
6.841: Advanced Complexity Theory Fall 2012

Problem Set 1

Prof. Dana Moshkovitz/TA: Henry Yuen Due Date: September 20,2012

Turn in your solution to each problem on a separate piece of paper. Mark the top of each
sheet with the following: (1) your name, (2) the question number, (3) the names of any people you
worked with on the problem, or “Collaborators: none” if you solved the problem individually. We
encourage you to spend time on each problem individually before collaborating!

1 Problem 1 – Circuits and the polynomial hierarchy

(a) Prove that NTIME(n) ⊆ DTIME(nc) implies that ΣP
2TIME(n) ⊆ NTIME(nc).

(b) Show that for every k, there exists a language in ΣP
2 that does not have circuits of size nk.

[Note: this does not show that PH does not have polynomial sized circuits! Indeed, showing that
PH 6⊆ P/poly (or PSPACE 6⊆ P/poly, or even NEXP 6⊆ P/poly) seems to be quite beyond the reach
of current circuit lower bound techniques.]

(c) Here, we will show that upper bounds can sometimes be used to show lower bounds. Suppose
that P = NP1. First, show that P = NP implies that EXP = NEXP, where NEXP is the exponential-
time version of NP (i.e. the proof size can be 2O(nc) for some constant c, and the proof verifier
can also run in exponential time). Then, consider an exponential-time version of the polynomial
hierarchy to deduce our lower bound: there exists a language in EXP that requires circuits of size
2n/n.

2 Problem 2 – A dramatic collapse!

Show that PSPACE ⊆ P/poly implies that PSPACE = ΣP
2 . (In other words, simulating small space

with small circuits means that polynomial space collapses into a complexity theoretic blackhole.)

3 Problem 3 – NP-completeness of 3SAT does not relativize

Demonstrate an oracle A and a language L ∈ NPA such that L is not polynomial-time reducible to
3SAT, even when the reduction algorithm is given oracle access to A. This shows that the Cook-
Levin theorem is nonrelativizing! Bonus: Identify the non-relativizing components in the proof of
the Cook-Levin theorem.

1Some believe this not to be true.
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4 Problem 4 – Intractability of computing Vapnik-Chervonenkis
dimension

Optional problem. An important concept in machine learning and computational learning theory
is that of Vapnik-Chervonenkis (VC) dimension: Let S = {S1, S2, . . . , Sm} be a family of subsets
in a finite universe U . The VC dimension of S, denoted V C(S), is the size of the largest set X ⊆ U
such that for every X ′ ⊆ X, there exists an i for which Si ∩X = X ′ (we say that X is shattered by
S).

Often, the set S will represent a bunch of hypotheses; X will represent some training data. If
X is shattered by S, that means that all possible binary classifications of points in X have a
consistent hypothesis in S. If X is very large, then this indicates that the set of hypotheses S is
very expressive; it contains very complex explanations. Thus, intuitively, the VC-dimension of a
set of hypotheses is a measure of its descriptive complexity.

Suppose we had a family of sets S = {S1, . . . , Sm} that was implicitly represented by a circuit: for
all i, x ∈ Si if and only if C(i, x) = 1. The following language captures the problem of computing
VC dimension:

VC-DIMENSION = {〈C, k〉 | C represents a set family S s.t. V C(S) ≥ k }.

Note that k is written in binary. Show that VC-DIMENSION is ΣP
3 -complete. [Hint: You can

use the fact that ΣP
3 -SAT (the generalization of CNF-SAT to include ∃ . . . ∀ . . . ∃ quantifiers) is

complete for ΣP
3 .]
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