
PCP CHARACTERIZATIONS OF NP:

TOWARDS A POLYNOMIALLY-SMALL

ERROR-PROBABILITY

Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz,
and Shmuel Safra

Abstract. This paper strengthens the low-error PCP characterization
of NP, coming closer to the upper limit of the BGLR conjecture. Con-
sider the task of verifying a written proof for the membership of a given
input in an NP language. In this paper this is acheived by making a
constant number of accesses to the proof, obtaining error probability
that is exponentially small in the total number of bits that are read.
We show that the number of bits which are read in each access to the
proof can be made as high as logβ n , for any constant β < 1, where n is
the length of the proof. The BGLR conjecture asserts the same for any
constant β, for β smaller or equal to 1.
Our results are in fact stronger, implying that the Gap-Quadratic-
Solvability problem with a constant number of variables in each equation
is NP-hard. That is, given a system of n quadratic-equations over a field
F of size up to 2logβ n, where each equation depends on a constant num-
ber of variables, it is NP-hard to distinguish between the case where
there is a common solution to all of the equations, and the case where
any assignment satisfies at most a 2

|F| fraction of them.
At the same time, our proof presents a direct construction of a low-
degree-test whose error-probability is exponentially small in the number
of bits accessed. Such a result was previously known only relying on
recursive applications of the entire PCP theorem.

Keywords. NP, PCP, sum-check, consistent-reader, low-degree-
extension, representation-procedure

Subject classification. PCP

1. Introduction

Cook-Levin’s characterization of NP implies that every L ∈ NP is reducible to 3-SAT. The
reduction from L to 3-SAT is a polynomial-time algorithm that receives an input string I,
and produces a set Ψ of boolean functions (called local-tests), each depending on a constant
number of variables. Ψ represents the membership of I in L, in the sense that there exists an

2 Dinur et al.

assignment satisfying all local-tests if and only if I ∈ L.

A PCP characterization of NP differs from Cook-Levin’s characterization in regards to
what is guaranteed in the case where the input is not in L: In Cook’s characterization, one
can only be sure that the reduction will produce a system that cannot be entirely satisfied. To
characterize NP in terms of PCP, it must be guaranteed that the reduction algorithm produces
a system Ψ such that no assignment can satisfy even a small fraction ε of its local-tests.

In both cases, a satisfying assignment to Ψ can be viewed as a witness for I’s membership
in L (and hence Ψ can be viewed as a membership-verification system). In a PCP framework,
however, this witness can be efficiently verified by randomly picking a local-test of Ψ and
verifying that it holds (hence the term PCP – Probabilistic Checking of Proofs). In this case,
the error probability parameter, ε, of the PCP, bounds the probability of accepting I even
though I 6∈ L. Other parameters of Ψ, such as the variable range and the number of variables
accessed by each local-test, are also part of the PCP characterization.

For many applications of PCP, the characterization of NP with a constant error-probability
and variables of a constant range Arora et al. (1998); Arora & Safra (1998) suffices. In order to
prove NP-hardness of other problems, however, sub-constant error-probability has turned out
to be essential. For example, Lund & Yannakakis (1994) and Bellare et al. (1993) were able
to prove that approximating SET-COVER to within logarithmic factors is almost NP-hard,
using the constant error-probability PCP characterization of NP. To improve this result to
strict NP-hardness, Bellare et al. (1993) had suggested the “sliding scale” conjecture.

The sliding scale conjecture states that it is possible to keep the number of variables ac-
cessed by each local-reader constant, and to make the variables’ range non-constant, obtaining
an error probability polynomially small in the size of the variable-range. In other words, it is
possible to achieve a membership verification system for any NP-language where each local-
test accesses a constant number of ‘words’ (variables), and where the error-probability is
exponentially small in the ‘word-length’ (number of bits in each variable).

One cannot expect the error-probability to be less than polynomially small in the size of
the variables’ range, since a random assignment will satisfy any satisfiable local-test with such
a probability (recall that each test depends on a constant number of variables). Hence the
sliding scale conjecture is optimal in the sense of error-probability.

According to the conjecture, the variables’ range may be increased up to a size polynomial
in the length of the original input (note that each local-test can be given as a truth-table).
Reaching larger range-size while keeping the error polynomially small in the range would imply
sub-exponential algorithms for NP (the error-probability would then become less than 1/|Ψ|,
i.e. zero). In the case where the input is not in L, this implies that no local-test succeeds, so
the problem of deciding whether the input is in L reduces to that of deciding whether any of
the local-tests is satisfiable.

The sliding scale conjecture was shown to hold for a sizable portion of the applicable
range-size in Arora & Sudan (1997); Raz & Safra (1997), where a PCP characterization of NP
was shown that achieves error-probability polynomially small in the size of the variable range
for a variable range of size up to 2logβ n, where β < 1 is a certain positive constant.

Almost polynomially small error PCP 3

Our Main Results. In this paper, we prove the sliding scale conjecture for variable range
sizes of up to 2logβ n where β is any constant smaller than one (as opposed to “some constant”
achieved by Raz & Safra (1997)), thus coming closer to proving the sliding scale conjecture
for the full applicable range.

In fact our result is somewhat stronger, proving the conjecture for the aforementioned range
using proof verification systems of a specific structure. In these systems the local-tests have
the form of quadratic-equations instead of being general boolean valued functions, with the
variables’ range representing a finite field. This result implies that for a quadratic equation-
system of n equations over a field F (with |F| ≈ 2logβ n for any fixed constant β < 1), where
each equation depends on a constant number of variables, it is NP-hard to decide whether
there exists a common solution to all equations, or whether any assignment to the variables
satisfies no more than a 2

|F| fraction of them.
One of the main tools used to obtain the above result, which is interesting in its own right,

is that of a low-degree function reader, LDF-reader for short. This is a version of what is
known in the literature as a low-degree test (see Arora & Sudan (1997); Raz & Safra (1997)).
A direct construction of an LDF-reader is shown herein, that achieves an exponentially-small
error-probability with respect to the number of bits it accesses. Such LDF-readers could
previously be attained only by recursive applications of the entire PCP theorem.

Related Results. We note that there is no known PCP characterization of NP, where the
size of the variable-range is polynomial in the size of the membership-verification system (or
equivalently, the length of each variable is logarithmic in it), and the error probability is
exponentially small in the number of accessed bits. This is true even when allowing a super-
polynomial time reduction. The repetition lemma of Raz (1998) shows that by two accesses to
Θ(log n) bits, the error-probability can be made polynomially small in n, where n is the size of
the original input, while the size of the generated system is nlogn. Similarly, the multi-linear
extension of Babai et al. (1991) yields a system with a 1

n
error-probability, whose size is nlogn.

In fact, in any known reduction there is always a factor of at least logε n in the exponent that
separates the error-probability from the size of the generated instance.

Achieving an error-probability polynomially small in the size of the generated instance
is an important open problem. Such a characterization of NP would improve hardness re-
sults for several problems. For example, approximating the ‘Monotone-Minimum-Satisfying-
Assignment’ problem (which is closely related to approximating the length of propositional
proofs Alekhnovich et al. (1998)) has been shown to be NP-hard in Dinur & Safra (1998) via
a reduction from PCP, such that the hardness of approximation ratio is preserved. Hence a
polynomially small error-probability PCP characterization of NP would immediately imply
that it is NP-hard to approximate the length of propositional proofs to within an nε factor
for some constant ε > 0.

Raz & Safra (1997) managed to keep the exponential relation between the number of bits
accessed and the error-probability, thus showing the sliding scale conjecture true for a variable
range of size up to 2logβ n for some constant β < 1. For larger β (any constant β < 1) Raz &

Safra (1997) showed a system whose error probability is 2− logβ n, yet without the exponential
relation between the number of accessed bits and the error-probability, since the number of bits

4 Dinur et al.

accessed was O(logβ n ·poly log log n). This factor of poly log log n is significant when viewing,
for example, the result in terms of Gap-Quadratic-Solvability. The result of Raz & Safra
(1997), if it were to be translated to Gap-Quadratic-Solvability terms, would at best give an
equation system with each equation depending on O(poly log log n) variables. In comparison,
our result translates to a quadratic equation-system with the same error-probability, but where
every equation depends on a constant number of variables, namely Θ(1

(1−β)2).

Techniques. We use the general framework of Arora et al. (1998); Arora & Safra (1998);
Raz & Safra (1997) for our proof. However, instead of the generalized form of the composition
paradigm utilized in previous PCP proofs, we use a more concrete representation. Our result
could have been obtained using the previous structure, but this representation simplifies our
proof, and some of its techniques may be of independent interest.

In Hastad et al. (1993), it was shown that given a system of quadratic equations over a
finite field, it is NP-hard to distinguish between the case that the system can be completely
satisfied, and the case that not even a small fraction of the equations can be satisfied by
a single assignment. The crucial difference between this and our main result is that in the
Hastad et al. (1993) reduction each equation depends on almost all the variables in the system,
while our main result claims the same for the case where the equations are restricted to having
a constant number of variables each.

Our proof begins with a system Ψ of quadratic equations as in Hastad et al. (1993),
and reduces it to a system Ψ′ of quadratic equations with a constant number of variables
in each. The key property of our proof is that throughout the reduction we use systems of
equations over the same field F , the field over which Ψ is defined. The field structure is
utilized through various steps of composition, thus enabling us to cross the barrier that limits
the proof technique of Raz & Safra (1997).

To simplify the exposition, the reduction partitions the variables of Ψ′ into subsets called
domains. In each such domain a mapping is defined, associating each variable with a point in
a linear space of the form Fd over F . An assignment to these variables can thus be regarded
as a function over the linear space.

The reduction has two main steps. At first, it transforms Ψ into a system Ψsc where
the number of variables in each equation is constant. This is accomplished by an iterative
application of the sum-check technique from Babai et al. (1991). The system Ψsc has the
required properties only if the assignment to the variables in each domain, when viewed as a
function, is a low-degree polynomial. In order to get rid of this restriction, the reduction then
generates LDF-readers and plugs them into the equations of Ψsc, thereby obtaining the final
system Ψ′.

LDF-readers. LDF-readers are used to obtain evaluations of polynomial functions of low-
degree that are represented by a set of variables, by accessing only a very small part of their
representation. An LDF-reader should either reject or return values that are consistent with
some low-degree polynomial, even if the assignment to the representation variables is not
totally consistent with the representation of one polynomial. The probability that, given an

Almost polynomially small error PCP 5

incorrect representation, the LDF-reader does not reject but still the returned evaluations are
not consistent with a low-degree polynomial, is its error probability. For a more accurate
definition of an LDF-reader, the reader is referred to Section Section 2.

An LDF-reader of sub-constant error-probability seems necessary in order to attain PCP
characterizations of NP with sub-constant error-probability. The plane-vs.-plane LDF-reader
introduced by Raz & Safra (1997), where a polynomial is represented by its restriction to
planes, achieves a sub-constant probability. The previously used line-vs.-point LDF-reader
was shown by Arora & Sudan (1997) to have a small error-probability as well. However, the
error probability of these LDF-readers is not exponentially small in the number of bits they
access.

It seems to be difficult to achieve error-probability smaller than polynomial in the number
of accessed bits, using a direct LDF-reader comparing subspaces (lines, planes, etc.) for
consistency. This is since many bits are required to represent the restriction of a polynomial
to a subspace. One way to attain exponentially small error-probability from these LDF-
readers is by utilizing the composition technique, applying the entire PCP theorem to them.
Our proof, in contrast, makes this recursion concrete, utilizing an explicit representation of
low-degree polynomial functions that yields LDF-readers with an exponentially small error
probability.

The composition-recursion LDF-reader. Our LDF-reader uses a representation of low-
degree polynomials as follows. We begin with a representation where a multi-dimensional
polynomial is represented by all of its point evaluations, and also by its restriction to certain
constant dimensional subspaces. We use a new power-substitution technique to then replace
each constant dimensional restriction of the polynomial by a multi-dimensional polynomial
of a much smaller degree. This is done, roughly, by replacing monomials of high degree with
new variables. The polynomials whose degree was reduced are then represented by their
point evaluations and their restriction to constant dimensional subspaces, and the process is
repeated.

After a constant number of such iterations we obtain polynomials of linear degree over
constant dimensional spaces. Each of these polynomials is then represented by a constant
number of variables that range over the field F . Hence to obtain evaluations our LDF-reader
is not required to completely read a low-degree polynomial over some subspace – instead it
only accesses a constant number of variables that range over F .

Organization of the paper. Our main result and the main definitions required for its
proof are stated in Section Section 2. The proof of the main result, based on lemmas that
are proven in the following sections, appears in Section Section 3. The construction of the
LDF-reader that is utilized in the proof of the main result appears in Section Section 4.
In particular, the power-substitution technique, used in the construction of the LDF-reader
to represent polynomials using other polynomials with more variables but with considerably
smaller degrees, is described in Subsection Section 4.4. Finally, Section Section 5 describes the
recursive application of the sum-check (and other) techniques, which are used in the reduction
to obtain from the original system Ψ a system Ψsc with a constant number of variables in

6 Dinur et al.

each equation.

2. Preliminaries

In this section we describe the basic ideas and definitions utilized in the proof of our main
result.

Gap-Quadratic-Solvability. The Gap-Quadratic-Solvability problem is that of determin-
ing whether all the equations in a given system of quadratic-equations can be simultaneously
satisfied, or whether only a small fraction of the equations can be satisfied. Viewing the
quadratic equations as local-tests of a PCP system, showing this problem to be NP-hard
yields a PCP characterization of NP.

Definition 2.1 (Gap-Quadratic-Solvability). The Gap-Quadratic-Solvability problem with
parameters D, σ and ε (which may be, implicitly, functions of the system size n), is denoted
by gap-QS[D, σ, ε]. An instance of the problem is a field F of size∗ σ, and a set of n quadratic-
equations over F , where each equation has at most D variables (D is called the dependency
parameter). The problem is to distinguish between the following two cases:

Yes. There is an assignment to the variables that satisfies all of the equations.

No. Every assignment to the variables satisfies at most an ε fraction of the equations – ε is
called the error parameter.

An instance which falls under one of the above criteria is said to have the gap property. Any
outcome is acceptable for instances that do not have the gap property.

Our main theorem shows NP-hardness of gap-QS with a constant dependency parameter,
for a field of size σ ≈ 2c logβ n and an error parameter ε = 2

σ
, where β < 1 is any constant

smaller than 1 and c > 0 is some constant (in fact we first prove the result for ε = 1
σΩ(1)

which is polynomially small in the size σ of the field, and amplify the hardness to error 2
σ

by
a simple amplification technique, which is introduced and proved in Subsection Section 3.3
and Subsection Section 3.4). We therefore abbreviate gap-QS[D, σ] for the gap-QS problem
where ε is fixed to be 2

σ
. Note that this error probability is polynomially small in the size of

the field, and therefore exponentially small in the length, measured in bits, of each variable.

Theorem 2.2 (main theorem). For every constant β < 1 there exists a constant c2 > c1 > 0

such that gap-QS[O(1), σ] is NP-hard for σ in the range 2c1 logβ n ≤ σ ≤ 2c2 logβ n, where n is
the number of equations in the system.

We actually prove Theorem Theorem 2.2 via a many-to-one reduction. Informally speak-
ing, this means that gap-QS[O(1), σ] is proven to be NP-complete.

∗In fact there can be at most one field of any given cardinality, however we would like to be able to look
at gap-QS problems where the size can vary in some range. In that case it makes sense to request that the
actual field be given as part of the input.

Almost polynomially small error PCP 7

Gap-QS[n, σ], where the number of variables in each equation is not bounded, is proven to be
NP-hard in Hastad et al. (1993) for any σ that is polynomially bounded in n, using simple
linear codes:

Theorem 2.3 (Hastad et al. 1993). Let σ(n) be any positive poly-time computable function,
and suppose that for some constant γ > 0, σ(n) = O(nγ). Then there exist constants
d2 > d1 > 0 such that Gap-QS[n, σ] is NP-hard for σ in the range (σ(n))d1 ≤ σ ≤ (σ(n))d2 .

This theorem is proven by a relatively simple reduction from the Cook-Levin characterization
of NP, so the entire difference between this characterization of NP and the PCP characteriza-
tion boils down to the constant bound on the number of variables that each equation accesses.

Theorem Theorem 2.2 is proven by showing a reduction algorithm, taking as input a system
Ψ of n quadratic-equations and producing a new system Ψ′ where the number of variables in
each equation is bounded by a constant. The number of variables in each equation is reduced
while roughly preserving the fraction of satisfiable equations. Specifically, if Ψ is completely
satisfiable then Ψ′ is completely satisfiable as well; and if no more than a 2

|F| fraction of the

equations of Ψ can be satisfied then the same occurs for Ψ′.

2.1. LDFs and Domains. Let us set a notation for polynomial functions of low degree –
an object used extensively in this paper.

Definition 2.4 (LDF - low degree function). An [r, d]-LDF is a polynomial function from
Fd to F , of total-degree at most r.

For the exposition of the reduction algorithm and for the proof of correctness, it is useful
to consider certain subsets of the variables as separate domains. Each variables ranges over
F , and the variables in each such domain are associated with the points of a vector field Fd
over F . Throughout our reduction, the domains are always disjoint, so in the final system Ψ′

and also in each intermediate construction, no variable can belong to more than one domain.

Definition 2.5 (domain). A domain F is a set of |F|d variables ranging over F , that has
one variable F [x] for every point x ∈ Fd, where d = d(F) is called the dimension of the
domain. F is said to be assigned a function f : Fd → F if for every x, the variable F [x] is
assigned f(x).

Two more parameters are associated with each domain in addition to the dimension – the
lower-degree, denoted s(F), and the upper-degree r(F) (r(F) will always be larger or equal
to s(F)).

Let us stress that the lower-degree and upper-degree parameters of domains, as well as
the whole partition of variables into domains, are only figments of our proof and construction.
In the final system Ψ′ the domain-structure is discarded, and we are left with variables that
range over F . These variables can be assigned every value in F , and therefore a domain F
containing these variables can be assigned any function f : Fd(F) → F .

8 Dinur et al.

In the proof we give special consideration to assignments of domains which correspond
to LDFs. In particular, it will be shown that if the system Ψ′ generated by the reduction is
satisfiable, there is a satisfying assignment where every domain F is assigned an s(F)-degree
LDF. In the no case we need to show that Ψ′ cannot be more than 2

|F| satisfiable by any
assignment. However we prove later that it suffices to only show this for assignments where
each domain F is assigned an r(F)-degree LDF.

Definition 2.6 (assignment of a domain). The assignment f of a domain F is said to be
good, if f is an [s(F), d(F)]-LDF, and it is said to be feasible if f is an [r(F), d(F)]-LDF. An
assignment of a set of variables containing one or more domains is said to be good (feasible)
if the assignment to each domain is good (feasible).

The reduction which transforms Ψ into Ψ′ goes through an intermediate system Ψsc where
the number of variables in each equation is constant, but which does not yet have the de-
sired properties. In particular, Ψsc might be completely satisfiable even when there exists no
assignment satisfying more than a 2

|F| fraction of the equations of Ψ. However, Ψsc behaves
much better if we restrict the set of assignments considered: On one hand if Ψ is completely
satisfiable then not only Ψsc is completely satisfiable, but there exists a good satisfying as-
signment for it. On the other hand, if Ψ is no more than 2

|F| -satisfiable, then there is no good

or even feasible assignment for Ψsc satisfying more than a 2
|F| fraction of its equations.

2.2. Defining LDF-Readers. To transform Ψsc into the final system Ψ′, we should prevent
it from being satisfiable by assignments where domains are not assigned LDFs. In fact what
we manage is a bit weaker (although it suffices). Consider an equation ψ ∈ Ψsc that has the
variables F [x1], . . . , F [xk] in a domain F . To prevent it from being satisfiable by unwanted
assignments we use a mechanism called an LDF-reader, which is plugged into ψ in place of
these variables. The LDF-reader ensures that ψ either reads evaluations at (x1, . . . , xk) of an
LDF (even if the assignment to F is not feasible) or it is not satisfied.

Example. Fix an assignment to the variables in F , and suppose k = 1 and we want to read
the value at a point x ∈ Fd. Ideally, the LDF reader should either output F [x], or reject if
the assignment for F is not a low degree function (of degree at most r(F)). For example, in
the case where r(F) = 1 this can be roughly achieved as follows. Pass a random line through
x, and read the value of F [x], F [y], and F [z], where y and z are random points on the chosen
line. Reject if the values read are not consistent with a linear function, or otherwise return
F [x]. It is possible to show that almost always the LDF-reader either rejects or outputs a
value from an LDF somewhat correlated with the assignment for F . In this example we only
used variables from the domain F , however in the general case auxiliary variables may be
needed.

LDF readers: formal definition. An LDF-reader evaluating the tuple of points (x1, . . . , xk)
in a domain F has two parts – the representation, and the set of local-readers which produce
the evaluations.

Almost polynomially small error PCP 9

The representation. The representation is a set V that contains F and maybe other
variables and domains. The variables in V , including those associated with domains in it, are
called representation variables. The LDF-reader uses the representation variables to produce
evaluations. Every good assignment f for F (namely one consistent with an s(F)-degree
polynomial) must be extendible to a good assignment for all the variables in V , called the
encoding-assignment of f . When given the encoding-assignment of a good LDF f , the LDF-
reader will always return the evaluations of f .

