be viewed as a polynomial in z1, . . . , zm

and y1,1, . . . , y1,m, · · · , yk,1, . . . , yk,m of total degree at most deg Q. In particular, observe the
coefficient of the degree deg Q monomial αdeg Q

0 in Q|s. Note that it depends solely on z1, . . . , zm

(and not on y1,1, . . . , y1,m, · · · , yk,1, . . . , yk,m). Hence, let us denote it by P (z1, . . . , zm).
To analyze P we will need several notations. Denote Q(x1, . . . , xm) =

∑
i1···im ai1···imxi1

1 · · ·xim
m .

Define I
def
=

{
(i1, . . . , im)

∣∣∣ ∑
j ij = deg Q

}
. Now, P (z1, . . . , zm) =

∑
(i1...im)∈I ai1···imzi1

1 · · · zim
m .

Thus, by definition, deg P = deg Q and P is not identically zero.
Clearly,

Pr
~z,~y1,...,~yk

[
deg Q|affine(~0;~z,~y1,...,~yk) > d

]
≥ Pr

~z,~y1,...,~yk

[P (~z) 6= 0]

By the Schwartz-Zippel lemma, for a uniformly distributed ~z ∈ Fm we have

Pr
~z∈Fm

[P (~z) 6= 0] ≥ 1− deg Q

|F| ≥ 1− δ

For any linearly independent ~y1, . . . , ~yk, the probability that a uniformly distributed ~z ∈ Fm

satisfies: ~z, ~y1, . . . , ~yk are linearly dependent, is at most 1
|F| . Therefore,

Pr
~z,~y1,...,~yk

[
deg Q|affine(~0;~z,~y1,...,~yk) > d

]
≥ 1− δ − 1

|F|

However, Pr~z,~y1,...,~yk

[
deg Q|affine(~0;~z,~y1,...,~yk) ≤ d

]
> δ + 1

|F| .
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Next we prove a lemma allowing us to deduce degree md (rather than d), even if we only
observe affine subspaces in Sm

k . This lemma will be used in the analysis of the Randomness-
Efficient Plane vs. Point tester.

Lemma 6.5 (degree md consolidation). Fix dimensions k and m, 1 ≤ k ≤ m. Fix an
oracle A assigning polynomials of degree at most d to all affine subspaces. Suppose that for
some 0 ≤ δ ≤ 1, there exists a polynomial Q : Fm → F, such that deg Q ≤ δ |F| and

Pr
s∈Sm

k

[(Q ≡ A)(s)] > δ +
1
|H|

Then, deg Q ≤ md.

Proof. By the premise and uniformity, when picking independently at random linearly indepen-
dent directions ~y1, . . . , ~yk ∈ Hm and a point ~z ∈ Fm,

Pr
~y1,...,~yk

[
Pr
~z

[(Q ≡ A)(affine(~z; ~y1, . . . , ~yk))] > δ

]
>

1
|H|

Thus,

Pr
~y 6=~0∈Hm

[
Pr
~z

[
deg Q|affine(~z;~y) ≤ d

]
> δ

]
>

1
|H|

By proposition 3.3, there exist linearly independent ~y1, . . . , ~ym ∈ Hm, such that for every 1 ≤
i ≤ m,

Pr
~z∈Fm

[
deg Q|affine(~z;~yi) ≤ d

]
> δ

~y1, . . . , ~ym is a basis for Fm. Thus, every point ~x ∈ Fm can be represented as ~x =
∑m

i=1 αi~yi

for some α1, . . . , αm ∈ F. Hence, view Q as a polynomial in variables α1, . . . , αm. Assume on
way of contradiction that deg Q > md. Hence, there exists 1 ≤ i ≤ m such that the degree of
Q in the variable αi, which we will denote by D, is larger than d. The coefficient of αD

i in the
polynomial Q|affine(~z;~yi) is a non-zero polynomial P (z1, . . . , zm) of degree at most D ≤ deg Q.
Hence, by the Schwartz-Zippel lemma,

Pr
~z∈Fm

[P (z1, . . . , zm) = 0] ≤ deg Q

|F| ≤ δ

Thus, Pr~z∈Fm

[
deg Q|affine(~z;~yi) ≤ d

] ≤ δ, which is a contradiction.

7 Consistency Graph

Fix a dimension k ≥ 3. In this section we define and analyze a graph that captures the
consistency among hyperplanes in Fk, i.e., affine subspaces of dimension that is smaller by 1
than k. Using the graph we prove a list decoding lemma (lemma 7.4). This lemma is used in
the analysis of the Randomness-Efficient Plane vs. Point tester to go up one dimension (see
section 8). Lemma 7.4 is also the only lemma in this section that is is used outside it.

