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1 Recap

In the last lecture, we embarked on the combinatorial proof of the PCP theorem by Irit Dinur[1].
A roadmap and part of the main reduction, were given last time, and we will finish the part of the
powering operation this time and finish the proof in the following lecture.

A constraint graph is a graph G = (V,E) with an alphabet Σ and a collection of edge constraints
{φe}. Let val(G) be the maximum of the fraction of constraints satisfied by some assignment. The
hard direction, NP ⊆ PCP (log n, 1), of the PCP theorem is equivalent to prove that distinguishing
between val(G) = 1 and val(G) ≤ 0.999 is NP-hard.

Following the roadmap in [1], we start from the worst case with gap 1/|E|, which is NP-hard from
the NP-completeness of 3-coloring problem, and amplify the gap by 2 for log |E| rounds. In each
round, the size of G can increase by a constant factor and the alphabet doesn’t change, while the
perfect completeness is maintained and the new soundness is 1−min{2δ, 0.001} if the old soundness
was 1− δ. This is done in two steps:

1. Achieve the completeness, soundness requirements while maintaining a linear blowup in the
graph size. However, the alphabet size can increase dramatically.

2. Reduce the new alphabet to the original alphabet Σ.

Last time, we talked about how to transform a constraint graph into a d-regular expander graph
with self-loops at each vertex with a linear blowup in the graph size and linear decrease in gap by
first reducing the degree of the constraint graph by replacing each vertex by an expander graph,
then expanderize it by superimposing an expander graph on it. We will finish the first step this
time by showing the powering operation to get a linear increase in gap. The second step will be
left for the following lecture.

2 The Powering Operation

Definition 1. (powering) Given a constraint graph G, the powering of G with parameter t is a
constraint graph Gt such that

1. The vertices of Gt are V . For every length t walk (may include multiple self-loops) between u
and v in G, we add an edge {u, v} in Gt.

Note that we have defined an one-to-one mapping from length-t walks in G to edges in Gt.
The number of edges between u and v in Gt is exactly the number of length-t walks from u to
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v in G. Gt is a dt-regular graph since there are exactly dt walks of length-t from every vertex
in G.

2. The alphabet is Σdt. An assignment σt(v) on a vertex v in Gt corresponds to assigning a
value from Σ to all the radius-t neighbors (including v itself) of v in G, i.e. vertices that can
be reached by some length-t walk from v.

Note that since the existence of self-loops, for each radius-t neighbor u of v, there is a length-t
walk from v to u. Therefore there are at most dt neighbors of v which is a constant.

3. The constraint φ{u,v} on some edge {u, v} in Gt checks if σt(u)w = σt(v)w for every common
radius-t neighbor w and σt(u), σt(v) satisfy the constraints of G.

The size of Gt is linear in the size of G since they have same vertex set and the number of edges in
Gt is exactly dt|V |. The perfect completeness is maintained since the assignment of Gt corresponds
to the satisfying assignment of G is a satisfying assignment. So we are left with the soundness
analysis.

3 Soundness Analysis

The strategy of the soundness proof is to prove its contrapositive, i.e. if we start with an assignment
σt : V → Σdt satisfying 1−α fraction of constraints inGt, we can construct an assignment σ : V → Σ
satisfying 1− δ fraction of constraints in G. It suffices to show that for every constant c > 1 that
is not too big, there exists some constant t, such that for every assignment σt and the constructed
assignment σ, we have α ≥ cδ.1 The construction is defined below.

Definition 2. (plurality assignment) Given an assignment σt : V → Σdt of Gt, the plurality
assignment σ : V → Σ of G is defined to be for every vertex v,

σ(v) = arg max
s∈Σ
|{p | p is a length-(t− 1)/2 walk from v to u and σt(u)v = s}|.

Note that different walks may have the same endpoint, so σ(v) is the maximum weighted sum
assignment to v of v’s radius-(t−1)/2 neighbors, while each neighbor is weighted by the number of
length-(t− 1)/2 walks from v to u. If there are several such assignments, we can pick an arbitrary
one since we only care about the following fact which simply follows the averaging lemma.

Fact 3. Let P(t−1)/2 be the set of all length (t− 1)/2 walks from v, we have

Prp←P(t−1)/2
[σt(u)v = σ(v) where u is the other endpoint of p other than v] ≥ 1

|Σ|
.