The local-readers. The evaluations at (x1, . . . , xk) are produced by a set of local-readers,
where each local-reader accesses only a constant number of representation variables – this
property is essential since the local-readers are plugged into Ψsc to produce Ψ′ and the number
of variables in each equation must remain constant. Each local-reader may either produce
evaluations, or it may reject if it finds that the assignment is not an encoding-assignment.

Local-tests and evaluators. Each local-reader is a pair containing a local-test – a con-
junction of linear equations over representation variables, and a tuple of k evaluators. Each
evaluator is a linear-combination of representation variables. A local-reader is said to accept
an assignment for the representation variables if the local-test is satisfied by it, and otherwise
it is said to reject it. For an assignment A which is an encoding-assignment of a good LDF f ,
it is required that all local-readers accept, and also that the i’th evaluator in each local-reader
evaluates to f(xi).

In case the representation variables are not given a correct encoding-assignment, we would
like the local-readers to always reject. This is not possible to achieve, however, with local-
readers that access a constant number of representation variables, not even if we allow a small
fraction of the local-readers to falsely accept. It is in fact not even possible to ensure that
local-readers which do not reject return evaluations of a single LDF. What we can achieve
(and turns out to be enough), is that apart from a small fraction, the local-readers either
reject or return evaluations of one of a short list of LDFs. This is the list of LDFs which are
permissible with respect to the assignment of F .

Definition 2.7 (permissible assignment). An [r(F), d(F)]-LDF f is said to be ρ-permissible
with respect to an assignment of F if for at least a ρ-fraction of the points x, F [x] is assigned
f(x).

We show later that for a wide range of permissibility parameters ρ, the list of permissible
LDFs is bounded by O(ρ−1). Since the list is only determined by the assignment to F and is
independent of the rest of the representation variables, it will be the same for all LDF-readers
evaluating tuples in F . This means that all equations that have variables in F will read
evaluations that are consistent with one of the LDFs on the relatively short list.

We now give the formal definition of the parameters of an LDF-reader.

10 Dinur et al.

Definition 2.8 ((ρ, ε)-LDF-reader). Let R be an LDF-reader evaluating a tuple (x1, . . . , xk)
in a domain F , and fix an assignment to its representation-variables. A local-reader L is said
to be ρ-erroneous if it accepts, and there exists no ρ-permissible LDF f (with respect to the
assignment of F), such that for all i the i’th evaluator evaluates to f(xi).

R is said to be a (ρ, ε)-LDF-Reader, if for any assignment to the representation-variables,
the fraction of ρ-erroneous local-readers is at most ε.

3. Proof of the Main Theorem

In this section we prove Theorem Theorem 2.2. We show for any constant β < 1, a poly-
nomial time reduction from the problem Gap-QS[n, σ] with σ = 2Θ(logβ n), to the problem
Gap-QS[O(1), σ].

The reduction starts with a given system Ψ of n quadratic equations over a field F of size
2d1 logβ n ≤ |F| ≤ 2d2 logβ n, d1, d2 constants, with up to n variables in each equation. It then
generates, in time polynomial in n, a system Ψ′ over the same field with m equations and at
most a constant number of variables in each equation. Since the reduction takes polynomial
time (and since the number of equations in not decreased by the reduction), m is polynomially

equivalent to n, and therefore the size of the field satisfies 2c1 logβm ≤ |F| ≤ 2c2 logβm for
appropriate constants c2 > c1 > 0, as required by Theorem Theorem 2.2.

Ψ′ will have the completeness property, that is if the given system Ψ can be completely
satisfied then Ψ′ will be completely satisfiable as well; and the soundness property – if Ψ is
no more than 2

|F| -satisfiable (namely no assignment can satisfy more than a 2
|F| fraction of its

equations), then Ψ′ is at most 2
|F| -satisfiable as well.

The reduction begins by transforming Ψ into a system Ψsc of quadratic-equations where
the number of variables in each equation is bounded by a constant. The variables of Ψsc

are partitioned into domains, and it has the desired properties only with respect to feasible
assignments (note that the variables of an equation in Ψsc can come from several domains).
The transformation of Ψ into Ψsc is done by the sum-check algorithm, which consists of an
iterative application of the sum-check technique from Babai et al. (1991). The properties of
the sum-check algorithm are stated in the following lemma, and proven in Section Section 5.

Lemma 3.1 (sum-check). There exists a polynomial-time algorithm as follows. It takes as

input a system Ψ of n quadratic equations over a field F , |F| = 2logβ n, where there are up
to n variables in each equation. Given Ψ, the algorithm generates a system Ψsc of quadratic-
equations over F where each equation has a constant number of variables, and that has the
following properties:

◦ Completeness: If Ψ is completely satisfiable then Ψsc is completely satisfiable by a good
assignment.

◦ Soundness: If Ψ is no more than 2
|F| -satisfiable then Ψsc cannot be more than 2

|F| -satisfied
by a feasible assignment.

Almost polynomially small error PCP 11

Moreover, all the domains of Ψsc have the same dimension d = Θ(log1−β n), lower-degree s,
and upper-degree r, where s ≤ |F|c1 and r ≥ |F|c2 for some global constants c1 < c2 < 1.

The next main steps of the reduction of Ψsc into the final system Ψ′, which are described in
detail in the following subsections, are as follows. The reduction generates LDF-readers and
plugs them into Ψsc. For each equation ψ of Ψsc, that has the variables F (x1), . . . , F (xk) of a
domain F , it generates an LDF-reader evaluating (x1, . . . , xk) in F . To plug the LDF-reader
into ψ, many copies of ψ are made, and one of the local-readers is plugged into each copy.

The local-tests are added in conjunction with each copy, and hence a system of conjunctions
is formed. In addition, some of the gap is lost when the LDF-readers are plugged in – if Ψ
is no more than 2

|F| -satisfiable, the fraction of satisfiable conjunctions in the system obtained
from Ψsc might be somewhat higher. A simple amplification technique is hence applied to
the system of conjunctions to avoid that, and then each conjunction is replaced by equations,
obtaining Ψ′.

3.1. Generating the LDF-Readers. To generate LDF-readers we use a constructor al-
gorithm, as defined below.

Definition 3.2 (constructor). A constructor is an algorithm that takes as input a domain
F and a k-tuple (x1, . . . , xk) of points in Fd(F), where k is a constant†. It generates an LDF-
reader evaluating (x1, . . . , xk) in F , i.e. it generates representation variables and all local

readers. It must run in time polynomial in |F|d(F). Also, the number of variables appearing in
each local-reader must be bounded by a constant, and so should be the number of equations in
the local-test of each local-reader. In addition, the number of local-readers must only depend
on the parameters of F .

Our reduction uses the Composition-Recursion LDF-reader constructor, whose properties
are stated in the next lemma, to generate LDF-readers. The proof of the lemma appears in
Section Section 4.

Lemma 3.3 (Composition-Recursion LDF-reader constructor). There exists a global constant
cg, 0 < cg ≤ 1/2, such that for every c1 < c2 < 1 and β < 1 the following holds. There exist
a constant c > 0, and an LDF-Reader constructor for domains of dimension d = Θ(log1−β n),
lower-degree s ≤ |F|c1 , and upper-degree r ≥ |F|c2 (the algorithm runs independently of s
and r). The LDF-readers generated by the algorithm are (ρ,O(ρc))-LDF-readers, for all ρ’s
which satisfy ρ > (r/|F|)cgd.

Before the LDF-readers are actually generated, we make some small technical alterations to
Ψsc as follows.

†By saying that k is constant, we mean that other parameters and properties of the constructor may depend
arbitrarily on k. In addition, any parameter of the constructor that depends only on k is considered constant
as well

12 Dinur et al.

Uniformization. The number of variables in each equation of Ψsc is bounded by some
constant k. This implies that an equation in Ψsc may have variables from up to k distinct
domains, and that the number of variables it has from each domain is bounded by k. Before
generating LDF-readers, let us assume for simplicity that each equation of Ψsc has variables
from exactly k > 1 distinct domains, and that it has exactly k variables from each domain.
This requires the reduction to add arbitrary variables to the equations, multiplied by zero
coefficients.

LDF-Reader generation. After the uniformization, the reduction generates the LDF-
readers as described above – For each equation ψ of Ψsc, that has the variables F (x1), . . . , F (xk)
in a domain F , it generates an LDF-reader evaluating (x1, . . . , xk) in F (this takes polynomial
time in the size of Ψsc). Note that since all domains in Ψsc have the same parameters (di-
mension d, lower-degree s and upper-degree r, as stated in Lemma Lemma 3.1), the number
of local-readers in each LDF-reader is the same as well.

The representation variables of the LDF-readers are added to the variables of the system,
and the local-readers are plugged into the equations of Ψsc as described below.

3.2. Plugging LDF-Readers In. For each equation ψ ∈ Ψsc there are now k associated
LDF-readers – one for each domain it has variables from. The first step in plugging the LDF-
readers into Ψsc is to replace each such equation ψ by a set Eψ, containing conjunctions of
quadratic equations that are obtained by plugging local-readers into ψ. Eψ represents ψ in the
sense that an assignment satisfying a large enough fraction of the conjunctions in Eψ implies
a satisfying assignment for ψ, as shown in the proof of Claim Claim 3.4 below.

Generating Eψ. Let ψ ∈ Ψsc be an equation that has variables from the domains F1, . . . , Fk.
For each j, let us denote the variables of ψ in Fj by Fj[x

j
1], . . . , Fj[x

j
k]. ψ is therefore associated

with k LDF-readersR1, . . . ,Rk, whereRj evaluates the tuple (xj1, . . . , x
j
k) in Fj. The reduction

generates one conjunction in Eψ for each choice of k local-readers L1, . . . , Lk, where Lj ∈ Rj.
The first equation in each such conjunction, denoted ψ′, is the quadratic equation obtained
from ψ by replacing each variable of the form Fj[x

j
i] with the i’th evaluator of Lj (it evaluates

xji in Fj). ψ
′ is then put in conjunction with the local-tests of the local-readers L1, . . . , Lk.

The system Ψsc
′. Note that the number of conjunctions in Eψ is the same for every ψ ∈ Ψsc

– it is |R|k, where |R| denotes the number of local-readers in each of the LDF-readers we have
generated. We set Ψsc

′ to be the union of all the sets Eψ. Since the number of variables in
each local-reader is constant, the number of variables in each conjunction of Ψsc

′ is bounded
by a constant as well. The system of conjunctions Ψsc

′ obviously retains the completeness
property of Ψsc. As the next claim shows, it also retains some of its soundness property, even
with respect to assignments which are not necessarily feasible.

Claim 3.4. There exists a constant α, 0 < α < 1, such that Ψsc
′ has the following properties:

Almost polynomially small error PCP 13

◦ Completeness: If Ψ is completely satisfiable, then Ψsc
′ is completely satisfiable as well.

◦ Weakened Soundness: If Ψ is at most 2/|F|-satisfiable, then Ψsc
′ is at most |F|−α-

satisfiable (by any assignment).

To prove the claim we need the following proposition, showing that there cannot be many
permissible LDFs for a domain – this implies that most local-readers in an LDF-reader will
either reject or return the evaluation of one of a short list of permissible LDFs. This proposition
appears in Section Section 4 as Claim Claim 4.14, and is proven there.

Proposition 3.5. Let F be a domain, and let ρ >
(
r(F)
|F|

)cg
d(F) where cg is the same

constant as in Lemma Lemma 3.3. Then for any assignment to F there can be at most 2ρ−1

ρ-permissible LDFs in all.

Proof of Claim Claim 3.4:

Completeness. If Ψ is satisfiable, then there is a good assignment satisfying Ψsc. For
each of the constructed LDF-readers, extend the assignment to its representation using the
encoding-assignment of the associated domain. The extended assignment satisfies Ψsc

′: A
conjunction in Ψsc

′ contains local-tests, which are all satisfied by encoding-assignments, and
an equation ψ′. ψ′ was generated from an equation ψ ∈ Ψsc by replacing variables with
evaluators. But for encoding-assignments, the evaluators and the replaced variables have the
same values. Hence since ψ is satisfied, ψ′ is satisfied as well.

Weakened soundness. Fix an assignment A for Ψsc
′, and let γ be the fraction of conjunc-

tions it satisfies. For an appropriate α, we will show that if γ > |F|−α then there exists a
feasible assignment for Ψsc satisfying more than a 2

|F| fraction of its equation. This implies

that Ψ is more than 2
|F| -satisfiable – a contradiction.

We denote a
.
=(1 − c2)cg/k, where c2 is the global constant mentioned in the Sum-Check

Lemma (Lemma Lemma 3.1). Letting ρ
.
=|F|−a, it follows by the choice of a (and since k > 1)

that ρ > (r/|F|)cgd. Therefore by Lemma Lemma 3.3 we have that the LDF-readers have
parameters (ρ, ε), where ε = O(ρc) and c is as mentioned in the lemma.

An equation ψ ∈ Ψsc such that the fraction of satisfied conjunctions in Eψ is higher than
kε, is said to be potentially satisfiable. Since the sets Eψ are all of the same size, it follows
that the fraction of potentially satisfiable equations is at least γ − kε.

Consider a potentially satisfiable equation ψ. Eψ was generated from ψ by plugging in k
LDF-readers R1, . . . ,Rk, evaluating tuples in k domains F1, . . . , Fk respectively. A conjunc-
tion in Eψ is defined by choosing a local-reader Lj out of each LDF-reader Rj. For every
j, the fraction of conjunctions in Eψ where Lj is ρ-erroneous is bounded by ε, as implied by
the parameters of the LDF-readers, and hence the fraction of conjunctions where any of the
readers are erroneous is bounded by kε.

It follows that there exists a satisfied conjunction in Eψ in which no local-reader is erro-
neous, namely the evaluator of each local-reader Lj gives the evaluations of a ρ-permissible

14 Dinur et al.

LDF fj with respect to the assignment of Fj. Hence if each domain Fj were re-assigned the
function fj, ψ would be satisfied.

So far we have shown that the potentially satisfiable equations, which make at least a
γ − kε fraction of the equations ψ ∈ Ψsc, can be satisfied by re-assigning the domains with
ρ-permissible LDFs. For each domain F in Ψsc, choose a random ρ-permissible LDF, or the
zero LDF if no such LDF exists, and re-assign it to F . We have obtained a feasible assignment
for Ψsc. We compute the chance of a potentially satisfiable equation to be satisfied by the
new assignment.

There are at most O(ρ−1) ρ-permissible LDFs for each domain by Proposition Proposi-
tion 3.5, and each equation has variables from k domains. Hence the probability of a poten-
tially satisfiable equation in Ψsc to be actually satisfied by the re-assignment is at least Ω(ρk).
It follows that the expected fraction of satisfied equations in Ψsc is Ω(ρk(γ−kε)), and hence at
least one of the re-assignments achieves this fraction of satisfaction. We have thus shown that
there exists a feasible assignment for Ψsc satisfying an Ω(ρk(γ− kε)) fraction of its equations.

We now choose a constant α so that 0 < α < min {1− ka , ac} (note that such an α
exists). If γ > |F|−α, then

ρk(γ − kε) = |F|−ak(γ −O(F−ac))� 2

|F|

hence there exists a feasible assignment for Ψsc satisfying more than a 2
|F| fraction of its

equations.

3.3. Gap Amplification. The reduction now amplifies the soundness of Ψsc
′ by joining

conjunctions together into larger conjunctions, generating Ψsc
′′. The soundness of Ψsc

′′ is
even stronger than needed, but it still has conjunctions rather than equations. The next
subsection describes how conjunctions may be replaced by equations with only a small cost
in the soundness, thus completing the reduction.

The system Ψsc
′′. Denote N

.
=d1/αe, where α is the constant mentioned in Claim Claim 3.4.

The reduction generates Ψsc
′′ by taking the conjunction of every ordered N -tuple of (not

necessarily distinct) conjunctions from Ψsc
′, that is

Ψsc
′′ = {

N∧
i=1

χi : ∀ i χi ∈ Ψsc
′ }

Note that it takes polynomial time in |Ψsc
′|N , and hence in n, to generate Ψsc

′′. Since each
conjunction in Ψsc

′′ is composed of a constant number of conjunctions from Ψsc
′, the number

of variables as well as the number of equations in each such conjunction is bounded by a
constant. The next claim states the completeness and soundness properties of Ψsc

′′.

Almost polynomially small error PCP 15

Claim 3.6. Ψsc
′′ has the following properties:

◦ Completeness: If Ψ is completely satisfiable, then Ψsc
′′ is completely satisfiable as well.

◦ Soundness: If Ψ is at most 2/|F|-satisfiable, then Ψsc
′′ is at most 1/|F|-satisfiable.

The claim follows easily from Claim Claim 3.4 and from the construction of Ψsc
′′.

3.4. From Conjunctions to Equations. Ψsc
′′ is a system of conjunctions where, as men-

tioned above, the number of equations in each conjunction is bounded by a constant. We
would like the reduction to transform it from a system of conjunctions into the final system
Ψ′ of quadratic-equations, but first we make sure that the number of equations in all the
conjunctions of Ψsc

′′ is the same. To do so the reduction adds equations of the form 0 = 0
where necessary.

The system Ψ′. To transform Ψsc
′′ into Ψ′, the reduction replaces each conjunction in

Ψsc
′′ with the set of all linear-combinations over its equations (equations can be added or

multiplied by a scalar, so the notion of a linear-combination of equations is well defined).
Since the number of equations in each conjunction is constant the blow-up is polynomial in
|F|, and hence in n.

Since the number of variables in each conjunction of Ψsc
′′ is bounded by a constant, the

number of variables in each equation of Ψ′ is constant as well. In order to complete the
proof of Theorem Theorem 2.2, it is left to show that Ψ′ has the soundness and completeness
properties. This follows immediately from Claim Claim 3.6 together with the next proposition.

Proposition 3.7 (conjunction replacement). Let Ψa be a system of conjunctions of equa-
tions over F , where the number of equations in each conjunction is the same. Let Ψb be the
system obtained from Ψa by replacing every conjunction χ ∈ Ψa by all linear combinations
over F of its equations (with multiplicities, if the same equation occurs more than once).
Then

◦ If Ψa is completely satisfied by a certain assignment, then the same assignment will
satisfy Ψb as well.

◦ If Ψa is at most γ-satisfiable then Ψb is at most (γ + 1/|F|)-satisfiable.

Proof. The first property is obvious from the definition of Ψb. To prove the second prop-
erty, fix an assignment for the variables of Ψa and Ψb. Then it satisfies at most a γ fraction of
the conjunctions in Ψa. For each conjunction χ in Ψa denote by ω(χ) the fraction of equations
replacing χ that are satisfied in Ψb. Since each conjunction of Ψa is replaced by the same
number of equations, the fraction of satisfied equations in Ψb is the average of ω(χ) over all
the conjunctions χ ∈ Ψa.

For a satisfied conjunction χ, ω(χ) = 1, and it is easy to observe that ω(χ) = 1/|F| for
any unsatisfied conjunction χ. Since satisfied conjunctions make at most a γ fraction of the
conjunctions in Ψa, we conclude that the fraction of satisfied equations in Ψb is no more than
γ + 1/|F|, as required.

16 Dinur et al.

4. The Composition-Recursion LDF-Reader Constructor

In this section we describe the construction of the LDF-readers needed for Lemma Lemma 3.3.
These LDF-readers are the main step used in Section Section 3 to transform Ψsc to Ψ′. The
construction is carried out by a recursive process, composing smaller LDF-readers on top of
one another, hence the name “Composition-Recursion LDF-Readers”.

As a first step, we show a constructor for restricted LDF-readers, where some of the domains
in the representation are considered active. These LDF-readers have good parameters only
in the case where active domains are given feasible assignments. By a composition of several
such LDF-readers we then get a CR.

Definition 4.1 (restricted LDF-readers.). A restricted LDF-readerR is an LDF-reader where
some of the domains in the representation are considered active. The dimension, and the up-
per and lower degree parameters of all active domains must be the same. These parameters
are called the active dimension, active upper-degree and active lower-degree of R, and are
denoted by d?(R), r?(R), and s?(R) respectively.

A local-reader L in R may have variables from at most one active domain, which is called
the active domain of L and is denoted by Dom?(L).

Parameters of restricted LDF-readers. We measure the parameters of restricted LDF-
readers only with respect to feasible assignments: An assignment for the representation of a
restricted LDF-reader R is said to be active-feasible if the assignment of every active domain
is feasible (unlike in the case of equation-systems, we do not require the assignment of all
domains to be feasible). R is hence said to be a restricted (ρ, ε)-LDF-Reader if for any active-
feasible assignment, the fraction of ρ-erroneous local-readers is at most ε. Note that in an
encoding-assignment, all domains must still be given a good assignment.

Outline of this section. Subsection Section 4.1 shows a constructor for restricted LDF-
readers (the definition of a constructor generalizes naturally for restricted LDF-readers), called
Subspace-vs.-Point LDF-readers, SP’s for short. These restricted LDF-readers are based upon
the Plane-vs-Plane LDF-readers of Raz & Safra (1997), as proven (by a standard, albeit
lengthy, probabilistic argument) in Subsection Section 4.2. The representation of an SP eval-
uating a tuple in a domain F contains, apart from F itself, only active domains, which have
the same degree-parameters as F but a constant dimension parameter. Therefore, informally
speaking, an SP LDF-reader uses constant-dimensional LDFs to represent an LDF over a space
of higher dimension, and using evaluations of these constant-dimensional LDFs it produces
consistent evaluations of the original LDF.

