
Relaxing Synchronization Constraints in
Behavioral Programs

Supplementary Material

David Harel, Amir Kantor, and Guy Katz

Dept. of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel
{dharel,amir.kantor,guy.katz}@weizmann.ac.il

Appendix

I The Distributed Execution Mechanism

The technique discussed in Section 4 requires that each b-thread communicate
with the global coordinator at every synchronization point. While this constraint
is significantly weaker than stepwise synchronization with all other b-threads,
it may limit the applicability of the approach for designing multi-component
applications in distributed architectures, in which communication is costly and
time-consuming. In this section, we show how a variant of eager execution,
combined with Dead Reckoning techniques [1, 2], can be utilized to reduce these
costs. This variant is referred to as distributed execution.

In order to have behavioral modules executed in a decentralized manner on
different machines, we distribute the coordinator, so that each machine runs
its own coordinator agent. These agents serve as the coordinators for their local
threads, i.e., threads running on the local machine, but have no direct access to
threads on other machines. Instead, they can communicate with other agents.

Before running the system, each agent is given the state graphs of all the
threads in the system, including non-local threads (similarly to the technique in
Section 3.2). Each coordinator agent then executes the program locally, using
these state graphs to simulate non-local threads and predict their synchronization
requests. Each agent is responsible for answering its local threads’ synchronization
requests, just as a central coordinator would. Observe that this requires that the
event selection mechanism be a deterministic function — that is, a function from
2Σ \ {∅} to Σ, whose input is the set of enabled events — in order to ensure that
the autonomous agents pick the same events.

In a program with deterministic threads, this form of distribution would
suffice to make inter-component communication obsolete, as each coordinator
agent could trigger precisely the same events as the others. In the case of systems
with nondeterministic threads (such as reactive systems), some communication
between the distributed components is mandatory. Intuitively, this communication
is used to announce the outcome of nondeterministic choices made by a thread
to the other components. Specifically, all coordinator agents are aware of each
thread’s nondeterministic forks, as they hold all the state graphs. Whenever

such a nondeterministic fork is reached, the coordinator agent on which that
thread is actually running is responsible for disseminating the outcome of the
nondeterministic choice to the remaining agents. If other agents reach this point
before the outcome has been broadcasted, they must wait for it. This guarantees
that the execution is consistent across all program components, in the following
sense:

Lemma 1. Let P be a behavioral program executed using the distributed execution
mechanism. Then, all coordinator agents trigger the same sequence of events,
and this sequence is a valid run (under BP’s semantics).

In the distributed execution mechanism, a thread waits for threads in other
components only to resolve nondeterminism in the behavior of the latter. For
the correctness of code executed in accordance with the triggering of an event,
the programmer should generally assume that in other components this event is
triggered at a different time (before or after).

In the next section we describe an example of a distributed application; and
in section I.2 we formally define the model and prove Lemma 1.

I.1 Example: A Distributed Application

Suppose that communication to and from the vehicles in the example from
Section 4 is costly, and is to be minimized. In particular, it is desirable to avoid
a central coordinator. This could be addressed using a distributed design, where
each vehicle and agent pair runs on a dedicated machine. As before, we assume
that the vehicles travel in some pre-determined cyclic route. As the threads of this
example are deterministic, each vehicle can completely predict the whereabouts
of the other vehicles at any point in the execution, and collisions can be averted
without any inter-vehicle communication.

We now introduce a source of nondeterminism. Suppose that one of the
vehicles is an antique, and often requires maintenance. Along that vehicle’s route
there is a garage; and whenever the vehicle passes that point of the route, it may
go in for repairs. The decision of whether or not to stop for repairs is considered
a nondeterministic input from the environment. This new setting prevents other
vehicles from predicting the location of the malfunctioning vehicle — since each
lapse it may or may not spend one time unit in repairs.

Whenever the malfunctioning vehicle passes by the garage, the coordinator
agents reach a nondeterministic fork in its state graph, and suspend their execu-
tion. As soon as the malfunctioning vehicle synchronizes and reveals whether or
not the vehicle stopped for repairs, its handling agent disseminates the information
to the other agents, allowing them to resume their execution.

Even in the nondeterministic setting, using the distributed version of the
system significantly reduces the number of messages being sent between the
machines. In the central coordinator scenario of Section 4, each vehicle would
have to communicate with the coordinator for every single move; but in the
distributed setting, only one message per round is sent from the malfunctioning
vehicle to the others.

