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Abstract
Let Λ : {0, 1}n×{0, 1}m → {0, 1} be a Boolean formula of size d, or more generally,

an arithmetic circuit of degree d, known to both Alice and Bob, and let y ∈ {0, 1}m

be an input known only to Alice. Assume that Alice and Bob interacted in the past
in a preamble phase (that is, applied a preamble protocol that depends only on the
parameters, and not on Λ, y). We show that Alice can (non-interactively) commit to y,
by a message of size poly(m, log d), and later on prove to Bob any N statements of the
form Λ(x1, y) = z1, . . . ,Λ(xN , y) = zN by a (computationally sound) non-interactive
zero-knowledge proof of size poly(d, log N). (Note the logarithmic dependence on N).
We give many applications and motivations for this result. In particular, assuming
that Alice and Bob applied in the past the (poly-logarithmic size) preamble protocol:

1. Given a CNF formula Ψ(w1, . . . , wm) of size N , Alice can prove the satisfiability
of Ψ by a (computationally sound) non-interactive zero-knowledge proof of size
poly(m). That is, the size of the proof depends only on the size of the witness
and not on the size of the formula.

2. Given a language L in the class LOGSNP and an input x ∈ {0, 1}n, Alice can
prove the membership x ∈ L by a (computationally sound) non-interactive zero-
knowledge proof of size polylogn.

3. Alice can commit to a Boolean formula y of size m, by a message of size poly(m),
and later on prove to Bob any N statements of the form y(x1) = z1, . . . , y(xN ) =
zN by a (computationally sound) non-interactive zero-knowledge proof of size
poly(m, log N).

Our cryptographic assumptions include the existence of a poly-logarithmic Symmetric-
Private-Information-Retrieval (SPIR) scheme, as defined in [CMS99], and the existence
of commitment schemes, secure against circuits of size exponential in the security pa-
rameter.

∗Supported in part by NSF CyberTrust grant CNS-0430450. Part of this work was carried out while the
author was at IBM T.J.Watson Research, New York.

†Part of this work was carried out while the author was at Microsoft Research, Redmond.
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1 Introduction

The notion of zero-knowledge proofs, first introduced by Goldwasser, Micali and Rack-
off [GMR89], has become one of the central notions of modern cryptography. Goldreich,
Micali and Wigderson showed that for any language L ∈ NP , the membership x ∈ L can be
proved by an interactive zero-knowledge proof of polynomial size [GMW86]. Kilian showed
that for any language L ∈ NP , the membership x ∈ L can actually be proved by a succinct
interactive zero-knowledge argument of poly-logarithmic size [K92] (see also [M94]).1 Can
the same be done non-interactively ?

Two models for non-interactive zero-knowledge proofs were suggested in the literature.
The first model, introduced by Blum, Feldman and Micali [BFM88], is the common random
string model, where one assumes that the prover and the verifier share a common random
string. The second model, introduced by De Santis, Micali and Persiano [DMP88], is the
non-interactive zero-knowledge with preprocessing model, where the prover and the verifier
are allowed to interact in a preamble phase that depends only on the parameters for the
problem (before the prover and the verifier see the actual statement that the prover needs
to prove). We note that the second model is a stronger one, since the prover and the verifier
can use the preamble phase to generate a common random string.

Most works in the literature consider the common random string model. In particular,
Blum, Feldman and Micali showed that if the prover and the verifier share a common random
string, then for any language L ∈ NP , the membership x ∈ L can be proved by a non-
interactive zero-knowledge proof of polynomial size [BFM88]. An outstanding open problem
is to show that the membership x ∈ L can be proved by shorter non-interactive zero-
knowledge arguments.

In this paper, we show that if the prover and the verifier interacted in a (poly-logarithmic
size) preamble phase, then some statements can be proved by relatively short non-interactive
zero-knowledge arguments. In particular, we show that in this model the satisfiability of a
CNF formula Ψ(w1, . . . , wm) of any size can be proved by a non-interactive zero-knowledge
argument of size poly(m), and we show that for any language L ∈ LOGSNP the membership
x ∈ L can be proved by a non-interactive zero-knowledge argument of size polylogn.

1.1 Main Result

Let Λ : {0, 1}n × {0, 1}m → {0, 1} be a Boolean formula of size d, or more generally, an
arithmetic circuit that computes a polynomial of total degree at most d over GF [2]. Assume
that Λ is known to both the prover and the verifier. Let y ∈ {0, 1}m be an input known only
to the prover. Let k be a security parameter and let N be an additional parameter. Our
main result is a protocol that works in 3 phases:

1. Preamble phase: This phase depends only on the parameters d, k, N , and not on Λ
or y. The exchanged messages are of size poly(k, log d, log N) (and so is the complexity
of the parties in this phase).

1An argument is a computationally sound proof.
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2. Commitment phase: In this phase the prover commits to the input y by sending one
message of size poly(m, k, log d) (and so is the complexity of the prover in this phase).

3. Proof phase: In this phase the prover and the verifier are given x1, . . . , xN ∈ {0, 1}n

and z1, . . . , zN ∈ {0, 1}. The prover proves that ∀i : Λ(xi, y) = zi by sending one
message of size poly(d, k, log N). The proof is zero-knowledge and is computationally
sound with soundness exponentially small in k. The proof can then be verified by the
verifier. The complexity of both parties in this phase is poly(d, k, N, |Λ|), where |Λ| is
the size of the arithmetic circuit (or Boolean formula) Λ.

Our protocol works as well in the adaptive case, where y is generated by the (possibly
cheating) prover after the preamble phase, and Λ, x1, . . . , xN , z1, . . . , zN are generated by the
(possibly cheating) prover after the commitment phase.

Note that the size of all messages is at most poly(m, d, k, log N). The main point of the
protocol is the logarithmic dependence of the size of messages on N , and the fact that after
the preamble phase (that doesn’t depend on Λ, y), the protocol is non-interactive. Note that
the complexity of both parties is poly(d, k, N, |Λ|). That is, the complexity of both parties
is polynomial in N and not logarithmic. This is necessary because the parties have to read
x1, . . . , xN and z1, . . . , zN .

We note that the protocol works as well for arithmetic circuits over any finite field. For
simplicity of the presentation, we present our results over GF [2]. We also note that the
protocol works as well when the polynomial computed by the arithmetic circuit Λ is of total
degree at most d only in the second set of variables (i.e., in the y variables). The total
degree in the first set of variables (i.e., in the x variables) can be arbitrarily large. Since any
Boolean formula of size d may be translated into an arithmetic formula of degree d and size
O(d), the result for arithmetic circuits is more general than the one for Boolean formulas.

Our results (including all applications discussed below) rely on several cryptographic
hardness assumptions of “exponential nature”, including the existence of a poly-logarithmic
Symmetric-Private-Information Retrieval (SPIR) scheme, and the existence of commitment
schemes, secure against circuits of size exponential in the security parameter. The “exponen-
tial nature” of our cryptographic assumptions is necessary, because of the “poly-logarithmic
nature” of the communication between the prover and the verifier in our protocol. For a
detailed description of the assumptions that we rely on, see Section 3.2.

In the rest of the introduction we describe several applications and motivations of the
main result. For simplicity of the presentation, we ignore in the rest of the introduction the
security parameter k. The size of all messages and the complexity of the prover and the
verifier depend polynomially on k, and the soundness obtained is always exponentially small
in k.

1.2 Applications

1.2.1 Proofs for Satisfiability of CNF Formulas

Let Ψ(y1, . . . , ym) be a CNF formula of size N , and think of N as significantly larger than
m. It is well known that if the prover and the verifier interacted in a preamble phase, or
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if the prover and the verifier share a common random string, the satisfiability of Ψ can be
proved by a non-interactive zero-knowledge proof of size poly(N) [BFM88]. It follows easily
from our main result that if the prover and the verifier interacted in a preamble phase,
the satisfiability of Ψ can be proved by a non-interactive zero-knowledge argument of size
poly(m), which may be significantly smaller than poly(N).

More generally, if Ψ is of the form

Ψ(y1, . . . , ym) =
N∧

i=1

Ψi(y1, . . . , ym),

where each Ψi is an arbitrary Boolean formula of size poly(m), the satisfiability of Ψ can
be proved by a non-interactive zero-knowledge argument of size poly(m, log N). To prove
this result, we take Λ to be an arithmetic circuit that applies a Boolean formula x on an
input y (it is not hard to construct such a circuit of size and degree poly(m,n)), and we
take x1, . . . , xN to be the N formulas Ψ1, . . . , ΨN , and z1 = . . . = zN = 1. We take y to be a
witness for the satisfiability of Ψ. Both, the commitment phase and the proof phase of our
protocol are unified to be the non-interactive zero-knowledge argument for the satisfiability
of Ψ.

1.2.2 Proofs for Membership in LOGSNP Languages

A related result that we obtain is that there are very short non-interactive zero-knowledge
arguments for membership in LOGSNP languages:

As mentioned before, (if the prover and the verifier interacted in a preamble phase or
if the prover and the verifier share a common random string) for any language L ∈ NP ,
the membership x ∈ L can be proved by a polynomial-size non-interactive zero-knowledge
proof [BFM88]. An interesting class that lays in between P and NP is the class LOGSNP ,
first defined by Papadimitriou and Yannakakis [PY96]. The class LOGSNP contains lan-
guages such as LOG CLIQUE, RICH HYPERGRAPH COVER, DOMINATING TOUR-
NAMENT SET, and many other languages in NP with a relatively short witness-size. In
particular, RICH HYPERGRAPH COVER, and DOMINATING TOURNAMENT SET, as
well as several other languages, are known to be complete languages for LOGSNP [PY96].

In this paper, we show that (if the prover and the verifier interacted in a preamble phase),
for any language L ∈ LOGSNP , the membership x ∈ L can be proved by a non-interactive
zero-knowledge argument of poly-logarithmic size. Interestingly, to prove this result we need
to use our protocol for an arithmetic circuit Λ with degree substantially smaller than its size.

1.2.3 How to Commit to a Formula

An interesting subcase of our main result is obtained when Λ is an arithmetic circuit (of
size and degree poly(m)) that applies a Boolean formula y of size m on an input x of size
n ≤ m. In the commitment phase of our protocol, the prover commits to a Boolean formula
y, by a message of size poly(m). Later on, the prover can prove any N statements of
the form y(x1) = z1, . . . , y(xN) = zN by a non-interactive zero-knowledge argument of size
poly(m, log N).
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The following are examples for situations where such a protocol may be useful. The main
drawback of our protocol, in these contexts, is that it works only for Boolean formulas and
not for Boolean circuits.

• Alice claims that she found a short formula for factoring integers, but of course she
doesn’t want to reveal it. Bob sends Alice N integers x1, . . . , xN and indeed Alice
menages to factor all of them correctly. But how can Bob be convinced that Alice
really applied her formula, and not, say, her quantum computer ? We suggest that
Alice commits to her formula, and then prove that she actually used that formula to
factor x1, . . . , xN .

• We want to run a chess contest between formulas. Obviously, the parties don’t want
to reveal their formulas (e.g., because they don’t want their rival formulas to plan
their next moves according to it). Of course we can just ask the parties to send their
next move at each step. But how can we make sure that the parties actually use their
formulas, and don’t have teams of grand-masters working for them ? We suggest that
the parties commit to their formulas before the contest starts and after the contest
ends prove that they actually played according to the formula that they committed to.

1.2.4 The Fall of the Malicious Formulas

The main task of cryptography is to protect honest parties from malicious parties in inter-
active protocols. Assume that in an interaction between Alice and Bob, Alice is supposed to
follow a certain protocol Λ. That is, on an input x, she is supposed to output Λ(x, y), where
y is her secret key. How can Bob make sure that Alice really follows the protocol Λ ? A
standard solution, effective for many applications, is to add a commitment phase and a proof
phase as follows: Before the interactive protocol starts, Alice is required to commit to her
secret key y. After the interactive protocol ends, Alice is required to prove that she actually
acted according to Λ, that is, on inputs x1, . . . , xN , her outputs were Λ(x1, y), . . . , Λ(xN , y).
In other words, Alice is required to prove N statements of the form Λ(xi, y) = zi. Typically,
we want the proof to be zero-knowledge, since Alice doesn’t want to reveal her secret key.

Suppose that we want the final proof phase to be non-interactive. Thus, Alice has to
prove (non-interactively) N statements of the form Λ(xi, y) = zi. The only known ways to
do that is by a proof of length N · q, where q is the size of proof needed for proving one
statement of the form Λ(xi, y) = zi. Note that N · q may be significantly larger than the
total size of all other messages communicated between Alice and Bob.

Our main result shows that if Λ is a Boolean formula, there is a much more efficient way.
Before the interactive protocol starts, Alice and Bob can apply the preamble phase and the
commitment phase of our protocol. After the interactive protocol ends, Alice can apply the
proof phase of our protocol, and prove to Bob N statements of the form Λ(xi, y) = zi, by
sending one message of size poly(|Λ|, log N).