The idea is a variation of the analysis of Raz and Safra for the non-randomness-efficient
setting [15]. Our crucial observation is that we can essentially still apply their analysis when
considering only directions with coordinates in a subfield H ⊆ F, instead of the entire field F.
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7.1 Graph Construction

Given an oracle A assigning affine subspaces polynomials of degree at most d, define a simple
undirected graph GA = (V, EA) that captures the consistency among affine subspaces in Sk

k−1

as follows. Let the vertices be all those subspaces, V
def
= Sk

k−1. Let the edges indicate whether
two affine subspaces are assigned polynomials that are consistent on the intersection of the
subspaces,

EA
def
= {(s1, s2) | ∀~x ∈ s1 ∩ s2, A(s1)(~x) = A(s2)(~x)}

Note that every two subspaces in Sk
k−1 are either parallel (i.e., identify or do not intersect) or

intersect by an affine subspace from Sk
k−2 (see closedness under intersection; proposition 4.6).

7.2 Graph is Almost-Transitive

We first wish to establish that the graph is almost-transitive in the sense that every two vertices
that are not neighbors do not have too many common neighbors (whereas, if the graph had
been transitive, they would not have had common neighbors at all):

Lemma 7.1 (almost transitivity). If (s1, s2) /∈ EA, then

Pr
s3∈V

[(s1, s3) ∈ EA ∧ (s3, s2) ∈ EA] ≤ 1
|H| +

d

|F|
Proof. Assume (s1, s2) /∈ EA. By definition, there exists ~x ∈ s1 ∩ s2, for which A(s1)(~x) 6=
A(s2)(~x). Hence, a

def
= s1 ∩ s2 ∈ Sk

k−2 and A(s1) and A(s2) induce two different polynomials of
degree at most d on a. Let us denote these polynomials by P1 and P2. Fix a representation in
Rk

k−2 for a. We say that a vertex s3 ∈ V spots inconsistency, if there exists ~x ∈ s3∩a, such that
P1(~x) 6= P2(~x). We wish to argue that a random vertex s3 ∈ V is likely to spot inconsistency.

Pick uniformly r = (~z; ~y1, . . . , ~yk−1) ∈ Rk
k−1. Let us say that s3 = affine(r) is bad, if s3 either

contains a or does not intersect it. Since (k − 2) + (k − 1) ≥ k, for s3 to be bad, a’s directions
must be linearly dependent in ~y1, . . . , ~yk−1. Hence, by uniformity and by proposition 3.2,

Pr
s3∈V

[s3 is bad] ≤ 1
|H| (3)

By the Schwartz-Zippel lemma, Pr~x∈a [P1(~x) 6= P2(~x)] ≥ 1 − d
|F| . For all the hyperplanes s

that do not contain a but do intersect it, the dimension of their intersection with a is (k −
1) + (k − 2) − k = k − 3. Let I

def
= {s ∩ a | s ∈ V ; a * s ∧ s ∩ a 6= φ}. By closedness under

intersection and uniformity, Ea′∈I [Pr~x∈a′ [P1(~x) 6= P2(~x)]] = Pr~x∈a [P1(~x) 6= P2(~x)] ≥ 1 − d
|F| .

By uniformity,

Pr
s3∈V

[s3 spots inconsistency |s3 is not bad] ≥ 1− d

|F| (4)

Combining inequalities 3 and 4, we get

Pr
s3

[s3 spots inconsistency] ≥ 1− 1
|H| −

d

|F|
If s3 spots inconsistency then either (s1, s3) /∈ EA or (s3, s2) /∈ EA. Thus, (s1, s3) ∈ EA and
(s3, s2) ∈ EA with probability at most 1

|H| +
d
|F| .
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7.3 Graph-Based List Decoding

The almost-transitivity of the graph GA can be used to prove that, other than relatively few
edges, the graph is truly transitive, i.e., composed of disjoint cliques. Moreover, these cliques
are relatively large. This was shown by Raz and Safra [15],

Lemma 7.2 (graph partition). Fix ε = 1
|H| + d

|F| . There exists a partition of the vertices of

GA into cliques, V =
⊎t

i=1 Vi, such that

1. (all non-trivial cliques are large) For every 1 ≤ i ≤ t, either |Vi| = 1, or |Vi| > 2
√

ε |V |.
2. (almost all edges are within cliques)

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i s1, s2 ∈ Vi] ≥ 1− 5
√

ε

Proof. By lemma 7.1 and the combinatorial lemma of Raz and Safra [15] (for completeness we
include a proof for this lemma; see lemma A.1 in the appendix).

