
Parallel Repetition of Two Prover Games

Ran Raz∗

Weizmann Institute

Abstract

The parallel repetition theorem states that for any two-prover game with value
smaller than 1, parallel repetition reduces the value of the game in an exponential rate.
We give a short introduction to the problem of parallel repetition of two-prover games
and some of its applications in theoretical computer science, mathematics and physics.
We will concentrate mainly on recent results.

1 Introduction

Two-Prover Games

A two-prover game is played between two players called provers and an additional player
called verifier. The game consists of four finite sets X, Y,A,B, a probability distribution P
over X × Y and a predicate V : X × Y ×A×B → {0, 1}. All parties know X, Y,A,B, P, V .
Intuitively: X is the set of possible questions for the first prover. Y is the set of possible
questions for the second prover. A is the set of possible answers of the first prover. B is the
set of possible answers of the second prover. The distribution P is used to generate questions
for the two provers, and the predicate V is used to accept or reject after the answers from
both provers are obtained.

The game proceeds as follows. The verifier chooses a pair of questions (x, y) ∈P X × Y
(that is, (x, y) are chosen according to the distribution P ), and sends x to the first prover
and y to the second prover. Each prover knows only the question addressed to her, and
the provers are not allowed to communicate with each other. The first prover responds by
a = a(x) ∈ A and the second by b = b(y) ∈ B. The provers jointly win if V (x, y, a, b) = 1.

The provers answer the questions according to a pair of functions a : X → A, b : Y → B.
The pair (a, b) is called the provers’ strategy or the provers’ protocol. The value of the game
is the maximal probability of success that the provers can achieve, where the maximum is
taken over all protocols (a, b). That is, the value of the game is

max
a,b

E(x,y)[V (x, y, a(x), b(y))]

where the expectation is taken with respect to the distribution P .
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Unique and Projection Games

A two-prover game is called a projection game if for every pair of questions (x, y) ∈ X × Y
there is a function fx,y : B → A, such that, for every a ∈ A, b ∈ B, we have: V (x, y, a, b) = 1
if and only if fx,y(b) = a. If in addition, for every (x, y) ∈ X × Y the function fx,y is a
bijection (that is, it is one to one and onto), the game is called unique. A unique game with
A,B = {0, 1} is called a xor game.

Parallel Repetition of Two-Prover Games

Roughly speaking, the parallel repetition of a two-prover game G is a game where the provers
try to win simultaneously n copies of G. The parallel repetition game is denoted by G⊗n.
More precisely, in the game G⊗n the verifier generates questions x = (x1, . . . , xn) ∈ Xn,
y = (y1, . . . , yn) ∈ Y n, where each pair (xi, yi) ∈ X × Y is chosen independently according
to the original distribution P . The provers respond by a = (a1, . . . , an) = a(x) ∈ An

and b = (b1, . . . , bn) = b(y) ∈ Bn. The provers win if they win simultaneously on all n
coordinates, that is, if for every i, we have V (xi, yi, ai, bi) = 1.

Note that the verifier treats each of the n copies of G independently, but the provers may
not; the answer for each question addressed to a prover may depend on all the questions
addressed to that prover.

The value of the game G⊗n is not necessarily the same as the value of the game G raised
to the power of n. For example, there exist simple two-prover games G, such that, the value
of the game G and the value of the game G⊗2 are both 1/2.

Parallel Repetition Theorem

Feige and Lovász conjectured [15] that for any two-prover game G with value smaller than 1,
the value of the game G⊗n decreases exponentially fast to 0. The conjecture was proved
in [22].

More precisely, the parallel repetition theorem [22] states that for any two-prover game G,
with value ≤ 1− ε (for any 0 < ε ≤ 1/2), the value of the game G⊗n is at most

(1− εc)Ω(n/s), (1)

where s = log |A × B| + 1 is the answers’ length of the original game, and c is a universal
constant. The constant c implicit in [22] is c = 32. An example by Feige and Verbitsky [16]
shows that the dependency on s in Inequality 1 is necessary.

A beautiful recent work by Thomas Holenstein [18] simplified the proof of [22] and ob-
tained an improved constant of c = 3. An intriguing followup work by Anup Rao [21] gave
for the special case of projection games, an improved bound of

(1− ε2)Ω(n). (2)

Thus, for projection games, Rao obtained an improved constant of c = 2 and removed the
dependency on s. Previously, such a bound was known for the special case of xor games [14].

2



Several researchers asked wether or not these bounds could be improved to (1−ε)Ω(n/s), for
general two-prover games, or at least for interesting special cases, such as, projection games,
unique games, or xor games (see for example [14, 24]); this question is usually referred
to as the strong parallel repetition problem. However, a recent analysis shows that the,
so called, odd cycle game (first studied in [14, 10]) is a counterexample to strong parallel
repetition [23]. More precisely, for any 0 < ε ≤ 1/2, there exists a two-prover game with
value ≤ 1 − ε, such that, (for large enough n) the value of the game repeated in parallel n
times is ≥ (1 − ε2)O(n) [23] (see also [8]). Since the odd cycle game is a projection game, a
unique game, and a xor game, this answers negatively most variants of the strong parallel
repetition problem. This example also shows that Inequality 2 is tight.

Finally, let us mention that for games where the distribution P on X×Y is a product dis-
tribution, improved bounds of (1− ε2)Ω(n/s) (for general games) and (1− ε)Ω(n) for projection
games, where recently obtained [9]. Thus, for projection games with product distributions
a strong parallel repetition theorem is known.

2 Applications

Direct Sum and Direct Product

Direct sum and direct product problems are an important paradigm in understanding the
power of a computational model, and have been studied for a variety of models.