1.2.5 Proofs of Knowledge of a Witness

Assume that both Alice and Bob have access to a very large database [(x1, z1), . . . , (xN , zN)].
They face a learning problem: Their goal is to learn a small Boolean formula y (or a small
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formula y in some subclass of formulas C, such as DNF formulas) that explains the database.
That is, the goal is to learn y such that y(x1) = z1, . . . , y(xN) = zN . Alice claims that she
managed to learn such a formula y, but she doesn’t want to reveal it. Assume that Alice
and Bob have already applied in the past the preamble phase of our protocol. It follows
easily from our main result that Alice can prove to Bob the existence of such a y by a
non-interactive zero-knowledge argument of size poly(m, log N), where m is the size of y.

To see this, take Λ to be, as before, an arithmetic circuit (of size and degree poly(m)) that
applies a Boolean formula y of size m on an input x of size n ≤ m. Both, the commitment
phase and the proof phase of our protocol are unified to be the non-interactive zero-knowledge
argument that Alice has a formula y that satisfies all equations.

2 Preliminaries

2.1 Notations and Definitions

We denote the security parameter by k. A function µ(k) is negligible in k (or just negligible)
if for every polynomial p(k) there exists a value K such that for all k > K it holds that
µ(k) < 1/p(k).

Throughout this paper, we formulate all the algorithms as (probabilistic) circuits. We
note that the non-uniform model is chosen for convenience, and these algorithms could have
been modeled as (probabilistic) Turing machines as well. For the sake of simplicity, we
slightly abuse notations, and we let a circuit refer both to a single circuit and to a family of
circuits: one for each input length. Also, we let a circuit refer both to a deterministic circuit
and to a randomized circuit. We also let a circuit refer to an interactive (probabilistic) family
of circuits. For example, we denote the prover of our protocol by a single circuit P , where
actually P = {Pn} and each Pn is a probabilistic interactive circuit that takes n bit strings
as input.

2.2 Tools

Our protocol uses a number of different tools and primitives, which are briefly described in
this section.

2.2.1 Private Information Retrieval (PIR)

A Private Information Retrieval (PIR) scheme, a concept introduced by Chor, Goldreich,
Kushilevitz, and Sudan [CGKS98], allows a user to retrieve information from a database in a
private manner. More formally, the database is modeled as an N bit string x = (x1, . . . , xN),
out of which the user retrieves the i’th bit xi, without revealing any information about the
index i. A trivial PIR scheme consists of sending the entire database to the user, thus
satisfying the PIR privacy requirement in the information-theoretic sense. A PIR scheme
with communication complexity smaller than N is said to be non-trivial.

A PIR scheme consists of three algorithms: QPIR, DPIR and RPIR. The query algorithm
QPIR takes as input a security parameter k, the database size N , and an index i ∈ [N ]
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(that the user wishes to retrieve from the database). It outputs a query q, which should
reveal no information about the index i, together with an additional output s, which is kept
secret by the user and will later assist the user in retrieving the desired element from the
database. The database algorithm DPIR takes as input a security parameter k, the database
(x1, . . . , xN) and a query q, and outputs an answer a. This answer enables the user to retrieve
xi, by applying the retrieval algorithm RPIR, which takes as input a security parameter k,
the database size N , an index i ∈ [N ], a corresponding pair (q, s) obtained from the query
algorithm, and the database answer a corresponding to the query q. It outputs a value which
is supposed to be the i’th value of the database.

In this paper we are interested in poly-logarithmic PIR schemes, formally defined by
Cachin et al. [CMS99], as follows.

Definition 1. [CMS99] Let QPIR and DPIR be probabilistic polynomial size circuits, and
let RPIR be a deterministic polynomial size circuit. We say that (QPIR, DPIR, RPIR) is a
poly-logarithmic private information retrieval scheme if there exist constants a′, b′, c′, d′ > 0,
such that:

1. (Correctness:) ∀N , ∀database x = (x1, . . . , xN) ∈ {0, 1}N , ∀i ∈ [N ], and ∀k,

Pr[RPIR(1k, N, i, (q, s), a) = xi | (q, s) ← QPIR(1k, N, i), a ← DPIR(1k, x, q)] ≥ 1−2−a′k,

and the output of QPIR and DPIR is of size ≤ poly(k, log N).

2. (User Privacy:) ∀N , ∀i, j ∈ [N ], ∀k such that 2k ≥ N b′, and ∀adversary A of size 2c′k,
∣∣ Pr[A(1k, N, q) = 1 | (q, s) ← QPIR(1k, N, i)]−
Pr[A(1k, N, q) = 1 | (q, s) ← QPIR(1k, N, j)]

∣∣ ≤ 2−d′k.

In this paper, we use the following equivalent definition for a poly-logarithmic PIR.

Definition 2. Let k be the security parameter and N be the database size. Let QPIR

and DPIR be probabilistic circuits, and let RPIR be a deterministic circuit. We say that
(QPIR, DPIR, RPIR) is a poly-logarithmic private information retrieval scheme if the follow-
ing conditions are satisfied:

1. (Size Restriction:) QPIR and RPIR are of size ≤ poly(k, log N), and DPIR is of size
≤ poly(k, N). The output of QPIR and DPIR is of size ≤ poly(k, log N).

2. (Correctness:) ∀N , ∀k, ∀database x = (x1, . . . , xN) ∈ {0, 1}N , and ∀i ∈ [N ],

Pr[RPIR(k, N, i, (q, s), a) = xi | (q, s) ← QPIR(k,N, i), a ← DPIR(k, x, q)] ≥ 1− 2−k3

.

3. (User Privacy:) ∀N , ∀k, ∀i, j ∈ [N ], and ∀adversary A of size at most 2k3
,

∣∣ Pr[A(k,N, q) = 1 | (q, s) ← QPIR(k, N, i)]−
Pr[A(k,N, q) = 1 | (q, s) ← QPIR(k, N, j)]

∣∣ ≤ 2−k3

.

For the purpose of this paper, it suffices to prove the following claim.

Claim 1. The existence of a poly-logarithmic PIR scheme according to Definition 1 implies
the existence of a poly-logarithmic PIR scheme according to Definition 2.
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Proof of Claim 1. Let (QPIR, DPIR, RPIR) be any poly-logarithmic PIR scheme according
to Definition 1, with constants a′, b′, c′, d′ > 0. Define (Q̃PIR, D̃PIR, R̃PIR) as follows:

1. Q̃PIR(k,N, i) = QPIR(1k′ , N, i)

2. D̃PIR(k, x, q) = DPIR(1k′ , x, q)

3. R̃PIR(k, N, i, (q, s), a) = RPIR(1k′ , N, i, (q, s), a),

where k′ = max
{

b′ log N, k3

a′ ,
k3

c′ ,
k3

d′

}
. We next argue that (Q̃PIR, D̃PIR, R̃PIR) is a poly-

logarithmic PIR scheme according to Definition 2. It is easy to see that the size restriction
property holds. The correctness property follows from the correctness property of Definition 1
and from the fact that k′ ≥ k3

a′ . The user privacy property follows from the user privacy

property Definition 1 and from the fact that k′ ≥ max
{

b′ log N, k3

c′ ,
k3

d′

}
.

2.2.2 Symmetric Private Information Retrieval

In the standard formulation of PIR, there is no concern about how many entries of the
database the user learns. If one makes an additional requirement that the user must learn
only one entry of the database, then this is called a symmetric private information retrieval
(SPIR) scheme.

Definition 3. (Symmetric Private Information Retrieval Scheme): Let (QPIR, DPIR, RPIR)
be a poly-logarithmic PIR scheme according to Definition 2. We say that (QPIR, DPIR, RPIR)
is a symmetric private information retrieval (SPIR) scheme if the additional following con-
dition holds.

• Data Privacy: ∀N , ∀k, ∀q, ∃index i ∈ [N ], such that ∀databases x = (x1, . . . , xN) ∈
{0, 1}N and y = (y1, . . . , yN) ∈ {0, 1}N with xi = yi, and for every deterministic (not
necessarily polynomial size) function R̂ (thought of as the adversary)

∣∣ Pr[R̂(k, N, q, a) = 1 | a ← DPIR(k, x, q)]−
Pr[R̂(k, N, q, a) = 1 | a ← DPIR(k, y, q)]

∣∣ ≤ 2−k3

.

In other words, DPIR(k, x, q) and DPIR(k, y, q) are statistically indistinguishable (with error
≤ 2−k3

). Moreover, if there exists an index i′ ∈ [N ] such that (q, s) ∈ Support(QPIR(k, N, i′))
for some string s (i.e., Pr[(q, s) = QPIR(k, N, i′)] > 0 for some string s), then the data
privacy condition holds with respect to i = i′.2

2We note that if the correctness condition of the PIR scheme was error-free then this statement would
have been a direct consequence of the previous statement. The justification for adding this as a condition, is
that [NP99] gave a general method for converting PIR schemes into SPIR schemes, and every SPIR scheme
obtained from this methodology satisfies this condition.
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Remark 1. Definitions 1, 2 and 3 consider only PIR and SPIR schemes where the database
(x1, . . . , xN) consists of bits (i.e., xi ∈ {0, 1}). In our protocol we use a SPIR scheme where
each xi is a string in {0, 1}t. We can adjust our definition of a poly-logarithmic SPIR
scheme to deal with strings in the straightforward manner. Also, any poly-logarithmic SPIR
scheme (QSPIR, DSPIR, RSPIR) can be easily converted into a poly-logarithmic SPIR scheme

( ~QSPIR, ~DSPIR, ~RSPIR) in which the database consists of strings (rather than bits). This
is done by thinking of the database d as t databases d1, . . . , dt, where dj is the database
in which each entry consists of the j’th bit of the corresponding entry in d. The query
algorithm ~QSPIR is identical to QSPIR. The database algorithm ~DSPIR runs DSPIR t times,
once for each dj. The retrieval algorithm ~RSPIR runs RSPIR t times, once for each answer of
DSPIR. Throughout this paper, when we refer to a SPIR scheme, we think of one in which
the database consists of strings (rather than bits). For the sake of simplicity of notations,
throughout the rest of this section (and in particular in Claim 2, Claim 3, and Corollary 1)
we consider databases that consist only of bits. We note that when considering databases
whose entries are strings, the proofs of Claim 2, Claim 3, and Corollary 1 remain essentially
the same.

Remark 2. A poly-logarithmic SPIR scheme is similar to what is known as
(

N
1

)
-OT

scheme. The difference being in the communication complexity. Namely, a
(

N
1

)
-OT scheme

has communication complexity poly(N, k), whereas a poly-logarithmic SPIR scheme has
communication complexity poly(log N, k).

Claim 2. Let (QPIR, DPIR, RPIR) be a poly-logarithmic PIR scheme according to Defini-
tion 2. Then ∀N , ∀k ≥ log N , and ∀adversary B of size ≤ 2k3

,

Pr[B(k, N, q) = i] ≤ 2

N
,

where the probability is over i ∈R [N ], over q which is distributed according to (q, s) ←
QPIR(k, N, i), and over the random coin tosses of B.

Proof of Claim 2. Assume for the sake of contradiction that there exists N , there exists
k ≥ log N , and there exists an adversary B of size ≤ 2k3

such that

Pr[B(k, N, q) = i | (q, s) ← QPIR(k, N, i)] >
2

N

(where the probability is over i ∈R [N ], over the randomness of QPIR and B). Notice that
for every fixed j ∈ [N ],

Pr[B(k, N, q) = i | (q, s) ← QPIR(k, N, j)] ≤ 1

N

(where the probability is over i ∈R [N ] and over the randomness of QPIR and B). This is
the case since i is a random variable which is independent of q and since i ∈R [N ]. Thus, for
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every fixed j ∈ [N ],

Pr[B(k, N, q) = i | (q, s) ← QPIR(k,N, i)]−
Pr[B(k, N, q) = i | (q, s) ← QPIR(k,N, j)] >

1

N

(where the probabilities are over i ∈R [N ] and over the randomness of QPIR and B). This
implies that for every j ∈ [N ] there exists i ∈ [N ] such that

Pr[B(k, N, q) = i | (q, s) ← QPIR(k,N, i)]−
Pr[B(k, N, q) = i | (q, s) ← QPIR(k,N, j)] >

1

N

(where the probabilities are over the randomness of QPIR and B). This contradicts the
user privacy condition of the underlying PIR scheme, since k ≥ log N , which implies that
1
N
≥ 2−k3

.

Claim 3. Let (QSPIR, DSPIR, RSPIR) be a poly-logarithmic SPIR scheme according to Defi-
nition 3. Then ∀N , ∀large enough k ≥ log N , and ∀adversary B of size ≤ 2k2

,

Pr[B(k, N, q1, . . . , qk) = (i1, . . . , ik)] ≤
(

3

N

)k

,

where the probability is over i1, . . . , ik ∈R [N ], over (q1, . . . , qk) where each qj is distributed
according to (qj, sj) ← QSPIR(k, N, ij), and over the random coin tosses of B.

In the proof of Claim 3 we make use of the following Lemma. The lemma is taken from
a Tech Report by Oded Goldreich, that can be found on his homepage [G05].

Lemma 1. [Goldreich] Fix any two functions F1, F2 : {0, 1}∗ → {0, 1}∗, and fix any two
independent probability ensembles {Ym} and {Zm} such that Ym, Zm ∈ {0, 1}m. Let ρ1(·) be
an upper-bound on the success probability of s1(·)-size circuits in computing F1 over {Ym}.
That is, for every family of circuits {Cm} of size s1(·),

Pr[Cm(Ym) = F1(Ym)] ≤ ρ1(m).