I.2 Distributed Execution Formalized

In this section we provide a rigorous definition of the model, and prove that the
runs that it produces abide by the semantics of BP.

Let P = {BT 1, . . . , BTn} be a (possibly nondeterministic) behavioral pro-
gram, where n ∈ N and each BT i is a distinct b-thread, and let f : 2Σ \{∅} → Σ
be a deterministic event selection function. Suppose that the threads run on
different machines M1, . . . ,Mk. Each machine is defined as the set of thread that
it runs, i.e.

⋃k
i=1Mi = P .

Each machine Mi has a coordinator agent, Ci; this agent acts as the coordi-
nator for the threads of Mi, and answers their synchronization requests. Each
coordinator agent is supplied with the state graphs of all threads in the sys-
tem, and uses these graphs to locate nondeterministic transitions of the threads
throughout the run.

The pseudocode for coordinator agent Ci in charge of managing threads Mi

is given below. The agent uses variables s1, . . . , sn to keep track of the states of
all threads in the system.

Coordinator Agent Ci:

1: ∀i, si ← qi0
2: LastEvent← φ
3: while true do
4: Sync← φ
5: while |Sync| < |Mi| do
6: Receive synchronization request from thread BT j

7: Mark the new state of BT j as s′j
8: if LastEvent 6= φ and |δj(sj ,LastEvent)| > 1 then
9: Broadcast s′j
10: sj ← s′j
11: Sync← Sync ∪BT j

12: for BT ` /∈Mi do
13: if LastEvent 6= φ then
14: if |δ`(s`,LastEvent)| > 1 then
15: Update s` according to broadcasts from other agents
16: else
17: s` ← δ`(s`,LastEvent)
18: E ←

⋃n
j=1(R

j(sj))−
⋃n

j=1(B
j(sj))

19: LastEvent← f(E)
20: Inform threads in Mi that LastEvent was triggered

Note the slight abuse of notation of line 17 — where δ`(s`,LastEvent) is not
the state of the thread, but rather a set containing that state. Also, we implicitly
assume that all broadcasts between the coordinator agents contain the index of
the synchronization point that they refer to, to prevent cases where information
about synchronization point t1 could be mistakenly used in synchronization point
t2.

Intuitively, the coordinator agent waits for the threads that it manages (loop
on line 5), same as in the centralized case. Whenever a thread synchronizes, the

agent checks if the thread’s last transition was nondeterministic (line 8). If so,
the new state is broadcasted to the other agents — as they have no other way of
finding out which transition was taken.

Once all the agent’s threads have synchronized, it turns to consider threads
that run on other machines. The key fact is that if a non-local thread is at a
nondeterministic transition (line 14), the agent has to wait to receive a broadcast
message (line 15) in order to determine the new state of that thread. Otherwise,
it can go ahead and determine the thread’s state locally (line 17).

After the synchronization requests of all threads have been determined, the
next event to be triggered is selected (line 19), and then broadcasted to the
agent’s threads. This part is the reason for stipulating that f be a deterministic
function — in order to maintain cohesiveness, all agents much trigger the same
event on line 19.

Observe that each coordinator agent uses information regarding the transition
functions (lines 8 and 14) and synchronization requests (line 18) of all the threads
in the system — both threads that run locally on that agent, and threads that
run on other agents. This information is given prior to the run, in the form of
the state graphs of all the threads in the system.

Having formally defined the operation of each agent, we can now prove the
following proposition, which is a technical formulation of Lemma 1:

Proposition 3. Let P = {BT 1, . . . , BTn} be a behavioral program, divided into
machines M1, . . . ,Mk with coordinator agents C1, . . . , Ck. Let f : 2Σ \ {∅} → Σ
be a deterministic event selection function. Then agents C1, . . . , Ck produce a
cohesive run; that is, there exists a unique run e1e2 . . . such that at synchronization
point i, every coordinator C` triggers ei. Further, the sequence e1e2 . . . is a valid
run (under BP’s semantics).

For simplicity, we prove the lemma for the case of two machines, i.e. n = 2; the
proof can easily be extended to any n ∈ N. The proof follows directly from the
next proposition, which is in turn proven by induction over the index of the
synchronization points of the run.