In a direct sum problem, one asks the following question. If a model requires cost C (in
some complexity measure) to solve a certain problem on one input, how costly would it be to
solve it on n independent inputs? For instance; is this cost close to Ω(C ·n) for every problem
in the model, or maybe significant savings can be obtained by combining computations?

In a direct product problem, a dual view is taken. We fix the cost C and study the
probability that n independent inputs (over some input distribution) are solved correctly.
For instance; is it true that for every problem in the model, for a fixed cost, the probability
to solve n independent inputs correctly drops exponentially with n?

The parallel repetition theorem can be viewed as a direct product result for two-prover
games, and turned out to be related to both direct sum and direct product results in com-
munication complexity:

In [20] the parallel repetition theorem was used to prove general direct product results
in communication complexity. The main idea there was to encode the entire communication
protocol (in the communication complexity model) into the answers given by the two provers
in a two-prover game. A beautiful recent work by Barak, Braverman, Chen and Rao proves
general direct sum results in communication complexity [5]. Their proofs do not use the
parallel repetition theorem directly, but make an extensive use in the techniques used in the
proof of the parallel repetition theorem.
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Entangled Games and the EPR Paradox

An entangled two-prover game is the same as a two-prover game, except that the two provers
share between them an arbitrary entangled quantum state and each prover may measure her
part of the state before answering the question addressed to her by the verifier. More pre-
cisely, the two provers share between them an arbitrary entangled quantum state, partitioned
into two parts (one for each prover). After receiving the questions addressed by the verifier,
each prover may apply an arbitrary quantum measurement (that may depend on the ques-
tion addressed to her) on her part of the quantum state, and her answer may depend on the
outcome of the measurement. (As before, the provers are not allowed to communicate with
each other). This enables complicated correlations between the two answers. The entangled
(or quantum) value of a two-prover game is defined to be the maximal probability of success
that the provers can achieve using such protocols.

Bell’s celebrated theorem [4], building over the famous Einstein-Podolsky-Rosen para-
dox [11], can be stated as follows: There are two-prover games with entangled value strictly
larger than their (classical) value. Moreover, there are known examples for two-prover games
with entangled value 1 and (classical) value strictly smaller than 1 (see for example [10]).
Hence, as observed by Cleve, Høyer, Toner and Watrous [10], one can use parallel repetition
to obtain two-prover games with entangled value 1 and (classical) value arbitrarily close to 0.
This gives a sharper version of Bell’s theorem.

Foams and Tiling the Space Rn

Feige, Kindler and O’Donnell discovered [14] that deep geometrical problems of understand-
ing n-dimensional foams and tiling the space Rn are closely related to analyzing the value of
the parallel repetition of one particular two-prover game; the (above mentioned) odd cycle
game.

The odd cycle game is a two-prover game, first suggested and motivated in [10, 14]. Let
m ≥ 3 be an odd integer and consider a graph of a single cycle of length m. Intuitively,
the two provers are trying to convince the verifier that the graph is 2-colorable. The game
proceeds as follows. With probability one half the verifier asks the two provers about the
color of the same node in the graph and accepts their answers if they are the same (and
are in {0, 1}). With probability one half the verifier asks the two provers about the colors
of two adjacent nodes in the graph and accepts their answers if they are different (and are
in {0, 1}). It is easy to see that the value of the game is 1−Θ(1/m).

A recent analysis of the odd cycle game [23] shows that the value of the game repeated
in parallel n times is at least 1− (1/m) ·O(

√
n). (This matches, up to a logarithmic factor,

an upper bound proved in [14]). This is somewhat surprising since the probability of failure
grows linearly in

√
n, rather than linearly in n.

By generalizing these results and techniques to the continuous case, and using the connec-
tion discovered by Feige, Kindler and O’Donnell [14], Kindler, O’Donnell, Rao and Wigderson
obtained amazing results about tiling the space Rn [19]. Their main result is the existence
of a body with volume 1 and surface area O(

√
n) that tiles Rn by the lattice Zn (in the sense
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that its translations by vectors from Zn cover Rn). In other words, this body tiles Rn as
a cube (that is, it tiles Rn by the lattice Zn), but its surface area is similar to the surface
area of a (volume 1) sphere! A beautiful followup work, by Alon and Klartag [1], further
studies these geometrical applications and related combinatorial problems, and relates them
to Cheeger’s isoperimetric inequality and its discrete analogues.

PCP and Hardness of Approximation

The PCP theorem [6, 13, 3, 2] can be stated as follows: Given (as an input) a projection
game G with answers of length O(1) (that is, with |A|, |B| = O(1)), it is NP-hard to distin-
guish between the case where the value of the game is 1 and the case where the value of the
game is at most 0.9. Using parallel repetition (a constant number of times), one obtains the
following sharper version of the PCP theorem: For any constant ε > 0, given a projection
game G with answers of length O(1), it is NP-hard to distinguish between the case where
the value of the game is 1 and the case where the value of the game is at most ε.

It turned out that this version of the PCP theorem is very useful as a starting point
for proving results on hardness of approximation. This started by Bellare, Goldreich and
Sudan [7], and continued in a large number of works that studied a large number of prob-
lems. In particular, some of the most central results on hardness of approximation, such
as, H̊astad’s celebrated optimal results on the hardness of approximation of 3-SAT and 3-
LIN [17], are proved using this approach. Other central results, such as, Feige’s optimal
results on the hardness of approximation of Set-Cover [12], are obtained by applying parallel
repetition more than a constant number of times.
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[13] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, Mario Szegedy. Interactive
Proofs and the Hardness of Approximating Cliques. J. ACM 43(2): 268-292 (1996)
(preliminary version in FOCS 1991)

[14] Uriel Feige, Guy Kindler, Ryan O’Donnell. Understanding Parallel Repetition Requires
Understanding Foams. CCC 2007: 179-192
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