A large clique in GA corresponds to a single relatively-low degree polynomial agreeing with
the oracle A on all affine subspaces associated with the vertices in the clique,

Lemma 7.3 (from large clique to polynomial). For every large clique U ⊆ V , |U | >(
2d
|F| +

1
|H|

)
· |V |, there exists a polynomial Q : Fk → F with deg Q ≤ 2d, such that for every

s ∈ U , (Q ≡ A)(s).

Proof. For linearly independent ~y1, . . . , ~yk−1 ∈ Fk, there are exactly |F| different hyperplanes of
the form ~z+span{~y1, . . . , ~yk−1} for some ~z ∈ Fk. Pick uniformly at random linearly independent
~y1, . . . , ~yk−1 ∈ Hk and consider the random variable X denoting the fraction of hyperplanes in
U among the |F| induced hyperplanes. By linearity of expectations,

E
~y1,...,~yk−1

[X] =
|U |
|V | >

2d

|F| +
1
|H|

Hence, by Markov’s inequality, since 0 ≤ X ≤ 1,

Pr
~y1,...,~yk−1

[
X >

2d

|F|
]

>
1
|H|

By proposition 3.2, there necessarily exists a basis ~y1, . . . , ~yk ∈ Hk for Fk as well as 2 · (2d + 1)
scalars c0, . . . , c2d, c

′
0, . . . , c

′
2d ∈ F such that

s0 = affine(c0~yk; ~y1, . . . , ~yk−1) ∈ U

...
s2d = affine(c2d~yk; ~y1, . . . , ~yk−1) ∈ U

s′0 = affine(c′0~y1; ~y2, . . . , ~yk) ∈ U

...
s′2d = affine(c′2d~y1; ~y2, . . . , ~yk) ∈ U
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Let us define a polynomial Q : Fk → F such that for every 0 ≤ i ≤ d, (Q ≡ A)(si). This is done
using Lagrange’s interpolation formula:

Q

(
k∑

i=1

αi~yi

)
=

d∑

i=0

∏
j∈{0,...,d}−{i}(αk − cj)∏
j∈{0,...,d}−{i}(ci − cj)

· A(si)


ci~yk +

k−1∑

j=1

αj~yj




The degree of Q in αk is at most d and its total degree is deg Q ≤ 2d.
We would like to argue that for every s ∈ U , (Q ≡ A)(s). For every line of the form

l = affine
(∑k−1

i=1 ai~yi; ~yk

)
⊆ s′j , the polynomial Q|l has degree at most d. Moreover, for every

0 ≤ i ≤ d, Q|l and A(s′j) identify on l ∩ si. By the Schwartz-Zippel lemma, Q|l and A(s′j)
identify on the entire line l. Thus, for every 0 ≤ j ≤ 2d, Q and A identify on s′j . Hence, by the
Schwartz-Zippel lemma, for every 0 ≤ j ≤ 2d, Q and A identify on sj .

Let s ∈ U . Necessarily, s intersects the sj ’s or the s′j ’s (or both). Hence, Q|s and A(s) identify
on more than 2d

|F| of the points on s. Q|s is of degree at most 2d. Thus, by the Schwartz-Zippel
lemma, Q and A identify on s.

The partition of GA into cliques yields list decoding,

Lemma 7.4 (hyperplane vs. hyperplane). Assume A assigns polynomials of degree at most
d to affine subspaces. For any δ ≥ 8

√
d
|F| +

1
|H| there exists a list of polynomials Q1, . . . , Qt :

Fk → F, t ≤ 4
δ , with deg Qi ≤ 2d, such that

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1− δ

Proof. Consider the partition of lemma 7.2. Let S1, . . . , Sl denote the small cliques in this
partition, i.e., cliques whose size is |Si| < δ

4 |V |. Clearly,

l∑

i=1

|Si|2 <
δ

4
|V | ·

l∑

i=1

|Si| ≤ δ

4
|V |2

Hence, Prs1,s2∈V [∃i, s1, s2 ∈ Si] < δ
4 . Let L1, . . . , Lt be the set of all large cliques |Li| ≥ δ

4 |V |.
We have t ≤ 4

δ . Moreover,

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, s1, s2 ∈ Li] > 1− 5
8
δ − 1

4
δ > 1− δ

For every 1 ≤ i ≤ t, let Qi : Fk → F be the polynomial associated with Li according to
lemma 7.3. We have deg Qi ≤ 2d and

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1− δ

Note that the lemma is meaningful only when the density of the graph, |EA|/|V |2, is large
enough with respect to δ, otherwise, the list might be empty. This corresponds to the fact that
the oracle must assign the affine subspaces somewhat consistent polynomials if we wish to (list)
decode.
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8 Going Up One Dimension

Fix dimension k ≥ 3. Let A be an oracle assigning polynomials of degree at most d to affine
subspaces. In this section we prove that if there is γ consistency between affine subspaces of
dimension (k − 1) in Fk and points within them, then there exists a polynomial Q : Fk → F of
degree at most 2d that agrees with the oracle on almost γ of the points. This is done in several
steps:

1. We use an argument of counting in several manners to transform our setting to one that
resembles that of the consistency graph of section 7.