Proposition 4. For i ∈ N and m ∈ {1, 2}, let sim(BT `) denote the state of
thread BT ` at synchronization point i, from the point of view of coordinator agent
m. Let Sim denote the system-wide state at synchronization point i from the point
of view of coordinator agent m; that is, Sim = 〈sim(BT 1), . . . , sim(BTn)〉. Then
for all i ∈ N, it holds that Si1 = Si2.

Proof. Let i = 1, which is the first synchronization point in the program. At this
point, by the initialization in line 1 in the coordinator agent’s code, s11(BT `) = q`0
and s12(BT `) = q`0 for all `. Consequently, S1

1 = S1
2 .

Now, suppose that Si1 = Si2 for some i. At synchronization point i, both
coordinator agents triggered the same event ei. This is so because the event
selection function is deterministic, and thus both agents triggered event ei =
f(E(Si1)) = f(E(Si2)). This event was passed to all threads of the system by
their respective coordinator agents.

Observe synchronization point i+ 1 from the point of view of C1. As soon as
all threads in M1 have synchronized, C1 knows their states. In order to determine
the states of the remaining threads (those running on machine M2), C1 uses
their pre-supplied state graphs. For any BT ` ∈ M2, agent C1 checks whether
|δ`(si1(BT `))| = 1, and if so it deduces that si+1

1 (BT `) = δ`(si1(BT `)). In this
case, C2 will learn the state of BT ` when that thread synchronizes, and it will
hold that si+1

1 (BT `) = si+1
2 (BT `).

The other option is that thread BT ` is performing a nondeterministic tran-
sition, i.e. |δ`(si1(BT `))| > 1. In this case, C1 has to wait for thread BT ` to
synchronize and reveal its state to C2, after which C2 will broadcast this state to
C1. In this case, it will also hold that si+1

1 (BT `) = si+1
2 (BT `).

Further, upon receiving the synchronization request from a local thread BT t,
agent C1 uses its stored state graphs to check whether |δt(si1(BT t))| > 1. If so,
C1 transmits the thread’s new state as learned from the synchronization request,
si+1
1 (BT t), to C2 — to inform C2 of how that nondeterministic transition was

resolved.

As agent C2 behaves symmetrically, we conclude that for all t it holds that
si+1
1 (BT t) = si+1

2 (BT t), and consequently that Si+1
1 = Si+1

2 . ut

Proposition 3 immediately follows from Proposition 4, and from the fact that
f is a deterministic function. Indeed, Si+1

1 = Si+1
2 implies identical calculation

of the set E (line 18 in both agents, and thus the same output for f(E). Finally,
the fact that the resulting run is a legal BP follows from the definition of the set
E to be the set of enabled events at the synchronization point.

I.3 Further Relaxing the Distributed Execution Mechanism

The distributed execution mechanism described above utilizes eager execution
in the sense that each machine may be able to continue its execution without
waiting for slower machines — except in nondeterministic transitions. We point
out that further relaxation can be achieved by applying static or dynamic analysis
to threads within the scope of each coordinator agent. As in the non-distributed
case, this would allow faster threads within the same machine to continue their
execution without waiting for their slower counterparts.

Another possible enhancement for the distributed model above is to use
approximations for nondeterministic threads on other machines that slow down
execution. Suppose that controller agent C1 of machine M1 is waiting for thread
BT ∈ M2 to finish its nondeterministic transition in order to trigger an event.
As was the case in the centralized version, if C1 can deduce, using the state
graph of BT , that its next state will be either s1 or s2, it can approximate its
requested and blocked events with R = R(s1) ∩ R(s2) and B = B(s1) ∪ B(s2).
This further reduces the dependency between the different machines, hopefully
achieving better optimization.

II Nondeterministic Threads

In several points in the paper, we mention and demonstrate the use of nonde-
terministic threads. In this section we formally define such threads and discuss
applying the eager synchronization mechanism to them.

Nondeterministic threads can be intuitively thought of as threads that do
not depend solely on the (behavioral) events triggered, but also on other sources
of input — such as randomness or user actions. For example, consider a thread
currently at state s. In this state, the thread waits for event e. When that event
is triggered, the thread flips a coin; “heads” sends the thread to state sh, and
“tails” sends it to state st. Thus, the thread’s transition does not depend solely
on the triggered event, e. We call such threads nondeterministic.

