
 1 

Inferring complex substitution dynamics given flanking nucleotides, G+C content 

and recombination rate 

 

Amos Tanay, Department of Computer Science and Applied Mathematics, The Weizmann Institute. 

76100, Rehovot, Israel. 

 

Phone: 972-8-9343579 

Email: amos.tanay@weizmann.ac.il 

 

ABSTRACT 
 
Computational models for sequence evolution are a corner stone of molecular evolution. With the rapidly 

increasing availability of genome sequences it is becoming clear that even the neutral evolutionary 

process is a complex and heterogeneous one. Subsequently, models for neutral evolution must consider 

the distinct evolutionary regimes in different genomic regions and model accurately context dependent 

substitution dynamics. This is of particular importance in comparative genomics applications, where a 

neutral background is routinely assumed to test for sequence conservation and assign putative function. 

The model presented here provides a general framework for studying substitution dynamics given 

complex sequence contexts. It is based on a probabilistic formulation that can express multiple types of 

context effects and provides efficient algorithmic solutions for inference of ancestral genomes and 

estimation of model parameters. Importantly, the model and its implementation are adequate for modeling 

whole genomes, thereby fully exploiting the vast amount of available data to learn parameter-rich models 

robustly. When applied to almost 10 billion nucleotides of primate sequences, the model construct the 

most comprehensive characterization of neutral substitution dynamics to date. The results reflect 

surprising connections between the rate of different mutations types, flanking nucleotides and regional 

G+C contents. Comparison of the substitution dynamics in apes and monkeys further demonstrate a 

dynamic and lineage specific neutral process. These results indicate that rich models for the evolution of 

sequences without a functional constraint are feasible and may allow more accurate comparative 

genomics for detecting selection on complex sequence potentials. 
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INTRODUCTION 

 
More than forty years ago, molecular evolution emerged as a revolutionary paradigm that transformed 

evolutionary theory and biology. The pioneering works of Kimura and his peers established new 

principles in times when genomes where still very poorly characterized and when sequence data was 

scarce. The mathematics supporting molecular evolution was therefore aiming at an economical 

representation of the evolutionary process using key parameters. With the technological and experimental 

advances of recent years, genome sequences have become widely available, making parameter rich 

models for molecular evolution feasible. The comparisons of whole genomes have started to reveal a 

heterogeneous and dynamic evolutionary process and outlined numerous correlations between genomic 

features and the evolutionary dynamics of their surroundings. Consequently, comprehensive evolutionary 

analysis of the relations between the many effectors and consequences of the evolutionary process 

remains challenging and promises to be rewarding. 

 

Several authors have responded to these challenges by developing new models for neutral sequence 

evolution[1-5]. These models are based on the understanding that the flux of mutations (the mutational 

input) at a given locus is strongly affected by the immediate (e.g., flanking nucleotides) and regional (e.g. 

cross over rate) context of that locus. The new models proposed are introducing large sets of parameters 

and considerable complexity, making computation and expandability important issues. The correlation 

between so many genomic features and neutral evolution rates poses questions on cause and effect, and 

make the interpretation of inferred model parameters non trivial. 

 

In this work we introduce a new flexible and parameter rich model for sequence evolution. The model 

follow up on current context-aware evolutionary models [1, 4, 5] while developing a computational 

infrastructure for further expansion of the paradigm. Our new model is generalizing the notion of context 

and developing algorithms that scale well with the massive challenge of inferring parameters and 

ancestral sequences from whole genome alignments [6]. We applied our method to almost 10
10

 bases of 

human, chimpanzee and rhesus macaque sequence and derived statistically robust parameters for 

describing neutral evolution in primates. Analysis of the new model puts several theories and analyses 

that focused on the correlation between specific evolutionary effectors on common grounds [7-9]. 

Furthermore, our analysis reveals unexpected new connections between flanking context, G+C content 

and recombination rates and shows that lineage specific changes in the mutational input are more 

extensive than previously thought. A rich yet robust model for neutral evolution is therefore critical for 

deriving accurate and informative comparative genomics. 

 

METHODS 

 
A flexible context-model for sequence evolution. We model a group of aligned genomic sequences over 

a known phylogeny using a graphical model that generalizes existing models for sequence evolution. 

