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Abstract

Mergers are functions that transform k (possibly dependent) random sources into a
single random source, in a way that ensures that if one of the input sources has min-
entropy rate δ then the output has min-entropy rate close to δ. Mergers have proven
to be a very useful tool in explicit constructions of extractors and condensers, and are
also interesting objects in their own right. In this work we give a refined analysis of the
merger constructed by [Raz05] (based on [LRVW03]). Our analysis uses min-entropy
instead of Shannon’s entropy to derive tighter results than the ones obtained in [Raz05].

We show that for every r it is possible to construct a merger that takes as input k
strings of length n bits each, and outputs a string of length n/r bits, such that if one
of the input sources has min-entropy b, the output will be close to having min-entropy
b/(r + 1). This merger uses a constant number of additional uniform bits when k and
r are constants. One advantage of our analysis is that b (the min-entropy of the ’good’
source ) can be as small as a constant, while in the analysis given in [Raz05], b is required
to be linear in n.

1 Introduction

Consider the following problem: You are given k samples x1, . . . , xk ∈ {0, 1}n, taken from k,
possibly dependent, n-bit random sources X1, . . . , Xk. Suppose that one of these k sources
(the index of which is not known) has min-entropy1 ≥ δn. You want to output a string of
length n′ bits, computed from these k samples and from an additional short string which is
uniformly distributed, in a way that will ensure that the min-entropy of your output is at
least δ′n′, where δ′ is not considerably smaller than δ. Mergers are functions that attempt to
solve this problem.

The notion of merger was first introduced by Ta-Shma [TS96], in the context of explicit
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1A source has min-entropy ≥ b if none of its values is obtained with probability larger than 2−b.
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constructions of extractors2. Recently, Lu, Reingold, Vadhan and Wigderson [LRVW03] gave
a very simple and beautiful construction of mergers based on Locally-Decodable-Codes. This
construction was used in [LRVW03] as a building block in an explicit construction of extrac-
tors with nearly optimal parameters. More recently, [Raz05] generalized the construction of
[LRVW03], and showed how this construction (when combined with other techniques) can be
used to construct condensers3 with constant seed length.

The merger constructed by [LRVW03] takes as input k strings of length n, one of which
has min-entropy b, and outputs a string of length n that is close to having min-entropy at
least b/2. Loosely speaking, the output of the merger is computed as follows: treat each input
block as a vector in the vector space Fm, where F is some small finite field, and output a
uniformly chosen linear combination of these k vectors. One drawback of this construction is
that the min-entropy rate (i.e. the ratio between the min-entropy of a source and its length)
of the output is at most 1

2
, even if one of the input blocks is completely uniform. This might

be a drawback in cases where the output of the merger is used as an input to some other
’device’ that requires the min-entropy rate of its input to be larger than 1

2
.

The construction of [Raz05], which generalizes the construction of [LRVW03], overcomes
this problem by slightly modifying the above construction. Instead of treating each input
block as one vector in Fm, we treat each input block as r concatenated vectors in the vector
space F l (where l = m/r). We then output a randomly chosen linear combination of the r · k
vectors obtained from all k sources. An extension of the analysis given in [LRVW03] shows
that if one of the k sources has min-entropy b, then the output of the merger is close to having
min-entropy at least b/(r + 1). Since the length of the output is n/r, the min-entropy rate of
the output is r

r+1
· δ, where δ = b

n
is the min-entropy rate of the ’good’ input block. Thus,

the min-entropy rate of the output can approach 1, if one of the inputs is uniform (or close
to uniform).

The analysis given by [Raz05] uses Shannon’s entropy to derive its results. That is, it shows
that the entropy of the output is high, and uses this fact to lower bound the min-entropy of
the output. In this paper we give an improved analysis of the construction of [Raz05] that
directly shows that the min-entropy of the output is high, without using Shannon’s entropy.
This analysis possesses several advantages over that of [Raz05], the most significant of which
is that it shows that the merger works even when the min-entropy of the input is very small (a
constant), where the analysis of [Raz05] requires the min-entropy of the input to be linear in
the length of the input source. Although this improved analysis doesn’t give any qualitative
improvements to the end results of [Raz05] (namely, to the construction of condensers), we
feel that future applications of these mergers might benefit from our results.