Formally, nondeterministic threads are defined as follows: A nondeterministic
behavior thread (nondeterministic b-thread) BT is abstractly defined to be a
tuple BT = 〈Q, q0, δ, R,B〉, where

– Q is a set of states,
– q0 ∈ Q is an initial state,
– δ : Q×Σ → 2Q \ {∅} is a transition function,
– R : Q→ P(Σ) assigns for each state a set of requested events,
– B : Q→ P(Σ) assigns for each state a set of blocked events.

The difference between this definition and that of a (deterministic) b-thread is in
the definition of δ; here it may map each state and event pair into more than
one possible successor. For instance, in the example given above we would have
δ(s, e) = {sh, st}.

The semantics of behavioral programs with nondeterministic threads are
naturally defined as follows. Let P = {BT 1, . . . , BTn} be a behavioral program,
possibly with nondeterministic threads. We construct a labeled transition system
LTS(P) = 〈Q, q0, δ〉, where

– Q := Q1 × · · · ×Qn is the set of states,
– q0 := 〈q10 , . . . , qn0 〉 ∈ Q is the initial state,
– δ : Q × Σ → 2Q is a (nondeterministic) transition function, defined for all
q = 〈q1, . . . , qn〉 ∈ Q and a ∈ Σ, by

δ(q, a) :=

{{
〈r1, . . . , rn〉 | ri ∈ δi(qi, a)

}
; if a ∈ E(q)

∅ ; otherwise .

where E(q) =
⋃n
i=1R

i(qi) \
⋃n
i=1B

i(qi) is the set of enabled events at state
q.

As in the deterministic case, an execution of P is an execution of the induced
LTS(P). The latter is executed starting from the initial state q0. In each state q ∈
Q, an enabled event a ∈ Σ is selected for triggering if such exists (i.e., an
event a ∈ Σ for which δ(q, a) 6= {∅}). Then, the system nondeterministically
(that is, depending on coin tosses, user input, etc) moves to one of the next

states q′ ∈ δ(q, a), and the execution continues. Such an execution can be formally
recorded as a possibly infinite sequence of triggered events, called a run. The
set of all complete runs is denoted by L(P) , L(LTS(P)), which contains either
infinite runs or finite ones that terminate in a state in which no event is enabled.

II.1 Eager Execution of Programs with Nondeterministic Threads

As we briefly mentioned in the paper, eager execution can be adapted to programs
with nondeterministic threads. We now discuss this adaptation more thoroughly.

Static Analysis The first method for eager execution mentioned in the paper
is that of static analysis. In this approach, the coordinator is given, prior to
running the program, an over approximation of the events that the thread might
block during its run. Clearly, this method can be applied to non-deterministic
threads as-is: the threads’ nondeterministic nature does not affect the validity of
the over approximations.

Further, recall that in Section 5 of the paper we discussed leveraging the eager
execution mechanism in designing modular behavioral programs. As mentioned
therein, the results given rely on the use of static analysis of the threads. Conse-
quently, as static analysis is invariant to nondeterministic threads, the results
regarding modular design equally hold.

Dynamic Analysis The second method for eager execution that we mentioned
relies on dynamic analysis. In this variant, the global coordinator uses the threads’
state graphs to determine their future synchronization requests, while they are
busy performing lengthy actions. Naturally, nondeterministic transitions in a
thread’s state graph pose a problem to this technique, as the coordinator cannot
determine the state of the thread without knowing which transition was finally
chosen. This information only becomes available when the thread synchronizes,
but at that time it is no longer helpful.

We propose a slightly different variant, that is slightly weaker than dynamic
analysis of deterministic threads but still superior to static analysis. Consider
the example given earlier, where a thread determines its next state by tossing
a coin; i.e., δ(s, e) = {sh, st}. Further, suppose that coin tossing takes a long
time. The coordinator has no way of knowing if the thread is in state sh or st
until it synchronizes, but it can approximate its requested and blocked events
by R = R(sh) ∩ R(st) and B = B(sh) ∪ B(st). More generally, if the thread is
known to arrive in one of the states Q = {q1, . . . , qn} for its next synchronization
point, the coordinator can approximate its event sets by R =

⋃n
i=1R(qi) and

B =
⋂n
i=1B(qi). In many cases, these approximation may prove sufficiently tight

to allow the triggering of the next event, without actually waiting for the thread
to finish its lengthy operations and synchronize.