In Subsection Section 4.4 it is shown how the constant-dimensional active domains of an
SP, R, can be replaced by active domains that have non-constant dimension, but greatly
decreased degree parameters. This allows the composition of other SP’s over R, as described
in Subsection Section 4.5, to evaluate tuples in the replaced active domains. Subsection Sec-
tion 4.6 shows how an iterative application of this procedure yields the Composition-Recursion

Almost polynomially small error PCP 17

LDF-reader (which is not restricted) and Subsection Section 4.7 proves its properties, thus
completing the proof of Lemma Lemma 3.3.

4.1. Subspace-vs.-Point LDF-Readers In this subsection we show the SP constructor –
a constructor that generates Subspace-vs.-Point restricted LDF-readers. The representation
of an SP that evaluates a k-tuple in a domain F contains, in addition to F , active domains
with the same degree parameters as F but of dimension k + 2. Each domain is associated
with a (k + 2)-dimensional subspace U in Fd(F); in an encoding-assignment each of them is
assigned the restriction to U of the LDF assigned to F . Before we go into the description of
the constructor, let us state its properties in the following lemma.

Lemma 4.2 (Subspace-vs.-Point LDF-reader). There exists a constructor that given a do-
main F and a k-tuple of points in Fd(F), generates a restricted LDF-reader R as follows.
The active domains of R have the same upper and lower-degree parameters as F , and their
dimension parameter equals k + 2. Moreover, R will have parameters (ρ,O(ρ1/3)) for all ρ’s
which satisfy ρ > (r(F)/|F|)cgd(F), where 0 < cg ≤ 1/2 is a global constant‡.

The Subspace-vs.-Point constructor We now describe how the SP constructor generates
an LDF-readerR, given a domain F and a k-tuple (x1, . . . , xk) of points in Fd(F). The SP con-
structor is used later as a procedure of the CR constructor, however in proving the parameters
of the CR constructor we only rely on the properties that are stated in Lemma Lemma 4.2.
Without loss of generality, throughout the construction it is assumed that d(F) ≥ k + 2 – it
is easy to adapt the construction for the case d(F) < k + 2.

The representation. Other than F itself, the representation only includes active domains,
with upper-degree r(F), lower-degree s(F), and dimension k + 2. The constructor first picks
any (k − 1)-dimensional affine subspace U0 ⊆ Fd(F) which contains all the points xi of the
tuple (if the xi’s are in general position, there exists exactly one such subspace). Denote by
SubSp(R) the set of (k + 2)-dimensional affine subspaces U ⊆ Fd(F) which contain U0. One
active domain DU is then constructed for every affine subspace U ∈ SubSp(R).

Identification functions. A good assignment A to F assigns to it an [s(F), d(F)]-LDF f .
In the encoding-assignment, the assignment to each domain DU represents the restriction of f
to U . In order to represent f |U as an LDF over Fk+2 the constructor chooses for each domain
DU an arbitrary linear isomorphism φ

U
: U → Fk+2, called the identification function of U ,

that identifies each point y ∈ U with the point φ
U

(y) in Fk+2.

Encoding-assignments. Let A be a good assignment for F , assigning to it a [s(F), d(F)]-
degree LDF f . The encoding-assignment for A extends it by assigning to each domain DU
the LDF f ◦ (φ

U

−1). Composing the assignment of DU with φ
U

therefore gives f |U . Since φ
U

is linear, DU is assigned an s(F)-degree LDF, and hence the encoding-assignment of A is a
good assignment.

‡This is the same constant as in Lemma Lemma 3.3, and in all other places where cg appears

18 Dinur et al.

Local-readers. The SP constructor generates one local-reader for each domain DU and
point y ∈ U . Its active domain is DU , its local-test is the single linear equation DU [φ

U
(y)] =

F [y], and for every 1 ≤ i ≤ k its i’th evaluator is the term DU [φ
U

(xi)].

To get a better understanding of the structure of local-readers, fix an active-feasible assignment
A for the representation variables, and consider a local-reader associated with a domain DU
and a point y. The LDF assigned to DU represents an r(F)-degree LDF g

U
over U , defined

by g
U

(x)
.
=A(DU [φ

U
(x)]) (this is the composition of the LDF assigned to DU with φ

U
). The

local-test therefore compares g
U

(y) with the assignment of F [y], and the i’th evaluator returns
g
U

(xi).

If A is the encoding-assignment of an LDF f , then F [y] is assigned f(y), and g
U

is the
restriction of f to U . The local-test is hence satisfied in that case, and the values g

U
(xi)

returned by the evaluators are in fact the values of f at the points xi.

The SP constructor works. It is easy to verify that the SP constructor indeed falls under
the definition of a constructor. To verify the parameters of SP LDF-readers (which would
conclude the proof of Lemma Lemma 4.2) consider an SP LDF-reader R, that evaluates a k-
tuple (x1, . . . , xk) in a domain F , and fix an active-feasible assignment A for its representation.
As explained above, A determines an r(F)-degree LDF g

U
over every affine subspace U ∈

SubSp(R).

The local-test of the local-reader determined by an affine subspace U ∈ SubSp(R) and
a point y ∈ U verifies that g

U
(y) = A(F [y]), and its evaluators return the values of g

U
at

the points x1, . . . , xk. The local-reader is ρ-erroneous if the local-test is satisfied, yet the
values g

U
(x1), . . . , g

U
(xk) are not the evaluation of any ρ-permissible LDF (with respect to

the assignment of F) at x1, . . . , xk. The next lemma bounds the fraction of erroneous local-
readers, thus proving that R has the parameters required in Lemma Lemma 4.2.

Lemma 4.3 (SP parameters). For some global constant 0 < cg ≤ 1/2, and for all ρ’s which
satisfy ρ > (r(F)/|F|)cgd(F), the following holds.

Let U be a random affine subspace in SubSp(R), and y be a random point in U (this deter-
mines a random local-reader). Let Err be the event that g

U
(y) = A(F [y]), yet g

U
(x1), . . . , g

U
(xk)

are not the evaluation of any ρ-permissible LDF (with respect to the assignment of F) at
x1, . . . , xk. Then Pr[Err] = O(ρ1/3).

In fact we show a stronger statement than the above lemma. We bound by O(ρ1/3) the
probability that g

U
agrees with the assignment of F at y, yet g

U
is not the restriction to U of

any ρ-permissible LDF (it is easy to observe that this implies Lemma Lemma 4.3).

4.2. Subspace-vs.-Point Parameters In this subsection we prove Lemma Lemma 4.3
based on Raz & Safra (1997), by a somewhat lengthy series of technical arguments. While we
are interested in the case where an LDF is associated with every (k+2)-dimensional subspace
in a certain set SubSp(R), the Raz & Safra (1997)-Lemma deals with the case where each
plane (2-dimensional affine subspace) is associated with an LDF defined over it.

Almost polynomially small error PCP 19

Definition 4.4 (plane-assignment). Suppose that every plane P in Fd(F) is associated with
an r(F)-degree LDF g

P
over P . The correspondence P → g

P
is called a plane-assignment.

An LDF g
P

is called the plane-LDF assigned to P .

Another difference is that the Raz & Safra (1997)-Lemma discusses a different kind of
permissibility, measured with respect to the plane-assignment instead of with respect to the
assignment of F .

Definition 4.5 (planewise-permissibility). Let (P → g
P

) be a
plane-assignment. An r(F)-degree LDF f over Fd(F) is said to be ρ-planewise-permissible if
for at least a ρ-fraction of the planes P , g

P
= f |P .

A plane-LDF g
P

is said to be ρ-planewise-permissible if it is the restriction to P of a
ρ-planewise-permissible LDF f over Fd(F).

We now state the discussed lemma from Raz & Safra (1997). It shows that planewise-
permissibility can be tested by comparing the plane-LDFs assigned to two line-intersecting
planes. If the plane-LDFs agree on the line then with high probability they are both planewise-
permissible.

Lemma 4.6 (Raz & Safra 1997). There exists a global constant 0 < cg ≤ 1/2, such that for
any ρ > (r(F)/|F|)cgd(F) the following holds.

Fix a plane-assignment (P → g
P

). Let ` be a random line in Fd(F) and let P1 and P2 be
two random, independently chosen planes that contain `. Denote by Err the event that the
plane-LDF assigned to P1 agrees on ` with the plane-LDF assigned to P2, yet they are not
both ρ-planewise-permissible. Then Pr[Err] = O(ρ).

Starting from Lemma Lemma 4.6, we gradually approach Lemma Lemma 4.3 by a sequence
of technical claims: Claim Claim 4.7 shows Lemma Lemma 4.6 to hold even if two plane-LDFs
are compared on a point rather than a line. Claim Claim 4.8 deals with the case where a
plane-LDF is compared against the assignment of F at a certain point, rather than against
another plane-LDF. Claim Claim 4.12 goes from planewise-permissibility to permissibility,
showing that a random plane-LDF g

P
that agrees with the assignment of F at a random

point on P is with high probability the restriction to P of a ρ-permissible LDF. Finally
Claim Claim 4.16 completes the proof of Lemma Lemma 4.3 by showing that the same holds
for LDFs g

U
associated with a random subspace U ∈ SubSp(R), instead of plane-LDFs.

Claim 4.7. Fix a plane assignment (P → g
P

), and suppose ρ satisfies the requirements of
Lemma Lemma 4.6. Let y be a random point in Fd(F), let ` be a random line containing it,
and let P1 and P2 be random independently chosen planes that contain `. Denote by Err the
event that the plane-LDF assigned to P1 agrees on y with the plane-LDF assigned to P2, yet
they are not both ρ-planewise-permissible. Then Pr[Err] = O(ρ).

Proof. First note that y can be considered to be a random point on a randomly chosen
line ` in Fd(F), instead of the other way around.

20 Dinur et al.

The only case where Err occurs yet the event from Lemma Lemma 4.6 does not, is when
the restrictions to ` of the plane-LDFs of P1 and P2 differ, yet they agree on y. Since the
restrictions to ` are r(F)-degree LDFs, if they differ then the probability of agreement on the
random point y is at most r(F)/|F| ≤ ρ. Hence by Lemma Lemma 4.6, Pr[Err] ≤ ρ+O(ρ) =
O(ρ).

The next step is to compare a plane-LDF to the assignment of F [y] for some point y on it,
instead of to the value at y of another plane-LDF .

Claim 4.8. Fix a plane assignment (P → g
P

), and suppose ρ satisfies the requirements of
Lemma Lemma 4.6. Let P be a random plane and y be a random point on P . Denote by
Err the event that g

P
(y) = A(F [y]), yet g

P
is not ρ-planewise-permissible. Then Pr[Err] =

O(ρ1/2).

Proof. To be able to apply Claim Claim 4.7, we redefine y and P , and introduce new
random variables as follows. Let y be a random point in Fd(F), ` be a random line containing
y, and P and P ′ be random independently chosen planes that contain ` (note that to obtain
the claim it is enough to prove a bound on Pr[Err] in these settings). Let Err2 be the event
that g

P
and g

P ′
agree on y yet they are not both ρ-planewise-permissible. Claim Claim 4.7

implies that the probability of Err2 is bounded by O(ρ).

To use the bound we have for Err2 we first show that for every fixed line `0 and point y0 ∈ `0,

(4.9) Pr[Err|` = `0, y = y0] ≤ (Pr[Err2|` = `0, y = y0])1/2

Let Err′ be the event that g
P ′

(y) = A(F [y]) yet g
P ′

is not ρ-planewise-permissible (it is similar
to Err, only for P ′ instead of P). Obviously

(4.10) Pr[Err2|` = `0, y = y0] ≥ Pr[Err ∧ Err′|` = `0, y = y0]

because the event on the left-hand side contains the one on the right-hand side. Since P and
P ′ are independently chosen given `0, we have

Pr[Err ∧ Err′|` = `0, y = y0] = Pr[Err|` = `0, y = y0] · Pr[Err′|` = `0, y = y0]

= (Pr[Err|` = `0, y = y0])2

which together with ((4.10)) implies Equation (4.9).

One may discard the conditioning in Equation (4.9), obtaining

Pr[Err] ≤ Pr[Err2]1/2

using the law of complete probability and the concavity of the square-root function. Since the
probability of Err2 is bounded by O(ρ), this obtains the claim.

Our next step is to convert the statement of Claim Claim 4.8 from planewise-permissibility
to permissibility in the usual sense. This requires the following bound on the number of
planewise-permissible LDFs.

Almost polynomially small error PCP 21

Claim 4.11. Fix a plane assignment (P → g
P

), and suppose ρ satisfies the requirements of
Lemma Lemma 4.6. Then the number of ρ-planewise-permissible LDFs is less than 2ρ−1.

Proof. The proof is similar to that of Claim Claim 4.14 below.

We can now prove the analogue of Claim Claim 4.8 for permissibility in the usual sense.

Claim 4.12. Fix a plane assignment (P → g
P

), and suppose ρ satisfies the requirements of
Lemma Lemma 4.6. Let P be a random plane and y be a random point on P . Denote by
Err the event that g

P
(y) = A(F [y]), yet there is no ρ-permissible LDF f (with respect to the

assignment of F), such that g
P

= f |P . Then Pr[Err] = O(ρ1/3).

Proof. We separate Err into two events, and bound the probability of each by O(ρ1/3):
Let Err1 be the event where Err occurs and in addition g

P
is not ρ2/3-planewise-permissible;

and let Err2 be the event where Err occurs and in addition g
P

is ρ2/3-planewise-permissible.
By applying Claim Claim 4.8 using ρ2/3 instead of ρ, we obtain that the probability of Err1

is bounded byO(ρ1/3) as required (since ρ > (r(F)/|F|)cgd(F) as required in Lemma Lemma 4.6,
ρ2/3 satisfies this requirement as well).

It is left to bound the probability of Err2. By definition it occurs only when g
P

(y) =
A(F [y]) and there exists a ρ2/3-planewise-permissible LDF f which is not ρ-permissible, such
that g

P
= f |P . For an LDF f over Fd(F), denote by Err3(f) the event where g

P
(y) = A(F [y])

and g
P

= f |P (note that this implies f(y) = A(F [y])). Then the probability of Err2 is
bounded by the sum of Pr[Err3(f)] over all ρ2/3-planewise-permissible LDFs f which are not
ρ-permissible.

Let us bound the probability of Err3(f) for such an LDF f . Since f is not ρ-permissible the
probability that it satisfies f(y) = A[F (y)] is bounded by ρ, because y is a uniformly random
point in Fd(F). The probability of Err3(f) is therefore bounded by ρ as well. Since f should
be ρ2/3-planewise-permissible, there can be at most 2ρ−2/3 such f ’s by Claim Claim 4.11, and
therefore a bound of 2ρ−2/3ρ = O(ρ1/3) is obtained for the probability of Err2.

Note that the statement of Claim Claim 4.12 is similar to what we wish to establish (see
the remark following Lemma Lemma 4.3), only for planes rather than (k + 2)-dimensional
subspaces in SubSp(R). Claim Claim 4.16 proves that by considering a random plane P , y ∈
P ⊆ U , in addition to the random subspace U and the random point y ∈ U . Claim Claim 4.12
can be applied to P to obtain Claim Claim 4.16, but for it to be applicable it should be shown
that when a random subspace U ∈ SubSp(R) is chosen , and then a random plane P contained
in U , and then a point y ∈ P , P and y are almost uniformly distributed. This is shown in the
following claim.

Claim 4.13. Let U be a random subspace in SubSp(R), and let P be a random plane
contained in U and y a random point in P . The distribution of P and y is almost uniform,
that is if P lns denotes the set of planes in Fd(F) then∑

P0∈Plns

|Pr(P = P0)− |P lns|−1| ≤ O(|F|−1)

22 Dinur et al.

and ∑
y0∈Fd(F)

|Pr(y = y0)− |F|−d(F)| ≤ O(|F|−1)

Proof. We begin by proving the second inequality. Observe that since all the subspaces in
SubSp(R) contain U0 the probability of the random point y in U to yield a specific point in

U0 is higher than |F|−d(F), the probability of a uniformly random point. Also, the probability

of y to yield a point outside of U0 is smaller than |F|−d(F). Hence∑
y0∈Fd(F)

|Pr[y = y0]− |F|−d(F)|

=
∑
y0∈U0

(Pr[y = y0]− |F|−d(F)) +
∑

y0∈Fd(F)\U0

(|F|−d(F) − Pr[y = y0])

= 2
∑
y0∈U0

(Pr[y = y0]− |F|−d(F)) (since probabilities sum up to 1)

< 2 Pr[y ∈ U0] = 2|U0|/|U | = 2|F|−3 = O(|F|−1) ,

thus obtaining the second inequality. The proof of the first inequality uses similar arguments,
however it is more tedious. We therefore only sketch it here.

Two main observations are needed to prove the first inequality. First, one needs to observe
that if three random points y1, y2, y3 are independently chosen within U , then their joint
distribution is within statistical distance O(|F|−1) from the distribution of three points chosen
independently from Fd(F). This follows by applying the argument used to prove the second
inequality three consecutive times. At each application, U is conditioned on containing the
affine space generated by U0 and the previously selected points.

The second observation, which is an easy exercise, is that the distribution of the affine span
of three independently chosen points in Fd(F), is within statistical distance O(|F|−1) from the
distribution of a random plane in P lns. Together with the first observation we obtain the
desired inequality.

Before we move to the final claim, we need the following two bounds. Claim Claim 4.14,
which appears in Section Section 3 as Proposition Proposition 3.5, bounds number of ρ-
permissible LDFs. Claim Claim 4.15 bounds the fraction of planes on which two distinct
LDFs may agree.

Claim 4.14. Suppose ρ satisfies the requirements of Lemma Lemma 4.6. Then there are less
than 2/ρ ρ-permissible LDFs.

Proof. Assume for the sake of contradiction that there exists a set Per containing 2/ρ
distinct ρ-permissible LDFs. For each LDF f ∈ Per denote by U(f) the set of points y ∈ Fd(F)

such that f is the only LDF in Per satisfying f(y) = A(F [y]).
Each LDF f ∈ Per is ρ-permissible, hence it agrees with A(F) on at least a ρ-fraction of

the points. We bound from above the fraction of points for which it also agrees with other

Almost polynomially small error PCP 23

LDFs in Per. Any other LDF in Per agrees with f on at most an r(F)
|F| fraction of the points,

so overall f may agree with other LDFs in Per on at most a 2r(F)
ρ|F| fraction of the points. From

the assumption ρ >
(
r(F)
|F|

)cg
d(F) it follows in particular that ρ2 > 4r(F)/|F| (recall that

cg < 1/2 and that we assume d(F) ≥ k + 2 > 2), and therefore 2r(F)
ρ|F| <

1
2
ρ.

f thus agrees with A(F) on at least ρ of the points, and on less than a 1
2
ρ fraction of the

points it agrees with other LDFs in Per. It follows that for every f ∈ Per, U(f) contains
more than a 1

2
ρ fraction of the points. Since the sets U(f) are disjoint, it follows that the

fraction of all points contained in any of the U(f)’s is greater than 1
2
ρ · |Per| ≥ 1. This is a

contradiction.

Claim 4.15. For any t > 0, two distinct [r, t]-LDFs must disagree on all but at most an r/|F|
fraction of their possible restrictions to planes.

Proof. Let f and g be two distinct r-degree LDFs over F t, and let P be a random plane
in F t. We are to evaluate the probability that f |P equals g|P . Let y be a random point on P .
y is uniformly distributed in F t, and therefore it produces a disagreement with probability
at least 1− r

|F| (this is a well known property of LDFs). Since y can produce a disagreement
only in the case that there is a disagreement over P , it implies that there is a disagreement
over P with probability at least 1− r

|F| .

The following claim directly implies Lemma Lemma 4.3.

Claim 4.16. Suppose ρ satisfies the requirements of Lemma Lemma 4.6. Let U be a random
affine subspace in SubSp(R), and y be a random point in U . Let Err be the event that
g
U

(y) = A(F [y]), yet there is no ρ-permissible LDF (with respect to the assignment of F)
whose restriction to U gives g

U
. Then Pr[Err] = O(ρ1/3).

Proof. Let P be a random plane contained in the random subspace U . Without loss of
generality, we may assume that y is a random point in P .

We define two events Err1 and Err2 such that Err1 ∪Err2 contains Err, and bound the
probability of each by O(ρ1/3). Let Err1 be the event that g

U
(y) = A(F [y]), yet there is no

ρ-permissible LDF f that agrees with g
U

on P , namely f |P = g
U
|P . Let Err2 be the event

that there is no ρ-permissible LDF whose restriction to U gives g
U

, yet there exists such an
LDF that agrees with g

U
on P . Obviously Err ⊆ Err1 ∪ Err2.

Bounding Pr[Err2]. For a ρ-permissible LDF f , let Err3(f) be the event that f |U 6= g
U

,
yet f |P = g

U
|P . Err2 is contained in the union of the events Err3(f) over all ρ-permissible

LDFs f . For a ρ-permissible LDF f ,

Pr[Err3(f)|U = V] ≤ r(F)/|F|

24 Dinur et al.

for every fixed subspace V ∈ SubSp(R), by applying Claim Claim 4.15 to V . It follows that
Pr[Err3(f)] is bounded by r(F)/|F| as well. Since there are less than 2/ρ ρ-permissible LDFs
in all, we obtain that

Pr[Err2] <
2r(F)

ρ|F|
< ρ

(the last inequality follows easily from the restriction on ρ).