Here we define the model formally in its basic form, postponing interpretations and comparisons to other 

models to the discussion. The model is a factor graph [10] defining a joint distribution over random 

variables of three types: sequence variables, context variables and regional variables (Fig 1). We use the 

common notational convention, denoting random variables by capital letters, assignment to random 

variables by lower case letters, and assignment to groups of random variables by bold face lower case 

letters. 

-We denote by 
j

iS  the sequence variable representing the nucleotide at locus j in the genome of species i. 

Sequence variables are introduced for both extant and ancestral species, according to the assumed 

phylogenetic tree T. We use pa(i) to denote the parent of species i and r do denote the root of the 

phylogeny.  
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Figure 1: The Mutation, context and G+C factors. Shown are the three main factor types in our model, see text 

for details. 

-We denote by 
j

iC the context variable representing the distribution of nucleotides at locus j during 

evolution over the lineage leading to species i from pa(i) (see discussion for interpretations). 

- We denote by 
kG  the regional GC variable representing the discretized GC content in a range of 

sequence variables [km..(k+1)m), where m is the size of the range. We denote by b(i) the mapping 

between loci and ranges (i.e., int(i/m)). 
k

G  can be assigned with B possible values, each representing a 

fixed interval of G+C percentages. Other regional genomic and evolutionary properties can be expressed 

using similar variables. 

 

Given the above random variables, we define the model using factors that assign potentials to 

combinations of variable values. Note that although we define and use these potentials as expressing local 

conditional probabilities, the model as a whole is undirected, and the global joint distribution it induces is 

not compatible with the local conditional probabilities defined by the individual factors. 

- The mutation factor ),,,,( )(

)(

11 jbj

ipa

j

i

j

i

j

i gsccs
+−µ represents the conditional probability of observing a 

nucleotide at loci j in species i given the nucleotide at the same locus in the ancestral species pa(i), the 

value of the flanking nucleotides during evolution over the lineage and the regional G+C content. A 

mutation factor is therefore defined by 4x4xB matrices of 4 by 4 elements (each with 12 free parameters). 

We use distinct matrices for each lineage. We may further divide the genome into regions with different 

evolutionary parameterization to express more than one evolutionary regime in a single lineage.  

- The background factor ),,,( )(21 jbj

r

j

r

j

r gsss −−β represents the conditional probability of observing a 

nucleotide at loci j of the root species, given the preceding two nucleotides. 

- The context factor ),,( )(

j

ipa

j

i

j

i sscδ represents the conditional probability of the context variable at locus 

j and the lineage i given the sequence variables at position j and the end points of that lineage. δ in the 

present work is simply averaging the value of the two sequence variables (Fig 1).   

- The GC factor ))),(
1

(;(),(
2

)(

min

)(

g

kjb

j

r

k

size

kjb

r

k
sgc

m
gggNg σγ ∑

=

= +=s  scores the difference between 

the G+C variable and the mean G+C content in the associated sequence variables using a normal density 

function with a predefined standard deviation σg. We use G+C content bins of size gsize starting from gmin. 

gc(s) is an indicator function equals 1 for C or G and 0 otherwise.  

 

The joint probability is defined by combining the factor potentials: 
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where Z is a normalization factor (also known as the partition function). 

 

Inference. Given a model (the parameterization of all factors) and a multiple alignment (on a set of extant 

species genomes), we wish to compute posterior distributions of hidden variables (ancestral sequences, 

context variables) and groups of hidden variables (joint posterior distribution of the variables adjacent to 

each factor). The posterior distributions of many of the hidden variables in the model are of interest for 

themselves and can provide us with estimation of ancestral genomes and their properties. More 

technically, we need to solve the inference problem in order to learn the model parameters (working in an 

iterative generalized EM algorithm).  Since we are aiming at the application of the model to whole 

genomes, our algorithms must be capable of handling billions of random variables. There are several 

common approaches for performing inference with complex graphical models and many of them are used 

in evolutionary contexts. Sampling based inference is relatively simple and accurate but may require 

significant computational resources. A different class of methods that can be much more efficient is using 

a variational principle to derive to an approximate representation of the posterior distribution using 

minimization of a free energy expression (for a gentle introduction with an evolutionary perspective see 

Jojic et al. [11]). An effective relaxation of the variational approximation leads to a relaxed free energy 

expression (called the Bethe free energy) and the efficient loopy belief propagation algorithm (LBP [12]). 