Observe that this method can also be applied iteratively — i.e., many more
events can be triggered before the nondeterministic thread synchronizes. All that
is required is that the coordinator properly maintains the set Q of states the
thread can reach at its next synchronization point.

II.2 Eager Execution Formalized for Nondeterministic Threads

In this section we extend the formal definitions of eager execution in the natural
way, to include proper handling of nondeterministic threads. While many of the
particulars remain the same as in the deterministic case, we repeat them here for
completeness.

Let P = {BT 1, . . . , BTn} be a behavioral program, where n ∈ N and each
BT i is a distinct, possibly nondeterministic b-thread. In order to define the eager
execution mechanism, we construct a labeled transition system (LTS) denoted

by L̂TS(P) = 〈Q̂, q̂0, δ̂〉, which is defined as follows.

– Q̂ := (Q1 × Σ∗) × · · · × (Qn × Σ∗) is the set of states, in which each
state is a tuple consisting of the state of each thread and the contents of
the corresponding event queue. Let q = 〈qi, ui〉ni=1 ∈ Q̂ be a state. We
use the notation δi(qi, ui) to denote the set of states in Qi that can be
reached after applying the (nondeterministic) transition function δi of thread
BT i starting from state qi for each event in the queue ui. Given q, we
denote the set of tuples comprised of possible combinations of these states
by ind(q) := {〈r1, . . . , rn〉 | ri ∈ δi(qi, ui)} we refer to it as the indication
of q. Note that each q ∈ ind(q) naturally corresponds to a state in Q, which
is the set of states of LTS(P) = 〈Q, q0, δ〉 defined above. We slightly abuse
notation and write that q ∈ Q.

– q̂0 := 〈(q10 , ε), . . . , (qn0 , ε)〉 ∈ Q̂ is the initial state.
– In each state q = 〈qi, ui〉ni=1 ∈ Q̂, eager execution approximates the requested

and blocked events of each thread. This is indicated by the following sets
of events: Ri(q) ⊆ Σ, for the requested events of thread BT i, and Bi(q) ⊆
Σ, for the its blocked events. The requirements imposed on them are the
following. We require that Ri(q) is a subset of the events that are requested
by thread BT i at any of the states in δi(qi, ui), and that Bi(q) is a superset
of the blocked events at these states. That is,

Ri(q) ⊆
⋂

v∈δi(qi,ui)

Ri(v)

⋃
v∈δi(qi,ui)

Bi(v) ⊆ Bi(q) .
(1)

Moreover, we require that in case a thread is synchronized, the two approxi-
mations are precise. More formally, if ui = ε for some i ∈ [n] (consequently,
δi(qi, ui) = {qi}), then

Ri(q) = Ri(qi)

Bi(q) = Bi(qi) .
(2)

From these, we obtain that the approximated enabled events, defined in the
following, are contained in the enabled events at any of the states in ind(q);
i.e., ∀q ∈ ind(q)

E(q) :=

n⋃
i=1

Ri(q) \
n⋃
i=1

Bi(q) ⊆ E(q) .

In case all threads are synchronized, i.e., ui = ε for all i ∈ [n], we obtain that
ind(q) = {〈q1, . . . , qn〉} and

E(q) = E(〈q1, . . . , qn〉) . (3)

– δ̂ : Q̂ × (Σ∪̇{ε}) → 2Q̂ is a nondeterministic transition function, which
includes also silent ε-labeled transitions; these ε transitions are not considered
part of the runs of the system. δ̂ is defined for each state q = 〈qi, ui〉ni=1 ∈ Q̂,
and σ ∈ Σ ∪ {ε}, as follows:

• If σ = ε, then δ̂(q, ε) is defined to be those states 〈ri, vi〉ni=1 ∈ Q̂ for which
there is i0 ∈ [n] and a ∈ Σ such that ui0 = a vi0 and ri0 ∈ δi0(qi0 , a),
and for all other i ∈ [n] \ {i0} it holds that ri = qi and vi = ui. Each
of these transitions corresponds to a thread with queued events when it
finishes processing the head of the queue — it changes states, while the
other threads don’t move.

• If σ ∈ Σ, and moreover σ ∈ E(q), then δ̂(q, σ) is defined to be the

singleton δ̂(q, σ) =
{
〈qi, ui σ〉ni=1

}
. These transitions correspond to new

events being triggered.
• If σ ∈ Σ and σ 6∈ E(q), we define δ̂(q, σ) = ∅. This reflects the fact that

events that are not enabled cannot be triggered.

