
6.841: Advanced Complexity Theory Fall 2012

Lecture 19 — November 15, 2012

Prof. Dana Moshkovitz Scribe: Badih Ghazi

1 Overview

In the last lecture, we saw the graph powering method, which allows us to increase the soundness
gap but has the drawback of increasing the alphabet size from |Σ| to |Σ|dt (where |Σ| is a constant).
In this lecture, we describe how to reduce the alphabet size (from |Σ|dt back to |Σ|), while causing
only a small decrease in the gap (and a constant factor increase in the constraint graph size).
Therefore, overall, the soundness gap has been amplified. This step is called “composition” in the
PCP literature.

2 Alphabet Size Reduction

2.1 Notation

The constraint graph after powering but before composition is denoted by G = (V,E,Σdt ,Φ) (where
d and t are constants). Φ is the set of edge constraints in G, i.e. Φ = {ϕe | e ∈ E} where for every
e ∈ E, ϕe is the constraint associated with edge e in G. Let σ : V → Σdt denote an assignment
of alphabet values to the vertices of G (which is provided by the prover and may not be a valid
assignment). The graph after the composition step is denoted by G′ = (V ′, E′,Σ,Φ′).

2.2 Overview of the transformation

The main idea of the transformation taking G as input and producing G′ as output is the following.
For every vertex v ∈ V , G′ contains a collection {(v, i)}i of vertices corresponding to v. Each as-
signment of values in Σdt to v will induce an assignment of values in Σ to {(v, i)}i.
For every edge e = (u, v) ∈ E, G′ contains a collection {(e, i)}i of vertices (that will be assigned
values in Σ) corresponding to e. G′ also contains edges between {(u, i)}i, {(v, i)}i and {(e, i)}i.
Those edges, along with the corresponding constraints in Φ′, will be specified at the end of Section
2.4. The particular form of those assignments will be specified after introducing “long codes”, in
Section 2.3.

The edges and constraints between {(u, i)}i, {(v, i)}i and {(e, i)}i will satisfy the following two
properties:

1. Assume that σ(u), σ(v) ∈ Σdt satisfy edge e and that σ(u) and σ(v) induce some assignments
of values in Σ to {(u, i)}i and {(v, i)}i respectively. Then, there exist assignments of values
in Σ to {(e, i)}i that satisfy the corresponding constraints in G′.

1

2. Let δ, δ′ > 0 be given constants and let e = (u, v) ∈ E. For any assignment of values in Σ to
{(u, i)}i, {(v, i)}i and {(e, i)}i that satisfies a (1− δ) fraction of the corresponing constraints
in G′, there exist unique assignments σ(u), σ(v) ∈ Σdt satisfying the edge e and s.t. a (1− δ′)
fraction of the {(u, i)}i’s have their assignments induced by σ(u) and a (1 − δ′) fraction of
the {(v, i)}i’s have their assignments induced by σ(v).

Lemma 1. There exists a constraint graph G′ = (V ′, E′,Σ,Φ′) with |V ′|+ |E′| ≤ c(|V |+ |E) (where
c is a constant that depends on |Σ|, d and t) and constants δ, δ′ > 0 that satisfy properties 1 and 2
above for every edge e ∈ E.

Lemma 1 implies composition, by noting that the new alphabet is Σ and the completeness and
soundness parameters are essentially maintained.

Remarks

1. The subgraph of G′ (corresponding to a particular edge e of G) is by itself a PCP! That PCP
(which we call the inner PCP) is for deciding whether a particular assignment to {(u, i)}i,
{(v, i)}i corresponds to a satisfying assignment for the edge e in G. The latter is a stronger
notion than the usual PCP (deciding whether there exists a satisfying assignment). Nonethe-
less, many PCP constructions also yield this stronger notion (called “assignment testing” or
“PCP of proximity”).

2. |Σdt | is a constant. In particular, the constant c in the statement of Lemma 1 will be expo-
nential in |Σdt |.

3. It is enough to prove the existence of a 3-hypergraph1 satisfying the above properties with an
alphabet of {±1}. Given such a 3-hypergraph, we can construct a graph satisfying the above
properties by introducing a new vertex per hyperedge and assigning values in {±1}3 to these
new vertices (see pset 5 regarding transforming a 3-query PCP to a 2-query PCP).