LBP is a message passing algorithm, computing messages from variables to factors and factors to 

variables until convergence and then using the converged messages to approximate posteriors (see 

Yedidia et al. [12] for an excellent introduction). Applying the algorithm in its simple form to our model 

is completely impractical, almost always ending up in non-converging or very slowly converging 

messages. We are therefore using several algorithmic modifications to make the algorithm feasible and 

improve its accuracy: 

 

Initialization: We are initializing all variables to factor messages by computing a rough estimation for all 

variable beliefs. This is done by building an approximated locus-independent model for each locus and 

solving the exact inference problem on that tree (using an analog of the standard Felsenstein's algorithm 

[13]). Note that this initialization phase is somewhat similar to a single simplified iteration of the 

structural variational inference technique introduced by Siepel, Jojic and co-authors for the Phylo-HMM 

model [5, 11]. Our initialization phase is however considering only the free energy terms involving 

mutation factors for the locus that is being optimized, and is not repeated to convergence. 

 

Regional messages: Exact computation of the messages from the GC factor involves summing over an 

exponential number of assignments to the factor's adjacent variables. Since GC factors have a large 

number of inputs we must compute approximate messages. To derive the approximation, we observe that 

because the factor potential depends on the mean G+C content of the associated sequence variables, the 

original message update rule: 
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When )Pr(ν  represents the distribution of the mean GC content given a fixed
j

rs value and the product of 

variable-to-factor messages from the other sequence variables to
kγ . The mean is distributed as a sum of 
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Approximating the message is done efficiently by numerical approximation of the integral overν  (in 

practice, ν 's variance will be very small – making the computation very accurate). 

 

Super nodes. We identify loci that were or are likely to include a CpG dinucleotide in current or ancestral 

genomes and combine them into "super-nodes" when running LBP. The identification is done based on 

the beliefs we compute during message initialization, using a permissive cut off on the posterior 

probability for observing a CpG. Running as "super-nodes", the two sequence variables that are 

potentially associated with a CpG are unified into one random variable, and the related factors are 

updated accordingly, without changing the overall joint distribution. The messages involving the super 

node are therefore much larger, and represent accurately the strong coupling between the two loci. This 

approach is similar to the generalized LBP algorithm, but is simpler to implement since we are 

eliminating overlaps between super nodes arbitrarily. 

 

Learning. We use a generalized EM algorithm that maximizes the Bethe Free energy [12] of the model 

given the data by running LBP inference and re-estimating the parameters of the mutation and 

background factors using the inferred joint posterior distribution. Learning model parameters is greatly 

simplified by assuming each lineage has its own set of parameters (e.g. its own mutation factors 

parameterization). This assumption makes the maximization step in the generalized EM algorithm 

straightforward since we do not have to optimize a single rate matrix given several matrix exponentials, 

or fine tune branch lengths. We note that maximizing the Bethe free energy is not guaranteed to improve 

the likelihood of the data, but that in practice, using the enhanced inference approach outlined above the 

algorithm performs robustly. The overall learning of a model using whole genome alignment (3 billion 

loci over 3-8 species) is a heavy computational task. Our implementation allows massive parallelization 

over computer clusters by performing inference on 1MB-10kb genomic segments and combining the 

sufficient statistics from all such segments to complete EM iterations. The results reported here were 

generated on a 100 cores cluster within hours. 

 
Data sources and setup. Sequence alignments where downloaded from the UCSC genome browser. We 

used UCSC known gene annotation to identify exons, introns and intergenic regions [14]. Recombination 

data was downloaded from the Hapmap web site [15].  We used the human genome as the reference, and 

processed all intergenic genomic loci that could be aligned to both chimpanzee and macaque sequences 

(for the whole genome results), or to at least 4 of the five genomes in the ENCODE analysis. We treated 

short gaps as missing data. In the distributed running mode, we cut the genome into parts arbitrarily, 

losing some accuracy on the boundaries. We always ignored mutational parameters for the lineages 

leading from the root, since these are underdetermined.  