2. We use the analysis of the consistency graph to prove the claim we want but with not as
good consistency parameter.

3. We fix the consistency parameter via the consistency consolidation of section 6.

The final result of this section is given in lemma 8.3. This is also the only lemma in this section
used outside it. Note that the degree parameter grows from d to 2d, and we indeed need to take
care of that when we use this lemma.

8.1 From Hyperplane vs. Point to Hyperplane vs. Hyperplane

We start by showing that γ consistency between hyperplanes and points within them implies
that for an average pair (s1, s2) of intersecting hyperplanes, A(s1) and A(s2) identify (with each
other and with A) on at least γ2 of the points in the intersection of s1 and s2.

The proof uses repeatedly the trick of counting in several manners, which is made possible
due to uniformity considerations (see section 4).

For an affine subspace a ∈ Sk
k−2, denote the set of hyperplane pairs that intersect on a by

Sa
def
=

{
(s1, s2)

∣∣ s1, s2 ∈ Sk
k−1, s1 ∩ s2 = a

}
.

Lemma 8.1 (counting in several manners). If for an oracle A,

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Then,

E
a∈Sk

k−2

[
E

(s1,s2)∈Sa

[
Pr
~x∈a

[A(s1)(~x) = A(~x) = A(s2)(~x)]
]]
≥ γ2 − 1

|H|

Proof. For a space s ∈ Sk
k−1, a sub-space of it a ⊂ s, a ∈ Sk

k−2, and a point ~x ∈ a, let Is,a,~x be
an indicator variable for the event A(s)(~x) = A(~x).
By the premise and uniformity,

E
s

[
E

a⊂s

[
E

~x∈a

[
Is,a,~x

]]]
≥ γ

By uniformity, we can also count in a different manner and obtain:

E
a

[
E

~x∈a

[
E

s⊃a

[
Is,a,~x

]]]
≥ γ

31



By convexity considerations,

E
a

[
E

~x∈a

[(
E

s⊃a

[
Is,a,~x

])2
]]

≥ γ2

Or, in other words,

E
a

[
E

~x∈a

[
E

s1,s2⊃a

[
Is1,a,~xIs2,a,~x

]]]
≥ γ2

By uniformity, we can change the order of summation once again, and get:

E
a

[
E

s1,s2⊃a

[
E

~x∈a

[
Is1,a,~xIs2,a,~x

]]]
≥ γ2

The lemma follows noticing that the probability that s1 = s2 given that s1, s2 ⊃ a is at most
1
|H| .

8.2 Hyperplane vs. Point Lemma

Next, we show that considerable consistency between (k − 1)-dimensional affine subspaces and
points implies a significant correspondence of the values assigned to points with a relatively
low degree polynomial over Fk. The heart of the proof is the analysis of the consistency graph
(lemma 7.4).

Lemma 8.2 (hyperplane vs. point). Assume A assigns polynomials of degree at most d to

affine subspaces. Fix δ
def
= 16 max

{√
d
|F| , 4

√
1
|H|

}
. Assume that

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Then there exists a polynomial Q : Fk → F, with deg Q ≤ 2d, such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ2 − 3δ

Proof. Lemma 8.1 allows us to translate the consistency given in this lemma to consistency
between pairs of hyperplanes on points,

E
a∈Sk

k−2

[
E

(s1,s2)∈Sa

[
Pr
~x∈a

[A(s1)(~x) = A(~x) = A(s2)(~x)]
]]
≥ γ2 − 1

|H|

Lemma 7.4 gives list decoding Q1, . . . , Qt : Fk → F, deg Qi ≤ 2d, t ≤ 4
δ , for consistency

among pairs of hyperplanes. We wish to argue that at least one of these polynomials also agrees
with the oracle on many of the points.

Let us define appropriate notations. Choose independently and uniformly at random a sub-
space a ∈ Sk

k−2, hyperplanes that intersect on a, (s1, s2) ∈ Sa, and a point ~x ∈ a. Define the
following events:

1. X : A(s1)(~x) = A(~x) = A(s2)(~x) (hyperplanes consistent on (and with) point).

2. C : (s1, s2) ∈ EA (hyperplanes consistent).
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3. E : ∃i (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2) (hyperplanes explained).