Likewise, let ρ2(·) be an upper-bound on the probability that s2(·)-size circuits compute F2

over {Zm}. For any function ` : N → N, define {Xn} to be the probability ensemble such

that Xn = (Y`(n), Zn−`(n)), and let F be the direct product function defined by F (y, z)
def
=

(F1(y), F2(z)), where |y| = `(|yz|). Then, for every function ε : N → R, the function ρ(·)
defined as

ρ(n)
def
= ρ1(`(n)) · ρ2(n− `(n)) + ε(n)

is an upper-bound on the probability that families of s(·)-size circuits correctly compute F
over {Xn}, where

s(n)
def
= min

{
s1(`(n)),

s2(n− `(n))

poly(n/ε(n))

}
.

Notice that the statement of Lemma 1 is not symmetric with respect to F1 and F2. In the
proof of Claim 3, we make use of Lemma 1, and in particular, we use a careful induction
that capitalizes on the asymmetry of Lemma 1.
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Proof of Claim 3. Assume for the sake of contradiction that there exists N , there exists
a large enough k ≥ log N , and there exists an adversary B of size ≤ 2k2

, such that

Pr[B(k, N, q1, . . . , qk) = (i1, . . . , ik)] >

(
3

N

)k

(1)

(where the probability is over i1, . . . , ik ∈R [N ], over (q1, . . . , qk), where each qj is distributed
according to (qj, sj) ← QSPIR(k, N, ij), and over the random coin tosses of B).

We assume for simplicity, and without loss of generality, that B is a deterministic circuit.
Notice that the parameters k, N can be hardwired into B, and thus we can assume without
loss of generality that

Pr[B(q1, . . . , qk) = (i1, . . . , ik)] >

(
3

N

)k

(where the probability is over i1, . . . , ik ∈R [N ] and over (q1, . . . , qk), where each qj is dis-
tributed according to (qj, sj) ← QSPIR(k, N, ij)).

Fix N and k as above. According to the correctness condition of the SPIR scheme, for
every database x = (x1, . . . , xN) and for every i ∈ [N ],

Pr[RSPIR(k, N, i, (q, s), a) = xi | (q, s) ← QSPIR(k, N, i), a ← DSPIR(k, x, q)] ≥ 1− 2−k3

.

For every i ∈ [N ], we denote by Ei the set of all queries corresponding to the i’th database
entry, for which the correctness condition holds with overwhelming probability (over a uni-
formly chosen database). Precisely,

Ei
def
= {q : ∃s ∈ {0, 1}∗ s.t. (q, s) ∈ Support(QSPIR(k,N, i)) and

Pr[RSPIR(k, N, i, (q, s), a) = xi | x ∈R {0, 1}N , a ← DSPIR(k, x, q)] ≥ 1− 2−k2}.

The correctness condition of the SPIR scheme implies that the following holds.

Claim 4. For every i ∈ [N ],

Pr[q ∈ Ei | (q, s) ← QSPIR(k, N, i)] ≥ 1− 2−k2

. (2)

Proof of Claim 4. Assume for the sake of contradiction that there exists an i ∈ [N ] for
which Inequality (2) does not hold. For convenience, denote by

p
def
= Pr[q ∈ Ei | (q, s) ← QSPIR(k,N, i)].

Then for a uniformly chosen database x ∈ {0, 1}N ,
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Pr[RSPIR(k,N, i, (q, s), a) = xi | (q, s) ← QSPIR(k, N, i), a ← DSPIR(k, x, q)] =

Pr[RSPIR(k,N, i, (q, s), a) = xi | (q, s) ← QSPIR(k, N, i), a ← DSPIR(k, x, q), q ∈ Ei] · p +

Pr[RSPIR(k,N, i, (q, s), a) = xi | (q, s) ← QSPIR(k, N, i), a ← DSPIR(k, x, q), q /∈ Ei] · (1− p) <

p + (1− 2−k2

)(1− p) =

(1− 2−k2

) + 2−k2

p <

(1− 2−k2

) + 2−k2

(1− 2−k2

) =

1− 2−k2 · 2−k2 ≤
1− 2−k3

.

This contradicts the correctness condition of the SPIR scheme.

The database privacy condition of the SPIR scheme implies that the following holds.

Claim 5. For every distinct i, j ∈ [N ], Ei ∩ Ej = ∅.

Proof of Claim 5. Assume for the sake of contradiction that there exist distinct i, j ∈ [N ]
and there exists a query q such that q ∈ Ei∩Ej. This implies that there exist si, sj ∈ {0, 1}∗
such that

1. (q, si) ∈ Support(QSPIR(k, N, i)),

2. (q, sj) ∈ Support(QSPIR(k, N, j)),

3. Pr[RSPIR(k, N, i, (q, si), a) = xi | x ∈R {0, 1}N , a ← DSPIR(k, x, q)] ≥ 1− 2−k2
,

4. Pr[RSPIR(k, N, j, (q, sj), a) = xj | x ∈R {0, 1}N , a ← DSPIR(k, x, q)] ≥ 1− 2−k2
.

Consider the adversary R̂ (that has the values si and sj hardwired into it), that on input
(k, N, q, a) outputs RSPIR(k, N, i, (q, si), a)⊕RSPIR(k, N, j, (q, sj), a). In order to contradict
the data privacy condition of the SPIR scheme, it remains to notice that items (3) and
(4) above imply that for every index ` ∈ [N ] there exist databases x = (x1, . . . , xN) and
y = (y1, . . . , yN) such that x` = y`, xi ⊕ xj 6= yi ⊕ yj, and such that

1. Pr[RSPIR(k, N, i, (q, si), a) = xi | a ← DSPIR(k, x, q)] ≥ 1− 2−k,

2. Pr[RSPIR(k, N, j, (q, sj), a) = xj | a ← DSPIR(k, x, q)] ≥ 1− 2−k,

3. Pr[RSPIR(k, N, i, (q, si), a) = yi | a ← DSPIR(k, y, q)] ≥ 1− 2−k,

4. Pr[RSPIR(k, N, j, (q, sj), a) = yj | a ← DSPIR(k, y, q)] ≥ 1− 2−k.
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Let H(t) be the function that on input (q1, . . . , qt) outputs (i1, . . . , it), such that for every
j ∈ [t], if qj ∈ E` (for some ` ∈ [N ]) then ij = `, and if qj /∈ E1 ∪ . . .∪EN then ij = ⊥. Note
that Claim 5 implies that H(t) is well defined. Recall that according to Claim 4,

Pr[q ∈ E1 ∪ . . . ∪ EN ] ≥ 1− 2−k2

(3)

(where the probability is over (q, s) ← QSPIR(k,N, i) where i ∈R [N ]).
Inequality (3) together with Claim 2, imply that that the following holds.

Claim 6. For every circuit C of size ≤ 2k3
,

Pr[C(q) = H(1)(q)] ≤ 2.6

N

(where the probability is over (q, s) ← QSPIR(k, N, i) where i ∈R [N ]).

Proof of Claim 6. For (q, s) ← QSPIR(k, N, i), where i ∈R [N ], the following holds:

Pr[C(q) = H(1)(q)] =

Pr[C(q) = H(1)(q) | q ∈ E1 ∪ . . . ∪ EN ] · Pr[q ∈ E1 ∪ . . . ∪ EN ] +

Pr[C(q) = H(1)(q) | q /∈ E1 ∪ . . . ∪ EN ] · Pr[q /∈ E1 ∪ . . . ∪ EN ] ≤
Pr[C(q) = H(1)(q) | q ∈ E1 ∪ . . . ∪ EN ] + Pr[q /∈ E1 ∪ . . . ∪ EN ] ≤
Pr[C(q) = H(1)(q) | q ∈ E1 ∪ . . . ∪ EN ] + 2−k2

=

Pr[C(q) = i | q ∈ E1 ∪ . . . ∪ EN ] + 2−k2 ≤
Pr[C(q) = i] (Pr[q ∈ E1 ∪ . . . ∪ EN ])−1 + 2−k2 ≤
2

N
(1− 2−k2

)−1 + 2−k2

<

2.2

N
+

(
1

N

)k

≤
1

N

(
2.2 +

1

3

)
<

2.6

N
,

where the last two inequalities follow from the fact that N ≥ 3 (and k ≥ 2), which in turn
follows from the contradiction assumption (Inequality (1)).

Let m
def
= |q|, and set p(m)

def
= 2.6

N
and ε(m)

def
= 2−k2

. We first prove by induction on t

that circuits of size 2k2
cannot compute H(t)(q1, . . . , qt) with success probability greater than

p(m)t + ε(m)
1−p(m)

. Notice that the induction basis is guaranteed by Claim 6. The induction

step is proved using Lemma 1, with F1 = H(t−1) and F2 = H(1), along with ρ1((t− 1)m) =

p(m)t−1 + ε(m)
1−p(m)

, s1((t−1)m) = 2k2
, and ρ2(m) = p(m), s2(m) = 2k3

, and with `(n) = t−1
t

n.
The fact that we can use Lemma 1 with F2, ρ2, s2, follows from Claim 2, and the fact that
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we can use Lemma 1 with F1, ρ1, s1, follows from the induction hypothesis. Thus, we get
that ρ(tm) is an upper-bound on the probability that s(tm)-size circuit families correctly
compute H(t)(q1, . . . , qt), where

ρ(tm) = ρ1((t− 1)m) · ρ2(m) + ε(m)

=

(
p(m)t−1 +

ε(m)

1− p(m)

)
· p(m) + ε(m)

= p(m)t + ε(m)

(
1 +

p(m)

1− p(m)

)

= p(m)t +
ε(m)

1− p(m)
,

and for every large enough k and t ≤ k,

s(tm) = min

{
s1((t− 1)m),

s2(m)

poly(tm/ε(tm))

}

= min

{
2k2

,
2k3

poly(tm/ε(tm))

}

= min

{
2k2

,
2k3

poly(k2k2)

}

= 2k2

,

as desired.

Notice that for t = k we have

ρ(tm) = p(m)k +
ε(m)

1− p(m)
=

(
2.6

N

)k

+
2−k2

1− 2.6
N

=

(
2.6

N

)k

+
1

(2k)k
(
1− 2.6

N

)

≤
(

2.6

N

)k

+
1

Nk
(
1− 2.6

N

)

=
1

Nk

(
2.6k +

1

1− 2.6
N

)

≤
(

2.7

N

)k

,

where the last inequality holds for large enough k. Therefore, for N and k as above, we get
that for every 2k2

-size circuit C, it holds that

Pr[C(q1, . . . , qk) = H(k)(q1, . . . , qk)] ≤
(

2.7

N

)k

(4)
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(where the probability is over (q1, . . . , qk), where each qj is distributed according to (qj, sj) ←
QSPIR(k, N, ij) and i1, . . . , ik ∈R [N ]).

Thus, for every 2k2
-size circuit C and for (q1, . . . , qk), such that (qj, sj) ← QSPIR(k, N, ij)

and i1, . . . , ik ∈R [N ], the following holds:

Pr[C(q1, . . . , qk) = (i1, . . . , ik)] ≤
Pr[C(q1, . . . , qk) = H(k)(q1, . . . , qk)] + Pr[H(k)(q1, . . . , qk) 6= (i1, . . . , ik)] ≤(

2.7

N

)k

+ k · 2−k2 ≤
(

3

N

)k

,

where the first inequality is a basic probability inequality, the second inequality follows from
Inequality (4) and from Claim 4, and the last inequality follows from the fact that k ≥ log N
and is sufficiently large. This contradicts our assumption (Inequality (1)).

Corollary 1. Let (QSPIR, DSPIR, RSPIR) be a poly-logarithmic SPIR scheme according to
Definition 3. Then ∀N , ∀ large enough k ≥ 2 log N , and ∀adversary B of size ≤ 2k1.5

,

Pr

[
B(k, N, q1, . . . , qk) = (i′1, . . . , i

′
k) s.t. |{j ∈ [k] : i′j = ij}| ≥ k

2

]
<

(
12

N

) k
2

,

where the probability is over i1, . . . , ik ∈R [N ], over (q1, . . . , qk) where each qj is distributed
according to (qj, sj) ← QSPIR(k, N, ij), and over the random coin tosses of B.

Proof of Corollary 1. Assume for the sake of contradiction that there exists N , there
exists a large enough k ≥ 2 log N , and there exists an adversary B of size ≤ 2k1.5

, such that

Pr

[
B(k, N, q1, . . . , qk) = (i′1, . . . , i

′
k) s.t. |{j ∈ [k] : i′j = ij}| ≥ k

2

]
≥

(
12

N

) k
2

(5)

(where the probability is over i1, . . . , ik ∈R [N ], over (q1, . . . , qk) where each qj is distributed
according to (qj, sj) ← QSPIR(k, N, ij), and over the random coin tosses of B).