 

RESULTS 
 

Estimating a mutational context model. We developed a new framework for ancestral inference and 

evolutionary model learning. Our algorithm estimates context dependent substitution probabilities by 

considering simultaneously the correlations between substitution of different types, flanking nucleotides 

and regional sequence properties like the G+C content. Given the vast genomic resources available, 
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Figure 2: Parameter rich model for substitution probabilities in the human lineage. A) Context dependent 

substitutions. Shown are substitution probabilities of 16 flanking context and 6 mutation types, plotted as a function 

of G+C content. For each context we plot two independent estimations of the parameters (in two reverse 

complementing contexts). B) Comparison of substitution probabilities in low (30%) and high (60%) G+C content. Y 

axis – log of the ratio between substitution probabilities. Positive values reflect substitutions that occur more 

frequently in region with high G+C content. 

learning a parameter rich evolutionary model is statistically robust and since we assume very little on the 

relations between the different evolutionary parameters, the results provide us with an unbiased view on 

their interactions. We applied our models to a whole genome alignment of the human, chimpanzee and 

macaque genomes, processing around 2.8 billion loci (Methods) and to the ENCODE primate sequences 
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(approximately 30M loci over a 5 species phylogeny). To validate the inferred parameters we used 

multiple controls. We first verified that our algorithm correctly recover a context-dependent substitution 

model in simulations (data not shown). We verified that the results are not significantly affected by the 

quality of the alignment and sequence and that we get similar results when processing repeat-masked and 

unique sequences. We studied the robustness of the estimated parameters by comparing models for 

different chromosomes or parts of chromosomes. To illustrate the statistical robustness of the parameters, 

we will use below comparison of reverse-complementing substitutions in reverse complementing contexts 

(e.g., ACC to AAC will be matched with GGT to GTT). The difference between such pairs of parameters 

is used as a quick indication of the expected variance of the parameters, since we learn the reverse 

complementing parameters independently but expect them to be equivalent (all strand asymmetries[16] 

should be averaged out since we always consider the plus strand). 

  

Flanking context and Regional G+C content combine to affect substitution probabilities. Figure 2 
depicts the human lineage substitution probabilities for 16 flanking contexts (colors and columns), 8 

genomic G+C content ranges (X axis) and the 6 types of mutations (rows). Careful examination of this 

parameter rich model uncovers surprising correlation trends. The first immediate observation is that the 

variation in substitution probabilities given flanking contexts is considerable. This is true even if we 

ignore the well documented variation in CpG deamination (C to T mutations in NCG contexts [9]). For 

loci with the same regional G+C content we observe 3-fold variation in the divergence of A to C and A to 

T depending on the flanking context, and 4-fold variation in the divergence probabilities of A to G. For 

mutations involving a C, we see predominantly rapid divergence in contexts involving a CpG (blue 

curves), not only for the deamination substitution (C to T) but also for C to A and C to G. Context 

dependent variation in the substitution of C nucleotides is also observed without involvement of a CpG 

(e.g. over 2 fold increase in CCA to CAA substitutions relative to CCT to CAT substitutions). 

 

A second clear trend is the correlation between the regional G+C content and the substitution 

probabilities. This trend is markedly different among the different mutation types. As shown in Fig. 2B, 

mutations involving loss of an A and a gain of C or G are positively correlated with the G+C content, 

while mutations involving a loss of C and gain of A or T are negatively correlated with the G+C content. 

Interestingly, negative G+C correlation is also observed for substitutions that change an A with a T, even 

though such substitutions are not changing the G+C content. Even more surprising are the dependencies 

between flanking context and the G+C effect. For A to G transitions, we observe clear G+C correlation 

when the flanking context does not include a G before the mutated locus, but no such correlation when a 

G exists before the locus. These surprising effects are adding to the theoretical challenge of explaining the 

origin of isochore structure and G+C heterogeneity in the genome. For example, substantial evidence 

suggest that increase in genomic G+C content may be a consequence of biased gene conversion (BGC 

[17-19]) which is driven by a preference for G-C pairs over A-T pairs. However, the correlation between 

G+C content and the rate A to T mutation, and the elimination of G+C content effect on A to G 

transitions in the presence of a 3' G, (but not a C)  are not directly accommodated by this theory. 