In these notations we have Pra,s1,s2,~x [X] ≥ γ2 − 1
|H| . By uniformity, s1, s2 are uniformly dis-

tributed over the set of all pairs with s1 ∩ s2 ∈ Sk
k−2. Since for a uniformly distributed pair

s1, s2 ∈ V , the probability that s1 ∩ s2 /∈ Sk
k−2 is bounded by 1

|H| (see proposition 3.2), the list
decoding translates into

Pr
s1,s2

[¬C ∨ E] ≥ 1− δ − 1
|H|

~x is uniformly distributed within s1∩s2. Hence, by the Schwartz-Zippel lemma, Pra,s1,s2,~x [X|¬C] ≤
d
|F| . Therefore, the probability that s1, s2 are consistent on ~x but not explained is small,

Pr
a,s1,s2,~x

[X ∧ ¬E] = Pr
a,s1,s2,~x

[C ∧X ∧ ¬E] + Pr
a,s1,s2,~x

[¬C ∧X ∧ ¬E]

≤ Pr
s1,s2

[C ∧ ¬E] + Pr
a,s1,s2,~x

[¬C ∧X]

≤ 1− Pr
s1,s2

[¬C ∨ E] + Pr
a,s1,s2,~x

[X|¬C]

≤ δ +
1
|H| +

d

|F|

Thus, the probability that s1, s2 are consistent on ~x and are explained is large

Pr
a,s1,s2,~x

[X ∧ E] ≥ Pr
a,s1,s2,~x

[X]− Pr
a,s1,s2,~x

[X ∧ ¬E]

≥ γ2 − 1
|H| − δ − 1

|H| −
d

|F|
≥ γ2 − 2δ (5)

Let us define a distributional oracle Ã, assigning each affine subspace a ∈ Sk
k−2, a distribution

over polynomials of degree at most d over a (for clarification of our notion of distributional
oracles, see the discussion before lemma 6.3). To define the distribution Ã(a), we indicate how
to sample a polynomial accordingly:

• Pick uniformly at random hyperplanes that intersect on a, (s1, s2) ∈ Sa.

• If there is i such that (Qi ≡ A)(s1) and (Qi ≡ A)(s2), output the restriction of Qi to a
(note that if there are two (or more) such polynomials, they must identify on a).

• Otherwise, output a null polynomial.

If Ã(a) is not null, then there exists i such that (Qi ≡ Ã)(a), while if Ã(a) is not null, Ã(a)(~x) 6=
A(~x) for every ~x ∈ a. Thus,

EeA
[

E
a∈Sk

k−2

[
Pr
~x∈a

[
Ã(a)(~x) 6= A(~x) ∨ ∃i (Qi ≡ Ã)(a)

]]]
= 1

By the construction of Ã and inequality 5, Ã has large consistency with A,

EeA
[

E
a∈Sk

k−2

[
Pr
~x∈a

[
Ã(a)(~x) = A(~x)

]]]
≥ γ2 − 2δ
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By corollary 5.6, the uniform distribution on Sk
k−2 samples well: for every set A ⊆ Fk, for every

0 < ε < 1,

Pr
a∈Sk

k−2

[∣∣∣∣
|a ∩A|
|a| − |A|

|Fk|

∣∣∣∣ ≥ ε

]
≤ 1

ε2 |H|

Thus, by lemma 6.3, since δ
2 ≥ t · 4

δ2|H| , there exists 1 ≤ i ≤ t such that

Pr
~x∈Fk

[Qi(~x) = A(~x)] ≥ γ2 − 3δ

8.3 Consolidating

We can apply consistency consolidation to improve the result of the last subsection. The fol-
lowing summarizes what we establish in this section:

Lemma 8.3 (consistency consolidated). Denote θ0
def
= 24 ·

(
8

√
1
|H| + 4

√
d
|F|

)
. Fix k ≥ 3. Fix

an oracle A assigning polynomials of degree at most d to all affine subspaces. Assume that

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Then there exists a polynomial Q : Fk → F, with deg Q ≤ 2d, such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − 2θ0

Proof. Assume θ0 ≤ 1 (otherwise, the claim trivially holds). Denote ε0 =
√

2d
|F| and δ0 =

16max
{√

d
|F| , 4

√
1
|H|

}
. Define f(γ)

def
= γ2 − 3δ0. It holds that

f(θ0 − ε0)− ε0 = (θ0 − ε0)2 − 3δ0 − ε0 ≥ θ2
0/2

where θ2
0/2 ≥ 2ε0. Apply lemma 6.1 on lemma 8.2 to deduce the existence of t ≤ 4/θ2

0 polyno-
mials Q1, . . . , Qt : Fk → F, with deg Qi ≤ 2d, such that

E
s∈Sk

k−1

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i(Qi ≡ A)(s)]
]
≥ 1− θ0

By lemma 6.3 (using sampling corollary 5.6), there exists 1 ≤ i ≤ t, such that

Pr
~x∈Fk

[Qi(~x) = A(~x)] ≥ γ − 2θ0
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9 The Randomness-Efficient Plane vs. Point Tester is Sound

We wish to show that if the average consistency between planes and points is large then the
oracle assigns points values that are close to a low degree polynomial. Theorem 1 will follow.