The definitions above capture the case of nondeterministic threads. They can
be used to prove the result of the matching section in the paper for the nondeter-
ministic case: that in the nondeterministic case it also holds that each complete
run of L̂TS(P) is a complete run of LTS(P); i.e., L(L̂TS(P)) ⊆ L(LTS(P)). The
actual proof is similar to that of the deterministic case.

III Eager Synchronization Yields Valid Runs

In this section we formally prove Proposition 1, stating that runs produced
by the eager synchronization mechanism are valid runs of the original system.
Technically, we claim that each complete run using the eager synchronization
mechanism (namely a run of L̂TS(P)) is also a complete run of the original

program (namely a run of LTS(P)); i.e., L(L̂TS(P)) ⊆ L(LTS(P)). This is a
consequence of the following lemmata. As customary when discussing transition

systems, q
σ→ q′ stands for q′ ∈ δ̂(q, σ) (for any states q, q′ ∈ Q̂ and a possibly

silent event σ ∈ Σ ∪ {ε}). Also, we say that q ∈ Q̂ is a terminal state if for

all σ ∈ Σ ∪ {ε} it holds that δ̂(q, σ) = ∅. Similar notations apply to LTS(P).

Lemma 2. Let q, q′ ∈ Q̂ and σ ∈ Σ ∪ {ε} such that q
σ→ q′ in L̂TS(P). If σ = ε,

then q′ = q; else, if σ ∈ Σ, then q
σ→ q′ in LTS(P).

Proof. Denote q = 〈qi, ui〉ni=1 ∈ Q̂. Begin with the case σ = ε. By the definition

of δ̂, we obtain that q′ = 〈ri, vi〉ni=1, where all coordinates are the same as in q,

except for that one corresponding to i0 ∈ [n]. In the latter we get δi0(ri0 , vi0) =
δi0(δi0(qi0 , a), vi0) = δi0(qi0 , a vi0) = δi0(qi0 , ui0), as needed.

Now, suppose σ ∈ Σ. According to the definition of δ̂, σ ∈ E(q) and q′ =
〈qi, ui σ〉ni=1. By (3) and by definition of δ, we get that in LTS(P) it holds

that q
σ→ 〈 δi(δi(qi, ui), σ) 〉ni=1 = 〈 δi(qi, ui σ) 〉ni=1 = q′. ut

Corollary 1.

1. Let r0
σ1→ r1

σ2→ · · · σk→ rk be a finite execution of L̂TS(P) (k ≥ 0). There

exists a finite execution s0
a1→ s1

a2→ · · · at→ st of LTS(P) (t ≥ 0) such that
rk = st and σ1 σ2 · · ·σk = a1 a2 · · · at.

2. Let r0
σ1→ r1

σ2→ · · · be an infinite execution of L̂TS(P). There exists an

execution s0
a1→ s1

a2→ · · · of LTS(P) such that σ1 σ2 · · · = a1 a2 · · · .

Proof (Sketch). 1: By induction on the length of the execution. For the initial
states it holds that q̂0 = q0 ∈ Q, and the induction step follows from Lemma 2.

2: By an inductive construction of the execution, which similarly follows from
Lemma 2. ut
Lemma 3.

1. If q ∈ Q̂ is a terminal state in L̂TS(P), then q is a terminal state in LTS(P).

2. There is no infinite sequence q
ε→ q′

ε→ q′′
ε→ · · · in L̂TS(P).

Proof. 1: As q is terminal, by the definition of δ̂ it holds that all the queues in q
are empty (otherwise, δ̂(q, ε) 6= ∅); i.e., q = 〈qi, ε〉ni=1. Let a ∈ Σ. As q is terminal,
a 6∈ E(q), thus by (3), a 6∈ E(q), and therefore by definition of δ, δ(q, a) = ∅.