 

The substitution spectrum in recombination hotspots. One of the key factors hypothesized to shape the 

genome's nucleotide composition is the variability in recombination rate. We therefore computed context-

dependent substitution parameters in recombination hot-spots (derived from high resolution Hapmap 

data) and compared them to the global substitution parameters (Fig 3).  The results indicate that the 

substitution spectrum is strongly correlated with the recombination process. For example, transitions of an 

A to a G are occurring more rapidly in recombination hot spots, regardless of the flanking context or the 

regional G+C content (Fig 3). The symmetric process, however, substituting G's with A's is occurring at 

similar rates in recombination hot spots and other parts of the genome. The same asymmetry in the effect 

of recombination is observed when analyzing substitutions of A's with C's (faster substitutions of A with 

C in recombination hot spots). 
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Figure 3: The effect of recombination on context specific substitutions. Shown are context dependent A to G 

(upper left) and C to T (upper right) substitution probabilities as a function of the G+C regional content (X axis). 

Plotted in red are the global genomic substitution probabilities, and in blue are those computed using only sequences 

from recombination hotspots. The ratios between the recombination- dependent and non recombination-dependent 

substitution probability for all six mutation types is shown in the lower panels. Each point in the plots represents 

comparison of one parameter (fixing flanking context and G+C content). 

Recombination rate and G+C content are known to be highly correlated and several theories were put 

forward to try and explain this correlation. Our data suggest that the correlation between G+C content and 

substitution rates is significant even when restricting the analysis to recombination hotspots (Fig. 3A). 

Moreover, the amount of recombination-dependent increase in substitutions gaining a G or C is not 

significantly dependent on the regional G+C content. We also do not observe correlation between the 

flanking context and the recombination-dependent increase in substitution rate (in contrast to the 

correlation between flanking context and the G+C content influence on substitutions, Fig 2). We conclude 

that recombination is clearly a factor that can be associated with increase in G+C content, but that it is 

difficult to argue that recombination rates can explain the correlation between G+C content and 

substitution dynamics. We note that refining the analysis to include different ranges of cross over rates 

(beyond the classification to "hot spots" and "background") did not reveal significant additional 

correlation between recombination and substitution rates (data not shown). 

 
Context-dependent substitution spectrum in apes and old-world monkeys. The context-dependent 

substitution spectra of the lineages following divergence of the apes from the old-world monkeys were 

estimated using ENCODE-derived sequences from baboon, macaque, chimpanzee and human, with 

marmoset serving as an out-group. Comparing substitution probabilities between lineages should be 

carefully approached, as the estimation of substitution rate in closely related species may be affected by 

demographic factors (which should affect the entire spectrum) or sequencing errors (which can be  
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Figure 4: substitution dynamics in apes and monkeys. Shown are context dependent A to G (upper left) and 

C to T (upper right) substitution probabilities as a function of the G+C regional content (X axis). Plotted in red are 

the parameters from the ape lineage (leading to the human-chimp common ancestor) and in blue the parameters for 

the monkey lineage (leading to the baboon-macaque common ancestor). The ratios between the parameters in the 

two lineages for all six mutation types are shown in the lower panels. Each point in the plots represents comparison 

of one parameter (fixing flanking context and G+C content). 

context- and lineage-specific). For example, error rates in the first chimpanzee assembly (panTro1) are 

not negligible when compared to the human chimp divergence probabilities (Data not shown). The 

comparison reported here is using internal phylogenetic branches that are supported by at least two 

species on each side, providing robust results which are unlikely to be affected by differences in sequence 

quality. Fig 4A,B depicts the differences in substitution probabilities between apes and monkeys. The 

same general trends we observed in the genomewide analysis of the human lineage (e.g., G+C 

dependencies, cross talk between flanking nucleotide and G+C correlations) are observed in both 

lineages, but significant differences between lineages are evident. Comparison of CpG and non CpG 

substitution rate was suggested before to indicate that two molecular clocks are ticking in the apes and 

monkeys lineages [20]. A generation-time based clock was suggested to be coupled to non CpG 

substitutions and an absolute time clock was suggested to be associated with CpG deamination. The 

generational clock was estimated to tick 1.36 (log ratio = 0.44) faster in the monkeys’ lineage. As shown 

here, several types and substitutions (e.g., A to C substitutions) are accelerated by up to twice that rate 