We show that this contradicts Claim 3, by constructing an adversary B′ of size poly(2k1.5
) <

2( k
2
)
2

, such that

Pr[B′(k, N, q1, . . . , q k
2
) = (i1, . . . , i k

2
)] >

(
3

N

) k
2

(where the probability is over i1, . . . , i k
2
∈R [N ], over (q1, . . . , q k

2
) where each qj is distributed

according to (qj, sj) ← QSPIR(k, N, ij), and over the random coin tosses of B′).3

3We assume for simplicity that k is even.
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Algorithm B′: On input (k,N, q1, . . . , q k
2
), Algorithm B′ operates as follows:

1. Choose at random i k
2
+1, . . . , ik ∈R [N ].

2. For each j ∈ [k
2

+ 1, k], choose (qj, sj) ← QSPIR(k, N, ij).

3. Choose a random permutation π : [k] → [k].

4. Compute (i′π(1), . . . , i
′
π(k))

def
= B(k, N, qπ(1), . . . , qπ(k)).

5. Output (i′1, . . . , i
′
k
2

).

Let E denote the event that ∣∣{j ∈ [k] : i′j = ij}
∣∣ ≥ k

2
.

Then,

Pr[B′(k, N, q1, . . . , q k
2
) = (i1, . . . , i k

2
)] ≥

Pr[B′(k, N, q1, . . . , q k
2
) = (i1, . . . , i k

2
) | E] · Pr[E] ≥

1(
k

k/2

) · Pr [E] >
1

2k
·
(

12

N

) k
2

=

(
3

N

) k
2

,

as desired. We not that the first inequality follows from Bayes’ law. The second inequality
follows from the definition of event E. The third inequality follows from Inequality (5) and
from the definition of event E.

2.2.3 Other Useful Primitives

Definition 4. A (s1, s2)-bit commitment scheme com = {comk}, where s1 and s2 are func-
tions of the security parameter k, satisfies the following properties:

1. For every k ∈ N, comk is a probabilistic circuit of size poly(k), that takes as input
a bit b ∈ {0, 1} and outputs a string of length at most poly(k) (corresponding to a
commitment to the bit b).

2. s1-hiding: For every probabilistic circuit family D (called a distinguisher) of size at
most poly(s1(k)),

|Pr [D(comk(0)) = 1]− Pr[D(comk(1)) = 1]| = negl(s1(k))

(where the probabilities are over the random coin tosses of comk and D).

3. For every k there exists a deterministic circuit Ck of size at most s2(k) such that for
every b ∈ {0, 1},

Pr[Ck(comk(b)) = b] = 1

(where the probabilities are over the random coin tosses of comk). Moreover, Ck(y) =
⊥, for every y that is not a commitment string (i.e., for every y /∈ Support(comk(0))∪
Support(comk(1))).
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Remark. Throughout this paper, we use a (s1, s2)-bit commitment scheme to commit to
strings rather than to single bits. This is done in a bit by bit manner. Namely, in order to
commit to a string x = (x1, . . . , xt) ∈ {0, 1}t, we apply our (s1, s2)-bit commitment scheme
to each xi separately. For simplicity, we abuse notations, and let comk(x) denote the random
variable (comk(x1), . . . , comk(xt)).

In the following definitions it may help the reader to think of the security parameter k
as a function of the input length n, and to think of s(k) as at least polynomial in n.

Definition 5. A protocol (P, V ) for proving membership in L is said to be s-zero-knowledge,
where s is a function of the security parameter k, if the following holds: For every
deterministic (interactive) circuit family V ∗ (thought of as a possibly cheating verifier) of size
at most poly(s(k)), there exists a probabilistic circuit family S (known as the simulator) of
size poly(|V ∗|, |P |), such that for every probabilistic circuit family D (called a distinguisher)
of size at most poly(s(k)), for every x ∈ L, every z ∈ {0, 1}∗, and every k,

|Pr [D((P, V ∗(z))(x)) = 1]− Pr [D(S(x, z)) = 1]| = negl(s(k)).

Remark. This definition deviates from the standard definition in three ways.

1. In the standard definition s(k) = n, where n is the input length, thus ensuring that
any (possibly cheating) verifier, of size at most polynomial in the input length, does
not gain any knowledge from the interaction. Our definition ensures that also (possibly
larger) verifiers of size poly(s(k)) do not gain any knowledge from the interaction.

2. In the standard definition V ∗ and S are modeled as probabilistic Turing machines
rather than circuits. As we mentioned in Section 2.1, we model these algorithms as
circuits only for the sake of convenience.

3. Our definition only considers deterministic verifiers V ∗. This is without loss of general-
ity. The definition ensures that the zero-knowledge property holds also for randomized
verifiers. This is the case, since the randomness can be thought of as part of the
auxiliary input.

Definition 6. A protocol (P, V ) for proving membership in L is said to be s-sound, where s
is a function of the security parameter k, if the following holds: For every probabilistic
(interactive) circuit family P ∗ (thought of as a possibly cheating prover) of size at most
poly(s(k)) and for every x 6∈ L,

Pr[(P ∗, V )(x) = 1] = negl(s(k)).

Definition 7. Let R ⊆ {0, 1}∗×{0, 1}∗ be a binary relation. Then a protocol (P, V ) is said to
be a s-strong proof-of-knowledge for the relation R, if there exists a negligible function µ and a
probabilistic (strict) polynomial time oracle machine K (called the knowledge extractor), such
that for every unbounded (interactive) circuit family P ∗ (thought of as a possibly cheating
prover) and every input x, if Pr[(P ∗, V )(x) = 1] ≥ µ(s(k)) then the machine K, with input
x and oracle access to P ∗, outputs a witness w such that (x, w) ∈ R with probability at least
1− µ(s(k)).
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Remark 1. Notice that the s-strong proof-of-knowledge property implies the s-soundness
property. Namely, if (P, V ) is a s-strong proof-of-knowledge protocol for a relation R then
it is a s-sound protocol for proving membership in the corresponding language

LR
def
= {x : (x,w) ∈ R}.

When we say that (P, V ) is a s-strong proof-of-knowledge protocol for an NP language
L = LR, we mean that it is a s-strong proof-of-knowledge protocol for the corresponding
relation R, which is in P .

Remark 2. In our protocol we use a s-strong proof-of-knowledge for the relation

R = {(~q, (~s, ~w,~r)) : ∀j, (qj, sj) = QSPIR(k, N, wj; rj)}, (6)

where ~q = (q1, . . . , qk), ~s = (s1, . . . , sk), ~w = (w1, . . . , wk), and ~r = (r1, . . . , rk) is the
randomness of QSPIR, and k, N are fixed. We think of this as a s-strong proof-of-knowledge
of ~w. We disregard the rest of the witness since we do not use it.

3 Our Protocol

In this section we prove our main technical result. Let k be the security parameter. Let
Λ : {0, 1}n × {0, 1}m → {0, 1} be an arithmetic circuit of degree d in the y variables over
GF [2], and let N be an additional parameter. We construct a protocol between a prover and
a verifier, that after interacting in a preamble stage (that has communication complexity
poly(k, log d, log N) and depends only on the parameters k,N, d, and not on Λ), allows
the prover to commit noninteractively to any element y ∈ {0, 1}m, by a message of size
poly(k, m, log d) that does not depend on Λ, and later to prove any N statements of the
form Λ(x1, y) = z1, . . . , Λ(xN , y) = zN , by a non-interactive zero-knowledge argument of size
poly(k, d, log N).

3.1 Overview

We begin by giving a high level overview of our protocol. For simplicity, in this overview
we combine the preamble stage and the (noninteractive) commitment stage, into a single
(interactive) commitment stage. Let F be a field of size poly(k, d), say |F| > kd, such that
F is an extension of GF [2]. We can view Λ as an arithmetic circuit over F (rather than over
GF [2]). Namely, we let Λ : Fn × Fm → F.

In order to commit to y = (y1, . . . , ym) the prover does the following: For each yi, the
prover chooses a random element ri ∈R F and defines Ai : F→ F by Ai(t) = rit + yi. Then
he sends to the verifier the values of A1, . . . , Am on a single element ω ∈ F \ {0} chosen by
the verifier.4 This is done without the prover knowing the value of ω, by using a symmetric
private information retrieval scheme. That is, the verifier privately retrieves the element

4The reason that we restrict ω to be different than 0 is that Ai(0) = yi and yi should remain hidden from
the verifier.
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A(ω) = (A1(ω), . . . , Am(ω)) from the database {A(t)}t∈F\{0} = {A1(t), . . . , Am(t)}t∈F\{0}
managed by the prover.5 The reason that it is important to hide ω from the prover is that
if the prover knew ω then he could have later changed y to be any y′, by choosing r′i ∈ F
such that r′iω + y′i = riω + yi. The fact that A(0) = y and that the verifier holds the value
A(ω), where ω is hidden from the prover, implies that A(ω) can be thought of as a (perfectly
hiding) commitment to y. Note that for any x ∈ {0, 1}n and A = (A1, . . . , Am), the function
Λ(x,A(t)) (as a function of t) is a polynomial from F to F of degree at most d. Also, note
that Λ(x,A(0)) = Λ(x, y), and that given x the verifier can compute the value Λ(x,A(ω)) by
himself. Thus, loosely speaking, Λ(x,A(ω)) can be thought of as a commitment to Λ(x, y).

In the reveal phase the prover needs to prove non-interactively, and in a zero-knowledge
manner, N statements of the form Λ(xi, y) = zi (or equivalently, N statements of the form
Λ(xi, A(0)) = zi). The first idea that comes to mind, is to have the prover simply reveal all
the polynomials Λ(xi, A(t)) for i = 1, . . . , N . The verifier will then accept a proof {vi}N

i=1

if and only if for every i ∈ [N ], it holds that vi is a polynomial of degree at most d,
vi(ω) = Λ(xi, A(ω)), and vi(0) = zi.

This naive protocol is computationally sound, with cheating probability being at most
2/k. Intuitively, the reason is that if a cheating prover P ∗ can prove for some x that both
Λ(x, y) = z and Λ(x, y) = z′, then it means that P ∗ can find two distinct polynomials v
and v′ of degree at most d, such that v(ω) = v′(ω). Since v and v′ agree on at most d
values, P ∗ can be used to predict ω with success probability 1/d. If P ∗ succeeds in doing
this with probability greater than 2/k then ω can be guessed with probability greater than
2/kd, contradicting Claim 2 (assuming |F| > kd).

Despite the above, this protocol does not have the desired properties. Firstly, it is not
zero-knowledge and may actually reveal information about y. This can be easily fixed as
follows: Instead of simply revealing the entire polynomial Λ(xi, A(t)), the prover will send a
commitment to Λ(xi, A(t)), and prove in a non-interactive zero-knowledge manner that the
committed value is a polynomial of degree at most d, that on input ω outputs Λ(xi, A(ω)),
and that on input 0 outputs zi.

6 Secondly, the communication complexity of this protocol
is of size poly(k, d, N), whereas we seek a much shorter proof of size poly(k, d, log N).

Instead, we will use a linear error-correcting-code, to obtain a single polynomial which
in some sense combines all these N polynomials. The idea is the following: Let ECC be
any linear error-correcting-code that maps elements in FN to codewords in FM , where M is
polynomially related to N .

Notice that C(t)
def
= ECC(Λ(x1, A(t)), . . . , Λ(xN , A(t))) is a polynomial from F to FM of

degree at most d. This follows from the fact that ECC is a linear code, which implies that

5Actually, we could have used here a
(|F|−1

1

)
-OT scheme, in which case the resulting communication

complexity would have been poly(k, d, m), instead of poly(k, log d,m). We note that we are not concerned
with this increase in communication complexity, since in the reveal phase the communication complexity is
anyway polynomial in k, d, m. The main reason that we use a SPIR scheme is that we haven’t defined a(
n
1

)
-OT scheme.
6Recall that the prover does not know ω, and thus in order to prove that vi(ω) = Λ(xi, A(ω)), the prover

will actually need to use a SPIR scheme. Throughout this high-level overview, we ignore this technicality.
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there is an N ×M matrix E = (ei,j)i∈[N ],j∈[M ] (over F) such that

C(t) = (Λ(x1, A(t)), . . . , Λ(xN , A(t))) E =

(
N∑

i=1

Λ(xi, A(t))ei,1, . . . ,

N∑
i=1

Λ(xi, A(t))ei,M

)
,

which in turn implies that

C`(t)
def
= (C(t))` =

N∑
i=1

Λ(xi, A(t))ei,`

is a polynomial of degree at most d (since it is a sum of polynomials of degree at most
d). Moreover, notice that given (x1, z1), . . . , (xN , zN), such that Λ(xi, y) = zi, and given
A(ω), the verifier can compute by himself the values C(0) = ECC(z1, . . . , zN) and C(ω) =
ECC(Λ(x1, A(ω)), . . . , Λ(xN , A(ω))).

The idea is to prove that ∀i: Λ(xi, y) = zi, by revealing a single polynomial C`(t), where
the index ` ∈ [M ] is chosen by the verifier and kept secret from the prover. Thus, the verifier
will privately retrieve the polynomial C`(t), via a PIR protocol. The verifier will then check
that the function v that he retrieved is a polynomial of degree at most d, and will check that
v(ω) = C`(ω) and that v(0) = C`(0).