2An extractor is a function that transforms a source with min-entropy b into a source which is close
to uniform, with the aid of an additional random seed. For a more detailed description of extractors see
[LRVW03].

3A condenser is a function that transforms a source with min-entropy rate δ into a source which is close to
having min-entropy rate δ′ > δ, with the aid of an additional random seed.
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1.1 Somewhere-Random-Sources

An n-bit random source is a random variable X that takes values in {0, 1}n. We denote
by supp(X) ⊂ {0, 1}n the support of X (i.e. the set of values on which X has non-zero
probability). For two n-bit sources X and Y , we define the statistical distance (or simply
distance) between X and Y to be

∆(X,Y ) , 1

2

∑

a∈{0,1}n

|Pr[X = a]−Pr[Y = a]| .

We say that a random source X (of length n bits) has min-entropy ≥ b if for every
x ∈ {0, 1}n the probability for X = x is at most 2−b.

Definition 1.1 (Min-entropy). Let X be a random variable distributed over {0, 1}n. The
min-entropy of X is defined as 4

H∞ (X) , min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

Definition 1.2 ((n, b)-Source). We say that X is an (n, b)-source, if X is an n-bit random
source, and H∞ (X) ≥ b.

A somewhere-(n, b)-source is a source comprised of several blocks, such that at least one of
the blocks is an (n, b)-source. Note that we allow the other source blocks to depend arbitrarily
on the (n, b)-source, and on each other.

Definition 1.3 ((n, b)1:k-Source)). A k-places-somewhere-(n, b)-source, or shortly, an (n, b)1:k-
source, is a random variable X = (X1, . . . , Xk), such that every Xi is of length n bits, and at
least one Xi is of min-entropy ≥ b. Note that X1, . . . , Xk are not necessarily independent.

1.2 Mergers

A merger is a function transforming an (n, b)1:k-source into a source which is γ-close (i.e. it
has statistical distance ≤ γ) to an (m, b′)-source. Naturally, we want b′/m to be as large as
possible, and γ to be as small as possible. We allow the merger to use an additional small
number of truly random bits, called a seed. A Merger is strong if for almost all possible
assignments to the seed, the output is close to be an (m, b′)-source. A merger is explicit if it
can be computed in polynomial time.

Definition 1.4 (Merger). A function M : {0, 1}d × {0, 1}n·k → {0, 1}m is a [d, (n, b)1:k 7→
(m, b′) ∼ γ]-merger if for every (n, b)1:k-source X, and for an independent random variable
Z uniformly distributed over {0, 1}d, the distribution M(Z,X) is γ-close to a distribution of
an (m, b′)-source. We say that M is strong if the average over z ∈ {0, 1}d of the minimal
distance between the distribution of M(z, X) and a distribution of an (m, b′)-source is ≤ γ.

4All logarithms in this paper are taken base 2.
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1.3 Our Results

The main result of this paper is the following theorem, which shows the existence of explicit
strong mergers. Notice that the size of the seed used by the merger does not depend on the
length of each input block.

Theorem 1 (Strong Merger). For any constants α, γ > 0, and for every integers k, r ≥ 1,
there exists a constant b0 > 0, such that for every b ≥ b0, and for every n ≥ b, there exists an
explicit [d, (n, b)1:k 7→ (m, b′) ∼ γ]-strong merger, such that,

m =
⌈n

r

⌉
,

b′ =
b

r + 1 + α
,

d = k · r ·
⌈
log

(
2r

γ

)⌉
.

1.4 Organization

In Section 2 we describe the construction of mergers of [Raz05] (based on [LRVW03]). We
then proceed, in Section 3, to give our improved analysis for these mergers, and to prove
Theorem 1. In our analysis we will mostly follow the notations of [Raz05].

2 The Construction

In this section we describe the construction of mergers of [Raz05], which is based on the
construction of [LRVW03]. Loosely speaking, the construction can be described as follows:
Given k input blocks of length n bits each, we pick integers r, p such that n = p ·r · l, and treat
each input block as r vectors in F l, where F is a field of size 2p. The output of the merger is
then a uniformly chosen linear combination of these k · r vectors (r vectors in each block) in
the vector space F l. We now describe the construction more formally.