Lemma 9.1 (from dimension 2 to dimension k). Denote θk
def
= 24

(
4

√
kd
|F| + 8

√
1
|H|

)
. For

every dimension k ≥ 2, for every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fk → F with deg Q ≤ kd such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − (8k − 10)θk

Proof. We prove the lemma by induction on k. Let us formulate two inductive claims. The
second argues what we wish to show. The first argues slightly better consistency, but worse
degree:

Claim1[k]: For every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fk → F with deg Q ≤ 2(k − 1)d such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − (8k − 16)θk

Claim2[k]: For every 0 < γ ≤ 1 and oracle A, if

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fk → F with deg Q ≤ kd such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − (8k − 10)θk

Claim1[2] holds by taking Q to be A(s) for the only plane s. Hence, the lemma will follow if
we prove that for every k ≥ 2,

Claim1[k] ⇒ Claim2[k] ⇒ Claim1[k + 1]

Claim 9.1.1. Claim1[k] ⇒ Claim2[k]

Proof. Fix 0 < γ ≤ 1 and oracle A such that

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ
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Assume that (8k − 10)θk ≤ 1 (otherwise, we are done). Denote ε0 =
√

2(k − 1)d/|F|. Define

f(γ)
def
= γ − (8k − 16)θk. Let δ = (8k − 14)θk. It holds that

f(δ − ε0)− ε0 = (8k − 14)θk − ε0 − (8k − 16)θk − ε0 ≥ θk

where θk ≥ 2ε0. By lemmata 6.1 and 6.2 applied on Claim1[k], there exist t ≤ 2/θk polynomials
Q1, . . . , Qt : Fk → F, deg Qi ≤ 2(k − 1)d, such that

1. (each agrees with many planes) for every 1 ≤ i ≤ t,

Pr
s∈Sk

2

[(Qi ≡ A)(s)] ≥ θk

t
>

2(k − 1)d
|F| +

1
|H|

2. (all explain almost all the consistency)

E
s∈Sk

2

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ − θk

By lemma 6.5, for every 1 ≤ i ≤ t, deg Qi ≤ kd. By lemma 6.3 (using sampling corollary 5.6),
there exists 1 ≤ i ≤ t such that

Pr
~x∈Fk

[Qi(~x) = A(~x)] ≥ γ − (8k − 10)θk

(of claim 9.1.1)

Claim 9.1.2. Claim2[k] ⇒ Claim1[k + 1]

Proof. Fix 0 < γ ≤ 1 and oracle A such that

E
s∈Sk+1

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

Let s ∈ Sk+1
k . Define an oracle relative to s, As, as follows: for every affine subspace s′ =

affine(r) in Fk, let As(s′)
def
= A(affines(r)) (the notation affines was introduced in section 4).

Let the consistency within s be

γs
def
= E

s′∈Sk
2

[
Pr

~x∈s′

[As(s′)(~x) = As(~x)
]]

By uniformity, the average consistency within s ∈ Sk+1
k is large,

E
s∈Sk+1

k

[γs] = E
s′∈Sk+1

2

[
Pr

~x∈s′

[A(s′)(~x) = A(~x)
]] ≥ γ

Claim2[k] implies the existence of a new oracle A′ that assigns each hyperplane s ∈ Sk+1
k a

polynomial of degree at most kd that agrees with A on at least γs − (8k − 10)θk of its points.
It holds that

E
s∈Sk+1

k

[
Pr
~x∈s

[A′(s)(~x) = A(~x)
]] ≥ E

s∈Sk+1
k

[γs − (8k − 10)θk] ≥ γ − (8k − 10)θk
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By lemma 8.3, there exists a polynomial Q : Fk+1 → F with deg Q ≤ 2kd such that

Pr
~x∈Fk+1

[Q(~x) = A(~x)] ≥ γ − (8(k + 1)− 16)θk+1

(of claim 9.1.2)
Lemma 9.1 follows by induction.
The soundness of the Randomness-Efficient Plane vs. Point tester easily follows:

Proof. (of theorem 1) Assume that

Pr
~z∈Fm,~y1,~y2∈Hm

[
PlanePointA(~z, ~y1, ~y2)