The proof that this protocol is (computationally) sound is similar to that of the naive
protocol. Let (1 − δ) be the relative distance of the code ECC. Namely, for every z 6= z′,
ECC(z) and ECC(z′) differ in at least a (1− δ)-fraction of their coordinates. If a cheating
prover P ∗ can prove, with probability greater than 2

(1−δ)k
, that both ∀i: Λ(xi, y) = zi, and ∀i:

Λ(xi, y) = z′i, where (z′1, . . . , z
′
N) 6= (z1, . . . , zN), then P ∗ can be used to find (with probability

greater than 2
k
) two polynomials v and v′ of degree at most d, such that v(ω) = v′(ω)

and v(0) 6= v′(0). To show this we use the fact that if (z′1, . . . , z
′
N) 6= (z1, . . . , zN) then

ECC(z′1, . . . , z
′
N) and ECC(z1, . . . , zN) differ in at least 1 − δ of the coordinates, and thus

v(0) 6= v′(0) with probability at least 1− δ (over ` ∈R [M ]). Since the prover does not know
the index ` chosen by the verifier, we are able to prove that P ∗ can be used to find (with
probability greater than (1 − δ) 2

(1−δ)k
= 2

k
) two distinct polynomials v and v′ of degree at

most d, such that v(ω) = v′(ω). Since v and v′ agree on at most d values, P ∗ can be used to
predict ω with success probability 2

kd
, thus contradicting Claim 2 (assuming |F | > kd). We

conclude that the resulting protocol is (computationally) sound, with cheating probability
at most 2

(1−δ)k
.

However, this protocol is not zero-knowledge. As was done with the naive protocol, we fix
this by, instead of having the prover reveal the entire polynomial C`, the prover will commit to
C` and will give a non-interactive zero-knowledge proof that the committed value is a degree d
polynomial from F to F, such that on input 0 outputs the `’th coordinate of ECC(z1, . . . , zN),
and on input ω outputs the `’th coordinate of ECC(Λ(x1, A(ω)), . . . , Λ(xN , A(ω))).

The resulting protocol has poly(k, d,m, log N) communication complexity, is zero-knowledge,
and is computationally sound. However the cheating probability is quite high ( 1

poly(k)
). We

boost the soundness by repeating the protocol in parallel several times.
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3.2 Tools and Assumptions

Let k be the security parameter. We think of k as a function of all the other parameters,
and we assume that k ≥ K0 log N for a large enough constant K0. Let s1(k) and s2(k) be
two functions such that k ≤ s1(k) < s2(k) and such that poly(s2(k)) < 2k for every large
enough k. Our protocol makes use of several primitives. In what follows, we first list all the
primitives that are used in our protocol, and we then show under which assumptions these
primitives exist.

1. A poly-logarithmic SPIR scheme (QSPIR, DSPIR, RSPIR), as defined in Definition 3.

2. A (s1, s2)-bit-commitment scheme com as defined in Definition 4

3. A s1-strong proof-of-knowledge protocol for NP which is s2-zero-knowledge, as defined
in Definition 7 and Definition 5, respectively.

4. A non-interactive proof for NP which is s1-zero-knowledge and s2-sound, as defined
in Definition 5 and Definition 6, respectively.7

5. A two party protocol for generating a random string, that is secure (in the sense
of [GMW87]) against adversaries of size at most poly(s2(k)).

6. A linear error correcting code ECC : FN → FM with relative distance 1 − δ, with
M = O(N) and δ ≤ 1

48
.

These primitives exist under the following assumptions:

1. Cachin et al. [CMS99] showed that a poly-logarithmic PIR scheme exists under the Ex-
tended Reimann Hypothesis and the Φ-Hiding Assumption. The Φ-Hiding Assumption
essentially asserts that on input n and p, it is hard to decide whether p divides φ(n),
where n is a product of two random primes and p is a prime chosen at random either
from the set of primes that divide φ(n) or from the set of primes that do not divide
φ(n). We refer the reader to [CMS99] for the precise formulation of this assumption.

Naor and Pinkas [NP99] showed a general reduction transforming any PIR scheme
into a SPIR scheme. In particular, their reduction can be used to construct a poly-
logarithmic SPIR scheme from any poly-logarithmic PIR scheme and any “strong”
two-message oblivious transfer (OT) scheme.8 Such an OT scheme is known to exist
under each of the following assumptions [AIR01, NP01, K05]:

(a) The DDH Assumption against exponential adversaries.

(b) the N ’th Residuosity Assumption against exponential adversaries.

(c) The Quadratic Residuosity Assumption against exponential adversaries, together
with the Extended Reimann Hypothesis.

7We refer the reader to Definition 4.10.15 in [G01] for the definition of a non-interactive zero-knowledge
proof.

8By a “strong” OT scheme, we mean an OT scheme that is secure against adversaries of size exponential
in the security parameter (rather than adversaries of size polynomial in the security parameter).
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2. A (s1, s2)-bit-commitment scheme com exists assuming the existence of a one-way
permutation π, that cannot be inverted in time poly(s1(k)), but can be inverted in
time s2(k). Namely, π should satisfy the following two properties:

(a) For every circuit A of size poly(s1(k)),

Pr[A(y) = π−1(y)] <
1

2

(where the probability is over y ∈R {0, 1}k).9

(b) There exists a circuit Ck of size s2(k) such that for every y ∈ {0, 1}k, it holds that
Ck(y) = π−1(y).

For further details, see Section 4.4.1 and Theorem 2.6.2 in [G01].

3. The existence of a s2-zero-knowledge proof system is based on the existence of a one-
way function f that cannot be inverted by circuits of size poly(s2(k)). Namely, f
should satisfy that for every circuit A of size poly(s2(k)),

Pr[A(y) ∈ f−1(y)] <
1

2

(where the probability is over y ∈R {0, 1}k).

The existence of a s2-zero-knowledge, s1-strong proof-of-knowledge system is based on
the same assumption, and essentially involves (log s1(k))2 sequential compositions of a
s2-zero-knowledge proof-of-knowledge system. For further details, see Section 4.4 and
Section 4.7.6 in [G01].

4. The existence of a non-interactive proof for NP which is s1-zero-knowledge and s2-
sound is based on the existence of a family of trapdoor permutations that cannot be
inverted by circuits of size poly(s1(k)) (as above). For further details, see Section 4.10
in [G01].

5. The existence of a two party protocol for generating a random string, that is secure (in
the sense of [GMW87]) against adversaries of size at most poly(s2(k)), is based on the
existence of a one-way function f that cannot be inverted by circuits of size poly(s2(k))
(as above). This follows from the coin tossing protocol due to Lindell [L03], which is
in turn based on the protocol due to Blum [B82].

3.3 Protocol Description

Our protocol is associated with the functions s1 and s2, with the parameters k, N, M,F, n, m, d,
and with the inputs Λ : {0, 1}n × {0, 1}m → {0, 1}, y ∈ {0, 1}m, (x1, z1), . . . , (xN , zN) ∈
{0, 1}n×{0, 1}. We think of the functions s1 and s2 as fixed, and we think of the parameters

9We note that due to amplification results for one-way permutations (and due to the fact that s1(k) ≥ k),
the above probability can be amplified to be negl(s2(k)).
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as inputs to the protocol. We think of F and M as fixed functions of all the other parameters.
For example, take M = 1000N and take F to be the smallest extension of GF [2] larger than
kd. The input Λ is an arithmetic circuit of syntactic degree d (in the y variables),10 and we
assume for simplicity that |Λ| ≥ d, n, m.

Recall that we think of k as a function of all the other parameters, and we assume that
k ≥ K0 log N for a large enough constant K0. Recall that s1(k) and s2(k) are such that
k ≤ s1(k) < s2(k) and such that poly(s2(k)) < 2k for every large enough k.

We formally describe our protocol in three phases: The preamble phase is described in
Figure 1, the commitment phase is described in Figure 2, and the reveal phase is described
in Figure 3.

Preamble Phase

Parameters: k,F,M .

V → P :

1. For j = 1, . . . , k:

(a) Choose ωj ∈R F \ {0}, and let (qj
1, s

j
1) = QSPIR(k, |F| − 1, ωj).

(b) Choose `j ∈R [M ], and let (qj
2, s

j
2) = QSPIR(k, M, `j).

2. Send (q1, q2), where q1 = (q1
1, . . . , q

k
1 ) and q2 = (q1

2, . . . , q
k
2 ).

V À P :

V gives a s1-strong proof-of-knowledge of (ω1, . . . , ωk), which is s2-zero-knowledge.

V À P :

V and P generate three random strings R1, R2, R3 (that will be used for the NIZK’s
in the commitment stage and the reveal stage). These strings are generated
by a protocol that is secure (in the sense of [GMW87]) against adversaries of
size at most poly(s2(k)).

Figure 1: Preamble Phase

Remarks:

1. For simplicity, in our proofs we think of the strings R1, R2, R3, generated in the pream-
ble phase, as truly random strings that are given both to the prover and to the verifier
by a trusted party. This is without loss of generality, since these strings are generated
by a protocol which is secure (in the sense of [GMW87]) against adversaries of size
poly(s2(k)), and in this paper we only consider adversaries of size at most poly(s2(k)).

10The reason we took d to be the syntactic degree of Λ, rather than the degree itself, is that the syntactic
degree can be computed from Λ in deterministic polynomial time, whereas this is not known to be the case
for the degree itself. The syntactic degree is always an upper bound on the degree. Any other upper bound,
given to both parties, can be used as well.

22



2. Notice that the preamble phase consists of O(log s2(k))2 rounds. This is due to
the s2-strong proof-of-knowledge protocol. Our result still holds if we replace the
s2-strong proof-of-knowledge protocol with a s2-proof-of-knowledge protocol (defined
analogously), which results with a constant-round preamble phase. We chose to use a
strong proof-of-knowledge rather than a (standard) proof-of-knowledge for the sake of
simplicity of the proofs.

3.4 Proof of Security

Assuming the existence of the primitives stated above, we prove two theorems: the first
concerning the zero-knowledge property of our protocol, and the second concerning the
soundness of our protocol.

Theorem 1. Our protocol is s1-zero-knowledge in the following sense: For every deter-
ministic (interactive) circuit family V ∗ (thought of as a possibly cheating verifier) of size at
most poly(s1(k)) there exists a (probabilistic) circuit family S (known as the simulator) of size
poly(|V ∗|, |P |), that receives the same input as V ∗ (including V ∗’s auxiliary input Z), such
that for every probabilistic circuit family D (called a distinguisher) of size at most poly(s1(k)),
for every N , every Λ : {0, 1}n × {0, 1}m → {0, 1}, every k such that s1(k) ≥ max{N, |Λ|},
every y ∈ {0, 1}m, every N pairs (x1, z1), . . . , (xN , zN), and every Z ∈ {0, 1}∗,

∣∣ Pr [D((P (y), V ∗(Z))(k, Λ, (x1, z1), . . . , (xN , zN))) = 1]−
Pr [D(S(Z, k, Λ, (x1, z1), . . . , (xN , zN))) = 1]

∣∣ = negl(s1(k)).

Remark: We note that Theorem 1 holds also if Λ and (x1, z1), . . . , (xN , zN) are chosen
adaptively (by the verifier) after the commitment phase. One can verify that the proof of
Theorem 1 goes through in this adaptive setting. Intuitively, this is the case since the sim-
ulator receives Λ and (x1, z1), . . . , (xN , zN) only in the reveal phase (and these values may
as well depend on the messages exchanged in the preamble phase and the commitment phase).

In the second theorem we make use of the following notations. For simplicity (and
without loss of generality), we consider only deterministic provers. We denote the (possibly
cheating) deterministic prover by P ∗. We denote by h the random bits of V . We denote
by Vh the deterministic verifier with random bits fixed to h. We denote by COMMh the set
of messages exchanged between P ∗ and V in the preamble and commitment phases. Note
that COMMh is a random variable (depending only on the randomness h of the verifier).
Recall that in the commitment phase the prover sends k commitments {cj}k

j=1,
11 and that

these commitments are transparent to circuits of size poly(s2(k)). For every h we define
yh ∈ {0, 1}m ∪ {⊥} as follows: If the decommitment of c1 is a linear function from F to Fm

that on input 0 outputs a value y′ ∈ {0, 1}m, then we define yh
def
= y′. Otherwise, we define

yh = ⊥. We think of yh as the value that the prover committed to. After the commitment
phase, P ∗ generates a circuit Λ and values x1, . . . , xN ∈ {0, 1}n and z̃1, . . . , z̃N ∈ {0, 1},

11These should all be commitments to random linear functions from F to Fm that on input 0 output y,
where y is the prover’s private input.
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and his goal is to convince the verifier V that (z̃1, . . . , z̃N) = (Λ(x1, yh), . . . , Λ(xN , yh)), even
though this may not be the case.12 Note that these values may depend on h, a dependency
which is ignored in our notations. Also note that in the reveal phase the interaction between
P ∗ and V is deterministic.