Construction 2.1. Let n, k, r, p be integers such that r · p divides n, and let l = n
r·p . We

define a function
M : {0, 1}d × {0, 1}n·k → {0, 1}n

r ,

with
d = p · k · r,

in the following way: Let F be a finite filed of size 2p. Given z ∈ {0, 1}d, we think of z as a
vector (z1,1, . . . , zk,r) ∈ F k·r. Given x = (x1, . . . , xk) ∈ {0, 1}n·k, we think of each xi ∈ {0, 1}n

as a vector (xi,1, . . . , xi,r), where each xi,j is in {0, 1}l·p. We think of each xi,j ∈ {0, 1}l·p as a
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vector in F l. More generally, we think of {0, 1}l·p as the vector space F l. The function M is
now defined as

M(z, x) =
k∑

i=1

r∑
j=1

zi,j · xi,j ∈ F l,

where the operations are in the vector space F l. Intuitively, one can think of M as

M : F k·r × (
F l

)k·r → F l.

In the next section we will show that this construction gives mergers as in Theorem 1, for
an appropriate choice of r and p. One technicality is that we require n to be divisible by r · p.
This technicality can be addressed by padding each input block with at most r · p zeros to
obtain the required relation between n, r and p.

3 The Analysis

In this section we present our analysis of the mergers defined in the last section, and in
particular prove Theorem 1. We begin with some notations that will be used throughout this
section.

Let X = (X1, . . . , Xk) ∈ {0, 1}n·k be a somewhere (n, b)-source, and let us assume w.l.o.g.
that H∞ (X1) ≥ b. Suppose that n = p ·r · l, and let M(z, x) : {0, 1}d×{0, 1}n·k → {0, 1}n

r be
as in Construction 2.1, where d = p · k · r. For every z ∈ {0, 1}d we denote by Yz , M(z, X)
the random variable given by the output of M on the fixed seed value z (recall that, in
Construction 2.1, every seed value corresponds to a specific linear combination of the source
blocks). Let u , 2d = 2pkr be the number of different seed values, so we can treat the set
{0, 1}d as the set5 [u]. We can now define Y , (Y1, . . . , Yu) ∈ ({0, 1}p·l)u. The random variable
Y is a function of X, and is comprised of u blocks, each one of length p · l, representing the
output of the merger on all possible seed values. We will first analyze the distribution of Y as
a whole, and then use this analysis to describe the output of M on a uniformly chosen seed.

Definition 3.1. Let D(Ω) denote the set of all probability distributions over a finite set Ω.
Let P ⊂ D(Ω) be some property. We say that µ ∈ D(Ω) is γ-close to a convex combination
of distributions with property P, if there exists constants α1, . . . , αt, γ > 0, and distributions
µ1, . . . , µt, µ

′ ∈ D(Ω) such that the following three conditions hold 6:

1. µ =
∑t

i=1 αiµi + γµ′.

2.
∑t

i=1 αi + γ = 1.

5For an integer n, we write [n] , {1, 2, . . . , n}.
6In condition 1, we require that the convex combination of the µi’s will be strictly smaller than µ. This is

not the most general case, but it will be convenient for us to use this definition.
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3. ∀i ∈ [t] , µi ∈ P.

Let Y be the random variable defined above, and let µ : ({0, 1}p·l)u → [0, 1] be the
probability distribution of Y (i.e. µ(y) = Pr[Y = y]). We would like to show that µ is
exponentially (in b) close to a convex combination of distributions, each having a certain
property which will be defined shortly.

Given a probability distribution µ on ({0, 1}p·l)u we define for each z ∈ [u] the distribution
µz : {0, 1}p·l → [0, 1] to be the restriction of µ to the z’s block. More formally, we define

µz(y) ,
∑

y1,...,yz−1,yz+1,...,yu∈{0,1}p·l

µ(y1, . . . , yz−1, y, yz+1, . . . , yu).