(log ratio > 0.8), while other substitution types (C to A, C to G) are occurring at almost the same rates in 

the apes’ and monkeys’ lineages. Consequently, no single molecular clock, and not even two distinct 

molecular clocks can describe the evolutionary process in apes and monkeys. One possibility is that for 

each substitution type and each context, a different combination of the generational and absolute time 

clocks is determining the substitution rate. Another possibility is that on top of these effects, small 

changes in the mutational input and output contribute another layer of complexity.  
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DISUSSION 
Models and approximations for context dependent evolutionary processes. If we assume that neutral 

evolution progresses through a series of substitutions, and ignore the population dynamics so as to assume 

that mutations and fixations are instantaneous, then we can think of the entire (neutral) evolutionary 

process as determined by the rate of substitution at each locus given the current sequence (or the context). 

If the context is void (i.e., the mutational input at each locus is independent of the other loci), then the 

process can be described as a product of independent continuous time Markov processes, each determined 

by some stationary (fixed throughout the process) rate matrix. In this simple case, one can easily compute 

the likelihood of a set of sequences over a phylogeny, by multiplying the likelihoods on individual loci, 

where the substitution probabilities on each lineage are derived using exponentiation of the rate matrix 

with appropriate branch lengths. It is important to note that the matrix exponential can be thought of as 

marginalizing (or integrating) the probabilities over all possible evolutionary trajectories with fixed 

nucleotide values at a parent and child species. The context-independence assumption therefore makes it 

possible to marginalize over all possible evolutionary trajectories of a long sequence by considering one 

locus at a time. 

 

In the case where the context is not void we can no longer decompose the probability of an evolutionary 

trajectory to independent contributions from individual loci, and we can therefore no longer marginalize 

over all trajectories by solving small matrix exponentials and multiplying them together. Even when the 

context include only the two nucleotides flanking a loci, the simultaneous change of the entire sequence 

make it impossible to represent the likelihood as a product of independent terms. Computing exact 

likelihoods in this case is therefore highly intractable (the dimension of the trajectory space is truly 

immense) and one needs to find effective approximations or heuristics. One way by which the problem 

can be simplified is through time discretization. Here, the time domain is considered as a set of discrete 

intervals (lineages in the phylogenetic tree [5] or subdivision of lineages to smaller time intervals [4, 21]. 

The Markov process at each locus is now assumed stationary between each two time points. For example, 

one can assume the context of the process from time t to time t+1 to be determined completely by the 

sequence at time t [4, 7], or to be determined by the combination of values at time t and t+1 [11]. Under 

this assumption, the likelihood of the data become much easier to understand and compute using standard 

statistical methods. Even then, the problem is computationally hard and requires additional 

approximation. For example, Siepel and Haussler have further simplified the process to include flanking 

effects at only one side of the locus, and developed a Bayesian network model for expressing the joint 

distribution of extant and ancestral sequence variables [5] and variational inference methods to allow 

efficient model learning . Their influential work became an important foundation for popular comparative 

genomics tools [22]. Hwang and Green [4] have introduced a time synchronous model that include 

flanking effects from the 3' and 5' nucleotides of each loci and used the Markov Chain Monte Carlo 

method to estimate the model parameters. Arndt and his colleagues used a similar methodology but also 

developed an intelligent framework to identify statistically significant context rules when the data is 

limiting [1, 2]. Duret  and Arndt also introduced methodologies for special treatment of the important case 

of CpG dinucleotides and explored the connections between G+C content and recombination rates [7]. 