Bounding Pr[Err1]. We change the distribution of U , P and y, by letting P be a random
plane in Fd(F), U be a random space in SubSp(R) that contains P , and y be a random point
in P . By Claim Claim 4.13, the statistical distance between the new distribution of P , which
is uniform, and the original distribution is O(|F|−1). Under both the original and the new
distributions, the distribution of U and y conditioned on P being a fixed plane P0 are the
same – U is a random space in SubSp(R) that contains P0 and y is a random point in P0. It
follows that the statistical distance between the new joint distribution of U , P and y, and the
original distribution is bounded by O(|F|−1). It is hence enough to bound the probability of
Err1 according to the new distribution.

Let g
P

.
=g

U
|P be considered as a random plane-assignment for the (random) plane P . The

definition of Err1 can hence be articulated as the event that g
P

(y) = A(F [y]), yet there is
no ρ-permissible LDF f such that g

P
= f |P . Claim Claim 4.12 naturally extends to the case

where the plane-assignments is random as long as the assignment to F is not random, hence it
implies that Pr[Err2] = O(ρ1/3) (note that P is a uniformly random plane and y is a random
point in P).

4.3. Overview of the CR-Constructor. Let us give an overview of the CR (Composition-
Recursion) constructor. Given a domain and a tuple, the CR constructor generates a constant-
length sequence of restricted LDF-readers that ends with the final, unrestricted, CR LDF-
reader. Each transformation of an LDF-reader R in the sequence into the next (except for
the final one) has the same two steps as follows.

Extension. In the first step, an extension-procedure is applied to each active domain of R,
replacing it by a domain with greatly reduced degree parameters in the price of an increased
dimension parameter. The active degree and dimension parameters of R are thus changed,
but its other properties are maintained.

Composition. The second step is the application of the composition procedure, which in-
corporates new LDF-readers into R. First, it generates several new LDF-readers using the
SP constructor (actually, any constructor with properties as in Lemma Lemma 4.2 will do),
applying it to different active domains and tuples. The domains generated in the process then
become active instead of the old active domains. These new active domains are of constant
dimension, and because of the extension step their degree parameters are greatly reduced with
respect to the active domains of R. Finally the newly generated local-readers are plugged
into the local-readers of R, generating the next LDF-reader in the sequence.

Almost polynomially small error PCP 25

We proceed as follows. First, in the next subsection, we give a formal definition of an
extension and show the two extension-procedures used by the CR constructor. In Subsec-
tion Section 4.5 we describe the composition procedure and prove its properties. In Sub-
section Section 4.6 we describe the CR constructor and then we prove its correctness in
Subsection Section 4.7.

4.4. Extensions. An extension of a domain F is a domain G which contains the variables of
F : Each variable F [x] is endowed with another name G[φ(x)]. The function φ : Fd(F) → Fd(G)

is called the gluing of F to G. The extension must preserve good and feasible assignments as
follows.

Definition 4.17 (extension). Let F be a domain, and let G be a domain that contains the
variables of F . G is called an extension of F if the following properties hold:

◦ Extension Property: Any good assignmentA for F can be extended to a good assignment
for G, called the encoding-assignment or the encoding LDF of A.

◦ Restriction Property: The restriction to F of any feasible assignment for G is a feasible
assignment for F .

The point about extensions is that they allow the representation of an LDF assigned to
a domain F by an encoding LDF with different properties. We can hence replace the active
domains of a restricted (ρ, ε)-LDF-reader R by their extensions and obtain a restricted (ρ, ε)-
LDF-reader where the active degree parameters are different, usually considerably smaller.

Proposition 4.18 (extension). Let R be a restricted (ρ, ε)-LDF-reader, evaluating a tuple
in a domain F . Suppose that for each active domain G of R, e(G) is an extension of G, and
that all extensions have the same parameters. Then the LDF-reader R′ obtained from R by
just declaring these extensions as the active domains of R′ is a restricted (ρ, ε)-LDF-reader.

Proof. It is given that all the active domains of R′ have the same parameters. To show
that R′ is a valid restricted LDF-reader we define an encoding-assignment of R′ , for every
good assignment to F .

Given a good assignment for F , let A be its encoding-assignment with respect to R. For
each active domain G of R, assign the encoding-assignment of A(G) to its extension e(G).
This obtains a good assignment for the representation of R′ , and since the assignments to
the variables of R are not changed all local-tests are satisfied and all local-readers return
evaluations consistent with the assignment of F .

The fact that R′ has parameters (ρ, ε) follows easily from the restriction property of each
extension e(G), which implies that the restriction of an active-feasible assignment forR′ yields
an active-feasible assignment for R.

26 Dinur et al.

Extension-procedures. An extension-procedure is an algorithm which given a domain F ,
generates an extension G of F . The running time of the algorithm must be polynomial
in |F|d(G). We next show the two extension-procedures used by the CR constructor – the
power-substitution and the linearization extension-procedures. In the sequence of restricted
LDF-readers that is generated by the CR constructor (see the overview above), the power-
substitution extension-procedure is used in the generation of all restricted LDF-readers but the
last. The last restricted LDF-reader is generated using the linearization extension-procedure,
and thus has active domains with lower-degree and upper-degree 1. The final, unrestricted,
CR LDF-reader is obtained by replacing each such domain with variables that represent the
coefficients of a linear function.

Given a domain F , the power-substitution extension-procedure constructs an extension G
with greatly reduced degree parameters in the price of increasing the dimension parameter.
The linearization extension-procedure, when applied to a domain F , yields a domain G with
lower-degree and upper-degree 1. The dimension of G is, however, exponential in the degree
parameters of F , hence the linearization is applied by the CR constructor only after very small
active degree parameters are achieved.

Gap consumption. Recall that if G is an extension of a domain F , then for every good
assignment to F there must be a good assignment forG which extends it. This may (and in fact
does, in all cases discussed herein) impose a lower-bound on the lower-degree of G. Similarly,
the restriction property of extensions yields an upper-bound on the upper-degree of G. In
the case of the power-substitution extension-procedure, this forces the gap between the upper
and lower-degrees of G to be smaller than for F . That is, if G is the extension of a domain F
obtained by the power-substitution extension-procedure, then r(G)/s(G) < r(F)/s(F).

Since the CR constructor applies the power-substitution extension-procedure several times
as described in the overview, if it is applied to a domain F where the gap between the upper-
degree and lower-degree is not large enough (see Lemma Lemma 3.3), domains are eventually
created where the upper-degree is smaller than the lower-degree. Since the linearization
extension-procedure is not applicable to such domains, the CR constructor would not be
able to construct an LDF-reader for F .

The power-substitution extension-procedure. We begin by stating the properties of
the power-substitution extension-procedure. For simplicity, we omit floor and ceiling signs
where they are not essential.

Proposition 4.19 (power-substitution). There exists an
extension-procedure, called power-substitution, which given a domain F and a parameter
b > 1, generates an extension G of F with the following parameters: For t

.
=
⌈
logb(s(F) + 1)

⌉
,

◦ d(G) = d(F)t

◦ s(G) = d(F)t(b− 1)

◦ r(G) = r(F)/bt−1
(
≥ r(F)/s(F)

)

Almost polynomially small error PCP 27

The procedure is based on the idea that by replacing powers of variables in an LDF f
with new auxiliary variables, the degree of f may be decreased dramatically. For example, we
fix an LDF over one variable f(u1) = u12

1 + u25
1 (the handling of multi-variate LDFs is very

similar), and show an encoding LDF g over three variables.
g is obtained from f by substituting powers of u1 with new variables. Informally speaking,

if v0 is considered as representing u1, v1 is considered as representing u3
1, and v2 – as repre-

senting u9
1, then u12

1 = v1v2, and u25
1 = v0v

2
1v

2
2 (note that we used the base 3 representation of

12 and 25). Replacing these terms in f obtains an LDF g(v0, v1, v2) = v1v2 + v0v
2
1v

2
2 of degree

5 rather than 25. g encodes and extends f in the sense that g(u1, u
3
1, u

9
1) = f(u1) for every

u1 ∈ F .

For a domain G, obtained from a domain F using the power-substitution extension-
procedure with parameter b, an LDF f of degree s(F) assigned to F is encoded by an LDF
g over Fd(G) as follows. g is obtained from f by taking an auxiliary variable for each power
of the form ub

e

i of a variable ui of f . Any other power uji of ui can then be replaced by a
monomial over the new variables of degree at most b − 1 in each variable, using the base-b
representation of j.

Proof of Proposition Proposition 4.19: We begin by describing the power-substitution extension-
procedure and then prove that it has the required properties.

The procedure. Given a domain F and a parameter b, the procedure first generates a
domain G with parameters as stated in the proposition. It then generates a gluing function
φ : Fd(F) → Fd(G) as follows:
For every x = (u1, . . . , ud(F)) ∈ Fd(F), φ(x) is defined to be

(u1, u
b
1, u

b2

1 , . . . , u
bt−1

1 , u2, u
b
2, u

b2

2 , . . . , u
bt−1

2 , . . . , ud(F), . . . , u
bt−1

d(F)) ∈ Fd(G)

Finally, each variable of the form G[φ(x)] is discarded, and the name G[φ(x)] is endowed to
the variable F [x] (which now has more than one name).

It is clear that the above procedure generates a domain G with the required parameters,
in time polynomial in |F|d(G). It remains to show that G is indeed an extension of F , namely
that it has the extension and restriction properties.

Extension property. Suppose F is assigned an [s(F), d(F)]-LDF f (namely a good as-
signment). We now show its encoding LDF g – it should be an [s(G), d(G)]-LDF satisfying
g ◦ φ = f , so that when assigned to G it does not conflict with F . First, let f(u1, . . . , ud(F))
be written as a polynomial formula P over the variables u1, . . . , ud(F). P is transformed into
a polynomial formula P ′ over the variables

v(1,0), v(1,1), .., v(1,t−1), v(2,0), v(2,1), .., v(2,t−1), . . . , v(d(F),0), .., v(d(F),t−1)

by replacing each term uji in P with a monomial m(i,j) over v(i,0), .., v(i,t−1): Since the term uji
appears in P we gather that j ≤ s(F), and hence its representation as a number in base b has

28 Dinur et al.

at most t digits. Let et−1, . . . , e1, e0 be the base b representation of j, and let

m(i,j)
.
=(v(i,0))

e0(v(i,1))
e1 . . . (v(i,t−1))

et−1

Replacing each term uji in P with the monomial m(i,j) we obtain P ′, and then we define g by

g(v(i,0), . . . , v(d(F),t−1))
.
=P ′(v(i,0), . . . , v(d(F),t−1))

Since each monomial m(i,j) is of degree at most t(b − 1), it easily follows that g is an
[s(G), d(G)]-LDF. Considering m(i,j) as a function over Fd(G), it is also easy to see that for

all (u1, . . . , ud(F)), (m(i,j) ◦ φ)(u1, . . . , ud(F)) = uji . It follows that g ◦ φ = f , and hence g is
indeed an encoding-LDF.

Restriction property. Suppose G is given a feasible assignment, namely it is assigned an
[r(G), d(G)]-LDF g. The restriction of the assignment to F is hence an LDF f over Fd(F),
given by f = g ◦ φ. The degree of f is at most deg(f) = deg(g) deg(φ) = r(G)bt−1 = r(F).
The restriction is hence a feasible assignment for F , as required.

The linearization extension-procedure. The linearization extension-procedure is very
similar to the power-substitution procedure. The idea is to encode an LDF f by a linear LDF,
replacing every monomial by a new auxiliary variable (recall that in the power-substitution,
auxiliary variables where only introduced for some powers of variables in f). Since many
auxiliary variables are used, the dimension increases dramatically.

Proposition 4.20 (linearization). There exists an extension-procedure called linearization,
which given a domain F with s(F) ≤ r(F), generates an extension G with the following
parameters: For t

.
=
(
s(F)+d(F)

d(F)

)
,

◦ d(G) = t

◦ s(G) = 1

◦ r(G) = 1

Proof. We begin by describing the linearization extension-procedure, and then prove that
it has the required properties.

The procedure. Given a domain F , the procedure first generates a domain G with pa-
rameters as stated above. To generate the gluing function, the procedure picks an arbitrary
enumeration m1, . . . ,mt of the monomial functions of degree at most s(F) over Fd(F) (note
that there are exactly t such monomials). The gluing function φ : Fd(F) → Fd(G) is then
defined by

∀ x ∈ Fd(F) φ(x)
.
=(m1(x), . . . ,mt(x))

Almost polynomially small error PCP 29

Having defined the gluing function, F and G are then “glued” in the usual way – each variable
of the form G[φ(x)] is discarded, and the name G[φ(x)] is endowed to the variable F [x] (which
now has more than one name).

The procedure clearly generates a domain G with the required parameters, in time poly-
nomial in |F|d(G). It remains to verify that G has the extension and restriction properties.

Extension property. Suppose F is assigned an [s(F), d(F)]-LDF f , and let us construct
its encoding LDF – a linear LDF over Fd(G) satisfying g ◦ φ = f . First, one can write f as a
linear-combination of the monomial functions of degree at most s(F):

f =
t∑
i=1

γimi

g is then defined by

∀ (v1, . . . , vt) ∈ Fd(G) g(v1, . . . , vt)
.
=

t∑
i=1

γivi

It is clear that g ◦ φ = f , as desired.

Restriction property. Suppose G is given a feasible assignment, namely it is assigned a
linear LDF g. The restriction of the assignment to F is the LDF f = g ◦ φ. Since φ is of
degree s(F) and g is linear, the degree of f is at most s(F) ≤ r(F), as required.

4.5. The Composition Procedure. We now turn to describe the composition procedure
of the CR constructor algorithm. It takes as input a restricted LDF-reader R, and generates
a restricted LDF-reader R′ with the same active degree parameters, but where the dimension
of the active domains is constant.

Suppose an LDF-reader R is given, which evaluates a tuple (u1, . . . , uk) in a domain F . The
composition procedure has two main steps: First it generates new LDF-readers using the SP
constructor as a sub-procedure, and then it incorporates them into R.

Uniformization. Recall that each local-reader L of R has variables from only one active
domain, Dom?(L). Before applying the main two steps, it is convenient to make sure that
all local-readers L in R have the same number of active variables, namely variables from
Dom?(L). Denoting the maximal number of active variables in a local-reader of R by t,
the composition procedure adds arbitrary variables to local-readers so that all have t active
variables (the variables may be added anywhere in the local-reader, with zero coefficients).

Generating new LDF-readers. For each local-reader L inR, the procedure now generates
an LDF-reader denoted RL as follows. If G is the active domain of L and G[x1], . . . , G[xt] are
its active variables, thenRL is generated by calling the SP constructor (see Lemma Lemma 4.2)
with parameters G and (x1, . . . , xt).

30 Dinur et al.

Domain incorporation. The composition procedure now incorporates the domains of the
new LDF-readers into R: The newly generated domains are added to the representation. The
active domains of R cease to be active – the active domains of R′ are the active domains of
the newly generated LDF-readers.

Local-reader incorporation. In an active-feasible assignment for R′ , the active variables
of R-local-readers L are no longer promised to be assigned the evaluation of a single feasible
LDF over Dom?(L). These variables are therefore replaced by the evaluators of local-readers
of RL, which supposedly return evaluations of one of the (not many) permissible LDFs over
Dom?(L).

For each pair of local-readers, L ofR and M fromRL, the composition procedure generates
a local-reader of R′ , denoted by L ◦M , as follows. Let G denote the active domain of L, and
let G[x1], . . . , G[xt] denote its active variables. To obtain L ◦M each variable G[xi] in the
evaluator or the local-test of L is replaced by the i’th evaluator of M , and then the local-test
of M is added in conjunction to the local-test of L (where the G[xi]’s have been replaced).

Properties of the composition procedure. We now analyze the properties of the com-
position procedure that are important for its application by the CR constructor – the time it
takes, and the properties and parameters of the LDF-readers it generates. In the analysis we
assume that the composition procedure is applied to LDF-readers where the the number of
variables in each local-reader and the number of conjunctions in each local-test is bounded by
a constant, since the CR constructor indeed applies it to such LDF-readers. Notice that under
this assumption it is clear that the composition procedure generates LDF-readers where the
number of variables in each local-reader and the number of conjunctions in each local-test is
also bounded by a (different) constant.

Time. When applied to an LDF-reader R, the composition procedure applies the SP con-
structor several times. Each call to the SP constructor takes time polynomial in |F|d?(R),
according to the definition of a constructor (note that this is polynomial the number of vari-
ables in each of the active domains of R). Since the number of calls to the SP constructor
equals the number of local-readers in R, it follows that overall the composition procedure
takes time polynomial in the size of R.

Encoding-assignments. When the composition procedure is applied to an LDF-reader R
that evaluates a tuple (x1, . . . , xk) in a domain F , the resulting structureR′ has representation-
variables and local-readers. To be a valid LDF-reader, we show that for every good assignment
A for F there is an encoding-assignment with respect to R′ : First extend A to an encoding-
assignmentA′ forR. In particularA′ assigns a good assignment to the active domain Dom?(L)
of each local-reader L in R. Then extend the assignment of each active domain Dom?(L) to
an encoding-assignment with respect to RL. This obtains an assignment for all the variables
of R′ . It is easy to verify that it is an encoding-assignment of A with respect to R′ .

Almost polynomially small error PCP 31

Parameters of R′. Given an LDF-reader R, the composition procedure generates an LDF-
reader R′ . The parameters of R′ can be computed from the parameters of R according to
the following composition lemma.

Lemma 4.21 (composition). LetR be a restricted (ρ, ε)-LDF-reader where ε3/4 > (r?(R)/|F|)cgd?(R).
Then the restricted LDF-reader R′ , generated from R by the composition procedure, has pa-
rameters (ρ,O(ε1/4)).

Before the formal proof is given, we describe its main ideas. There are two types of ρ-erroneous
local-readers L ◦M . One is where M is ε3/4-erroneous – this happens for at most an O(ε1/4)
fraction of the local-readers since the RL’s are (ε3/4, O(ε1/4))-LDF-readers.

In case M is not erroneous, its evaluators yield evaluations of an ε3/4-permissible LDF
f with respect to the assignment of Dom?(L). L ◦M is thus ρ-erroneous if and only if L
remains ρ-erroneous when Dom?(L) is assigned the feasible LDF f . Since for any active-
feasible assignment for R at most an ε-fraction of its local-readers may be ρ-erroneous, and
since the number of ε3/4-permissible LDFs for every domain is less than 2ε−3/4, a counting
argument implies that the fraction of local-readers L◦M where M is not erroneous is bounded
by 2ε−3/4 · ε = O(ε1/4).

Proof of Lemma Lemma 4.21:
Fix an active-feasible assignment A′ for the representation of R′ and a parameter ρ′

.
=ε3/4,

and let us divide the ρ-erroneous local-readers of R′ into two sets according to ρ′ – the
peripheral-erroneous local-readers are the local-readers L ◦M where M is ρ′-erroneous as a
local-reader of RL, and the core-erroneous are those where M is not ρ′-erroneous. We bound
the fraction of both types of local-readers by O(ε1/4).

Peripheral-erroneous local-readers. Since ρ′ > (r?(R)/|F|)cgd?(R), Lemma Lemma 4.2
implies that every LDF-reader RL generated by the composition procedure has parameters
(ρ′, O((ρ′)1/3)), so the fraction of ρ′-erroneous local-readers in it is O((ρ′)1/3) = O(ε1/4). Hence
for every local-reader L of R, the fraction of peripheral-erroneous local-readers among local-
readers of the form L◦M is O(ε1/4), and therefore the overall fraction of peripheral-erroneous
local-readers in R′ is bounded by O(ε1/4) as desired.

We move to bound the fraction of core-erroneous local-readers. We first show that in such
a local-reader L ◦M , L has to be erroneous as a local-reader of R with respect to a certain
class of assignments, as explained below.

The assignments A(G, g) for R. For an active domain G of R and an [r(G), d(G)]-LDF
g, we define a class A(G, g) of assignments for R, based on A′. The elements of A(G, g) are
the assignments for R that assign g to G, and that are equal to A′ on all domains of R which
are not active. Active domains of R other than G may be assigned arbitrarily. A local-reader
L of R with Dom?(L) = G, may be either ρ-erroneous with respect to all assignments in
A(G, g), or with respect to none, because the assignments in A(G, g) are all equal on the
variables of L (recall that L cannot have variables from active domains other than G).

32 Dinur et al.

Consider a local-reader L◦M that is core-erroneous. The evaluators of M yield values con-
sistent with an LDF g, which is ρ′-permissible with respect to the assignment of G

.
=Dom?(L).

It follows that as a local-reader of R, L is ρ-erroneous with respect to the assignments in
A(G, g) – these assignments yield the same values for the variables of G as the evaluators of
M , and give the same values as A′ to all the other variables of L.

Core-erroneous local-readers. Let G be an active domain of R. Denote by α(G, g) the
fraction among R-local-readers, of local-readers whose active domain is G and which are ρ-
erroneous with respect to the assignments in A(G, g). Denote by α(G) the maximum over all
α(G, g).