2: For each state q = 〈qi, ui〉ni=1 ∈ Q̂, consider the total size of the queues,
denoted by |q| := Σn

i=1|ui| ∈ N. This function is strictly decreasing in such a

sequence of states (by the definition of δ̂), which contradicts the well-foundness
of the naturals in case the sequence is infinite. ut

Corollary 2. Let r0
σ1→ r1

σ2→ · · · be a complete (finite or infinite) execution

of L̂TS(P). There exists a complete (finite or infinite) execution s0
a1→ s1

a2→ · · ·
of LTS(P) such that σ1 σ2 · · · = a1 a2 · · · .
The corollary follows from Corollary 1 and Lemma 3. It is equivalent
to L(L̂TS(P)) ⊆ L(LTS(P)), which is the technical formulation of Proposition 1.

IV Modularity Formalized

In this section we use the formalization of eager execution described in Section 3.3
in order to rigorously formulate and prove Proposition 2.

Let P = {BT 1, . . . , BTn} be a behavioral program (where n ∈ N and
each BT i is a distinct b-thread). Assume that P is composed of behav-
ioral modules M1, . . . ,Mk; i.e., M1, . . . ,Mk is a partition of the threads.
For each thread BT i, the set of events controlled by BT i is denoted

by Ci :=
(⋃

s∈Qi Bi(s)
)
∪
(⋃

s∈Qi Ri(s)
)

. For each module Mj , the set

Ej :=
⋃
i :BT i∈Mj

Ci is the set of events controlled in Mj . We assume that
the modular design is strict ; i.e., E1, . . . , Ek are pairwise disjoint.

We will assume that the program P is executed with the eager execution
mechanism, which is formalized as the transition system L̂TS(P) in Section 3.3.
The strict modular design translates into a constraint on the approximations
used — namely, that these approximations only include events controlled by the
specific module. Formally, in each state q ∈ Q̂, and for each module Mj and
thread BT i ∈Mj , the approximation of the blocked events satisfies

Bi(q) ⊆ Ej . (4)

This obviously holds in both static and dynamic analysis. Observe that the
analogous constraint, Ri(q) ⊆ Ej , follows directly from (1).

We now turn to prove the following technical proposition that, when applied
iteratively, implies Proposition 2.

Proposition 5. Let q = 〈qi, ui〉ni=1 ∈ Q̂ be a state of L̂TS(P) in which all
threads of module Mj have already synchronized; i.e., if BT i ∈Mj then ui = ε.

Let q′ = 〈ri, vi〉ni=1 ∈ Q̂ be a state such that q
ε→ q′ in L̂TS(P). Then for all i ∈ [n]

such that BT i ∈Mj it holds that vi = ε, and an event e ∈ Ej is enabled in q, i.e.
e ∈ E(q), if and only if it is also enabled in q′, i.e. e ∈ E(q′).

Proof. By the definition of the transition function δ̂ of L̂TS(P), for all i ∈ [n]
such that BT i ∈Mj it holds that vi = ui = ε, as required, and also ri = qi.

We begin by showing that e ∈ E(q′) =⇒ e ∈ E(q). By (3), e ∈ E(q′) implies
e ∈ Rl(q′) for some l ∈ [n], and e 6∈

⋃n
i=1 Bi(q′). By (1), Rl(q′) ⊆ Cl, where Cl is

the set of events controlled by BT l; as e ∈ Ej and the design is strict, BT l ∈Mj .
From the above, we get that rl = ql and vl = ul = ε. Therefore, from (2) we
obtain Rl(q) = Rl(ql) = Rl(q′), so that e ∈ Rl(q). For the same reason, and due
to (2), for all i ∈ [n] such that BT i ∈Mj , it holds that Bi(q) = Bi(qi) = Bi(q′);
as we know that e is not in the latter approximation set, we get that e 6∈ Bi(q).
For other i ∈ [n], for which BT i 6∈ Mj , we get from (4), and from the design
being strict, that Bi(q) ⊆ Σ \ Ej . Consequently, here also, e 6∈ Bi(q). Conclude
that e ∈

⋃n
i=1Ri(q) \

⋃n
i=1 Bi(q) = E(q) , as needed.

The proof for the other direction, i.e. e ∈ E(q) =⇒ e ∈ E(q′), is similar and
is omitted. The proposition follows. ut

References

1. W. Cai, F. Lee, and L. Chen. An Auto-Adaptive Dead Reckoning Algorithm for Distributed
Interactive Simulation. In Proc. 13th IEEE. Workshop on Parallel and Distributed Simulation
(PADS), pages 82–89, 1999.

2. R. Fujimoto. Parallel and Distributed Simulation. In Proc. Winter Simulation Conference
(WSC), pages 118–125, 1995.