 

The discrete and synchronous time models we described above generally fall under the umbrella of the 

dynamic Bayesian Network formalism. A more sophisticated class of computational models for studying 

context dependent Markov processes is recently being developed by Koller and colleagues. Noodleman 

and Koller introduced the Continuous Time Bayesian Network (CTBN) paradigm, which treats a set of 

time-evolving random variables that are parameterized by context dependent Markov rate matrices [23], 

where the context dependencies are represented by an arbitrary graph. To perform inference in the model, 

Noodleman and co-workers developed a series of message passing algorithms [24] which exchange 

beliefs on rate matrices (instead of beliefs on stationary distributions as commonly practiced with static 

Bayesian networks). To make this approach practical, even when the models are not very large, one still 

have to assume independence among the messages in the model, but here, in contrast to the synchronous 
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time approximations, the algorithm develops some characterization of the posterior distribution over 

trajectories (approximated by independent Markov processes at each locus), and not only information on 

the endpoints distribution. El-hay and colleagues [25] have described an evolutionary-inspired variant to 

the CTBN framework. In their Continuous Time Markov Network model, the process is parameterized by 

a context independent reversible Markov process that continuously propose changes to variables. This 

proposal mechanism is combined with a Markov network that determine stochastically if proposed 

changes are accepted based on the context. This formulation can be thought of as describing evolution 

given a mutational input (the proposal distribution) and fitness function (the Markov network). 

 

In the present work, we introduced a model that extends the time-synchronous dynamic Bayesian 

networks using simple context variables that represent the distribution of sequence variables during 

evolution over a lineage. By adding these layers of variables, our model develops information on the 

evolutionary trajectories at each locus as part of the inference procedure. This is done without having to 

work with the large and more complex messages that are required by the CTBN framework. This 

(relative) simplicity is important since we are working with huge models, and inference performance is a 

major consideration. The message passing algorithm we have developed is flexible enough to allow both 

very fast implementation and specific handling of important cases like strongly coupled CpG 

dinucleotides. In learning the model, we have assumed that sequence data is not a major limiting factor, 

and since our observations suggest that the context–dependent Markov process is far from being 

stationary or reversible, even when considering lineages as close as human and chimp, we opted for the 

usage of lineage-specific parameters and avoided altogether the explicit estimation of rate matrices. We 

believe the model is therefore representing a cost-effective tradeoff between complexity and efficiency, 

which will be exceedingly important as we continue to build into it additional layers to represent 

selection. 

G+C content, recombination and the mutation spectrum. The model we introduced here is not 

assuming any parametric a-priori dependency between substitution probabilities and other genomic 

features. It can therefore be used to examine parametric hypotheses on the nature of correlation between 

genomic features and substitution dynamics in an unbiased way. An important example is G+C genomic 

heterogeneity. Our data reveal extensive correlation between higher rate of G and C gaining substitutions 

and higher G+C content. This correlation was observed before and is subject to extensive theoretical and 

computational work, trying to rationalize the genome isochore structure as a result of current evolutionary 

dynamics or as a historical leftover of ancestral events (few examples are in [8, 18, 19]). Many of these 

theories are predicted to affect several mutation types, or several flanking context in the same way, 

generating hypotheses that can be tested with our model. For example, our data show that the G+C 

content effect on substitution dynamics is holding even when restricting the analysis to HapMap 

recombination hotspots (Fig 3). Even more intriguingly, the strong G+C effect on A to G transitions is 

eliminated for loci with a 5' G nucleotide (Fig 2). Theories that rely on the recombination structure of the 

genome to explain G+C heterogeneity should somehow accommodate for these new observations. 

 
Application to comparative genomics. The model presented here as well as other recent evidence [20, 

26] shows that the genomic substitution process is very dynamic among lineages and cannot be accurately 

modeled using a universal rate matrix, even if this matrix is expanded to include context effects. 

Universal substitution models are still critically important for studying more remote species or when 

using likelihood based method for phylogenetic reconstruction. In the current typical comparative 

genomics settings, where ample of sequence data is available and the universality of the process is 

questionable, it makes little sense to assume parametric dependencies among the substitution probabilities 

in different lineages. The rich and unbiased models we derive here can greatly enhance the accuracy of 

the neutral model we use when searching for selected sequence traits. Such enhanced neutral standard 

would allow evolutionary biologists to develop better tools for detecting selection on complex sequence 

potentials like weak transcription factor binding [27] or the nucleosome positioning signals [28]. 
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