Let
ε , r · 2−p,

and let α > 0. We say that a distribution µ : ({0, 1}p·l)u → [0, 1] is α-good if for at least
(1 − ε) · u values of z ∈ [u], µz has min-entropy at least b

r+1+α
. The statement that we

would like to prove is that the distribution of Y is close to a convex combination of α-good
distributions (see Definition 3.1). As we will see later, this is good enough for us to be able
to prove Theorem 1. The following lemma states this claim in a more precise form.

Lemma 3.2 (Main Lemma). Let Y = (Y1, . . . , Yu) be the random variable defined above,
and let µ be its probability distribution. Then, for any constant α > 0, µ is 2−Ω(b)-close to a
convex combination of α-good distributions.

It is worth noting that Lemma 3.2 gives a stronger result than the one stated in Theorem 1.
From Lemma 3.2 we see that the output of the merger contains two kinds of error. One is
given by ε, and denotes the fraction of ’bad’ seeds in every α-good distribution that appears
in the convex combination. The second error parameter is exponentially small (2−Ω(b)), and
denotes the distance of the output from the convex combination of α-good distributions. This
distinction does not appear in Theorem 1, and might be useful in constructions that use this
merger as a building block.

We prove Lemma 3.2 in subsection 3.2. The proof of Theorem 1, which follows quite easily
from Lemma 3.2, appears in the next subsection.

3.1 Proof of Theorem 1

Fix the constants α, γ, k, r as in the theorem. We choose p to be the smallest integer such

that ε = r · 2−p ≤ 1
2
γ. More precisely, we set p =

⌈
log

(
2r
γ

)⌉
. For every n we let M :

{0, 1}d × {0, 1}n·k → {0, 1}n
r , be as in Construction 2.1, where d = p · k · r, and assume for

simplicity that n is divisible by r · p, (otherwise we pad each input block with at most r · p
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zeros, and so the output length will be
⌈

n
r

⌉
, as required by Theorem 1). Let

b′ =
b

r + 1 + α
,

m =
n

r
,

We will show that for values of b larger than some constant b0, and for values of n larger than
b, M is a [d, (n, b)1:k 7→ (m, b′) ∼ γ]-strong merger.

Let X = (X1, . . . , Xk) be a somewhere (n, b)-source, and w.l.o.g. assume that X1 is an
(n, b)-source. Let Z be a random variable uniformly distributed over [u] = {0, 1}d (as before,
we let u = 2pkr = 2d denote the number of different seed values), and let Y = (Y1, . . . , Yu)
and µ be as in Lemma 3.2. Using Lemma 3.2 we can write µ as a convex combination of
distributions

µ =
t∑

i=1

αiµi + γ′µ′, (1)

with γ′ = 2−Ω(b), and such that for every i ∈ [t] the distribution µi is α-good. That is, for at
least (1− ε) · u values of z ∈ [u], the distribution7 (µi)z has min-entropy at least b′ = b

r+1+α
.

Next, define for every z ∈ [u] the set Hz ⊂ [t] as follows:

Hz , {i ∈ [t] : H∞ ( (µi)z ) < b′}.
That is, Hz ⊂ [t] is the set of indices of all distributions among {µ1, . . . , µt}, for which (µi)z

has min-entropy smaller than b′. Additionally, define for every z ∈ [u],

ez ,
∑
i∈Hz

αi.

Claim 3.3. Let ∆(Yz, (m, b′)) denote the minimal (statistical) distance between Yz and an
(m, b′)-source. Then for every z ∈ [u]

∆(Yz, (m, b′)) ≤ ez + γ′.

Proof. For every z ∈ [u] let µz(y) = Pr[Yz = y] be the probability distribution of Yz. From
Eq.1 we can write µz as a convex combination

µz =
t∑

i=1

αi · (µi)z + γ′µ′z

=

(∑

i6∈Hz

αi · (µi)z

)
+

(∑
i∈Hz

αi · (µi)z + γ′µ′z

)

= (1− ez − γ′) · µ′′ + (ez + γ′) · µ′′′,
7When writing (µi)z, the first subscript i denotes the index of the distribution, and the second subscript z

denotes the restriction of this distribution to the block indexed by z.
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where µ′′ is the probability distribution of an (m, b′) source8, and µ′′′ is some other distribution.
Clearly, the statistical distance ∆(µz, µ

′′) is at most ez + γ′, and since µ′′ is an (m, b′) source,
we have that ∆(Yz, (m, b′)) ≤ ez + γ′.