Let A be the assignment obtained from A′ by assigning to each active domain G of R an
LDF g such that α(G, g) is maximized. Then for every G, the fraction ofR-local-readers whose
active domain is G, and which are ρ-erroneous with respect to A is α(G). The parameters ofR
imply that the total fraction of ρ-erroneous local-readers is bounded by ε, hence

∑
G α(G) ≤ ε.

For an active domain G of R we denote by γ(G) the fraction of local-readers L in R
whose active domain is G, and for which there exists a local-reader M in RL where L ◦M
is core-erroneous. We have seen that for an R-local-reader L to be accounted in γ(G), it
must be ρ-erroneous with respect to the assignments in A(G, g), for some ρ′-permissible g.
γ(G) is therefore bounded by the sum

∑
α(G, g) taken over all permissible LDFs g, and so by

α(G) times the number of ρ′-permissible LDFs. By Proposition Proposition 3.5 the number
of ρ′-permissible LDFs is less than 2/ρ′, hence γ(G) < (2/ρ′)α(G), and we obtain that∑

G

γ(G) < (2/ρ′)
∑
G

α(G) ≤ 2ε/ρ′ = 2ε1/4

Namely the fraction of R-local-readers L for which there exists a core-erroneous local-reader
L ◦M is bounded by O(ε1/4).

We show that this also bounds the total fraction of core-erroneous local-readers: Note that
there is the same number of local-readers in every LDF-reader of the form RL – this follows
from the definition of a constructor, together with the fact that all active domains of R have
the same degree parameters. Hence for each local-reader L of R there is the same number of
local-readers of the form L ◦M in R′ .

4.6. The CR Constructor. It is now the time to describe the actual CR constructor,
proving the Composition-Recursion Constructor Lemma (Lemma Lemma 3.3). Let F be a
domain, and let (x1, . . . , xk) be a k-tuple of points in Fd(F) (where, as in Lemma Lemma 3.3,
k is a constant). We assume, under the notation as specified in Lemma Lemma 3.3, that
d(F) = O(log1−β n), s(F) ≤ |F|c1 , and r(F) ≥ |F|c2 . For simplicity we reset s(F) and r(F)
so that the latter inequalities hold as equalities – note that a (ρ, ε)-LDF-reader with respect
to the new degree parameters remains a (ρ, ε)-LDF-reader if s(F) is reduced and r(F) is
increased to their original values.

The CR constructor generates an (unrestricted) LDF-reader R evaluating (x1, . . . , xk)
in F . First, it generates a sequence R0, . . . ,RK , where K = O(1

1−β) is a constant that

Almost polynomially small error PCP 33

will be chosen later, of restricted LDF-readers. The transformation of each Ri into Ri+1 is
accomplished in two steps. At first a restricted LDF-reader R′i is generated by applications of
an extension-procedure to the active domains of Ri, as described in the extension proposition
(Proposition Proposition 4.18). The degree parameters of R′i are decreased with respect to Ri

but the dimension is increased. Ri+1 is then generated by applying the composition procedure
to R′i, thus the degree parameters remains the same while the active dimension parameter
becomes constant. Finally RK has a constant active dimension and both of its active degree
parameters are 1, hence in a good or active-feasible assignment each active domain of RK is
assigned a constant-dimensional linear function. The final unrestricted LDF-reader is obtained
by replacing each active domain of RK by a constant number of variables that represent the
coefficients of a linear function over it.

We now fully describe the generation of the sequence R0, . . . ,RK , and the transformation
of RK into R. We then show that the CR constructor has the properties required by
Lemma Lemma 3.3.

Generating R0. To generate the first restricted LDF-reader,R0, the CR constructor applies
the SP constructor to the domain F and the tuple (x1, . . . , xk).

Generating R1, . . . ,RK−1. From R0 the CR constructor continues to iteratively generate
restricted LDF-readers as follows. Having generated Ri, the constructor transforms it into
a restricted LDF-reader R′i by applying the power-substitution extension-procedure to each
active domain of Ri with parameter

b = max { (s?(Ri) + 1)1/ log1−β n , 2 }

and taking these extensions to be the active domains of R′i. Note that b is chosen to have the
smallest value such that the dimension of the domains generated by the extension-procedure
is at most Θ(log1−β n) – a larger dimension would yield domains of super-polynomial size.
The constructor then generates Ri+1 by applying the composition procedure to R′i. The CR
constructor iteratively generates LDF-readers as described above until finally an LDF-reader
RK−1 is generated such that(

s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n

As proven below, this occurs for a constant K.

Generating RK. The transformation of RK−1 into RK is carried similarly to the previ-
ous transformations described above, only that R′K−1 is generated using the linearization
extension-procedure instead of the power-substitution extension-procedure. Note that for the
linearization extension-procedure to be applicable the active lower-degree parameter of RK−1

must not be greater than its active upper-degree. We show below that this indeed holds.

34 Dinur et al.

Generating R. The constructor now transforms RK into the final CR LDF-reader. Having
used the linearization extension-procedure to produce R′K−1, we gather that the active lower-
degree of RK (which equals that of R′K−1) is 1. Its active dimension, d

.
=d?(RK), is constant

since RK is generated by the composition procedure. A good assignment to an active domain
G of RK is thus a linear LDF f , that can be represented using a constant number of coefficient
γi by

∀ (u1, . . . , ud) ∈ Fd g(u1, . . . , ud)
.
= γ0 +

d∑
i=1

γiui

The CR constructor adds d+ 1 variables to the representation, G0, . . . , Gd, for each active
domain G of RK , such that an encoding assignment would assign Gi = γi for each i. It then
goes over all the local-readers and replaces every term G[(u1, . . . , ud)], where G is an active-
LDF, by G0 +

∑d
i=1Giui. It is now possible to deactivate or even remove the active domains

altogether (their variables no longer appear anywhere), thus completing the generation of R.

4.7. The CR Constructor Works. Below it is proven that the CR constructor above has
the properties stated in Lemma Lemma 3.3. We show that it stops after a constant number of
iterations as stated above, and that it takes polynomial time. It is then shown that although
each transformation of Ri into Ri+1 consumes some of the lower-degree to upper-degree gap,
the active upper-degree ofRK−1 is not smaller than the active lower-degree (hence linearization
extension-procedure is correctly used by the CR constructor). We conclude by showing that
for an appropriate constant c > 0, the constructor generates (ρ,O(ρc))-LDF-readers for all ρ’s
such that ρ > (r/|F|)cgd.

First of all observe that as noted in the description of the properties of the composition
procedure, for every constant i both the number of variables and the number of conjunctions
in each local-reader are bounded by a constant.

The number of iterations is constant. It should be shown that for some constant K =
O(1

1−β), the parameters of the (K − 1)’th element in the sequence R0,R1, . . . of LDF-readers
satisfy

(4.22)

(
s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n

To see this we examine the parameters of the LDF-readers in the sequence.

Parameters of the Ri’s. Consider an LDF-reader Ri in the sequence, and assume s?(Ri)+

1 > 2log1−β n. The power-substitution extension-procedure is applied to its active domains
using the parameter b = (s?(Ri)+1)1/ log1−β n, hence the parameter t used within the extension-
procedure is t = log1−β n (see Proposition Proposition 4.19). Since the active dimension of Ri

is constant, Proposition Proposition 4.19 implies that

(4.23) s?(Ri+1) = s?(R′i) = d?(Ri)t(b− 1) = polylog(n)s?(Ri)
1/log1−β n

Almost polynomially small error PCP 35

As R0 is generated by the SP constructor, its active lower-degree parameter equals s(F),

so s?(R0) = |F|c1 = 2Θ(logβ n). By inductively using Equation (4.23) one easily sees that as
long as β − i(1− β) > 0,

(4.24) s?(Ri) = 2Θ(logβ−i(1−β) n)

(the poly-logarithmic factor is absorbed in the exponent).

Parameters of Rio. Fix io
.
=
⌈
β/(1− β)

⌉
, and note that it is constant (it depends only on

β, which remains constant throughout the proof). We have

1− β ≥ β − (io − 1)(1− β) > 0

hence by Equation (4.24),

s?(Rio−1) = 2Θ(logβ−(io−1)(1−β) n)

R′io−1 is generated by applying the extension-procedure with parameter

b = max {
(

2Θ(logβ−io(1−β) n)
)
, 2 } = O(1)

since β − io(1 − β) ≤ 0. The parameter t used is poly-logarithmic in n, specifically t =
O(logβ−(io−1)(1−β) n) ≤ O(log1−β n). It hence follows from Proposition Proposition 4.19 that
s?(Rio) = s?(R′io−1) is poly-logarithmic in n.

Parameters of Rio+1. The power-substitution extension-procedure is applied with parame-
ter b = 2 to generate R′io from Rio . Since s?(Rio) is poly-logarithmic, t is poly-log-logarithmic
in n, and therefore s?(R′io) = s?(Rio+1) is also poly-log-logarithmic in n. Since d?(Rio+1) is
constant, it follows that

(4.25)

(
s?(Rio+1) + d?(Rio+1)

d?(Rio+1)

)
≤ log1−β n

Setting K
.
=io + 2, we have that K = O(1/(1− β)) is constant and that Inequality (4.22)

clearly holds for RK−1 = Rio+1.

The lower – upper-degree gap remains. Going fromRK−1 toR′K−1, the CR constructor
applies the linearization extension-procedure to each active domain of RK−1. This procedure
is only applicable to domains where the lower-degree is not greater than the upper-degree,
hence we must show that s?(RK−1) ≤ r?(RK−1).

Let us compute how s?(Ri+1)/r?(Ri+1) behaves with respect to s?(Ri)/r?(Ri) for 0 ≤ i <
K−1. Let bi denote the b-parameter with which the power-substitution extension-procedure is
applied to the active domains of Ri to obtain R′i, and let ti denote the associated t-parameter.
According to Proposition Proposition 4.19,

s?(Ri+1)

r?(Ri+1)
=
s?(R′i)
r?(R′i)

≤ s?(Ri) · d?(Ri)ti(bi − 1)

r?(Ri)
= O

(
s?(Ri)

r?(Ri)
· tibi

)

36 Dinur et al.

hence the ratio between the active lower-degree and the active upper-degree is consumed by
a factor of up to O(tibi) in the transition from Ri to Ri+1.

Let us bound tibi. By the choice of the parameters bi it follows that ti ≤ log1−β n for all i.
According to the above computations of s?(Ri), for 0 ≤ i < K − 3

bi = (s?(Ri) + 1)1/ log1−β n =
(

2Θ(logβ−i(1−β) n)
)1/ log1−β n

= 2Θ(logβ−(i+1)(1−β) n) = 2O(logβ−(1−β) n)

and therefore tibi = 2O(logβ−(1−β) n). For i = K − 3 or i = K − 2, bi = O(1) so in these cases
tibi is poly-logarithmic in n.

The initial lower-degree upper-degree fraction is s?(R0)/r?(R0) = |F|c1−c2 = 2−Θ(logβ n).

This fraction is consumed in each of the constant number of iterations by either 2O(logβ−(1−β) n)

or a poly-logarithm, hence s?(RK−1)/r?(RK−1) = 2−Θ(logβ n) and in particular s?(RK−1) <
r?(RK−1), as desired.

The CR constructor takes polynomial time. We need to show that the CR constructor
takes polynomial time in |F|d(F). Since

|F|d(F) =
(

2logβ n
)Θ(log1−β n)

= nΘ(1)

this is equivalent to showing that it takes polynomial time in n. The proof is by showing
that the generation of each LDF-reader Ri in the sequence R0,R′0,R1,R′1, . . . ,RK takes
polynomial time in n and in the size of the predecessor of Ri (clearly the time it takes to
generate the final LDF-reader from RK is polynomial in the size of RK). This implies that
the CR constructor indeed takes polynomial time.

Generating R0. The CR constructor generates R0 using the SP constructor, which does
take time polynomial in |F|d(F).

Generating Ri for 0 < i ≤ K. The CR constructor generates Ri by applying the compo-
sition procedure to R′i−1. As mentioned in Subsection Section 4.5, this takes polynomial time
in the size of R′i−1.

Generating R′i for i < K − 1. The CR constructor generates R′i by applying the power-
substitution extension-procedure to all active domains of Ri. The time it takes is bounded by
the size of Ri times the time needed for each application of the extension-procedure. By the
definition of extension-procedures, each such application takes polynomial time in |F|d?(R′i).
According to Proposition Proposition 4.19, d?(R′i) = d?(Ri)ti = O(ti) ≤ O(log1−β n) where

ti is as denoted in the degree-gap computation, hence |F|d?(R′i) = nO(1). Therefore each
application of the extension procedure takes polynomial time in n, as needed.

Almost polynomially small error PCP 37

Generating R′K−1. The difference between the generation of R′K−1 and that of the other
R′i’s, is that the linearization extension-procedures is applied to each active domain instead of
the power-substitution extension-procedure. Each such application still takes polynomial time
in |F|d?(RK−1) but here d?(R′K−1) is calculated according to Proposition Proposition 4.20,

d?(R′K−1) =

(
s?(RK−1) + d?(RK−1)

d?(RK−1)

)
≤ log1−β n

|F|d?(RK−1) is therefore still polynomial.

(ρ, ε)-parameters of the CR constructor. We now show thatR has parameters (ρ,O(ρ4−K/3))
for all ρ’s that satisfy ρ > (r/|F|)cgd. We first prove by induction that for all i, Ri is
a restricted (ρ,O(ρ4−i/3))-LDF-reader: For R0 it follows directly from Lemma Lemma 4.2.
Assume now that Ri−1 is a restricted (ρ,O(ρ4−i+1/3))-LDF-reader. The extension proposi-
tion (Proposition Proposition 4.18) implies that R′i−1 has the same parameters. Since Ri is
generated from R′i−1 by the composition procedure, Lemma Lemma 4.21 yields that Ri is
a restricted (ρ,O(ρ4−i/3))-LDF-reader, as desired (the O notation here is justified since we
only make a constant number of steps in the induction). Note that the requirement over ε in
Lemma Lemma 4.21 holds here, since we apply it with ε3/4 = O(ρ4−i) ≥ ρ > (r/|F|)cgd.

By the above induction, RK is a restricted (ρ,O(ρc))-LDF-reader for c
.
=4−K/3. To show

that R has the same parameters, we define for each assignment A of R an active-feasible
assignment A′ for RK , such that an RK-local-reader is ρ-erroneous with respect to A′ if and
only if the R-local-reader generated from it is ρ-erroneous with respect to A. This would
imply that R has the same (ρ, ε) parameters as RK .
A′ differs from A only on active domains of RK – for an active domain G and a variable

G[(u1, . . . , ud)] in it we define

A′(G[(u1, . . . , ud)])
.
=

d∑
i=1

A(Gi)ui

where the Gi’s are the new variables added in the generation of the final CR constructor. A′
assigns to each active domain G a linear LDF represented by the assignment of the Gi’s, and
is hence active-feasible. It is clear from the construction of R that a local-reader of RK is
ρ-erroneous with respect to A′ if and only if the R-local-reader obtained from it is ρ-erroneous
with respect to A.

5. The Sum-Check

In this section we prove the Sum-Check Lemma, Lemma Lemma 3.1. A reduction algorithm is
shown that given a system Ψ of n quadratic-equations, with up to n variables in each equation,
generates a system Ψsc whose variables belong to domains, and where every equation accesses
only a constant number of variables. The reduction of Ψ into Ψsc is gap-preserving with respect
to certain restricted sets of assignments. That is, if Ψ is completely satisfiable then Ψsc can

38 Dinur et al.

be completely satisfiable by a good assignment to its domains (see Definition Definition 2.6);
and if there is no assignment for Ψ that satisfies more than a 2

|F| fraction of its equations,

then no feasible assignment for Ψsc can satisfy more than a 2
|F| fraction of its equations as

well.
The reduction begins with the given system Ψ0

.
=Ψ, and puts it through a constant number

(O(1
1−β)) of transformations, obtaining a sequence Ψ0,Ψ1, . . . ,Ψl of equation-systems, where

the final system, Ψsc, is generated by a small alteration of Ψl. The number of variables in
each equation decreases gradually throughout the sequence from up to n in Ψ0, to a constant
in Ψl.

We continue as follows. The next subsection defines the structure of a restricted equation-
system. The transformation of each restricted equation-system Ψi into Ψi+1 (the transforma-
tion of Ψ0 into Ψ1 is an exception) is performed by an algorithm that is described in Subsec-
tion Section 5.2. This algorithm is used for the transformation of each intermediate system into
the next, however a crucial part of the algorithm, called the representation-procedure, varies
in different transformations. A representation-procedure is defined in Subsection Section 5.2,
and Subsection Section 5.3 describes the properties of the different representation-procedures
used, and of the algorithm which transforms Ψ0 into Ψ1. The complete reduction of Ψ into
Ψsc is finally described in Subsection Section 5.4.

The following subsections are dedicated to proving the correctness of the reduction (Sub-
section Section 5.5), and to the description and correctness proofs of the product-check and
the representation-procedures used (Subsections Section 5.6, Section 5.7, Section 5.8, and
Section 5.9).

5.1. Restricted Equation-Systems. All the systems Ψi, i = 1, 2, . . . , l, in the sequence
generated by the reduction algorithm have a similar structure. The following is an exact
definition thereof.

Definition 5.1 (restricted equation-systems). A restricted equation-system Ψ, is a quadratic
equation-system where some domains are considered active. The dimension, and the upper
and lower-degree parameters of the active domains must all be the same. These parameters
are called the active dimension, active upper-degree and active lower-degree of Ψ, and are
denoted by d?(Ψ), r?(Ψ) and s?(Ψ) respectively.

Each equation ψ ∈ Ψ is written in the form “ψ? = ψc”. ψ? is called the active part of ψ
and ψc is called the core of ψ. While ψc may contain any variable of Ψ, including variables
from any active domains, and can have quadratic as well as linear terms, ψ? contains only
linear terms and the variables in it must all be from one active domain, called the active
domain of ψ and denoted by Dom?(ψ). The variables that appear in ψ? are called the active
variables of ψ.

Note that here the meaning of active domain is different, yet similar, to the one used in
Section Section 4.

The equations in all intermediate equation-systems will have only a constant number of
variables in their core – all other variables appear in the active part of the equations. It is

Almost polynomially small error PCP 39

hence useful to denote the number of variables in the core of an equation and the number of
active variables by different names.

Definition 5.2 (active and core-dependency). Let Ψ be a restricted equation-system. The
active-dependency of an equation ψ ∈ Ψ, denoted by D?(ψ), is defined as the number of
variables in ψ?. The core-dependency of ψ, Dc(ψ), is defined as the number of variables in ψc.
The active-dependency of Ψ, denoted by D?(Ψ), is the maximum of D?(ψ) over all equations
ψ ∈ Ψ. The core-dependency of Ψ is denoted Dc(Ψ), and is defined similarly.

As mentioned above, the core-dependency parameters of all the restricted equation-systems
in the sequence Ψ1, . . . ,Ψl are constants. The active-dependency parameter is decreased
gradually until it becomes constant in Ψl. The total number of variables in an equation of
Ψl is therefore constant, as required by Lemma Lemma 3.1 (this property is preserved in the
final transition from Ψl to Ψsc).

5.2. The Main Transformation-Scheme. The transformation of each restricted equation-
system Ψi into the next is done by substituting each equation ψ of Ψi by a “representation”
containing several new equations. The transformations of Ψi into Ψi+1 where i = 1, . . . , l − 1
are in fact of a more specific structure, and are carried out by the system-representation algo-
rithm. An important part of this algorithm is the application of a representation-procedure to
each equation in the system (a different representation-procedure is used for different transfor-
mations). This procedure is applied to each of the equations in the system, replacing it with a
set of conjunctions over both old and newly generated variables. The conjunction will main-
tain consistency between the values of the new variables and that of the old ones, and thus
consistency between the equations of the system. We now define a representation-procedure,
and then describe the system-representation algorithm.

Representation-procedures. A representation-procedure is an algorithm that is applied
to an equation ψ and produces a set Eψ of conjunctions of equations, and a new domain
denoted by Dom?(Eψ) (the new conjunctions have variables from Dom?(Eψ)).

The conjunctions of Eψ represent ψ in the sense that they are only satisfied by extensions
to Dom?(Eψ), of assignments that also satisfy ψ – feasible assignments which do not satisfy ψ
will satisfy almost none of the conjunctions in Eψ.

For i = 1, . . . , l, Ψi+1 is obtained from Ψi by applying a representation-procedure to
each equation ψ ∈ Ψi, generating a system Ψ′i of conjunctions which is the union of the
sets {Eψ}ψ∈Ψi

. Ψi+1 is then generated by replacing the conjunctions with equations as in
Proposition Proposition 3.7. If the representation-procedure generates conjunctions with a
small number of variables, then the dependency parameter of Ψi+1 will be smaller than that
of Ψi (eventually the dependency is constant). Also, the active-domains of Ψi+1 are set to be
the new domains generated by the representation-procedure, and hence the active parameters
of Ψi+1 are changed. Actually the reduction generates domains with different parameters,
contrary to a requirement in Lemma Lemma 3.1. This is rectified by applying a simple
technical method at the end of the reduction, that makes all the domains uniform.

40 Dinur et al.

An [s, d]-representation-procedure. An [s, d]-representation-procedure is an algorithm
A that receives as input an equation ψ in a restricted equation-system Ψ, and generates a set
Eψ of conjunctions of quadratic-equations that “represent” ψ. It also generates a new domain
denoted Dom?(Eψ) – the conjunctions in Eψ may have variables from Dom?(Eψ) in addition
to any variables of Ψ. For a conjunction χ ∈ Eψ we define the active domain of χ to be
Dom?(χ)

.
=Dom?(Eψ). The variables of χ that are from the domain Dom?(χ) are called the

active variables of χ.