Theorem 2. Our protocol is s2-sound in the following sense: For every deterministic
(interactive) circuit family P ∗ (thought of as a possibly cheating prover) of size at most
poly(s2(k)), for every N , and every k such that s2(k) ≥ max{N, |Λ|}, let Echeat denote the
event that in the reveal phase P ∗ generates Λ : {0, 1}n × {0, 1}m → {0, 1} and x1, . . . , xN ∈
{0, 1}n and z̃1, . . . , z̃N ∈ {0, 1} such that:

1. (z̃1, . . . , z̃N) 6= (Λ(x1, yh), . . . , Λ(xN , yh)) or yh = ⊥
2. (P ∗, Vh)(k, Λ, (x1, z̃1), . . . , (xN , z̃N)) = 1

(where h, yh and Vh are as above). Then

Pr[Echeat] = negl(s2(k)).

Proof of Theorem 1. For every (possibly cheating) verifier V ∗, we construct a (black-
box) simulator S that simulates the interaction between P and V ∗.

Simulator S: The simulator S simulates each phase of the protocol, as follows.

Preamble phase. In this phase S gets as input the parameters k,F,M . It runs V ∗,
while simulating the honest prover. Also, S uses the knowledge extractor K to extract
(w1, . . . , wk) from the s1-strong proof-of-knowledge given by V ∗. Namely, S runs K
with oracle access to V ∗ and with input (q1

1, . . . , q
k
1), corresponding to the first set of

queries generated by V ∗. This can be done by a circuit of size poly(|V ∗|, |P |, k) =
poly(|V ∗|, |P |). Notice that if K fails in the extraction with non-negligible probability
(in s1(k)), then with probability 1 − negl(s1(k)) the prover P will reject the proof
given by V ∗ and abort the protocol, in which case the simulation is trivial. Therefore,
from now on, we can assume that K successfully extracts (w1, . . . , wk) corresponding
to (q1

1, . . . , q
k
1).

Commitment phase. Recall that in this phase P uses its private input y = (y1, . . . , ym),
whereas S does not know this private input. The simulator S only gets as input
the parameters k,F,m. In this phase, S arbitrarily chooses s1, . . . , sm ∈ {0, 1} (for
example, s1 = . . . = sm = 0) and simulates the honest prover, while using s =
(s1, . . . , sm) as the private input. Namely, for each j = 1, . . . , k, the simulator S
defines Ãj as follows:

1. Choose at random rj
1, . . . , r

j
m ∈R F.

12We allow the prover to choose the circuit Λ and values (x1, . . . , xN ) and (z̃1, . . . , z̃N ) after the commit-
ment phase. In general our soundness property holds whenever these values are chosen by a probabilistic
circuit of size poly(s2(k)) that may depend on the interaction between the prover and the verifier in the
preamble and commitment phases.
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2. For each i ∈ [m], let Ãj
i : F→ F be the linear function defined by Ãj

i (t) = rj
i t+si.

3. Let Ãj : F→ Fm be the linear function defined by Ãj(t) = (Ãj
1(t), . . . , Ã

j
m(t)).

Then the simulator S simulates the honest prover, while using Ãj instead of Aj. This
requires a circuit of size poly(|P |).

Reveal phase. In this phase the simulator S is given as input an arithmetic circuit Λ :
{0, 1}n×{0, 1}m → {0, 1} of degree d, and N pairs (x1, z1), . . . , (xN , zN). The simulator
S needs to generate (proof 1, . . . , proofk). Recall that the honest prover uses the func-
tion ECC(Λ(x1, A

j(t)), . . . , Λ(xN , Aj(t))) when generating proof j. The simulator does
not know this function (as it depends on Aj, which was generated using the private in-
put y). For each j ∈ [k], instead of using the function ECC(Λ(x1, A

j(t)), . . . , Λ(xN , Aj(t))),
the simulator will use a different function C̃j : F → FM , chosen as follows: C̃j is an
arbitrary degree ≤ d polynomial that satisfies:

1. C̃j(0) = ECC(z1, . . . , zN).

2. C̃j(ωj) = ECC(Λ(x1, Ã
j(ωj)), . . . , Λ(xN , Ãj(ωj))).

S generates proof j exactly as the honest prover does, while using the function C̃j

instead of the function ECC(Λ(x1, A
j(t)), . . . , Λ(xN , Aj(t))).

This requires a circuit of size poly(N, |P |) = poly(|P |).
Proof of Simulation: First, notice that the simulator S is of size poly(|V ∗|, |P |). Next,
notice that S follows the instructions of the honest prover, with the following exceptions:

1. In the commitment phase, for every j ∈ [k], S uses Ãj
1, . . . , Ã

j
m instead of Aj

1, . . . , A
j
m.

2. In the reveal phase, for every j ∈ [k], S uses C̃j instead of ECC(Λ(x1, A
j(t)), . . . , Λ(xN , Aj(t))).

Assume for the sake of contradiction that there exists a distinguisher D1 of size poly(s1(k)),
an infinite sequence of {Z, k, Λ, (x1, z1), . . . , (xN , zN), y},13 such that

Pr [D1 (S(Z, k, Λ, (x1, z1), . . . , (xN , zN))) = 1]−
Pr [D1 ((P (y), V ∗(Z))(k, Λ, (x1, z1), . . . , (xN , zN))) = 1]

≥ 1

poly(s1(k))
.

We note that S behaves exactly as the honest prover does during the preamble phase (the
honest prover P does not use his secret input y during this phase). Let

({cj}j∈[k], NIZK, {aj}j∈[k]

)
be the messages sent by P during the commitment phase, and let {proof j}j∈[k] be the mes-

sages sent by P during the reveal phase. Similarly, let
(
{c̃j}j∈[k], ˜NIZK, {ãj}j∈[k]

)
and

{ ˜proof
j}j∈[k] be the corresponding messages generated by S. Since V ∗ is deterministic, it

13We assume that for every k, s1(k) ≥ max{N, |Λ|}.
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is easy to see that that there exists a distinguisher D2 of size poly(s1(k)) (that has V ∗

hard-wired into it), such that

Pr
[D2

(
Z, k, Λ, (x1, z1), . . . , (xN , zN), R1, R2, R3, {cj}j∈[k], NIZK, {aj}j∈[k], {proof j}j∈[k]

)
= 1

]−
Pr

[
D2

(
Z, k, Λ, (x1, z1), . . . , (xN , zN), R1, R2, R3, {c̃j}j∈[k], ˜NIZK, {ãj}j∈[k], { ˜proof

j}j∈[k]

)
= 1

]

≥ 1

poly(s1(k))
.

Since D2 is non-uniform, we can assume without loss of generality that all the elements
Z, k, Λ, (x1, z1), . . . , (xN , zN) are hard-wired into D2, and thus we get that

Pr
[D2

(
R1, R2, R3, {cj}j∈[k], NIZK, {aj}j∈[k], {proof j}j∈[k]

)
= 1

]−
Pr

[
D2

(
R1, R2, R3, {c̃j}j∈[k], ˜NIZK, {ãj}j∈[k], { ˜proof

j}j∈[k]

)
= 1

]

≥ 1

poly(s1(k))
.

The fact that NIZK is s1-zero-knowledge (using the random string R1), and the fact
that the definition of s1-zero-knowledge is robust against auxiliary inputs, imply that given

z
def
= (R2, R3, {cj}j∈[k], {aj}j∈[k], {proof j}j∈[k]), the pair (R1, NIZK) can be simulated by a

probabilistic circuit of size poly(s1(k)), so that every distinguisher of size at most poly(s1(k)),
that is given z, distinguishes between the simulated pair and the real pair with probability
at most negl(s1(k)). This implies the existence of a distinguisher D3 of size poly(s1(k)) such
that,

Pr
[D2

(
R1, R2, R3, {cj}j∈[k], NIZK, {aj}j∈[k], {proof j}j∈[k]

)
= 1

]−
Pr

[D3

(
R2, R3, {cj}j∈[k], {aj}j∈[k], {proof j}j∈[k]

)
= 1

]

= negl(s1(k)).

Note that the distinguisher D3 also satisfies

Pr
[
D2

(
R1, R2, R3, {c̃j}j∈[k], ˜NIZK, {ãj}j∈[k], { ˜proof

j}j∈[k]

)
= 1

]
−

Pr
[
D3

(
R2, R3, {c̃j}j∈[k], {ãj}j∈[k], { ˜proof

j}j∈[k]

)
= 1

]

= negl(s1(k))

(since (R1, NIZK) and (R1, ˜NIZK) can be simulated by the same simulator). A simple
triangle inequality implies that

Pr
[D3

(
R2, R3, {cj}j∈[k], {aj}j∈[k], {proof j}j∈[k]

)
= 1

]−
Pr

[
D3

(
R2, R3, {c̃j}j∈[k], {ãj}j∈[k], { ˜proof

j}j∈[k]

)
= 1

]

≥ 1

poly(s1(k))
.
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A standard hybrid argument shows that there exists an index j ∈ [k] and a distinguisher
D4 of size poly(s1(k)) (that has the secret values (y1, . . . , ym) and the values (s1, . . . , sm)
hard-wired into it), such that

Pr
[D4

(
R2, R3, c

j, aj, proof j
)

= 1
]−

Pr
[
D4

(
R2, R3, c̃

j, ãj, ˜proof
j
)

= 1
]

≥ 1

poly(s1(k))
.

(In order to derive the above inequality we use the fact that P is of size at most poly(s1(k)),
which follows from the fact that s1(k) ≥ max{N, |Λ|}.)

For j ∈ [k] as above, let {Aj(t), NIZKj(t)}t∈F\{0}, and {Ãj(t), ˜NIZK
j
(t)}t∈F\{0} be the

databases used by the prover and the simulator in the commitment phase. Namely,

aj = DSPIR
(
k, {Aj(t), NIZKj(t)}t∈F\{0}, q

j
1

)

ãj = DSPIR
(
k, {Ãj(t), ˜NIZK

j
(t)}t∈F\{0}, q

j
1

)

where qj
1 is sent by the verifier V ∗ in the preamble phase.

The data privacy condition of the SPIR scheme implies that the extracted element ωj satisfies
that for every database d = {dt}t∈F\{0} such that dωj = (Aj(ωj), NIZKj(ωj)),

∣∣Pr
[D4

(
R2, R3, c

j, aj, proof j
)

= 1
]− Pr

[D4

(
R2, R3, c

j, bj, proof j
)

= 1
]∣∣ ≤ 2−k3

,

where bj = DSPIR(k, d, qj
1). (In the above inequality we used the fact that when generating

proof j the prover did not use aj.) In particular, we can take d = {dt}t∈F\{0} with dt = 0 for
t 6= ωj, and dt = (Aj(t), NIZKj(t)) for t = ωj.

Similarly, the data privacy condition of the SPIR scheme implies that

∣∣∣Pr
[
D4

(
R2, R3, c̃

j, ãj, ˜proof
j
)

= 1
]
− Pr

[
D4

(
R2, R3, c̃

j, b̃j, ˜proof
j
)

= 1
]∣∣∣ ≤ 2−k3

,

where b̃j = DSPIR(k, d̃, qj
1), and d̃ = {d̃t}t∈F\{0}, where d̃t = 0 for t 6= ωj, and d̃t =

(Ãj(t), ˜NIZK
j
(t)) for t = ωj.

A simple triangle inequality implies that

Pr
[D4

(
R2, R3, c

j, bj, proof j
)

= 1
]−

Pr
[
D4

(
R2, R3, c̃

j, b̃j, ˜proof
j
)

= 1
]

≥ 1

poly(s1(k))
.
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This implies that there exists a distinguisher D5 of size poly(s1(k)) (that has the element
ωj hard-wired into it), such that

Pr
[D5

(
R2, R3, c

j, Aj(ωj), NIZKj(ωj), proof j
)

= 1
]−

Pr
[
D5

(
R2, R3, c̃

j, Ãj(ωj), ˜NIZK
j
(ωj), ˜proof

j
)

= 1
]

≥ 1

poly(s1(k))
.

As before, the fact that NIZKj(ωj) and ˜NIZK
j
(ωj) are s1-zero-knowledge (using the

random string R2) implies that there exists a distinguisher D6 of size poly(s1(k)) such that

Pr
[D6

(
R3, c

j, Aj(ωj), proof j
)

= 1
]−

Pr
[
D6

(
R3, c̃

j, Ãj(ωj), ˜proof
j
)

= 1
]

≥ 1

poly(s1(k))
.

Let
{
cj
i , a

j
i

}
i∈[M ]

and
{
c̃j
i , ã

j
i

}
i∈[M ]

be the databases used by the prover and the simulator

in the reveal phase. Namely,

proof j = DSPIR
(
k,

{
cj
i , a

j
i

}
i∈[M ]

, qj
2

)

˜proof
j
= DSPIR

(
k,

{
c̃j
i , ã

j
i

}
i∈[M ]

, qj
2

)

where qj
2 is sent by the verifier V ∗ in the commitment phase.

As before, the data privacy condition of the SPIR-scheme implies that there exists an index
`j ∈ [M ], and there exists a distinguisher D7 of size poly(s1(k)) (that has the index `j

hardwired into it), such that

Pr
[D7

(
R3, c

j, Aj(ωj), cj
`j , a

j
`j

)
= 1

]−
Pr

[
D7

(
R3, c̃

j, Ãj(ωj), c̃j
`j , ã

j
`j

)
= 1

]

≥ 1

poly(s1(k))
.