Claim 3.4. Let Z be a random variable uniformly distributed over [u]. Then, the expectation
of eZ is at most ε:

E[eZ ] ≤ ε.

Proof. For each i ∈ [t] define the following indicator random variable

χi =

{
1, i ∈ HZ ;
0, i 6∈ HZ .

We can thus write

eZ =
t∑

i=1

χi · αi.

By linearity of expectation we have

E[eZ ] =
t∑

i=1

E[χi] · αi,

and since for each i ∈ [t] we have that

E[χi] = Pr
Z
[i ∈ HZ ] < ε

(this follows from the fact that each µi is α-good), we conclude that

E[eZ ] ≤ ε ·
t∑

i=1

αi ≤ ε.

Combining Claim 3.3 and Claim 3.4, and recalling that ε ≤ 1
2
γ, and γ′ = 2−Ω(b), we see

that

E[∆(YZ , (m, b′))] ≤ E[eZ ] + γ′ ≤ ε + γ′ ≤ 1

2
γ + 2−Ω(b),

where the expectations are taken over Z, which is chosen uniformly in [u]. Now, for values of
b larger than some constant b0, this expression is smaller than γ. This completes the proof of
Theorem 1.

8A convex combination of (m, b′)-sources is an (m, b′)-source.
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3.2 Proof of Lemma 3.2

In order to prove Lemma 3.2 we prove the following slightly stronger lemma.

Lemma 3.5. Let X = (X1, . . . , Xk) be an (n, b)1:k-source, and let Y = (Y1, . . . , Yu) and µ be
as in Lemma 3.2. Then for any constant α > 0 there exists an integer t ≥ 1, and a partition
of {0, 1}n·k into t + 1 sets W1, . . . , Wt,W

′, such that:

1. Pr
X
[X ∈ W ′] ≤ 2−Ω(b).

2. For every i ∈ [t] the probability distribution of Y |X ∈ Wi (that is - of Y conditioned
on the event X ∈ Wi) is α-good. In other words: for every i ∈ [t] there exist at least
(1− ε) · u values of z ∈ [u] for which

H∞(Yz|X ∈ Wi) ≥ b

r + 1 + α
.

Before proving Lemma 3.5 we show how this lemma can be used to prove Lemma 3.2.

Proof of Lemma 3.2: The lemma follows immediately from Lemma 3.5 and from the
following equality, which holds for every partition W1, . . . , Wt,W

′, and for every y.

Pr[Y = y] =
t∑

i=1

Pr[X ∈ Wi] ·Pr[Y = y |X ∈ Wi] + Pr[X ∈ W ′] ·Pr[Y = y |X ∈ W ′].

If the partition W1, . . . , Wt,W
′ satisfies the two conditions of Lemma 3.5 then from Defini-

tion 3.1 it is clear that Y is exponentially (in b) close to a convex combination of α-good
distributions.

Proof of Lemma 3.5: Every random variable Yz is a function of X, and so it partitions
{0, 1}n·k in the following way:

{0, 1}n·k =
⋃

y∈{0,1}p·l

(Yz)
−1(y),

where (Yz)
−1(y) ,

{
x ∈ {0, 1}n·k |Yz(x) = y

}
. For each z ∈ [u] we define the set

Bz ,
⋃

�
y

���� Pr[Yz=y]>2
− b

r+1+α/2

�(Yz)
−1(y)

=
{

x′ ∈ {0, 1}n·k
∣∣∣ Pr

X
[Yz(X) = Yz(x

′)] > 2−
b

r+1+α/2

}
.
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Intuitively, Bz contains all values of x that are ”bad” for Yz, where in ”bad” we mean that
Yz(x) is obtained with high probability in the distribution Yz(X).

Next, we define a set S ⊂ [u]r+1 in the following way:

S ,
{
(z1, . . . , zr+1) ∈ [u]r+1 | Yz1 , . . . , Yzr+1 determine9 X1

}
.