2.3 Long codes

First, we define the concept of a coordinate function (also known as a “dictator”).

Definition 2. Let W ∈ N. For every w ∈ {1, ..,W}, the coordinate function fw : {±1}W → {±1}
is defined by f(x1, .., xW) = xw for all (x1, .., xW) ∈ {±1}W .

Next, we define “long codes” which were introduced by Bellare, Goldreich and Sudan in [BGS95].

Definition 3. Let W ∈ N. A long code is a coding scheme where the message w ∈ [W] is encoded
by the table of the coordinate function fw : {±1}W → {±1}.

The fact that the size of a codeword (represented by 2W bits) is doubly exponential in the size of
the message (represented by logW bits) gives rise to the name “long code”. Note that a long code
encoder can be equivalently described as assigning to each w ∈ [W] the concatenation of the values
of all functions f : W → {±1} on input w.

1A 3-hypergraph is a generalization of a graph where an edge connects either 2 or 3 vertices.

2

Convention
Note that each codeword in a long code is inherently “balanced” in the sense that it consists of
2W−1 1’s and 2W−1 −1’s. This is due to the fact that every coordinate function fw has the property
that fw(−v) = −fw(v) for all v ∈ {±1}W . Thus, in a codeword, a function and its negation can
be represented by 1 bit instead of 2 bits, thereby reducing the length of a codeword by a factor of
2. We represent the supposed long code codewords this way, ensuring they are balanced. This is
called “folding” in the PCP literature.

We now give an useful property of long codes.

Lemma 4. Let W ∈ N. Define LC1 : {±1}logW → {±1}2W to be the long code encoder with

message length logW and block length 2W . Also, define LC2 : {±1}logW × {±1}logW → {±1}2W
2

to be the long code encoder with message length 2 logW and block length 2W
2
. Then, LC2(u, v)

“contains” LC1(u) and LC1(v) for all u, v ∈ {±1}logW . More precisely, there exist two one-to-one
functions h : [2W] → [2W

2
] and r : [2W] → [2W

2
] s.t. for all u, v ∈ {±1}logW and all i ∈ [2W],(

LC1(u)
)
i

=
(
LC2(u, v)

)
h(i)

and
(
LC1(v)

)
i

=
(
LC2(u, v)

)
r(i)

.

Noise stability
We say that a function is noise stable if flipping at random a small fraction of the input bits typically
causes no change to the output. For general Boolean functions, it can be seen that the constant
functions are the most noise stable. However, if we consider the set of all “balanced” Boolean
functions, it turns out that dictators are the most noise stable. This property will be useful in
designing constraints that identify long code codewords.

Assignment form
We will use a long code with parameter W = |Σdt | (where Σ = {±1}). For every v ∈ V , the
assignments {(v, i)}i are supposed to be the bits of the codeword L1(σ(v)). For every e = (u, v) ∈ E,
the assignments to {(e, i)}i are supposed to be the bits of the codeword L2(σ(u), σ(v)), where σ(u),
σ(v) are satisfying assignments for e. Moreover, for every e = (u, v) ∈ E, G′ we have a set of
hyperedges each connecting 3 vertices in {(u, i)}i ∪{(v, i)}i ∪{(e, i)}i, and Φ′ contains a constraint
associated with each such hyperedge.

2.4 Hastad’s test

Notation
Let σ : V → Σdt denote the assignment of alphabet values to the vertices of the initial constraint
graph G and ϕe be the constraint corresponding to the edge e = (u, v) in G. Also, let A be the
assignment in the new constraint graph G′.

We will now prove Hastad’s test (introdcuced in [H̊as01]), show that it has perfect completeness
and then complete the construction of the graph G′.