The parameters r(Dom?(ψ)), s and d determine the parameters of the new domain, namely
Dom?(Eψ) must satisfy r(Dom?(Eψ)) = r(Dom?(ψ)), s(Dom?(Eψ)) = s, and d(Dom?(Eψ)) = d.

The running time of A should be polynomial in |F|d = |Dom?(Eψ)| and the size of ψ.

Extension and restriction properties. For the conjunctions in Eψ to properly represent
ψ, it is required that A has the following extension and restriction properties:

◦ Extension Property: For every good assignment A for Ψ that satisfies ψ there should
be an s-degree LDF such that if it is assigned to Dom?(Eψ), all the conjunctions in Eψ
are satisfied.

◦ Restriction Property: If a feasible assignment for Ψ and for Dom?(Eψ) satisfies at least

an |F|−1/2 fraction of the conjunctions in Eψ, then ψ is satisfied as well.

Uniformity. It is required that the parameters s and d be functions of Ψ alone, so that the
parameters of Dom?(Eψ) are the same for all equations ψ ∈ Ψ to which A is applied. The
number of conjunctions in Eψ should also be independent of ψ (and be a function of Ψ alone).
The number of equations in each conjunction of Eψ should all be the same, and they must
be independent of ψ as well. In addition we require that the number of equations in each
conjunction is bounded by O(d).

Conjunction-structure. The conjunctions of Eψ should have the following structure. ψc

may appear at most once in at most one equation of each conjunction χ ∈ Eψ. Except for
the terms in this copy of ψc, all terms must be linear and the number of terms not from the
domain Dom?(Eψ) must be bounded by a constant (that is, a number which is independent of
ψ and Ψ).

The system-representation algorithm. Let us now describe how a restricted equation-
system Ψi is transformed into Ψi+1 using a representation-procedure A.

1. First, A is applied to every equation ψ ∈ Ψi.

2. A system Ψ′i of conjunctions is constructed by taking the union of the sets {Eψ}ψ∈Ψi
.

Note that the number of equations in each conjunction of Ψ′i is the same, and that each
equation of Ψi results in the same number of conjunctions in Ψ′i.

Almost polynomially small error PCP 41

3. Ψi+1 is generated by replacing each conjunction χ ∈ Ψ′i by all linear-combinations of its
equations (with multiplicities, if the same equation occurs more than once). The active
domain of each equation is set to be the same as that of the conjunction from which
it originated. The active variables of such an equation are thus the same as the active
variables of the originating conjunction.

4. For each equation ξ ∈ Ψi+1, ξ? and ξc are defined as follows. The variables from Dom?(ξ)
are moved to the left-hand side of the equation, and the other variables to the right-
hand side (it follows from the properties of A that variables from Dom?(ξ) only appear
in linear terms). The left-hand side of ξ is then defined to be the active part ξ? of ξ,
and the right-hand side is set to be its core, ξc.

Let us examine some of the properties of the system-representation algorithm.

The parameters of Ψi+1. Since the upper-degree parameter of the domains produced
by the representation-procedure A are the same as the active upper-degree of Ψi, we have
r?(Ψi+1) = r?(Ψi). If A is an [s, d]-representation-procedure, then the active domains of Ψi+1

will all have lower-degree s and dimension d, hence s?(Ψi+1) = s and d?(Ψi+1) = d.

Time. The system-representation algorithm takes polynomial time in the size of Ψi and
|F|d?(Ψi+1). Especially note that step 3 is applicable in polynomial time in |F|d?(Ψi+1) and
in the size of Ψi – the uniformity property requires that the number of equations in each
conjunction be bounded by O(d?(Ψi+1)), hence the number of equations produced for each

conjunction is |F|O(d?(Ψi+1)).

Core-dependency. Note that the core-dependency of Ψi+1 is larger by at most a constant
than that of Ψi. Consider an equation ψ′ ∈ Ψi+1 whose origin is an equation ψ ∈ Ψi. It has
the variables of ψc, and at most a constant number of variables not from Dom?(Eψ). The
other variables are from with Dom?(Eψ), and are hence active, so the core-dependency of ψ′

is larger by only a constant than that of ψ.

The gap. The extension and restriction properties of the representation-procedure A that is
used by the system-representation algorithm, ensure that the fraction of satisfiable equations
in Ψi with respect to good or feasible assignments is close to the satisfiable fraction in Ψi+1.
Here is a precise definition of this property.

Definition 5.3 (gap-preserving algorithm). An algorithm that transforms a given equation-
system Ψi into an equation-system Ψi+1 is said to be gap-preserving if it has the following
properties:

◦ Completeness: If Ψi can be completely satisfied by a good assignment then so can Ψi+1.

42 Dinur et al.

◦ Soundness: If a feasible assignment for Ψi+1 can satisfy a γ-fraction of its equations,
then there exists a feasible assignment for Ψi satisfying at least a γ−O(|F|−1/2) fraction
of its equations.

Note that even in a gap-preserving algorithm, the gap is actually consumed by anO(|F|−1/2)
fraction. The reduction deals with this by applying a simple gap amplification technique in
the transformation from the system Ψl into the final system Ψsc.

Proposition 5.4. The system-representation algorithm is gap-preserving.

Proof. Assume that the system-representation algorithm is applied to a restricted equation-
system Ψi using a representation-procedure A, and outputs Ψi+1.

The completeness property is implied from the extension property of A as follows. Suppose
Ψi is satisfied by an assignment A. According to the extension property, A can be extended
to assign for each ψ an s(Dom?(Eψ)) degree LDF to Dom?(Eψ) such that the conjunctions
in Eψ are satisfied. The system of conjunctions Ψ′i, generated by the system-representation
algorithm, is hence satisfied by this extended assignment, and therefore Ψi+1 is satisfied as
well by Proposition Proposition 3.7.

Let us now prove the soundness property. Assume that Ψi+1 is γ-satisfiable by a feasible
assignment A. Then by Proposition Proposition 3.7, Ψ′i is at least γ − |F|−1 satisfied by A.
Recall that the number of conjunctions in the set Eψ is the same for every ψ ∈ Ψi. Hence

for at least a γ − 2|F|−1/2 fraction of the sets Eψ, a |F|−1/2 fraction of the conjunctions
are satisfied: Otherwise the fraction of satisfied conjunctions in Ψi+1 would be less than
γ − 2|F|−1/2 + (1− γ + 2|F|−1/2)|F|−1/2 < γ − |F|−1.

By the restriction property of A, it follows that at least a γ − 2|F|−1/2 fraction of the
equations in Ψi are satisfied by A. The proof is thus completed, noting that the restriction of
A to the variables of Ψi is feasible.

5.3. The Representation-Procedures. We now state the properties of the representation-
procedures that are utilized in reducing Ψ to Ψsc. Only the properties that are needed for the
reduction are discussed – the actual representation-procedures and the proofs of their stated
properties appear later.

Product-check. The product-check algorithm is actually not a representation-procedure.
Its properties are stated here since it is applied to Ψ0 to produce Ψ1. The generated system
Ψ1 is a restricted equation-system with just one domain, which is an active domain. Another
important property of Ψ1 is that its equations are condensed, as defined below. This property
is necessary since the arithmetization representation-procedure is applied to Ψ1 to obtain Ψ2,
and it can only be applied to systems with condensed equations. A more detailed explanation
of the use of condensed equations appears in Subsection Section 5.7, which describes the
arithmetization representation-procedure.

The principal cube of a domain. To define the principal cube we assume that for each
non-negative number s < |F| an arbitrary subset Hs of F is fixed, of size s+ 1. The principal

Almost polynomially small error PCP 43

cube of a domain F is defined to be the subset
(
Hs(F)

)d(F) ⊆ Fd(F).

Definition 5.5 (condensed equations). Let ψ be an equation or a conjunction with an active
domain F , in a restricted equation-system. ψ is said to be condensed if all of its active variables
are associated with points in the principal cube of F . A restricted equation-system where all
of its equations are condensed is called condensed.

Lemma 5.6 (product-check). Let Ψ be a system of n quadratic equations over F , where
there are at most n variables in each equation. There exists a gap-preserving polynomial time
algorithm that given such a system, constructs a restricted equation-system Ψ∗ that has the
following properties:

◦ Dc(Ψ∗) is bounded by a constant.

◦ Ψ∗ has exactly one domain F which is the active domain of all of its equations. The
parameters of F , that also determine the active degree and dimension parameters of Ψ∗,
are r(F) = |F|1/4, s(F) = |F|1/8, and d(F) = Θ(log1−β n).

◦ The equations in Ψ∗ are all condensed.

Arithmetization. The arithmetization representation-procedure uses a technique from Babai
et al. (1991) to generate systems with a reduced active-dependency parameter. Given a con-
densed equation ψ, it produces a representation Eψ where the number of active variables in
each conjunction is a function of the degree and dimension parameters of Dom?(ψ). If these
parameters are small enough, then the active-dependency is decreased. Note that the degree
and dimension parameters themselves are not decreased, hence an iterative application of the
arithmetization representation-procedure would not further reduce the dependency.

Lemma 5.7 (arithmetization). Let Ψ be a restricted equation-system satisfying s?(Ψ)d?(Ψ)+

r?(Ψ) < |F|1/2 and s?(Ψ) > 2, and where all the equations are condensed.
There exists a [2d?(Ψ)s?(Ψ) , d?(Ψ)+1]-representation-procedure called arithmetization,

applicable to the equations of such systems, that generates conjunctions with at most 2d?(Ψ) ·
s?(Ψ) active variables.

Curve-extension. When applied to equations with a small active-dependency parameter,
the curve-extension representation-procedure generates domains with small degree and di-
mension parameters. The active dependency is not reduced (in fact it increases somewhat),
but then the system-representation algorithm is applied to the resulting system using the
arithmetization representation-procedure, and the decrease in the degree and dimension pa-
rameters is utilized to reduce the active dependency as well (note that the arithmetization
representation procedure doesn’t care at all about the active dependency of the equations
it is applied to). By applying the system-representation algorithm using the curve-extension
and the arithmetization representation-procedures alternately, the reduction gradually reduces
the active-dependency, the active degree and the dimension parameters of the intermediate
systems.

44 Dinur et al.

Lemma 5.8 (curve-extension). Let Ψ be a restricted equation-system such that s?(Ψ)D?(Ψ)

and r?(Ψ)D?(Ψ) are smaller than |F|1/2. There exists an [s, d]-representation-procedure called
curve-extension, applicable to the equations of such systems, for

d
.
= min

{
d?(Ψ), log2

(
s?(Ψ) ·D?(Ψ)

)}
and s

.
=d ·max

{(
s?(Ψ) ·D?(Ψ)

) 1
d?(Ψ) , 2

}
that generates only condensed conjunctions.

Linearization. Applying the system-representation algorithm using the linearization representation-
procedure obtains a system with constant active-dependency, as desired. However it is appli-
cable in polynomial time only to systems where the active degree and dimension parameters
are very small (the running time of a representation-procedure is polynomial in the size of
the newly generated domains, which may become very large in the case of linearization).
Hence the reduction generates a sequence of intermediate equation-systems where the ac-
tive parameters are gradually reduced, until they finally become suitable for the linearization
representation-procedure to be applied.

Lemma 5.9 (linearization). Let Ψ be a system such that r?(Ψ)D?(Ψ) and s?(Ψ)D?(Ψ) are

smaller than (|F|1/2)/2.
There exists a [1, s?(Ψ)D?(Ψ)]-representation-procedure called linearization and is ap-

plicable to such systems, that generates conjunctions with at most 4 active variables.

Note that as mentioned above, for the linearization representation-procedure to be applicable
within the reduction, s?(Ψ)D?(Ψ) should be in fact considerably smaller than the above bound

of |F|1/2.

5.4. The Reduction Algorithm of Ψ Into Ψsc. We now state the reduction algorithm
that transforms Ψ into Ψsc, as claimed by Lemma Lemma 3.1. This algorithm is mostly a con-
catenation of the algorithms that were discussed above. Starting with Ψ = Ψ0, the reduction
algorithm applies the product-check algorithm to obtain Ψ1, and from there it continues to use
the system-representation algorithm, applying it a constant (O(1

1−β)) number of times with
different representation-procedures. This yields a sequence of equation-systems Ψ2, . . . ,Ψl.
Ψsc is then obtained from Ψl by a simple transformation.

We next give the sequence of transformations and representation-procedures used to obtain
Ψl from Ψ0, and then describe how Ψsc is obtained from Ψl. In Subsection Section 5.5 it is
shown that this reduction takes polynomial time in n, and that the generated system Ψsc has
the desired properties. Subsection Section 5.5 also shows that although each representation-
procedure is applicable only to systems with certain parameters, the reduction algorithm does
use them correctly.

The sequence of systems. First, the reduction applies the product-check algorithm to
Ψ0 and obtains Ψ1. The next

(
2β

1−β + 4
)

systems§, Ψ2, . . . ,Ψ 2β
1−β+5 are generated, by ap-

§For simplicity of exposition, we assume here that β/(1− β) is an integer.

Almost polynomially small error PCP 45

plying the system-representation algorithm with the arithmetization and the curve-extension
representation-procedures alternately (the arithmetization is used first). The system-representation
algorithm is then applied once more to Ψ 2β

1−β+5 using the arithmetization representation-

procedure, and then finally it is applied once again using the linearization representation-
procedure. The outcome is Ψl, where l

.
= 2β

1−β + 7. Apart from a simple transformation that is
described shortly below, Ψl is the outcome of the reduction.

Properties of Ψl. Before we describe how Ψl is transformed into Ψsc, let us overview its
main properties.

Constant dependency. Ψl has the desired dependency parameter, namely a constant.
Since it is generated using the linearization representation-procedure, it follows from Lemma Lemma 5.9
that its active-dependency parameter is constant. As for the core-dependency, Ψ1 is generated
using the product-check algorithm and therefore by Lemma Lemma 5.6 its core-dependency is
constant. Since the other systems in the sequence Ψ2, . . . ,Ψl, are generated using the system-
representation algorithm, the core-dependency increases only by a constant throughout the
sequence (recall that the sequence is of constant length).

Completeness, and soundness. Since each of the intermediate transformations that were
applied so far are gap-preserving, it follows immediately that the transformation from Ψ = Ψ0

into Ψl is gap preserving as well. Hence Ψl has the following properties:

◦ Completeness: If Ψ can be completely satisfied by a good assignment then so can Ψl.

◦ Weakened Soundness: If Ψ is no more than 2
|F| -satisfiable then Ψl cannot be more than

O(|F|−1/2)-satisfied by a feasible assignment.

From Ψl to Ψsc. Ψl fails to comply with two requirements of Lemma Lemma 3.1: The
parameters of its domains are not all the same, and it has only a weakened soundness property,
which is less than what is required in Lemma Lemma 3.1. The reduction hence transforms
Ψl into Ψsc in two steps. First it resets the degree and dimension parameters of its domains
without changing any of the other properties, and then it applies a simple technique to amplify
the soundness property.

Parameter uniformization. First note that the upper-degree parameter is the same for all
the domains of Ψl since Ψ1 has only one domain, and the representation-procedures generate
domains with the same upper-degree as the active domain of the equation to which they are
applied. Denote this upper-degree by r(Ψsc), and fix s(Ψsc) to be the maximum over all lower-
degrees of domains in Ψl, and d(Ψsc) to be the maximum over all the dimension parameters.
As shown in Subsection Section 5.5, s(Ψsc) is smaller than r(Ψsc).

The reduction replaces each domain F of Ψl by a new domain F ′ with r(F ′) = r(Ψsc),
s(F ′) = s(Ψsc) and d(F ′) = d(Ψsc). Each variable F [x] which appears in an equation of Ψl

is then replaced by the variable F ′[x′], where x′ is obtained from x by padding it with the
appropriate number of zeros (in case the dimension parameter of F ′ is larger than that of F).

46 Dinur et al.

Note that the completeness and weakened soundness properties of Ψl are not affected by
the uniformization step. Resetting the lower-degree parameter maintains the completeness
property since the lower-degree parameters may only be increased, and it has no effect on
the soundness. The dimension enlargement also preserves the completeness property, as an
LDF that was assigned to a domain before the change of dimension extends naturally to
the larger domain maintaining the same degree, and thus a satisfying assignment can be
translated through the uniformization step. Similarly, a feasible assignment to a domain with
an enlarged dimension translates to a feasible assignment to the original domain by restriction,
thus preserving the values of the variables appearing in the equations, and therefore the
weakened soundness property is also maintained.

Soundness amplification. To amplify the soundness of Ψl the reduction first generates all
conjunctions of three (not necessarily distinct) equations from Ψl. It then replaces each such
conjunction with the set of all linear-combinations over its equations. The set of equations of
Ψsc is thus

{
3∑
i=1

λiψi : ∀ i λi ∈ F , ψi ∈ Ψl}

Completeness and soundness for Ψsc. Since it is simple to observe that the completeness
property is maintained by the soundness amplification step, let us verify that Ψsc has the
soundness property. Assume then that Ψ is no more than 2/|F|-satisfiable. As mentioned

above, a feasible assignment for Ψl cannot satisfy more than an O(|F|−1/2) < |F|−1/3 fraction
of its equations, and this remains true when the domain-parameters of Ψl are reset. The
fraction of conjunctions of three equations that can be satisfied by a feasible assignment is

hence less than (|F|−1/3)
3

= 1/|F|. It then follows from Proposition Proposition 3.7 that Ψsc

cannot be more than 2/|F|-satisfiable by a feasible assignment (Proposition Proposition 3.7
discusses general assignments but it is easily extendible to feasible assignments).

5.5. The Reduction Works. Based on the stated properties of the representation-procedures,
we now verify that the reduction algorithm described above is applicable, and that the gen-
erated system Ψsc has the required parameters. The completeness and soundness properties
of Ψsc have already been verified. From the properties of Ψl and the construction of Ψsc it is
obvious that the number of variables in the equations of Ψsc is bounded by a constant and
that the parameters of its domains are all the same.

We now compute the active parameters of all the intermediate systems Ψ1, . . . ,Ψl, and at
the same time verify that all representation-procedures are correctly used by the reduction.
The computation will also imply that the parameters of the domains of Ψsc are as required by
Lemma Lemma 3.1, and that the reduction takes polynomial time. For simplicity, we use O
and Θ notations in the computation, where any function that depends solely on β is regarded
as constant.

Almost polynomially small error PCP 47

The active parameters of the intermediate systems. As mentioned above the domains
of Ψsc, as well as the domains in all the intermediate systems, all have the same upper-degree
parameter, namely r(Ψsc). It also equals the active upper-degree of Ψ1, hence r(Ψsc) = |F|1/4.
Let us consider the other parameters of the intermediate systems.

The parameters of Ψ1. Ψ1 is generated from Ψ0 using the product-check algorithm (see
Lemma Lemma 5.6), hence it has the parameters

◦ s?(Ψ1) = |F|1/8

◦ d?(Ψ1) = Θ(log1−β n)

The parameters of Ψ2. Ψ2 is obtained from Ψ1 using the arithmetization representation-
procedure. Note that the parameters of Ψ1 are such that the arithmetization representation-
procedure is applicable. The parameters of Ψ2, as follows from the arithmetization lemma,
are

◦ s?(Ψ2) = 2d?(Ψ1)s?(Ψ1) = Θ(|F|1/8 log1−β n) = 2Θ(logβ n)

◦ D?(Ψ2) = 2d?(Ψ1)s?(Ψ1) = Θ(|F|1/8 log1−β n) = 2Θ(logβ n)

◦ d?(Ψ2) = d?(Ψ1) + 1 = Θ(log1−β n)

The active parameters of Ψ3,Ψ4, . . . ,Ψl−7 (recall that l− 7 = 2β
1−β) are given by the following

proposition.

Proposition 5.10. For i such that 3 ≤ 2i − 1 ≤ l − 8, the active parameters of Ψ2i−1

(generated using the curve-extension representation-procedure) are

◦ s?(Ψ2i−1) = 2Θ(logβ−(i−1)(1−β) n)

◦ d?(Ψ2i−1) = Θ(log1−β n)

and for i such that 4 ≤ 2i ≤ l − 7, the parameters of Ψ2i (that is generated using the
arithmetization representation-procedure) are

◦ s?(Ψ2i) = 2Θ(logβ−(i−1)(1−β) n)

◦ D?(Ψ2i) = 2Θ(logβ−(i−1)(1−β) n)

◦ d?(Ψ2i) = Θ(log1−β n)

Proof. The proposition is obtained by induction over i, calculating the parameters of an
equation-system according to the parameters of the previous system and the properties of the
appropriate representation-procedure. We omit the calculation.

48 Dinur et al.

Note that the systems Ψ2i have parameters such that the curve-extension representation-
procedure is applicable, and that the arithmetization representation-procedure is applicable
for the Ψ2i−1 systems, hence the sequence of transformation is valid up to and including Ψl−7.
From the computations below it is also implied that the representation-procedures used for
generating Ψl−6, . . . ,Ψl are also applicable.

Parameters of Ψl−6. Setting 2i = l − 7 = 2(β
1−β) in the above proposition we obtain

that s?(Ψl−7) = D?(Ψl−7) = 2Θ(log1−β n), and that d? = Θ(log1−β n). Hence according to the
Curve-Extension Lemma (Lemma Lemma 5.8),

◦ s?(Ψl−6) = Θ(log1−β n) ·Θ(1) = Θ(log1−β n)

◦ d?(Ψl−6) = Θ(log1−β n)

Parameters of Ψl−5. The active parameters of this system, that is obtained using the
arithmetization representation-procedure, are

◦ s?(Ψl−5) = Θ(log2(1−β) n)

◦ D?(Ψl−5) = Θ(log2(1−β) n)

◦ d?(Ψl−5) = Θ(log1−β n)

Parameters of Ψl−4. The system Ψl−4, generated using the curve-extension representation-
procedure, has parameters

◦ s?(Ψl−4) = Θ(log1−β n)

◦ d?(Ψl−4) = Θ(log log n)

Parameters of Ψl−3. This system, obtained via the arithmetization representation-procedure,
is the last before the linearization representation-procedure is applied. Its parameters are

◦ s?(Ψl−3) = Θ(log log n · log1−β n)

◦ D?(Ψl−3) = Θ(log log2 · log1−β n)

◦ d?(Ψl−3) = Θ(log log n)

Parameters of Ψl−2. The system Ψl−2, generated using the curve-extension representation-
procedure, has parameters

◦ s?(Ψl−2) = Θ(log log n)

◦ d?(Ψl−2) = Θ(log log n)

Almost polynomially small error PCP 49

Parameters of Ψl−1. This system, obtained via the arithmetization representation-procedure,
is the last before the linearization representation-procedure is applied. Its parameters are

◦ s?(Ψl−1) = Θ(log log2 n)

◦ D?(Ψl−1) = Θ(log log2 n)

◦ d?(Ψl−1) = Θ(log log n)

Parameters of Ψl. Ψl−1 obviously satisfies the conditions of the Linearization Lemma
(Lemma Lemma 5.9). According to the lemma, the parameters of Ψl are

◦ s?(Ψl) = 1

◦ D?(Ψl) ≤ 4

◦ d?(Ψl) = Θ(log log4 n)

The parameters of Ψsc. By the above computations it is possible to deduce the parameters
of the domains of Ψsc. Noting that s?(Ψ2) is the highest active low-degree parameter of all

intermediate systems it follows that s(Ψsc) = s?(Ψ2) = Θ(|F|1/8 log1−β n). Since r(Ψsc) =

|F|1/4, it follows that the requirements over s and r in Lemma Lemma 3.1 hold. The above
computations also imply that the active dimension of all intermediate systems is bounded by
O(log1−β n), and hence d(Ψsc) = Θ(log1−β n) as required.

Polynomial time. Since Ψsc was shown to satisfy all the requirements of Lemma Lemma 3.1,
it is only left to verify that it is obtained from Ψ0 in polynomial time. Ψ1 is obtained in polyno-
mial time, as stated in lemma Lemma 5.6. The other intermediate systems Ψ2, . . . ,Ψl, are ob-
tained by applying the system-representation algorithm. As stated in Subsection Section 5.2,
an application of the system-representation algorithm to a system Ψi−1 takes polynomial time
in the size of Ψi−1 and in |F|d?(Ψi).

According to the computations above d?(Ψi) = O(log1−β n) for all i, so |F|d?(Ψi) is polyno-
mial in n. By induction it is therefore easy to verify that all intermediate systems are produced
in polynomial time in n. The transformation of Ψl into Ψsc obviously takes polynomial time
in the size of Ψl, so the entire reduction takes polynomial time in n.

5.6. The Product-Check Lemma. In this subsection we prove the product-check lemma.
We show an algorithm that transforms a given quadratic-equation system into a restricted
equation-system with one domain, which has a relatively small (with respect to the size of the
field) dimension parameter.

The product-check algorithm actually disposes of all the variables of Ψ, substituting them
by the variables of the new domain F . Each variable of Ψ and each product of two such

50 Dinur et al.

variables is replaced by a variable of the form F [x] that represent it. This is done so that for
every assignment of Ψ there is a good assignment to F , where the value of each variable F [x]
is equal to the value of the corresponding term in Ψ.

However, not every feasible assignment to F indeed represents an assignment of Ψ. Con-
sider two variables of Ψ that are represented by F [x1] and F [x2] in F . There is no guarantee
that the value of the variable F [x] that represents their product is indeed the product of
the values of F [x1] and F [x2]. Each equation of Ψ is hence replicated several times in Ψ∗,
where a “product-test” is added in conjunction to each copy to verify the correctness of the
assignment.

The product-check algorithm.

Setting parameters and generating F . Let h
.
=|F|1/9, and let d

.
=dlogh(n+ 1)e (note that

d = O(log1−β n)). The procedure constructs a new domain F with lower-degree parameter

s(F) = |F|1/8, upper-degree r(F) = |F|1/4, and dimension d(F) = 2d.

Representing terms. The procedure chooses H ⊆ Hs(F) ⊆ F to be an arbitrary set of size
h. It then selects an arbitrary injection v → xv, associating every variable of Ψ with a point
in Hd ⊆ Fd (such an injection exists). The procedure chooses another distinct point xI ∈ Hd

to represent the value 1. Writing points in F2d as pairs (x1, x2) of points in Fd, each variable
v of Ψ is represented in Ψ∗ by F [(xv, xI)], and the product of two variables u, v is represented
by F [(xu, xv)].

Generating conjunctions. The procedure replaces each equation ψ of Ψ by a set Eψ of
conjunctions as follows. Given ψ, it produces one conjunction in Eψ for every point (x1, x2) ∈
F2d, consisting of the following equations:

1. ψ itself, where every product u · v is replaced by F [(xu, xv)] and every variable v in a
linear term is replaced by F [(xv, xI)].

2. The product-test equation F [(x1, xI)] · F [(x2, xI)] = F [(x1, x2)].

From conjunctions to equations. Let Ψ′ denote the system of conjunctions, containing
the union of all the sets Eψ where ψ ∈ Ψ. The system Ψ∗ is generated from Ψ′ by replacing each
conjunction with all linear combinations of its equations, as described in Proposition Propo-
sition 3.7. For every χ ∈ Ψ∗ we set Dom?(χ) to be F .

Observing the construction of the conjunctions and of Ψ∗, one notes that there is at
most one quadratic term in each equation χ ∈ Ψ∗, and at most one more variable in each
equation that is associated with a point outside H2d. These terms (the quadratic term and
the additional variable), and also the constant term of each equation χ are moved, if they
exist, to the right-hand side of ψ and are set to be the core of ψ. The other terms are moved
to the left-hand side, which is set to be the active part of ψ. The active variables of ψ are
therefore all associated with points in H2d.

Almost polynomially small error PCP 51

Proof of correctness. It is easy to observe that the product-check algorithm indeed takes
polynomial time. The generated system Ψ∗ has one domain F , with parameters as stated by
Lemma Lemma 5.6, and its core dependency is bounded by the constant 3 as required. Since

the active variables of equations in Ψ∗ are all associated with points in H2d ⊆
(
Hs(F)

)d(F)
,

namely with points in the principal cube of F , we have that they are all condensed. It is left
to show that the product-check algorithm is gap-preserving.

Completeness. Suppose Ψ is satisfiable by a good assignment A. We show a good assign-
ment A′ for F which represents it, namely that

◦ For every variable v of Ψ, A′(F [(xv, xI)]) = A(v).

◦ F [(x1, xI)] · F [(x2, xI)] = F [(x1, x2)] for every x1, x2 ∈ Fd.
It is easy to observe that an assignment A′ with the above properties will satisfy Ψ∗.

We define an LDF f : Fd → F and then use it to define A′. For points xv ∈ Hd associated
with a variable v of Ψ we set f(xv)

.
=A(v), and we also set f(xI)

.
=1. For points x ∈ Hd not

associated with variables, we arbitrarily set f(x)
.
=0. We extend f over Fd by the unique

extension to an LDF of degree h − 1 in each variable. The total degree of f is therefore
(h − 1)d = O(|F|1/9 log n). A′ will assign to F the LDF g, defined by g(x1, x2)

.
=f(x1)f(x2).

This is a good assignment since g is of total-degree O(|F|1/9 log n) < |F|1/8 (the inequality is
true for large-enough n). The other stated properties of A′ are easy to verify.

Soundness. The next proposition is the first step in proving the soundness property. It
shows that in order for Ψ∗ to be |F|−5/8-satisfiable by a feasible assignment A′, A′ must be
consistent with an assignment A for Ψ. After proving the proposition we show that in that
case A must satisfy almost the same (up to F−1) fraction of the equations in Ψ as A′ does
for Ψ∗.

Proposition 5.11. Let A′ be an assignment of an r(F)-degree LDF g to F . If it satisfies

at least an |F|−5/8 fraction of the equations in Ψ∗, then there is an assignment A for Ψ
such that for every variable v of Ψ, A(v) = g(xv, xI), and for every two variables u, v of Ψ
A(u)A(v) = g(xu, xv).

Proof. Consider an assignment A′ as above, that assigns an LDF g to F and satisfies at
least a |F|−5/8 fraction of the equations of Ψ∗. We define an [r(F), d]-LDF f by f(x)

.
=g(x, xI),

and set an assignment A for every variable v of Ψ by A(v)
.
=f(xv) (hence the first stated

property of A holds).

By Proposition Proposition 3.7, ifA′ satisfies more than an |F|−5/8 fraction of the equations

of Ψ∗, then it satisfies an Ω(|F|−5/8) fraction of the conjunctions in Ψ′. Then, for at least

one of the equations ψ ∈ Ψ, the fraction of satisfied conjunctions in Eψ is at least Ω(|F|−5/8).

By observing the product-test in each conjunction of Eψ, we obtain that for an Ω(|F|−5/8)
fraction of the points (x1, x2) ∈ F2d,

(5.12) f(x1)f(x2) = A′(F [(x1, xI)])A′(F [(x2, xI)]) = A′(F [(x1, x2)]) = g(x1, x2)

52 Dinur et al.

In both sides of the equation we have LDFs of degree at most 2r(F) = O(|F|1/4). Different

LDFs of such parameters may only agree on an O(|F|1/4/|F|) = O(|F|−3/4) fraction of the

points, however the LDFs in Equation (5.12) agree on an Ω(|F|−5/8) fraction and are hence
equal. We therefore have

∀ (x1, x2) ∈ F2d g(x1, x2) = f(x1)f(x2)

and specifically

∀ v, u A(u)A(v) = f(xu)f(xv) = g(xu, xv)

as required.

We now return to the soundness proof of the product-check procedure. Assume that Ψ∗
is γ-satisfiable by a feasible assignment A′, and let us show an assignment A satisfying a
γ − O(|F|−1/2) fraction of the equations in Ψ. We may assume that γ > |F|−1/2 (otherwise
there is nothing to show), and hence there exists an assignment A for Ψ that corresponds to
A′ as in Proposition Proposition 5.11.

The fraction of conjunctions in Ψ′ that are satisfied byA′ is, by Proposition Proposition 3.7,
at least γ − |F|−1. Hence for the same fraction of equations ψ of Ψ, there is at least one
conjunction χ ∈ Eψ which is satisfied by A′. One of the equations in such a conjunction χ
is a copy of ψ where certain terms are replaced. According to Proposition Proposition 5.11
the replaced terms have the same value as the replacing terms, and therefore ψ is satisfied by
A. This implies that at least a γ − |F|−1 > γ − |F|−1/2 fraction of the equations of Ψ′ are
satisfied by A.

5.7. The Arithmetization Representation-Procedure. In this subsection we show how
to reduce the active dependency parameter by using a sum-check technique in the spirit
of Babai et al. (1991). When applied to an equation ψ whose active LDF active domain? has
small degree and dimension parameters, the arithmetization procedure produces a represen-
tation Eψ with small active-dependency.

Basic idea. Let ψ be a condensed equation of the form ψ? = ψc (where ψ? is the active
part of ψ). Then ψ? can be written as a sum

ψ? :
∑
y∈Hsd

κ(y)E[y],

where E is the active domain of ψ, and the elements κ(y) are coefficients . Our goal is to
reduce the active dependency of ψ. For this purpose, the arithmetization procedure generates
a domain F which corresponds to a sum-check LDF. The sum-check LDF encodes a sequence
of partial-sum polynomials, similar to the one used in Babai et al. (1991), for the evaluation
of ψ?. The conjunctions in Eψ will ensure the consistency of these partial-sum polynomials
thereby verifying the original equation.

Almost polynomially small error PCP 53

Notation. We describe the running of the arithmetization representation-procedure over
a given condensed equation ψ in a restricted equation-system Ψ. For shortness we denote
E
.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), and d

.
=d(E).

The sum-check LDF. We define the sum-check LDF of ψ with respect to a given good
assignment A for E. First, we extend κ to an LDF of degree ds over Fd – such an extension
exists and is computable in polynomial time in |F|d < |F |, and hence it is possible to com-
pute the extension within the representation-procedure. We now define d LDFs that encode
different partial sums of ψ?. The sum-check LDF is constructed from these LDFs below.

Definition 5.13 (the sum-check tree). For k = 1, 2, . . . , d, we define a function gk : Fk →
F by

∀x ∈ Fk gk(x)
.
=

∑
y∈Hs(d−k)

κ(x, y)A(E[x, y])

where “x, y” means the concatenation of the vector x and the vector y. The sequence g1, . . . , gd
is called the sum-check tree with respect to A(E).

For an x ∈ Hs
k the value of gk(x) is a partial sum of ψ?. The value of gd at a point x ∈ Fd

is just κ(x)A(E[x]), and hence gd is an LDF of degree at most ds + s = (d + 1)s. It follows
from the above definition that the other gk’s have degree at most (d+ 1)s as well.

The LDFs g1, . . . , gd form a tree of partial sums in the following sense. Consider a tree of
depth d, where every non-leaf node has |F| offsprings, and every node of depth k > 0 is labeled
by a point evaluation of gk. We label the root by

∑
y∈Hsd κ(y)A(E[y]), which is the evaluation

of ψ?. The root has an offspring labeled by g1(z), for each z ∈ F . Note that for z ∈ Hs, g1(z)
is a partial sum of ψ?, and in fact the root-label is the sum of labels of its offsprings that are
assigned g1(z) for z ∈ Hs.

For a non-leaf node that has been labeled gk(x), we label one of its offsprings by gk+1(x, z)
for every z ∈ F . From the definition of the gk’s it follows that for every k < d and x ∈ Fk,

(5.14) gk(x) =
∑
z∈Hs

gk+1(x, z)

Hence the label of each node labeled gk(x) in the tree is the sum of labels of its s+1 offsprings
that are assigned gk+1(x, z) for z ∈ Hs.

The sum-check LDF. We now incorporate all the LDFs g1, . . . , gk into a single LDF
of degree at most (d + 1)s + d ≤ 2ds, called the sum-check LDF. For this purpose, let
Hd−1 = {a1, . . . , ad} be an arbitrary subset of size d in F . The sum-check LDF, denoted by
f , will satisfy

(5.15) f(ak, x1, . . . , xk, 0, . . . , 0) = gk(x1, . . . , xk)

54 Dinur et al.

for every 1 ≤ k ≤ d, and every x = (x1, . . . , xk) ∈ Fk. There exists such an f – for example
it can be defined by

f(x0, x1, . . . , xd)
.
=

d∑
k=1

(∏
i 6=k

x0 − ai
ak − ai

)
· gk(x1, .., xk)

Properties of the sum-check LDF. From Equation (5.15) and the discussion above it
follows that the sum-check LDF has the following properties:

◦
∑

z∈Hs f [(a1, z, 0, . . . , 0)] is the evaluation of ψ?, as follows from the explanation after
Definition Definition 5.13.

◦ For k = 1, 2, . . . , (d− 1) and every (x1, . . . , xk) ∈ Fk

f [(ak, x1, . . . , xk, 0, . . . , 0)] =
∑
z∈Hs

f [(ak+1, x1, . . . , xk, z, 0, . . . , 0)]

as follows from Equation (5.14).

◦ For every (x1, . . . , xd) ∈ Fd,

f [(ad, x1, . . . , xd)] = κ(x1, . . . , xd)A(E[x1, . . . , xd])

as follows from the explanation after Definition Definition 5.13.

The arithmetization representation-procedure. We now give the details of the arith-
metization representation procedure. At first the representation-procedure produces a new
domain F = Dom?(Eψ) with parameters as stated in Lemma Lemma 5.7, namely r(F) = r,
s(F) = 2ds and d(F) = d+1. The procedure generates conjunctions that can only be satisfied
if F is assigned the sum-check f . For each x = (x1, . . . , xd) ∈ Fd the procedure generates one
conjunction, denoted by χ[x], consisting of the following d+ 1 equations:

◦ The root equation: ∑
z∈Hs

F [a1, z, 0, . . . , 0] = ψc

◦ The d− 1 path equations for k = 1, 2, . . . , (d− 1):

F [ak, x1, . . . , xk, 0, . . . , 0] =
∑
z∈Hz

F [ak+1, x1, . . . , xk, z, 0, . . . , 0]

◦ The leaf equation:

F [ad, x1, . . . , xd] = κ(x1, . . . , xd)E[x1, . . . , xd]

Almost polynomially small error PCP 55

Proof of correctness. Let us show that the arithmetization representation-procedure has
the required properties. It is easy to verify that it runs in polynomial time, and that it
generates a domain F = Dom?(ψ) with parameters as required. As for the number of active
variables in each conjunction, there are s + 1 variables from F in the root equation, s + 2
variables in each of the d− 1 path equations, and one variable in the leaf equation. The total
number is therefore s + 1 + (d− 1)(s + 2) + 1 = ds + 2d ≤ 2ds as required. It is left only to
verify the extension and restriction properties.

Extension. Let A be a good assignment for the variables of Ψ. Extend A to F by assigning
the sum-check LDF f to it (f is of degree less than s(F)). From the properties of f stated
above, it easily follows that if ψ is satisfied by A then all the conjunctions of Eψ are also
satisfied by the extension of A.

Restriction. Let A be a feasible assignment for the variables of Ψ and for F , and assume
that at least an |F|−1/2 fraction of the conjunctions in Eψ are satisfied. We define the sum-
check tree g1, . . . , gd and the sum-check LDF f with respect to the assignment of E, as in
Definition Definition 5.13 and Equation (5.15) above. Since now the degree of the LDF

assigned to E may be up to r, the degree of the gk’s can be up to sd+ r < |F|1/2. We claim
that F must be assigned f , at least at the points that matter, as stated in the following claim.

Claim 5.16 (sum-check). Suppose that at least an |F|−1/2 fraction of the conjunctions in
Eψ are satisfied by a feasible assignment. Then for every k, 1 ≤ k ≤ d, and every x =
(x1, . . . , xk) ∈ Fk,

A(F [ak, x1, . . . , xk, 0, . . . , 0]) = gk(x1, . . . , xk)

Before proving the claim we show how it implies the restriction property. Note that the
root equation is common to all the conjunctions in Eψ, and hence it must be satisfied. So
together with the claim we have that the evaluation of ψc equals

∑
z∈Hs f(a1, z, 0, . . . , 0),

which by the properties of the sum-check LDF equals the evaluation of ψ?. Therefore ψ is
satisfied, as required.

Proof of the sum-check claim. For every k, 1 ≤ k ≤ d, we define an [r, k]-degree LDF g′k
by

g′k(x1, . . . , xk)
.
=A(F [ak, x1, . . . , xk, 0, . . . , 0])

For the sake of contradiction, assume that g′k 6= gk for some k, and choose k to be the highest
for which this inequality holds. We distinguish between two cases for k:

◦ k = d: At least an |F|−1/2 fraction of the conjunctions of Eψ are satisfied, and therefore

at least the same fraction of the leaf equations are satisfied. So for at least an |F|−1/2

fraction of the points x ∈ Fd, g′d(x) = A(F [ad, x]) = κ(x)A(E[x]) = gd(x). But
according to our assumption g′d 6= gd and therefore their evaluations can not be equal

on more than an sd+r
|F| < |F|

−1/2 fraction of the points, a contradiction.

56 Dinur et al.

◦ 1 ≤ k < d: At least an |F|−1/2 fraction of the conjunctions of Eψ are satisfied, and
therefore in at least the same fraction of them the k’th path equation is satisfied. It
follows that for at least an |F|−1/2 fraction of the points x = (x1, . . . , xk) ∈ Fk,

g′k(x) = A(F [ak, x1, . . . , xk, 0, . . . , 0]) =

=
∑
z∈Hs

A(F [ak+1, x1, . . . , xk, z, 0, . . . , 0]) =

=
∑
z∈Hs

g′k+1(x1, . . . , xk, z)

By the maximality of k we have that g′k+1 = gk+1, hence for at least an |F|−1/2 fraction
of the points x,

g′k(x) =
∑
z∈Hs

gk+1(x1, . . . , xk, z) = gk(x) (by Equation (5.14))

This is a contradiction to our assumption that g′k 6= gk, since they are both of degree at
most sd+ r and therefore our assumption implies that they can be equal on at most an
sd+r
|F| < |F|

−1/2 fraction of the points.

5.8. The Curve-Extension Representation-Procedure. In this subsection we show the
curve-extension representation-procedure. If it is applied to an equation with a small enough
active-dependency, then the new generated domain has a small active lower-degree parameter,
and for equations with even smaller active-dependency the active dimension parameter be-
comes small as well. The conjunctions that are generated by the procedure are all condensed.