Let
{
f j

`j(t), f
j
`j(0), NIZKj

`j(t)
}

t∈F\{0} and
{

f̃ j
`j(t), f̃

j
`j(0), ˜NIZK

j

`j(t)
}

t∈F\{0}
be the databases

used by the prover and the simulator in the reveal phase. Namely,

aj
`j = DSPIR

(
k,

{
f j

`j(t), f
j
`j(0), NIZKj

`j(t)
}

t∈F\{0} , qj
1

)

ãj
`j = DSPIR

(
k,

{
f̃ j

`j(t), f̃
j
`j(0), ˜NIZK

j

`j(t)
}

t∈F\{0}
, qj

1

)
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Again, the data privacy condition of the SPIR-scheme implies that there exists a distinguisher
D8 of size poly(s1(k)), such that

Pr
[D8

(
R3, c

j, Aj(ωj), cj
`j , f

j
`j(ω

j), f j
`j(0), NIZKj

`j(ω
j)

)
= 1

]−
Pr

[
D8

(
R3, c̃

j, Ãj(ωj), c̃j
`j , f̃

j
`j(ω

j), f̃ j
`j(0), ˜NIZK

j

`j(ωj)
)

= 1
]

≥ 1

poly(s1(k))
.

As before, the fact that NIZKj
`j(ω

j) and ˜NIZK
j

`j(ωj) are s1-zero-knowledge (using the
random string R3), implies that there exists a distinguisher D9 of size poly(s1(k)), such that

Pr
[D9

(
cj, Aj(ωj), cj

`j , f
j
`j(ω

j), f j
`j(0)

)
= 1

]−
Pr

[
D9

(
c̃j, Ãj(ωj), c̃j

`j , f̃
j
`j(ω

j), f̃ j
`j(0)

)
= 1

]

≥ 1

poly(s1(k))
.

Recall that according to the definition of the protocol and according to the definition of
the simulator S, it holds that

f j
`j(ω

j) = `j’th coordinate of ECC
(
Λ(x1, A

j(ωj)), . . . , Λ(xN , Aj(ωj))
)

f j
`j(0) = `j’th coordinate of ECC(z1, . . . , zN)

f̃ j
`j(ω

j) = `j’th coordinate of ECC(Λ(x1, Ã
j(ωj)), . . . , Λ(xN , Ãj(ωj)))

f̃ j
`j(0) = `j’th coordinate of ECC(z1, . . . , zN).

Let

ek = (Aj(ωj), f j
`j(ω

j), f j
`j(0))

ẽk = (Ãj(ωj), f̃ j
`j(ω

j), f̃ j
`j(0)),

and let

ck = (cj, cj
`j)

c̃k = (c̃j, c̃j
`j).

Then,

Pr [D9 (ek, ck) = 1]− Pr [D9 (ẽk, c̃k) = 1] ≥ 1

poly(s1(k))
. (7)

Notice that the ensembles {ek} and {ẽk} are identically distributed. Furthermore, let ĉk =
(comk(A

′), comk(A
′′)), where A′ is some fixed polynomial of degree at most 1 from F to FM ,

and A′′ is some fixed polynomial of degree at most d from F to F (for example, A′ and A′′

can be taken to be the zero functions). Notice that
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Pr [D9 (ek, ck) = 1]− Pr [D9 (ẽk, c̃k) = 1] =

(Pr [D9 (ek, ck) = 1]− Pr [D9 (ek, ĉk) = 1]) +

(Pr [D9 (ek, ĉk) = 1]− Pr [D9 (ẽk, ĉk) = 1]) +

(Pr [D9 (ẽk, ĉk) = 1]− Pr [D9 (ẽk, c̃k) = 1])

Finally, the following three inequalities contradict Inequality (7).

Pr [D9 (ek, ck) = 1]− Pr [D9 (ek, ĉk) = 1] ≤ negl(s1(k)) (8)

Pr [D9 (ek, ĉk) = 1]− Pr [D9 (ẽk, ĉk)] = 1 ≤ negl(s1(k)) (9)

Pr [D9 (ẽk, ĉk) = 1]− Pr [D9 (ẽk, c̃k) = 1] ≤ negl(s1(k)). (10)

Inequality (8) follows from the fact that com is s1-hiding, together with the observation
that we can assume without loss of generality that ek is fixed and thus can be hardwired
into D9. (The reason we can assume that ek is fixed is that if Inequality (8) holds for every
fixed ek then it also holds for the random variable ek.)

Inequality (9) follows from the fact that ĉk is independent of ek and ẽk, and can be
simulated internally by D9, together with the fact that the ensembles {ek} and {ẽk} are
identically distributed.

Inequality (10) follows from the same reasoning used to obtain Inequality (8).

Proof of Theorem 2. Assume for the sake of contradiction that there exists a (possibly
cheating) deterministic prover P ∗ of size at most poly(s2(k)), and there exists an infinite set
I = {(k, N)},14 such that for every (k,N) ∈ I,

Pr[Echeat] ≥ 1

poly(s2(k))
. (11)

The s2-soundness property of the NIZK proofs used in the commitment phase, together with
the second condition of the definition of Echeat, implies that for every (k, N) ∈ I,

Pr[Echeat ∧ (yh = ⊥)] = negl(s2(k)).

This, together with Inequality (11), implies that for every (k, N) ∈ I,

Pr[Echeat ∧ (yh 6= ⊥)]] ≥ 1

poly(s2(k))
.

We let E denote the event that Echeat holds and yh 6= ⊥. Hence,

Pr[E] ≥ 1

poly(s2(k))
. (12)

14We assume that for every k, s2(k) ≥ max{N, |Λ|}.
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For every (k, N) ∈ I, every h, and for the values (x1, . . . , xN) generated by P ∗, we denote
by

(z1, . . . , zN)
def
= (Λ(x1, yh), . . . , Λ(xN , yh))

Recall that E denotes the event that P ∗ generates (x1, . . . , xN) and (z̃1, . . . , z̃N), such that:

1. (z̃1, . . . , z̃N) 6= (z1, . . . , zN).

2. (P ∗, Vh)(k, Λ, (x1, z̃1), . . . , (xN , z̃N)) = 1.

3. yh 6= ⊥.

We show that the existence of P ∗ as above contradicts the security of the SPIR scheme
used in our protocol. Let

S
def
= {` : (ECC(z1, . . . , zN))` = (ECC(z̃1, . . . , z̃N))`} .

Note that S is a random variable that depends on h. This is ignored in our notation.
Notice that if (z1, . . . , zN) 6= (z̃1, . . . , z̃N) then |S| ≤ δM . This follows from the fact that
ECC : FN → FM is a linear error correcting code with relative distance 1− δ.

In the following claim, we denote by `1, . . . , `k ∈ [M ] the database entries corresponding
to the queries (q1

2, . . . , q
k
2) generated by V in the preamble phase.

Claim 7. For every (k, N) ∈ I,

Pr

[∣∣{`j : `j ∈ S}
∣∣ ≤ k

2
| E

]
= 1− negl(s2(k)).

Proof of Claim 7. Assume for the sake of contradiction that for infinitely many (k, N) ∈
I,

Pr

[∣∣{`j : `j ∈ S}
∣∣ >

k

2
| E

]
≥ 1

poly(s2(k))
. (13)

Let E∗ denote the event that E holds and |{`j : `j ∈ S}| > k
2
. Then Inequalities (12) and

(13) imply that for infinitely many (k, N) ∈ I,

Pr[E∗] ≥ 1

poly(s2(k))
. (14)

We show that this implies the existence of an algorithm A of size poly(s2(k)) (that uses P ∗

as a black-box), that for infinitely many (k, N) ∈ I, on input q2 = (q1
2, . . . , q

k
2), succeeds in

predicting correctly the entries corresponding to k
2

of these queries, with probability at least(
12
M

) k
2 . This contradicts Corollary 1, since poly(s2(k)) < 2k1.5

.

31



Algorithm A: For every (k,N) ∈ I, on input q2 = (q1
2, . . . , q

k
2), algorithm A feeds P ∗ the

input (k, N), and imitates the honest verifier. More specifically, A operates as follows.

1. Randomly choose ω1, . . . , ωk ∈R F \ {0}, and set q1 = (q1
1, . . . , q

k
1), where (qj

1, s
j
1) =

QSPIR(k, |F| − 1, ωj).

2. Feed P ∗ the message (q1, q2), where q2 is the input to A, and interactively feed P ∗ a
s1-strong proof-of-knowledge of (ω1, . . . , ωk) which is s2-zero-knowledge. Continue im-
itating the honest verifier in the protocol for generating the random strings R1, R2, R3.

Denote by COMMh the messages exchanged between P ∗ and V in the preamble and
the commitment phases.

3. Retrieve yh from COMMh (Recall that since com is a (s1, s2)-bit-commitment scheme,
this can be done by a circuit of size poly(s2(k))). If yh = ⊥ then abort.

4. Upon receiving (x1, z̃1), . . . , (xN , z̃N) from P ∗ in the reveal phase, compute (z1, . . . , zN)
def
=

(Λ(x1, yh), . . . , Λ(xN , yh)). Compute

S
def
= {` : (ECC(z1, . . . , zN))` = (ECC(z̃1, . . . , z̃N))`} .

5. ∀j ∈ [k], choose ˆ̀j ∈R S.

6. Output (ˆ̀1, . . . , ˆ̀k).

Notice that,

Pr[A guesses correctly ≥ k
2

of the entries] ≥
Pr[A guesses correctly ≥ k

2
of the entries | E∗] · Pr[E∗] ≥

(
1

δM

) k
2

· Pr[E∗] ≥
(

1

δM

) k
2

· 1

2k
=

(
1

4δM

) k
2

≥
(

12

M

) k
2

as desired. We note that the first inequality follows from Bayes’ law. The second inequality
follows from the fact that if E∗ occurs then |S| ≤ δM . The third inequality follows from
Inequality (14) and from the fact that poly(s2(k)) < 2k for every large enough k. The fourth
inequality follows from the fact that δ ≤ 1

48
.

To conclude the proof of this claim it remains to notice that A is of size poly(s2(k)) +
poly(|P ∗|, |V |) = poly(s2(k)).

Next we use Claim 7 to construct an algorithm B of size poly(s2(k)) (that uses P ∗ as a
black-box), that for every (k, N) ∈ I, takes as input a sequence of k queries q1 = (q1

1, . . . , q
k
1)

to the SPIR scheme with security parameter k and database of size |F| − 1, where F is the
field used by our protocol. It uses P ∗ to predict the entries corresponding to these queries.
We think of (q1

1, . . . , q
k
1) as generated by (qj

1, s
j
1) = QSPIR(k, |F|−1, wj), where wj ∈R F\{0}

is generated by the honest verifier. Note that algorithm B does not know w1, . . . , wk and is
trying to predict them. We prove that for every (k, N) ∈ I, algorithm B predicts correctly
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the entries corresponding to all these queries with probability greater than
(

3
|F|−1

)k

. This

contradicts Claim 3, since poly(s2(k)) < 2k < 2k2
.

Algorithm B: For every (k, N) ∈ I, on input q1 = (q1
1, . . . , q

k
1), algorithm B feeds P ∗ the

input (k, N), and imitates the honest verifier. More specifically, B operates as follows.

1. Randomly choose `1, . . . , `k ∈R [M ], and set q2 = (q1
2, . . . , q

k
2), where (qj

2, s
j
2) = QSPIR(k, M, `j).

2. Feed P ∗ the message (q1, q2), where q1 is the input to B.

3. Imitate the s1-strong proof-of-knowledge of (ω1, . . . , ωk). Since this proof is s2-zero-
knowledge, it can be simulated by a circuit of size poly(s2(k)), and every distinguisher
of size poly(s2(k)) can distinguish between a real view and a simulated view only with
probability negl(s2(k)). Use this simulator in order to imitate the proof.

4. Continue imitating the honest verifier in the protocol for generating the random strings
R1, R2, R3.

5. Denote by COMMh the messages exchanged between P ∗ and V during the preamble
and commitment phases, and denote by ({cj}k

j=1, NIZK, {aj}k
j=1) the message sent by

P ∗ during the commitment phase.

6. For every j ∈ [k], find the function Aj such that cj ∈ Support(comk(A
j)). If such a

function does not exist then abort. Recall that this can be done by a circuit of size
poly(s2(k)) since com is a (s1, s2)-bit-commitment scheme.

Let yh
def
= A1(0), as before.

7. Upon receiving (x1, z̃1), . . . , (xN , z̃N) and proof = (proof 1, . . . , proofk) from P ∗ in the
reveal phase, do the following for each j = 1, . . . , k:

(a) Use `j and the pair (qj
2, s

j
2) to retrieve

(
cj
2, a

j
2

)
from proof j. Namely, let

(
cj
2, a

j
2

)
=

RSPIR(k, M, `j, (qj
2, s

j
2), proof

j).

(b) Find f j such that cj
2 ∈ Support(comk(f

j)). As before, this can be done by a circuit
of size poly(s2(k)) since com is a (s1, s2)-bit-commitment scheme. As before, if
f j doesn’t exist then abort.

