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Abstract. Let F be either R or C. Consider the standard embedding GLn(F ) ↪→
GLn+1(F ) and the action of GLn(F ) on GLn+1(F ) by conjugation.

In this paper we show that any GLn(F )-invariant distribution on GLn+1(F )
is invariant with respect to transposition.

We show that this implies that for any irreducible admissible smooth
Fréchet representations π of GLn+1(F ) and τ of GLn(F ),

dim HomGLn(F )(π, τ) ≤ 1.

For p-adic fields those results were proven in [AGRS].
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1. Introduction

Let F be an archimedean local field, i.e. F = R or F = C. Consider the standard
imbedding GLn(F ) ↪→ GLn+1(F ). We consider the action of GLn(F ) on GLn+1(F )
by conjugation. In this paper we prove the following theorem:

Theorem A. Any GLn(F ) - invariant distribution on GLn+1(F ) is invariant with
respect to transposition.

It has the following corollary in representation theory.

Theorem B. Let π be an irreducible admissible smooth Fréchet representation of
GLn+1(F ) and τ be an irreducible admissible smooth Fréchet representation of
GLn(F ). Then

dim HomGLn(F )(π, τ) ≤ 1. (1)

We deduce Theorem B from Theorem A using an argument due to Gelfand
and Kazhdan adapted to the archimedean case in [AGS].

Property (1) is sometimes called strong Gelfand property of the pair (GLn+1(F ),GLn(F )).
It is equivalent to the fact that the pair (GLn+1(F ) × GLn(F ),∆GLn(F )) is a
Gelfand pair.

Remark C. Using the tools developed here, combined with [AGRS], one can easily
show that Theorem A implies an analogous theorem for the unitary groups.

http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/pdf/0709.4215v1
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Remark. After the completion of this work we found out that Chen-Bo Zhu and
Sun Binyong have obtained the same results simultaneously, independently and in
a different way, see [SZ].

They also proved an analogous theorem for the orthogonal groups.

1.1. Some related results

For non-archimedean local fields of characteristic zero Theorems A and B were
proven in [AGRS]. The proof in [AGRS] does not work in the archimedean case
because of the presence of transversal derivatives. For this reason we need to use
a new ingredient - the theory of D-modules and in particular the Integrability
Theorem (see Theorem 2.3.6 below).

We hope that this method will be very useful in the future. It already has
been used in subsequent works [AS08, