
6.841: Advanced Complexity Theory Fall 2012

Lecture 2: Relativization

Sep 11, 2012

Prof. Dana Moshkovitz Scribe: Di Liu

Overview. Last week we showed NTIME(n) * TISP (n1.2, n0.2). However, we see that this is
a relatively weak conclusion. Can we prove P 6= NP with similar techniques?

We will show that such techniques alone cannot prove NP = P or NP * P .

How does a standard complexity proof work? Take some Turing machine M1 that recognizes
a language L.
... Now let M2 return the inverse of M1.
... Now let M3 simulate M2 on part of the input and do something else with another part.
... Now let M4 add a quantifier
... And so on.

These proofs use black-boxes; for instance with no knowledge of M1, if M2 uses M1 and eventually
Mi cannot exist, M1 could not have existed.

Figure 1: Nested black-box Turing machines are like Matryoska dolls.

These sorts of techniques are extremely useful:

• Hierarchy theorems are proven this way

• Time-space lower bounds are proven this way

• Theorem 3.4: Ladners Theorem[1], which says that if P 6= NP , then there are many
languages in NP \ P that are not NP -complete, is proven this way

1



• ... Many other examples

These techniques will necessarily fail. We will identify one thing every such proof must
satisfy, and show that any proof that shows either P = NP or P 6= NP cannot satisfy this one
property.

Define an oracle as a language. A Turing machine may query an oracle by writing an input to
its tape, calling the oracle, and then reading whether or not the input is in the oracle’s language
back off of the tape. The reading and writing count toward the computation time of the Turing
machine, but any “work” the oracle did to get the answer does not.

Suppose I have M2, which uses M1, and M1 has access to oracle O. We can recognize the same
language by giving the oracle to M2 instead of M1. When the inner Turing machine needs to use
the oracle, we can pause simulation of it and calculate the answer in M2. This way we can “bubble
up” the oracle as many layers as we like. Thus this proof technique is “relativizing”: changing the
underlying model (adding or changing the oracle) does not affect the validity of the proof.

Figure 2: Nested black-box Oracles are like bubbles.

Let C = class of languages that can be solved by TM with certain resources.
Let O = some language
Let CO = a class of languages that can be solved by TMs with the same resources + oracle access
to O.

Observation. If NP * P can be proved using “this technique” (relativizing proof techniques),
then for any oracle O,

NPO * PO

Remarks

• We use a notation that lookcs like powering, and for numbers, ac 6= bc → a 6= b. Somehow
people inherently assume this holds for complexity classes. This is likely FALSE for classes
and oracles!

For example, ∃B such that RPB 6= PB, BPPB 6= PB, although we believe P = RP = BPP .
Later in the semester we will show that BPP = P under hardness assumptions.

”There is probably an example without the likely.”

– Dana Moshkovitz

2



• Note that there is a reason we defined oracles the way we did; as something passed to a
Turing machine. We know NP is also defined as recognizing the set of languages recognized
by non-deterministic finite automata, or the set of languages recognized by Turing machines
which are passed a verifier. However, there is no sense of what an oracle is in those and many
other definitions of complexity classes (would it be given to the prover or the verifier?).

Theorem 3.7: Baker-Gill-Solovay, 1975 [1][2]

There exist oracles A,B such that:

(i) PA = NPA, but

(ii) PB 6= NPB

Significance: there can be no relativizing proof for P = NP .

Proof.

(i) Let A = EXP , any EXP -complete language. Then NPEXP = PEXP . (We may choose
a complete language from any of many very powerful classes. Note for instance that an
NP -complete language would not be powerful enough, but a PSPACE-complete language is.)

(ii) • Idea behind constructing B:

I need to specify a problem in NPB not in PB. Let

LB = {1n| Some string of length n is in B.}

Why is this a good choice? Notice that LB ∈ NPB, since we can guess all strings of
length n and ask if they’re in B.

Think of a machine M that tries to decide LB, if a string of length n is in B. The only
way it knows anything about B is through the oracle.

Figure 3: Think of the poor machine that has to decide LB. –Dana Moshkovitz

Suppose no matter how M queries, B responds “no”. Can M possibly say “yes”? No,
because B would always respond “no” if it’s empty, in which case M should say “no”.

We will construct B such that the real answer is “yes”. This problem is known as a
“Needle in a haystack!”

3



Figure 4: Why doesn’t it look as good as the one in my notes? –Dana Moshkovitz

• Formally:

Let an oracle machine be a Turing machine with access to some fixed oracle, B.

Let M1,M2,M3, ... be all possible oracle machines. (We can enumerate them because
Turing machines which can query oracles can be represented by finite strings of a finite
number of characters, which there are countably many of. The oracle is fixed and separate
from this list of machines.) Limit machines to decide LB in time 2n/10 (note that this
is a weaker constraint than P ). We want none of these machines to decide whether a
string is in LB within time 2n/10.

Since there are 2n strings of length n, and 2n > 2n/10, there are necessarily strings of
length n that are not queried by Mi. Thus to construct B:

On step i, choose a string s of length much greater than the length of any string already
in B, that is not queried by Mi.

– If Mi accepts s, do not add it to B.

– If Mi rejects s, add it to B.

Thus for no i does Mi recognize LB.

What did we prove? Did we show that relativizing proof techniques are useless? No! We
showed that if someone proves NP * P , then some part of the proof must be non-relativizing.

However, it is likely that it will use relativizing technizues in addition to other techniques.

Note that nonrelativizing proofs do not necessarily put you in the clear. Even if a statement is
proved with a proof that is not relativizing, it may also be provable with a proof that is.

What proof techniques don’t relativize?

4



IP = PSPACE.

PSet problem 3.

References

[1] Theodore P. Baker, John Gill, Robert Solovay: Relativizatons of the P =? NP Question. SIAM
J. Comput. 4(4): 431-442 (1975)

[2] Sanjeev Arora, Boaz Barak: Computational Complexity - A Modern Approach. Cambridge
University Press 2009: I-XXIV

5