]
= γ

The probability that ~y1, ~y2 are linearly dependent is at most 1
|H|m + 1

|H|m−1 ≤ 2
|H| . Thus,

E
s∈Sm

2

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ − 2

|H|
By lemma 9.1, we have decoding: there exists a polynomial Q : Fm → F with deg Q ≤ md, such
that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε

By lemma 6.1, we have list-decoding: for every δ, δ > 2ε, there exist t ≤ 2/δ polynomials
Q1, . . . , Qt : Fm → F with deg Qi ≤ md, such that

E
s∈Sm

2

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ − 2ε +

2
|H|

Therefore,

Pr
~z∈Fm,~y1,~y2∈Hm

[¬PlanePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~z; ~y1, ~y2))
] ≥ 1− δ − 2ε

10 The Randomness-Efficient Subspace vs. Point Tester is Sound

In this section we use the result from the previous section, namely, the soundness of the
Randomness-Efficient Plane vs. Point tester, to prove the soundness of the Subspace vs. Point
tester.

Consider the distribution D over three-dimensional affine subspaces induced by the tester:
pick uniformly ~z ∈ Fm, ~y1, ~y2 ∈ Hm, such that ~z, ~y1, ~y2 are linearly independent, and output
affine(~0;~z, ~y1, ~y2).

Lemma 10.1 (from Plane vs. Point to Subspace vs. Point). Fix dimension m ≥ 3. Fix

ε
def
= 27m

(
4

√
md
|F| + 8

√
1
|H|

)
. If an oracle A assigning polynomials of degree at most d to affine

subspaces satisfies

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fm → F with deg Q ≤ md such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε
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Proof. Let us construct a new oracle A′. For every plane p ∈ Sm
2 that does not contain the

origin, let A′(p) be the restriction of A(s) to p, where s is the unique three-dimensional linear
subspace that contains p. Let A′ identify with A on all other affine subspaces.

For a subspace s ∼ D, s = affine(~0;~z, ~y1, ~y2), and a random scalar α ∈ F, let sα =
affine(α~z; ~y1, ~y2). Clearly, the premise implies that

E
s,α

[
Pr

~x∈sα

[A(s)(~x) = A(~x)]
]
≥ γ

The plane sα is distributed as follows: with probability 1
|F| , sα is uniformly distributed within

the planes in Sm
2 that contain the origin; with probability 1 − 1

|F| , sα is uniformly distributed
within the planes in Sm

2 that do not contain the origin.
Hence, noticing that a uniformly distributed plane in Sm

2 contains the origin with probability
|F|2
|F|m ≤ 1

|F| ,

E
p∈Sm

2

[
Pr
~x∈p

[A′(p)(~x) = A(~x)
]] ≥ γ − 1

|F|

By lemma 9.1, there exists a polynomial Q : Fm → F with deg Q ≤ md such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε

Now we can apply degree consolidation and get

Lemma 10.2 (degree consolidated). Fix dimension m ≥ 3. Fix ε
def
= 27m

(
4

√
md
|F| + 8

√
1
|H|

)
.

If an oracle A assigning polynomials of degree at most d to affine subspaces satisfies

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ

then there exists a polynomial Q : Fm → F with deg Q ≤ d such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − 2ε

Proof. Assume ε ≤ 1
2 (otherwise, we are done). Denote ε0 =

√
md
|F| , δ = 1.5ε− ε0.

Applying lemma 6.1 and lemma 6.2 on lemma 10.1, we know that there exist t ≤ 8/ε poly-
nomials Q1, . . . , Qt : Fm → F with deg Qi ≤ md, such that

1. (each agrees with many planes) for every 1 ≤ i ≤ t,

Pr
s∼D

[(Qi ≡ A)(s)] >
ε0
t
≥ md

|F| +
1
|F|

2. (all explain almost all the consistency)

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i(Qi ≡ A)(s)]
]
≥ 1− δ − ε0
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By lemma 6.4, for every 1 ≤ i ≤ t, deg Qi ≤ d. By corollary 5.8, D samples well: for every set
A ⊆ Fm, for every 0 < ε < 1,

Pr
s∼D

[∣∣∣∣
|s ∩A|
|s| − |A|

|Fm|

∣∣∣∣ ≥ ε

]
≤ 1

ε2
·
(

1
|H| +

1
|F|

)

Hence, by lemma 6.3, there exists 1 ≤ i ≤ t, such that

Pr
~x∈Fm

[Qi(~x) = A(~x)] ≥ γ − 2ε

Our main theorem stating the soundness of the Randomness Efficient Subspace vs. Point
tester follows:

Proof. (of theorem 2) Assume that

Pr
~z∈Fm,~y1,~y2∈Hm

[
SpacePointA(~z, ~y1, ~y2)