The next claim shows that for every r + 1 seed values (z1, . . . , zr+1) ∈ S, the set of x’s that
are ”bad” for all of them is of exponentially small probability. That is, for most values of x
at least one of the random variables Yz1 , . . . , Yzr+1 is such that Yzi

(x) is obtained with small
enough probability.

Claim 3.6. For all (z1, . . . , zr+1) ∈ S it holds that

Pr
X
[X ∈ Bz1 ∩ . . . ∩Bzr+1 ] ≤ 2−

α
2(r+1)+α

·b.

Proof. For each i ∈ [r +1] we can partition Bzi
(according to the value of Yzi

) into mi disjoint
sets Bi,1, . . . , Bi,mi

such that the following three conditions hold:

1. For all j ∈ [mi], Pr
X
[X ∈ Bi,j] > 2−

b
r+1+α/2 .

2. For all j ∈ [mi], Yzi
is constant on Bi,j.

3. mi ≤ 2
b

r+1+α/2 .

(1 and 2 follow from the definition of Bz. 3 follows from 1).

For every (j1, . . . , jr+1) ∈ [m1]× . . .× [mr+1] we know that

Pr
X
[X ∈ B1,j1 ∩ . . . ∩B(r+1),jr+1 ] ≤ 2−b,

(this is because X1 is constant on this intersection, and H∞ (X1) ≥ b).

We can now write

Pr
X
[X ∈ Bz1 ∩ . . . ∩Bzr+1 ] =

∑

(j1,...,jr+1)∈[m1]×...×[mr+1]

Pr
X
[X ∈ B1,j1 ∩ . . . ∩B(r+1),jr+1 ]

≤ m1 ·m2 · . . . ·mr+1 · 2−b

≤ 2
r+1

r+1+α/2
·b · 2−b = 2−

α
2(r+1)+α

·b.

The next lemma (rephrased from [Raz05]) and the corollary that follows, show that every
set A ⊂ [u], who’s density is larger than ε, contains at least one (r + 1)-tuple from S.

9We say that a random variable Y determines another random variable X if the entropy of X given Y is
zero (i.e. X is a function of Y ).
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Lemma 3.7 (Lemma 4.4 in [Raz05]). Let F be a finite field, and let e1, . . . , er denote the
first r unit vectors in the standard basis of F k′, for some k′ > r. Let A ⊂ F k′ be a set of size
larger than r · |F |k′−1. Then, there exists v ∈ F k′, and non-zero α1, . . . , αr ∈ F , such that all
r + 1 vectors v, v + α1e1, . . . , v + αrer belong to A.

Corollary 3.8. Let A ⊂ [u] be a set of density larger than ε. Then Ar+1 ∩ S 6= ∅.

Proof. We view the set [u] as the vector space F k·r (recall that F is a field of size 2p). If the
density of A is larger than ε = r · 2−p then

|A| > ε · u = r · 2−p · u = r · |F |k·r−1.

We can apply Lemma 3.7 to get a vector v ∈ F k·r such that

(v, v + α1e1, . . . , v + αrer) ∈ Ar+1.

Recalling Construction 2.1, we can write X1 = (X11, . . . , X1r), where each X1j is in F l. Now,
for every j ∈ [r] the pair of random variables Yv and Yv+αjej

satisfies

1

αj

(
Yv+αjej

− Yv

)
= X1j

(where the operations are preformed in the vector space F l), and so they determine X1j. This
means that the set of r + 1 random variables Yv, Yv+α1e1 , . . . , Yv+αrer determine X1. Hence,

(v, v + α1e1, . . . , v + αrer) ∈ S.

We now define for each x ∈ {0, 1}n·k a vector π(x) ∈ {0, 1}u in the following way :

∀z ∈ [u] , π(x)z = 1 ⇐⇒ x ∈ Bz.

For a vector π ∈ {0, 1}u, let w(π) denote the weight of π (i.e. the number of 1’s in π). Since
the weight of π(x) denotes the number of seed values for which x is ”bad”, we would like to
somehow show that for most x’s w(π(x)) is small. This can be proven by combining Claim 3.6
with Corollary 3.8, as shown by the following claim.

Claim 3.9.
Pr

X
[w(π(X)) > ε · u] ≤ ur+1 · 2− α

2(r+1)+α
·b.

