
6.841: Advanced Complexity Theory Fall 2012

Lecture 3: Sep 13, 2012

Prof. Dana Moshkovitz Scribe: Vincent Liew

1 Overview

In the last lecture we examined relativization. We found that a common method (diagonalization)
for proving non-inclusions between classes of problems was, alone, insufficient to settle the P versus
NP problem. This was due to the existence of two orcales: one for which P = NP and another
for which P 6= NP . Therefore, in our search for a solution, we must look into the inner workings
of computation.

In this lecture we will examine the role of Boolean Circuits in complexity theory. We will define
the class P/poly based on the circuit model of computation. We will go on to give a weak circuit
lower bound and prove the Karp-Lipton Theorem.

2 Boolean Circuits

Turing Machines are, strange as it may sound, a relatively high level programming language.
Because we found that diagonalization alone is not sufficient to settle the P versus NP problem,
we want to look at a lower level model of computation. It may, for example, be easier to work at
the bit level. To this end, we examine boolean circuits. Note that any function f : {0, 1}n → {0, 1}
is expressible as a boolean circuit.

2.1 Definitions

Definition 1. Let T : N → N. A T -size circuit family is a sequence {Cn} such that for all n,
Cn is a boolean circuit of size (in, say, gates) at most T (n).

SIZE(T ) is the class of languages with T -size circuits.

Definition 2. P/poly is the class of languages decided by polynomial size circuits:
⋃

k SIZE(nk)

2.2 Remarks

These are classes of non-uniform computation: for different input lengths, the computation is
different. In this case, we have a different circuit for each input length. This is in contrast to
uniform computation, for example, having a fixed Turing Machine acting all inputs regarless of
length.

This type of computation can be funny. For example, any unary language (strings all of the form
1n) is contained in P/poly: since there is only one string per input length, if an input is in the

1



language we may assign it a circuit which always outputs 1 and otherwise assign a circuit which
always outputs 0. But the class of unary languages includes undecidable languages!

2.3 An Equivalent Definition for P/poly

There is a way to make the circuit model of computation a uniform one: we restrict the fami-
lies of circuits to those which can be output by a Turing Machine. So we obtain an alternative
characterization of P :

Definition 3. P = {Languages for which there exists a Turing Machine which, when given the
input 1n, outputs a circuit Cn in polynomial time, where {Cn} is a polynomially sized circuit family
for the language.}

We can also make the usual Turing Machine model of computation non-uniform. To do this, we
give it a polynomially sized advice string which depends only on the length of the input. There is
no constraint on what kind of function this advice can be; if we wish, it could even be undecidable.

Claim 4. The class of languages decided by Turing Machines equipped with an advice string is
equivalent to P/poly.

Proof. We simulate P/poly by giving our Turing Machine advice describing the circuit which
computes the correct decision function for the given input length. The Turing Machine can simulate
this circuit in polynomial time.

Conversely, we know that given a computation, there exists a boolean circuit which can simulate it.
Since the advice given to the Turing Machine is a fixed string, we simply give a circuit simulating
the Turing Machine computation with the advice string hardwired into the circuit. �

Now that we have established this equivalence, we can see why we named our class P/poly. The
subscript denotes the type of advice (in this case, polynomially sized) that we give to our computer
(in this case, a polynomial time Turing Machine).

3 Circuit Lower Bounds and the Karp-Lipton Theorem

In 1980, Karp and Lipton published a paper which essentially stated that instead of asking if
NP * P , we should instead ask if NP * P/poly. There were two main reasons for this:

• Computers are, at the hardware level, more similar to the circuit model than the Turing
Machine model

• NP * P/poly → NP * P , since P ⊆ P/poly

In the paper, they proved that the showing NP * P/poly is not much harder than showing NP * P .

2



3.1 An Easier Version of NP * P/poly

Oftentimes when faced with a difficult problem, we can instead look to solve an easier version. In
this case, we can examine a subclass of problems in P/poly and a larger class than NP .

Theorem 5. Σ3 * SIZE(nk) for all k.

Note that on the left, we essentially gave our NP machine additional quantifying power and on the
right, we resticted the circuit size to a fixed k. In essence, we have made the competition between
the two machines very unfair, and this is what makes this problem easier to solve.

Proof. We first argue that there exist, for each n, functions without SIZE(nk) circuits. Say we
have a function f : {0, 1}n → {0, 1}. The truth table corresponding to this function has size 2n.
We restrict our attention to those functions whose nonzero entries of this table only appear in the
first nk+1 entries. It is easy to see that there are 2n

k+1
such functions. And given a number s, there

are 2O(slogs) size s circuits (we can specify a size s circuit with a string of size O(slogs), specifying
the wires coming in and out of the s gates).

Setting s = nk and noting that for large n, 2n
k+1

> 2O(nklognk), it follows that there exists a function
family which is not decided by a circuit family in SIZE(nk). This family of functions describes a
language not contained in SIZE(nk).

Now we show that this language is contained in Σ3. We will exhibit a Σ3 machine which (upon
a length n input) searches for the lexicographic first function f : {0, 1}n → {0, 1} which is not
decidable by circuits in SIZE(nk) and mimicks its behavior. To do so, we need only give an
appropriate boolean sentence which describes the language given by these functions:

x ∈ L⇔ ∃f∀Cf ((
∨

x0
Cf (x0) 6= f(x0)) ∧ (f(x) = 1) ∧ (∀(f ′ <lex f)∃Cf ′

∧
x0
Cf ′(x0) = f ′(x0)))

Let’s parse this sentence. Note that all the quantifiers are legal since they are over polynomially
sized sets. The first quantifier asks to find a particular instance of a function that we want. The
second is a condition over all size-n circuits. The big-OR is over all possible inputs x0, and asks
that for at least one of them the circuit does not match the function. The middle condition is that
the function must take the value 1. The last condition imposes the lexicographic condition: for all
the functions lexicographically smaller than f , there exists a circuit which simulates it.

That the above sentence works suffices to show that this language is in Σ3, and therefore Σ3 *
SIZE(nk).

3.2 The Karp-Lipton Theorem

It would be nice if we could prove that NP * P → NP * P/poly? It turns out that we can prove
something similar to this, but weaker.

Theorem 6. (Karp-Lipton Theorem) PH 6= Σ2 → NP * P/poly

Proof. Suppose NP ⊆ P/poly. We will show that this implies PH ⊆ Σ2. Note that PH ⊆ Σ2 and
Π2 ⊆ Σ2 are equivalent; if the latter were true then by swapping quantifier order, we have that
Σ3 = Σ2, collapsing PH.

3



By the assumption that NP ⊆ P/poly, there exists a polynomially sized circuit family, {Cn}, which
decides SAT. This implies that there exists a polynomial size circuit family {C∗n} which, given a
boolean formula φ, finds a satisfying assignment for it. We construct {C∗n} in the following way:
we choose a free variable and substitute 1 or 0 for it, then run the decider. If the decider says
that one of these boolean formulas has a satisfying assignment, repeat this process on another free
variable. When there are no more free variables, we will have substituted a satisfying assignment
into φ.

let L ∈ Π2. Then x ∈ L↔ ∀u∃vφ(x, u, v) = 0.

Then ∃C ∗ ∀uφ(x, u, C ∗ (x, u)) = 0. That is, there exists a circuit which outputs an unsatisfying
assignment for φ for any u.

Then L ∈ Σ2 and the theorem is proven.

References

[1] R. Karp, R. Lipton, Some Connections Between Nonuniform and Uniform Complexity Classes,
STOC ’80 Proceedings of the twelfth annual ACM symposium on Theory of computing, 302-
309, 1980.

4