The main tool we use is Theorem 21.12 on pages 432-433 in the textbook [3].

Theorem 4. (Expander walks in [3]) Let G be an (n, d, λ) graph, and let B ∈ [n] satisfying |B| ≤ βn
for some β ∈ (0, 1). Let X1, . . . , Xk be random variables denoting a k − 1-step random walk in G
from X1, where X1 is chosen uniformly in [n]. Then

Pr[∀1≤i≤kXi ∈ B] ≤ ((1− λ)
√
β + λ)k−1

1A formal statement is α ≥ Ω(
√
t) min{δ, 1/t}, the

√
t term can be improved to t with a more careful analysis by

Jaikumar Radhakrishnan and Madhu Sudan [2].
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This theorem is stated for vertices, but a similar theorem holds for edges. In our settings, let B be
the set of σ-satisfying edges in G, we have β = |B|/|E| ∈ (0, 1) and δ = 1− β is very small. Recall
the numerical tricks that when x is small,

√
1− x ≈ 1−x/2 and (1−x)c ≈ 1− cx for any constant

c. Let Pk be the set of all length-k walks in G, we have

Prp←Pk
[all edges in p are σ-satisfying] ≤ ((1− λ)

√
1− δ + λ)k ≈ 1− (1− λ)kδ/2 = 1−O(kδ)

Now we begin our proof. We need to prove that α = cδ for some big enough constant c > 1,
where α is the fraction of σt-unsatisfying edges in Gt. Note that in the definition of the powering
operation, there is an one-to-one mapping from length-t walks in G to edges in Gt. Let Pt be set
of all length-t walks in G, we have

α = Pr{w1,w2}←Gt [φt{w1,w2}(σ
t(w1), σt(w2)) = 0]

= Prp←Pt [φ
t
{w1,w2}(σ

t(w1), σt(w2)) = 0 where w1 and w2 are the endpoints of p]

≥ Prp←Pt [p passes through some σ-unsatisfying edge {v, u} in the middle k steps of p

and φ{v,u}(σ
t(w1)v, σ

t(w2)u) = 0 where w1 and w2 are the endpoints of p]

We say that the edge {vi−1, vi} is in the middle k steps of a random walk (v0, v1, . . . , vt) if i ∈
[t/2 − k/2, t/2 + k/2). The inequality above is because the condition is more restricted. Observe
that the distribution p← Pt is the same as the following distribution E∗:

1. Choose a random length-k walk q in G.

2. Extend q in both sides to a random length-t walk p while q is the middle k steps of p.

Let w1, w2 be the endpoints of p, where w1 is closer to v, we have

α ≥ PrE∗ [there exists some σ-unsatisfying edge {v, u} in q and φ{v,u}(σ
t(w1)v, σ

t(w2)u) = 0]

≥ PrE∗ [there exists some σ-unsatisfying edge {v, u} in q while σt(w1)v = σ(v) and σt(w2)u = σ(u)]

The second inequality holds because the condition is more restricted and φ{v,u}(σ(v), σ(u)) = 0.
Observe that three conditions are independent since both q and p are random walks in G.

Figure 1: Illustration of distribution E∗ when {u, v} happens to be the middle of the walk

If {u, v} happens to be the middle of the walk, then by Fact 3, we have Pr[σt(w1)v = σ(v)] ≥ 1/|Σ|
and Pr[σt(w2)v = σ(u)] ≥ 1/|Σ|. This situation is showed in Figure 1.
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The key observation is when k =
√
t, Pr[σt(w1)v = σ(v)] ≥ Ω(1/|Σ|) and Pr[σt(w2)v = σ(u)] ≥

Ω(1/|Σ|) holds for every {u, v} in the middle k steps. This is a property of Binomial distribution.
The proof is skipped in class, but there is more details in [1] and [4].

Following this result and Theorem 4, we can lower bound α by

α ≥ Ω

(
1

|Σ|2

)
· PrE∗ [there exists some σ-unsatisfying edge {v, u} in q] ≥ Ω

(
kδ

|Σ|2

)
Note that |Σ| is a constant. Choose constant t to be big enough, so k =

√
t is big enough to swallow

the constant hidden by Ω and |Σ|, therefore completes the proof.
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