Proof. If x is such that w(π(x)) > ε · u then, by Corollary 3.8, we know that there exists an
(r + 1)-tuple (z1, . . . , zr+1) ∈ S such that x ∈ Bz1 ∩ . . . ∩Bzr+1 . Therefore we have

Pr
X
[w(π(X)) > ε · u] ≤ Pr

X
[ ∃(z1, . . . , zr+1) ∈ S s.t. X ∈ Bz1 ∩ . . . ∩Bzr+1 ].
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Now, using the union bound and Claim 3.6 we can bound this probability by

|S| · 2− α
2(r+1)+α

·b ≤ ur+1 · 2− α
2(r+1)+α

·b.

From Claim 3.9 we see that every x (except for an exponentially small set) is contained in
at most ε ·u sets Bz. The idea is now to partition the space {0, 1}n·k into sets of x’s that have
the same π(x). If we condition the random variable Y on the event π(X) = π0, where π0 is
of small weight, we will get an α-good distribution. We now explain this idea in more details.
Let λ , α

2(r+1+α)(r+1+α/2)
, and define

BAD1 , {π′ ∈ {0, 1}u | w(π′) > ε · u} ,

BAD2 ,
{
π′ ∈ {0, 1}u | Pr

X
[π(X) = π′] < 2−λ·b} ,

BAD , BAD1 ∪BAD2.

The set BAD ⊂ {0, 1}u contains values π′ ∈ {0, 1}u that cannot be used in the partitioning
process described in the last paragraph. There are two reasons why a specific value π′ ∈ {0, 1}u

is included in BAD. The first reason is that the weight of π′ is too large (i.e. larger than ε ·u),
these values of π′ are included in the set BAD1. The second less obvious reason for π′ to be
excluded from the partitioning is that the set of x’s for which π(x) = π′ is of extremely small
probability. These values of π′ are bad because we can say nothing about the min-entropy of
Y when conditioned on the event10 π(X) = π′ .

Having defined the set BAD, we are now ready to define the partition required by
Lemma 3.5. Let {π1, . . . , πt} = {0, 1}u\BAD. We define the sets W1, . . . , Wt,W

′ ⊂ {0, 1}n·k

as follows:

• W ′ = {x |π(x) ∈ BAD}.
• ∀i ∈ [t] , Wi = {x |π(x) = πi}.

Clearly, the sets W1, . . . , Wt,W
′ form a partition of {0, 1}n·k. We will now show that

this partition satisfies the two conditions required by Lemma 3.5. To prove the first part
of the lemma note that the probability of W ′ can be bounded by (using Claim 3.9 and the
union-bound)

Pr
X
[X ∈ W ′] ≤ Pr

X
[π(X) ∈ BAD1] + Pr

X
[π(X) ∈ BAD2]

≤ ur+1 · 2− α
2(r+1)+α

·b + 2u · 2−λ·b = 2−Ω(b).

10Consider the extreme case where there is only one x0 ∈ {0, 1}n·k with π(x0) = π′. In this case the
min-entropy of Y , when conditioned on the event X ∈ {x0}, is zero, even if the weight of π(x0) is small.
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We now prove that W1, . . . ,Wt satisfy the second part of the lemma. Let i ∈ [t], and let
z ∈ [u] be such that (πi)z = 0 (there are at least (1− ε) · u such values of z). Let y ∈ {0, 1}p·l

be any value. If Pr[Yz = y] > 2−
b

r+1+α/2 then Pr[Yz = y |X ∈ Wi] = 0 (this follows from the

way we defined the sets Bz and Wi). If on the other hand Pr[Yz = y] ≤ 2−
b

r+1+α/2 then

Pr[Yz = y | X ∈ Wi] ≤ Pr[Yz = y]

Pr[X ∈ Wi]

≤ 2−
b

r+1+α/2 /2−λ·b

= 2(λ− 1
r+1+α/2)·b

= 2−
b

r+1+α .

Hence, for all values of y we have Pr[Yz = y | X ∈ Wi] ≤ 2−
b

r+1+α . We can therefore conclude
that for all i ∈ [t], H∞(Yz|X ∈ Wi) ≥ b

r+1+α
. This completes the proof of Lemma 3.5.
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