]
= γ

The probability that ~z, ~y1, ~y2 are linearly dependent is very small,

Pr
~z∈Fm,~y1,~y2∈Hm

[¬ind(~z, ~y1, ~y2)] ≤ 1
|H|m +

1
|H|m−1 +

1
|F|m−2 ≤

2
|H| +

1
|F|

Hence,

E
s∼D

[
Pr
~x∈s

[A(s)(~x) = A(~x)]
]
≥ γ − 2

|H| −
2
|F|

By lemma 10.2 we have decoding: there exists a polynomial Q : Fm → F with deg Q ≤ d such
that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − 2.5ε

Lemma 6.1 applied on lemma 10.2 gives list-decoding: there exist t ≤ 2/δ polynomials Q1, . . . , Qt :
Fm → F with deg Qi ≤ d such that

E
s∼D

[
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]
]
≥ 1− δ − 2.75ε

Therefore,

Pr
~z∈Fm,~y1,~y2∈Hm

[
¬SpacePointA(~z, ~y1, ~y2) ∨ ∃i (Qi ≡ A)(affine(~0;~z, ~y1, ~y2))

]
≥ 1− δ − 3ε
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A Combinatorial Lemma

For the sake of self-containment, let us prove the lemma of Raz and Safra [15] that we use.
First, let us introduce several notations. Given a graph G = (V,E) and a vertex v ∈ V , the

neighbors of v are NG(v)
def
= {u ∈ V | (v, u) ∈ E }. The degree of v is dG(v)

def
= |NG(v)|. The

connected component of v is CG(v)
def
= {u ∈ V | u is reachable from v}. The non-neighbors of

v within its connected component are denoted DG(v)
def
= CG(v) \ ({v} ∪ NG(v)).

Lemma A.1 (graph partition, [15]). Let G = (V, E) be an undirected graph in which every
two non-neighbors u, v ∈ V , (u, v) /∈ E, have at most ε |V | common neighbors. Then, there
exists a partition of the vertices into cliques, V =

⊎t
i=1 Vi, such that

1. (all non-trivial cliques are large) For every 1 ≤ i ≤ t, either |Vi| = 1, or |Vi| > 2
√

ε |V |.
2. (almost all edges are within cliques)

Pr
u,v∈V

[(u, v) /∈ E ∨ ∃i u, v ∈ Vi] ≥ 1− 5
√

ε

Proof. Consider the following operation on graphs, meant to improve transitivity by removing
some edges:

Pick a vertex v ∈ V .

1. If dG(v) ≤ 2
√

ε |V |, remove all the edges that touch v.

2. If dG(v) > 2
√

ε |V |, remove all edges between neighbors of v and non-neighbors of v (these
edges are necessarily within v’s connected component).

If there is no vertex for which this operation causes removal of edges, then the graph is necessarily
transitive, and, moreover, all its non-trivial cliques are of size more than 2

√
ε |V |.

Hence, iteratively perform this operation, picking each time an arbitrary vertex for which
edges would be removed, until this is no longer possible. Let v1, v2, . . . , vl denote the picked
(not necessarily distinct) vertices. Let G1, G2, . . . , Gl denote the subgraphs obtained in the l
iterations. Let I1 be the set of all indices 1 ≤ i ≤ l in which step 1 was performed. Let I2 be
the set of all indices 1 ≤ i ≤ l in which step 2 was performed.

We will bound the total number of edges removed. Observe that if step 1 is performed for a
vertex vi, then its connected component becomes a singleton. Thus, |I1| ≤ |V |, and we have

∑

i∈I1

|NGi(vi)| ≤
∑

i∈I1

2
√

ε |V | = |I1| · 2
√

ε |V | ≤ 2
√

ε |V |2

Observe that if step 2 is performed for a vertex vi, then after the i’th operation, the vertices
of NGi(vi) and the vertices of DGi(vi) do not belong to the same connected component. Thus,∑

i∈I2
|DGi(vi)| · |NGi(vi)| ≤ |V |2 (no pair of vertices appears twice in this sum). By the almost-

transitivity, for every i ∈ I2, every vertex u ∈ DGi(vi) has at most ε |V | neighbors in NGi(vi)
(each is a common neighbor of u and vi). Therefore, we can bound the total number of edges
removed in step 2 by

∑

i∈I2

|DGi(vi)| · ε |V | <
∑

i∈I2

|DGi(vi)| · ε · |NGi(vi)|
2
√

ε
≤
√

ε

2
·
∑

i∈I2

|DGi(vi)| · |NGi(vi)| ≤
√

ε

2
|V |2
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Therefore, the total number of edges removed is at most 2.5
√

ε |V |2 and the total number of
pairs u, v ∈ V for which (u, v) ∈ E but u and v are not in the same clique is at most 5

√
ε |V |2.
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