8. Notice that for every j ∈ [k], if proof j is accepted by an honest verifier, then the
s2-soundness of the NIZK proofs used in the commitment and reveal phases, implies
that the following holds with probability 1− negl(s2(k)):

(a) f j : F→ F is a polynomial of degree at most d,

(b) f j(0) is equal to the `j’th coordinate of ECC(z̃1, . . . , z̃N),

(c) f j(ωj) is equal to the `j’th coordinate of ECC(Λ(x1, A
j(ωj)), . . . , Λ(xN , Aj(ωj))),

where wj is the database entry (held by the honest verifier) corresponding to the
query qj

1.
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(d) Aj is a linear function from F to Fm.

We denote by E∗ the event that E holds, and that for every j ∈ [k]: items (a),(b),(c)
and (d) hold. Then, for every (k, N) ∈ I,

Pr[E∗] ≥ 1

poly(s2(k))
(15)

9. ∀j ∈ [k], choose ω̂j at random from the set

∆j def
= {u ∈ F \ {0} : f̃ j(u) = (ECC(Λ(x1, A

j(u)), . . . , Λ(xN , Aj(u))))`j}.
Notice that by (c), if E∗ holds then it is always the case that the query wj (held by
the honest verifier), corresponding to qj

1, is an element in ∆j. Moreover, if E∗ holds
and `j /∈ S (i.e., (ECC(z1, . . . , zN))`j 6= (ECC(z̃1, . . . , z̃N))`j) then |∆j| ≤ d (where d
is the degree of Λ).

10. Output (ω̂1, . . . , ω̂k).

Claim 8. For every (k, N) ∈ I,

Pr[B(q1
1, . . . , q

k
1) = (ω1, . . . , ωk) | (qj

1, s
j
1) ← QSPIR(k, |F| − 1, ωj)] ≥

(
3

|F| − 1

)k

,

where the probability is over ω1, . . . , ωk ∈R F \ {0}, and over the random coin tosses of B
and QSPIR.

Note that in order to reach a contradiction it suffices to prove Claim 8. This follows from
Claim 3 and from the fact that B is of size ≤ poly(s2(k)), which is smaller than 2k2

. In the
proof of Claim 8 we make use of Claim 7.

Proof of Claim 8. For every (k, N) ∈ I,

Pr[B(q1
1, . . . , q

k
1) = (ω1, . . . , ωk) | (qj

1, s
j
1) ← QSPIR(k, |F| − 1, ωj)] ≥

Pr[B(q1
1, . . . , q

k
1) = (ω1, . . . , ωk) | E∗ ∧ (qj

1, s
j
1) ← QSPIR(k, |F| − 1, ωj)] · Pr[E∗] ≥

(
1

d

) k
2
(

1

|F| − 1

) k
2

· Pr[E∗] ≥
(

k

|F| − 1

) k
2
(

1

|F| − 1

) k
2

· Pr[E∗] =

(
k

1
2

|F| − 1

)k

· Pr[E∗] ≥
(

k
1
2

|F| − 1

)k

· 1

2k
≥

(
3

|F| − 1

)k

,
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as desired. We note that the first inequality follows from Bayes’ law. The second equality
follows from the definition of E∗, from the fact that if E∗ holds then ωj ∈ ∆j for every j ∈ [k],
and from the fact that for every `j /∈ S, |∆j| ≤ d (assuming E∗ holds). The third inequality
follows from the fact that |F| > kd. The forth inequality follows from Inequality (15).

4 Applications

Most of the applications described in the introduction follow easily by taking Λ to be an
arithmetic circuit of size and degree poly(m,n) that takes as input (the description of) a
Boolean formula y ∈ {0, 1}m and an element x ∈ {0, 1}n, and outputs the value of the
formula y applied on x.

An easy way to see the existence of such a circuit Λ is as follows: First, assume without
loss of generality that n ≤ m, and that the formula y is of depth O(log m). (It is well
known that every formula of size m is equivalent to a formula of depth O(log m) and the
translation can be done efficiently, so we can assume for convenience of the presentation that
our formula is given in this form). Let C be a (universal) Boolean circuit of size poly(m)
and depth O(log m) that applies a Boolean formula y of size m and depth O(log m) on an
input x of length n ≤ m. (The existence of such a circuit C is easy to prove directly, and
follows from the fact that Boolean circuits are a universal model of computation). Without
loss of generality, we can assume that all gates in C are in {¬,∧} and we can inductively
translate ¬v to 1− v and v1 ∧ v2 to v1 · v2 to obtain an equivalent arithmetic circuit Λ. Note
that since the depth of C is O(log m), the degree of the polynomial computed by Λ is at
most poly(m).

The only application described in the introduction that doesn’t follow easily from the
existence of a circuit Λ as above is the application for proofs of membership in LOGSNP
languages.

4.1 Proofs for Membership in LOGSNP Languages

A rich class that lays in between P and NP is the class LOGSNP , defined by Papadimitriou
and Yannakakis [PY96]. The class LOGSNP contains many languages in NP , with a poly-
logarithmic witness-size. In particular, the language DOMINATING TOURNAMENT SET
is known to be a complete problem for LOGSNP [PY96].

A tournament is an n× n matrix T , such that for every i we have Ti,i = 1, and for every
i 6= j we have Ti,j = 1 ⇐⇒ Tj,i = 0. A dominating set for a tournament T is a set of rows
y ⊂ [n], such that for every column j ∈ [n] there exists a row i ∈ y with Ti,j = 1. It is not
hard to see, by applying a greedy algorithm, that any tournament has a dominating set of

size at most log n. The language L def
= DOMINATING TOURNAMENT SET is the set of

all pairs (T, `), such that T is a tournament that has a dominating set of size `.
Given a tournament T of size n× n and an integer ` ≤ log n, a witness for (T, `) ∈ L is

a vector y = (y1, ..., y`) ∈ [n]`, such that for every column j ∈ [n],

∨̀
i=1

Tyi,j = 1.
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We will show that for every T of size n × n and every integer ` ≤ log n, there is an
arithmetic circuit Λ = ΛT,` (with T, ` hardwired to it) that takes as input an index j ∈ [n]

and a vector y = (y1, ..., y`) ∈ [n]` and outputs the value of
∨`

i=1 Tyi,j, and such that Λ is of
size polynomial in n and degree poly-logarithmic in n.

The existence of such a circuit ΛT,` implies that (if the prover and the verifier interacted

in a preamble stage) the membership in L def
= DOMINATING TOURNAMENT SET can

be proved by a non-interactive zero-knowledge argument of poly-logarithmic size. Given
(T, `), the prover and the verifier construct the circuit Λ = ΛT,` as above. They can then
apply our protocol with N = n and x1 = 1, . . . , xn = n, and z1 = . . . = zn = 1. Both, the
commitment phase and the proof phase of our protocol are unified to be the non-interactive
zero-knowledge argument for membership of (T, `) in L. In the commitment phase the prover
commits to a witness y = (y1, ..., y`) ∈ [n]` and in the reveal phase the prover proves that
for every j, Λ(j, y) = 1. Since the length of the witness y is O(log2 n) and the degree of Λ
is poly-logarithmic in n, the total length of the non-interactive zero-knowledge argument is
poly-logarithmic in n.

Given (T, `), we will now show how to construct the arithmetic circuit Λ = ΛT,` (with
T, ` hardwired to it) that takes as input an index j ∈ [n] and a vector y = (y1, ..., y`) ∈ [n]`

and outputs the value of
∨`

i=1 Tyi,j, (and such that Λ is of size polynomial in n and degree
poly-logarithmic in n). This is done as follows.

1. For every yi, define Yi ∈ {0, 1}n to be the vector that has 1 in coordinate yi and 0 in
every other coordinate. Since every entry of Yi can be written as a term in the bits of
yi, every entry of Yi can be written as a polynomial of degree log n in the bits of yi.

2. Define an ` × n matrix T̂ , by T̂i,j′ = Tyi,j′ . Thus the i’th row of T̂ is (Yi)
tr · T , where

(Yi)
tr denotes the transpose of Yi. Hence, every entry in the i’th row of T̂ can be

written as a polynomial of degree log n in the bits of yi.

3. For every j′ ∈ [n], define vj′ =
∨`

i=1 Tyi,j′ =
∨`

i=1 T̂i,j′ . Since this can be written as a

polynomial of degree ` in the entries of T̂ , every vj′ can be written as a polynomial of
degree ` · log n in the bits of y1, ..., y`.

4. Define Ij ∈ {0, 1}n to be the vector that has 1 in coordinate j and 0 in every other
coordinate. As before, every entry of Ij can be written as a polynomial of degree log n
in the bits of j.

5. Define Λ(j, y) = (v1, ..., vn) · Ij. Since v1, ..., vn can be written as polynomials of degree
` · log n in the bits of y1, ..., y` and since the entries of Ij can be written as polynomials
of degree log n in the bits of j, we conclude that Λ(j, y) can be written as a polynomial
of degree O(log2 n) in all the input bits. Note that

Λ(j, y) = (v1, ..., vn) · Ij = vj =
∨̀
i=1

Tyi,j.
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Commitment Phase

Parameters: k,F,m.

Private Input: y = (y1, . . . , ym) ∈ {0, 1}m.

P → V :

1. For j = 1, . . . , k:

(a) Choose rj
1, . . . , r

j
m ∈R F.

(b) For each i ∈ [m], let Aj
i : F→ F be the linear function defined by Aj

i (t) =
rj
i t + yi.

(c) Let Aj : F→ Fm be the function defined by Aj(t) = (Aj
1(t), . . . , A

j
m(t)).

(d) Let cj = comk(Aj), where com = {comk} is a (s1, s2)-bit-commitment
scheme.

2. Let NIZK be a proof that c1, . . . , ck are commitments to linear functions
B1, . . . , Bk from F to Fm, such that B1(0) = . . . = Bk(0) ∈ {0, 1}m. This
proof is non-interactive, s1-zero-knowledge and s2-sound (and uses the random
string R1 generated in the preamble phase).

3. For j = 1, . . . , k, let aj = DSPIR(k, {Aj(t), NIZKj(t)}t∈F\{0}, q
j
1), where

NIZKj(t) is a proof for cj being a commitment to a linear function from F
to Fm, that on input t outputs Aj(t). As above, this proof is non-interactive,
s1-zero-knowledge and s2-sound (and uses the random string R2 generated in
the preamble phase).

4. Send
(
{cj}k

j=1, NIZK, {aj}k
j=1

)
.

V :

1. Verify NIZK

2. For each j ∈ [k],

(a) Let (vj(ωj), NIZKj(ωj)) = RSPIR(k, |F| − 1, wj , (qj
1, s

j
1), a

j).
(b) Verify that NIZKj(ωj) is a proof for cj being a commitment to a linear

function from F to Fm that on input wj outputs vj(wj).

Figure 2: Commitment Phase
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Reveal Phase

Parameters: k,F,M, d

Common Input: An arithmetic circuit Λ : {0, 1}n × {0, 1}m → {0, 1}, and N pairs
(x1, z1), . . . , (xN , zN ) ∈ {0, 1}n × {0, 1}.

P → V :

1. For every j ∈ [k], generate proof j (corresponding to (qj
1, q

j
2)) as follows:

• For i = 1, . . . ,M :
(a) Let f j

i (t) =
(
ECC

(
Λ(x1, A

j(t)), . . . ,Λ(xN , Aj(t))
))

i
.

(b) Let cj
i = comk(f

j
i ), where com = {comk} is a (s1, s2)-bit-commitment

scheme.
(c) Let aj

i = DSPIR(k, {f j
i (t), f j

i (0), NIZKj
i (t)}t∈F\{0}, q

j
1), where

NIZKj
i (t) is a proof that cj

i is a commitment to a degree ≤ d poly-
nomial from F to F, that on input t outputs f j

i (t) and on input 0
outputs f j

i (0). This proof is non-interactive, s1-zero-knowledge and
s2-sound (and uses the random string R3 generated in the preamble
phase).

• Let proof j = DSPIR(k, {cj
i , a

j
i}i∈[M ], q

j
2).

2. Send (proof1, . . . , proofk).

V :

For every j ∈ [k], verify proof j as follows:

1. Retrieve (cj
`j , a

j
`j ) from proof j . That is, let

(cj
`j , a

j
`j ) = RSPIR(k, M, `j , (qj

2, s
j
2), proof j).

2. Retrieve (vj
`j (ωj), vj

`j (0), NIZKj
`j (ωj)) from aj

`j . That is, let
(vj

`j (ωj), vj
`j (0), NIZKj

`j (ωj)) = RSPIR(k, |F| − 1, ωj , (qj
1, s

j
1), a

j
`j ).

3. Accept if and only if the following conditions hold:
(a) NIZKj

`j (ωj) is a proof that cj
`j is a commitment to a degree ≤ d

polynomial from F to F that on input wj outputs vj
`j (ωj) and on

input 0 outputs vj
`j (0).

(b) vj
`j (0) is equal to the `j ’th coordinate of ECC(z1, . . . , zN ).

(c) vj
`j (ωj) is equal to the `j ’th coordinate of

ECC(Λ(x1, v
j(ωj)), . . . ,Λ(xN , vj(ωj))).

Figure 3: Reveal Phase
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