Let us describe the running of the curve-extension representation-procedure over a given
equation ψ. For shortness we denote E

.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), d

.
=d(E), and D

.
=D?(ψ).

The principle of the algorithm. Denote the active variables of ψ by E[x1], . . . , E[xD].
We define below a polynomial vector function of small degree Γ : F → Fd, that goes through
the points x1, . . . , xD. The assignment of the domain F

.
=Dom?(Eψ), generated by the curve-

extension representation-procedure, encodes the restriction of the assignment of E to the
points of the curve Γ.

Variables in F associated with certain points in its principal cube have, in a correct en-
coding, the values of the assignment of E at certain points on Γ. The values at other points
on Γ can be computed by interpolation over these variables of F , making use of the fact that
Γ has a small degree, and hence restricting the assignment of E to its points yields an LDF of
small degree as well. The conjunctions of Eψ use the variables of F to evaluate ψ? and verify
that ψ is satisfied, and they also test whether F is indeed given a correct encoding.

Almost polynomially small error PCP 57

The curve-extension algorithm. At first the representation-procedure produces a new
domain F = Dom?(Eψ) with parameters as stated in Lemma Lemma 5.8, that is

r(F) = r, d(F) = min {d, log2(sD)}, and s(F) = d(F) ·max
{(
s ·D

)1/d
, 2
}

Each element of Eψ will be a conjunction of two condensed equations. One is an equation
ψ′, derived from ψ by replacing each of its active variables with a variable of F that “encodes”
it. The other equation is taken from a set of equations called a curve-verifier. These equations
are not satisfied unless the assignment of F is a correct encoding. Before the construction
of these equations, we define the curve Γ and describe how the assignment of F encodes the
restriction of the assignment of E to the points of Γ.

Definition 5.17 (the curve Γ). LetHsD−1 be an arbitrary subset of F of size sD, and denote
its elements by a1, . . . , asD. Γ : F → Fd is defined to be the (D− 1)-degree polynomial vector
function satisfying

∀ 1 ≤ i ≤ D Γ(ai) = xi

where E[x1], . . . , E[xD] are the active variables of ψ. Γ can clearly be computed in polynomial-
time.

Associating points with a1, . . . , asD. Let
(
Hs(F)

)d(F)
be the principal cube of F . The

procedure chooses an arbitrary subset H ⊆ Hs(F) of size s(F)/d(F) = max
{(
s ·D

)1/d
, 2
}

,

and associates to each point ai in HsD−1 a distinct point yi in Hd(F) (note that Hd(F) is a
subset of the principal cube of F and that it contains at least sD points). Each of the variables
F [yi] will encode the value of E[Γ(ai)]. The active variables of the conjunctions in Eψ will all
be of the form F [yi], so the conjunctions of Eψ are condensed. It is important to note that
any assignment to the variables F [yi] can be extended by interpolation to a good assignment
for F , as is shown below.

Generating the curve-verifier. Suppose E is assigned an LDF g. Then a correct encoding
assigns to F [yi] the value of g at Γ(ai). Since Γ is of degree at most D − 1, if g is of degree s
then g ◦Γ is of degree less than sD− 1. The value of g at any point on the curve Γ can hence
be evaluated by interpolation over its values at Γ(a1), . . . ,Γ(asD) or, if F is assigned a correct
encoding, by interpolation over the variables F [y1], . . . , F [ysD]. This is stated precisely in the
following claim.

Claim 5.18 (curve-interpolation). Let s and D be such that sD < |F|. Then there ex-
ists a polynomial (in |F|) algorithm that receives as input a point x ∈ F and outputs a
coefficient function κx : {a1, . . . , asD} → F with the following property: Every function
f ′ : {a1, . . . , asD} → F has a unique extension to an [sD− 1, 1]-LDF f over F , and f satisfies

∀x ∈ F f(x) =
sD∑
i=1

κx(ai)f
′(ai)

58 Dinur et al.

The curve-verifier will have one equation χ[x] for each point x ∈ F . χ[x] verifies that the
interpolation over F [y1], . . . , F [ysD] using the κx from Claim Claim 5.18 yields the value of
E[Γ(x)], as it should if F is assigned the encoding of a good assignment to E:

χ[x] :
sD∑
i=1

κx(ai)F [yi] = E[Γ(x)]

The next claim shows that the curve-verifier equations cannot be satisfied unless F is
indeed assigned a correct encoding.

Claim 5.19. Let A be a feasible assignment for E and F . Let f be the [sD − 1, 1]-LDF
defined by f(x) =

∑sD
i=1 κx(ai)A(F [yi]), as in Claim Claim 5.18. Then either A(E) ◦ Γ = f ,

in which case all of the curve-verifier equations are satisfied, or less than an |F|−1/2 fraction
of the curve-verifier equations are satisfied.

Proof. Note that an equation χ[x] of the curve-verifier is satisfied if and only if E[Γ(x)] is
assigned f(x). It is thus obvious that these equations will all be satisfied if A(E) ◦ Γ = f . If
this is not the case, then A(E) ◦ Γ and f are in particular two different [rD, 1]-LDFs. Since

rD < |F|1/2 it follows that their evaluations differ on all but less than an |F|1/2/|F| ≤ |F|−1/2

fraction of the points. Hence if A(E) ◦ Γ 6= f , then less than an |F|−1/2 fraction of the
curve-verifier equations can be satisfied.

Generating ψ′. The procedure generates an equation ψ′ by replacing each active variable
E[xi] in ψ? with the variable F [yi]. If F is assigned a correct encoding then ψ′ simulates ψ,
as stated in the following claim.

Claim 5.20. Let A be an assignment for Ψ and for F . Let f be the [sD − 1, 1]-degree LDF
defined by f(x) =

∑sD
i=1 κx(ai)A(F [yi]), as in Claim Claim 5.18, and assume thatA(E)◦Γ = f .

In that case ψ is satisfied by A if and only if ψ′ is satisfied by it.

Proof. According to the definition of Γ, Γ(ai) = xi for i = 1, . . . , D. Hence it follows from
the assumption that A(E[xi]) = A(E[Γ(ai)]) = f(ai) for every i, 1 ≤ i ≤ D. But according
to Claim Claim 5.18 f(ai) = A(F [yi]) for every i. Therefore the assignment of every active
variable E[xi] equals the assignment of F [yi]. The claim immediately follows.

Generating Eψ. The set Eψ is composed of all the conjunctions of ψ′ and an equation χ[x]
of the curve-verifier.

Proof of correctness. The domain F that is generated by the curve-extension representation-
procedure has the parameters required by Lemma Lemma 5.8, and the conjunctions of Eψ are
all condensed. It is also easy to verify that the curve-extension representation-procedure takes
polynomial time in the size of ψ and in |F |. To complete the proof of Lemma Lemma 5.8 it
remains to show that Eψ has the extension and restriction properties. The other properties
required of a representation-procedure are obvious.

Almost polynomially small error PCP 59

◦ Extension: Let A be a good assignment for the variables of Ψ that satisfies ψ. We extend
A by assigning an s(F)-degree LDF to F such that all the conjunctions of Eψ are satisfied.
The LDF g, to be assigned to F , is defined as follows. First, let g(yi)

.
=A(E[Γ(ai)]) for

i = 1, . . . , sD. Since all the yi’s are contained in Hd(F), there exists an extension of g to
an LDF over Fd(F) of degree at most s(F)/d(F) in each variable. The total degree of
this g is hence at most s(F). We assign g to F . Then A(F [yi]) = A(E[Γ(ai)]) for every
i, and so Claim Claim 5.20 implies that ψ′ is satisfied.

Let f be the [sD − 1, 1]-LDF defined by f
.
=A(E) ◦ Γ. Then by Claim Claim 5.18,

∀x ∈ F f(x) =
sD∑
i=1

κx(ai)f(ai) =
sD∑
i=1

κx(ai)A(E[Γ(ai)])

=
sD∑
i=1

κx(ai)A(F [yi])

where the coefficients κx(ai) are as in Claim Claim 5.18. It hence follows that the curve-
verifier equations are all satisfied by the extended A. Since Eψ consists of conjunctions
of ψ′ and equations of the curve-verifier, we have that all of its conjunctions are satisfied.

◦ Restriction: Let A be a feasible assignment for the variables of Ψ and for F , and assume
that at least an |F|−1/2 fraction of the conjunctions in Eψ are satisfied by A. Since ψ′

appears in every conjunction of Eψ, ψ′ is satisfied, and at least an |F|−1/2 fraction of the
curve-verifier equations are satisfied as well.

Define an (sD − 1)-degree LDF f by

∀x ∈ F f(x)
.
=

sD∑
i=1

κx(ai)A(F [yi])

where the coefficients κx(ai) are as in Claim Claim 5.18. It follows from Claim Claim 5.19
that A(E) ◦ Γ = f . Since ψ′ is satisfied, it then follows from Claim Claim 5.20 that ψ
is satisfied as well, thereby proving the restriction property.

5.9. The Linearization Representation-Procedure. In this subsection we show the
Linearization representation-procedure. It is the final representation-procedure used in the
sequence of transformations, resulting in a system of a constant active-dependency parameter.

The linearization representation-procedure is similar to the curve-extension. When ap-
plied to an equation ψ, it uses the newly generated domain to encode the restriction of
the assignment of Dom?(ψ) to a curve that contains the active variables of ψ. The curve-
extension representation-procedure encoded directly the assignment at only some points of
the curve; to obtain other evaluations it applied interpolation by computing an appropriate
linear-combinations over the encoded values.

The linearization representation-procedure applies a method of Arora et al. (1998), using
the newly generated domain to encode all linear-combinations of these values. Hence each

60 Dinur et al.

curve-verifier equation requires just one active variable of the new domain. Also, since the
active part of ψ is a linear-combination of variables associated with points on the curve, ψ?
can also be evaluated using one access to the new domain.

The linearization representation-procedure. We now describe the linearization representation-
procedure. We fix the notations E

.
=Dom?(ψ), r

.
=r(E), s

.
=s(E), d

.
=d(E), and D

.
=D?(ψ). The

linearization representation-procedure first generates a new domain F with parameters as
stated in Lemma Lemma 5.9, that is

r(F) = r, s(F) = 1, and d(F) = sD

In each conjunction in Eψ there will be an equation ψ′, that is derived by replacing the active
part of ψ with a variable of F that encodes it. Another equation in each conjunction is
taken from a set of equations called a linearization-verifier, that are not satisfied unless F is
assigned a homogeneous linear-LDF. As in the curve-extension representation-procedure, the
last equation in each conjunction is taken from a set called the curve-verifier, whose equations
are not satisfied unless the assignment of F is a correct encoding.

Generation of the linearization-verifier. The linearization-verifier has one equation
χ[y, t] for every y ∈ Fd(F) and t ∈ F :

χ[y, t] : tF [y] = F [ty]

Claim 5.21. unless F is assigned a linear homogeneous LDF, the number of satisfied equa-
tions of the linearization-verifier is Ω(|F|1/2).

Proof. We consider the polynomials g(t, y) = F [ty] and h(t, y) = tF [y], both on one more
variable than F . Then either g ≡ h or they agree in at most 2r(F)/|F| places (since the
degree of g is at most 2r(F) and the degree of h is at most r(F)+1. In the second case we are

done, since the size of the agreement is less than O(|F|1/2). In the first case the polynomial
F (ty) coincides with tF (y). This polynomial equation, by comparing the individual terms,
implies that F is linear and homogeneous.

The curve Γ. Write the active part of ψ as

ψ? :
D∑
i=1

αiE[xi](5.22)

As in the curve-extension representation-procedure, we define a curve Γ : F → Fd which goes
through the points associated with the active variables of ψ.

Almost polynomially small error PCP 61

Definition 5.23 (the curve of ψ). Let HsD−1 = {a1, . . . , asD} be an arbitrary subset of F .
Define Γ : F → Fd to be the vector of (D − 1)-degree polynomial functions satisfying

∀ 1 ≤ i ≤ D Γ(ai) = xi

Given an assignment A for E, the assignment of F is used as an encoding of A(E) ◦ Γ.
Unlike in the curve-extension representation-procedure, the correct encoding here is a linear-
homogeneous LDF.

The encoding. The procedure generates a curve-verifier, whose equations are only satisfied
if the assignment of F is the correct encoding of A(E) ◦ Γ. To define what the correct
encoding is, suppose E is assigned an s-degree LDF g. The LDF g ◦ Γ : F → F , which is to
be encoded by the assignment of F , has degree at most sD − 1. Its encoding is the following
linear-homogeneous LDF, Lg:

(5.24) ∀ (y1, . . . , ysD) ∈ F sD Lg(y1, . . . , ysD)
.
=

sD∑
i=1

yig(Γ(ai))

The next claim shows how g ◦ Γ can be reconstructed, given Lg.

Claim 5.25 (linearizing-interpolation). Let g be an [s, d]-LDF, and for i = 1, . . . , sD, let γi
be the [sD − 1, 1]-LDF satisfying γi(ai) = 1 and γi(aj) = 0 for every j 6= i.

Then the polynomial vector function γ̂ = (γ1, . . . , γsD) satisfies Lg ◦ γ̂ = g ◦Γ, where Lg is
as defined in Equation (5.24).

Proof. Lg is linear, hence Lg ◦ γ̂ is of degree at most sD − 1. Since it follows from the
definition of Lg that Lg ◦ γ̂(ai) = g(Γ(ai)) for i = 1, . . . , sD, we obtain that Lg ◦ γ̂ = g ◦ Γ
(also recall that g ◦ Γ is of degree at most sD − 1).

Generating the curve-verifier. It follows from Claim Claim 5.25 that if an assignment
A assigns a good LDF to E and assigns its encoding to F , then A(F [γ̂(x)]) = A(E[Γ(x)]) for
every x ∈ F . To verify that F is assigned a correct encoding, the representation-procedure
generates one equation χ[x] in the curve-verifier for every x ∈ F as follows:

χ[x] : F [γ̂(x)] = E[Γ(x)]

where the vector-function γ̂ is as defined in Claim Claim 5.25.

The following claim shows that indeed the curve-verifier equations are not satisfied unless the
assignment for F is a correct encoding, in the sense that A(F) ◦ γ̂ = A(E) ◦ Γ. It is assumed
that F is assigned a linear LDF, since otherwise the linearization-verifier equations cannot be
satisfied.

62 Dinur et al.

Claim 5.26. Let A be a feasible assignment for E and F , assigning a linear homogeneous
LDF to F . Then less than an |F|−1/2 fraction of the curve-verifier equations are satisfied
unless A(F) ◦ γ̂ = A(E) ◦ Γ. In the latter case all of the curve-verifier equations are satisfied,
and moreover,

(5.27) ∀ (y1, . . . , ysD) ∈ F sD A(F [y1, . . . , ysD])
.
=

sD∑
i=1

yiA(E[Γ(ai)])

Proof. Assume that at least an |F|−1/2 fraction of the equations χ[x] are satisfied. This

means that A(F [γ̂(x)]) = A(E[Γ(x)]) for at least an |F|−1/2 fraction of the x’s. Since A(F)◦ γ̂
is an LDF of degree at most sD − 1 < |F|−1/2 and A(E) ◦ Γ is an LDF of degree at most

r(D − 1) < |F|−1/2, this implies that A(F) ◦ γ̂ = A(E) ◦ Γ.
In this case it follows that A(F [γ̂(x)]) = A(E[Γ(x)]) for every x ∈ F , and hence the

equation χ[x] is satisfied. In addition, since in particular A(F [γ̂(ai)]) = A(E[Γ(ai)]) for every
ai, i = 1, . . . , sD, one obtains from the definitions of Γ and γ that Equation (5.27) holds for
all unit vectors. By the linearity of the assignment for F , it follows that Equation (5.27) holds
for all points.

Generating ψ′. The procedure now generates the equation ψ′ from ψ by replacing its active
part by just one variable. Specifically, ψ′ is obtained from ψ by removing ψ? and replacing it
by F [y∗], where y∗

.
=(α1, α2, . . . , αD, 0, 0, . . . , 0), and the αi’s are the coefficients that appear in

the active part of ψ (see Equation (5.22)). The rational behind this replacement is explained
by the following immediate claim.

Claim 5.28. LetA be an assignment forE and F which satisfies Equation (5.27) in Claim Claim 5.26.
Then the value of A(F [y∗]) is the same as the evaluation of ψ?.

Generating Eψ. The linearization representation-procedure constructs the set of conjunc-
tions Eψ as follows. For each triplet (x, y, t) where x, t ∈ F and y ∈ Fd(F), Eψ will have
the conjunction of ψ′, the curve-verifier equation χ[x], and the linearization-verifier equation
χ[y, t].

Correctness of the algorithm. The domain F that is generated by the linearization
representation-procedure has the required parameters, and it is easy to verify that the running
time is polynomial in |F |. To complete the proof of Lemma Lemma 5.9 let us show that Eψ
has the extension and restriction properties, as the other required properties are obvious.

◦ Extension: Let A be a good assignment for the variables of Ψ, that satisfies ψ. Let g be
the [s, d]-LDF assigned to E, and extend A to F by assigning Lg to it. We need to show
that the extended A satisfies the conjunctions of Eψ. According to the construction, it is
enough to show that ψ′ is satisfied and that the curve-verifier and linearization-verifier
equations are satisfied as well.

Almost polynomially small error PCP 63

Since A(F) = Lg is a linear-homogeneous LDF, the linearization-verifier equations are
satisfied by Claim Claim 5.21. Also, g is an s-degree LDF, so by Claim Claim 5.25

A(F) ◦ γ̂ = Lg ◦ γ̂ = g ◦ Γ = A(E) ◦ Γ .

From Claim Claim 5.26 we thus have that all of the curve-verifier equations are satisfied.
Moreover, Claim Claim 5.26 also implies that Equation (5.27) is satisfied, from which,
by Claim Claim 5.28, it follows that the evaluations of ψ? and of F [y∗] are equal. Since
ψ is satisfied, and ψ′ differs from ψ only in the substitution of ψ? by F [y∗], we obtain
that ψ′ is satisfied as well.

◦ Restriction: Let A be a feasible assignment for the variables of Ψ and for F . We assume
that these assignments satisfy at least an |F|−1/2 fraction of the conjunctions in Eψ.

This implies that ψ′ is satisfied, and that at least an |F|−1/2 fraction of the curve-

verifier equations are satisfied, as well as an |F|−1/2 fraction of the linearization-verifier
equations. Let us prove that ψ is satisfied.

Since at least an |F|−1/2 fraction of the linearization-verifier are satisfied, we gather from
Claim Claim 5.21 that F is assigned a linear-homogeneous LDF. Now Claim Claim 5.26
implies that Equation (5.27) holds, and therefore by Claim Claim 5.28, ψ? has the same
evaluation as F [y∗]. Since ψ′ is satisfied, this implies that ψ is satisfied as well.

Acknowledgements

We wish to thank the anonymous referee for the careful reading of this manuscript and for
many helpful comments.

References

M. Alekhnovich, S. Buss, S. Moran & T. Pitassi (1998). Minimum Propositional Proof Length
is NP-Hard to Linearly Approximate. Manuscript.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan & Mario Szegedy (1998).
Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555.
ISSN 0004-5411.

Sanjeev Arora & Shmuel Safra (1998). Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM 45(1), 70–122. ISSN 0004-5411.

Sanjeev Arora & Madhu Sudan (1997). Improved Low Degree Testing and its Applications.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, 485–495. El
Paso, Texas.

L. Babai, L. Fortnow & C. Lund (1991). Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity 1, 3–40.

64 Dinur et al.

M. Bellare, S. Goldwasser, C. Lund & A. Russell (1993). Efficient Multi-Prover Interactive
Proofs with Applications to Approximation Problems. In Proc. 25th ACM Symp. on Theory of
Computing, 113–131.

I. Dinur, E. Fischer, G. Kindler, R. Raz & S. Safra (1999). PCP Characterizations of NP:
Towards a Polynomially-Small Error-Probability. In Proc. 31th ACM Symp. on Theory of Computing.

I. Dinur & S. Safra (1998). Monotone-Minimum-Satisfying Assignment is NP-hard for Almost
Polynomial Factors. Manuscript.

J. Hastad, R. Phillips & S. Safra (1993). A well-characterized approximation problem. Infor-
mation Processing Letters 47, 301–305.

Carsten Lund & Mihalis Yannakakis (1994). On the Hardness of Approximating Minimization
Problems. Journal of the ACM 41(5), 960–981.

R. Raz & S. Safra (1997). A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant
Error-Probability PCP Characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing,
475–484.

Ran Raz (1998). A Parallel Repetition Theorem. SIAM Journal on Computing 27(3), 763–803.

Manuscript received 27 October 2004

Irit Dinur
Department of Math and Computer Science
The Weizmann Institute of Science
Israel
irit.dinur@weizmann.ac.il

Eldar Fischer
The Faculty of Computer Science
Technion
eldar@cs.technion.ac.il
Israel

Guy Kindler
School of Computer Science
The Hebrew University
Israel
gkindler@cs.huji.ac.il

Ran Raz
Department of Math and Computer Science
Weizmann Institute of Science
Israel
ran.raz@weizmann.ac.il

Shmuel Safra
School of Computer Science
Tel Aviv University
Israel
safra@post.tau.ac.il