Description of Hastad’s test
The NP verifier VH picks f : Σdt×Σdt → {±1} and g : Σdt → {±1} uniformly and independently at
random. It then sets g′ : Σdt ×Σdt → {±1} as follows: With probability 1/2, g′(σ1, σ2) = g(σ1) for
all σ1, σ2 ∈ Σdt and with probability 1/2, g′(σ1, σ2) = g(σ2) for all σ1, σ2 ∈ Σdt . Then, VH chooses

3

µ : Σdt ×Σdt → {±1} as follows: For all σ1, σ2 ∈ Σdt , we distinguish 2 cases. If f(σ1, σ2) = 1, then
µ(σ1, σ2) = −1. If f(σ1, σ2) = −1, then:

µ(σ1, σ2) =

{
1 with probability 1− τ .

−1 with probability τ .

(where τ > 0 is some parameter). We view ϕe as a function mapping Σdt ×Σdt to {±1} where the
constraint associated with edge e in G is satisfied if and only if ϕe has value −1. Let f ∧ϕe denote
the ±1 version of the usual ∧, i.e. for all x ∈ Σdt ×Σdt , (f ∧ ϕe)(x) = −1 if and only if f(x) = −1
and ϕe(x) = −1. Moreover:

1. A(f ∧ ϕe) denotes the {±1} value in the assignments {(e, i)}i corresponding to the function
f ∧ ϕe.

2. If g′(σ1, σ2) is set to g(σ1) for all σ1, σ2 ∈ Σdt , then A(g) is the {±1} value in the assignments
{(u, i)}i corresponding to the function g. On the other hand, if g′(σ1, σ2) is set to g(σ2) for
all σ1, σ2 ∈ Σdt , then A(g) is the {±1} value in the assignments {(v, i)}i corresponding to the
function g.

3. A(g′ · µ) (where g′ · µ is the coordinatewise product of g′ and µ) denotes the {±1} value in
the assignments {(e, i)}i corresponding to the function g′ · µ.

Then, VH rejects if A(f ∧ ϕe) = A(g) = A(g′ · µ) = 1 and accepts otherwise.

Completeness
We now show that Hastad’s test has perfect completeness.

Lemma 5. If σ(u) and σ(v) satisfy the constraint on edge e in G (i.e. if ϕe(σ(u), σ(v)) = −1)
and if A is the long code assignment described at the end of Section 2.3, then VH accepts.

Proof. We proceed by contradiction. Assume that ϕe(σ(u), σ(v)) = −1 and A(f ∧ ϕe) = A(g) =
A(g′ · µ) = 1. Since A is the long code assignment, it follows that (f ∧ ϕe)(σ(u), σ(v)) = 1 which
implies that f(σ(u), σ(v)) = 1 (since ϕe(σ(u), σ(v)) = −1). By the definition of µ, we then have
that µ(σ(u), σ(v)) = −1. Moreover, A(g) = 1 implies that g′(σ(u), σ(v)) = 1 thereby contradicting
the fact that A(g′ · µ) = 1.

Soundness
We will prove the soundness of Hastad’s test in the next lecture.

Construction of G′

We now complete the construction of G′ (started in Section 2.2) by specifying the edges and asso-
ciated constraints between {(u, i)}i, {(v, i)}i and {(e, i)}i where e = (u, v) is an edge of G.
For every possible sequence of coin tosses that can be obtained by VH , we add a 3-hyperedge and an
associated constraint to the graph G′. More precisely, for every possible choice of the functions f , g,
g′ and µ that can be obtained in a run of Hastad’s test, we add a hyperedge connecting (e, f ∧ϕe),
(e, g′ ·µ) and either (u, g) or (v, g) depending on the outcome of the coin toss for g′. The constraint
corresponding to this hyperedge is the negation of the constraint A(f ∧ϕe) = A(g) = A(g′ ·µ) = 1.

4

For more details, please see [Din07] and [AB09].

In the next lecture, we will prove the soundness of Hastad’s test, which will complete the proof of
Lemma 1.

References

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach, volume 1. Cam-
bridge University Press Cambridge, UK, 2009.

[BGS95] M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps and non-approximability-towards
tight results. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Sym-
posium on, pages 422–431. IEEE, 1995.

[Din07] I. Dinur. The pcp theorem by gap amplification. Journal of the ACM (JACM), 54(3):12,
2007.

[H̊as01] J. H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

5

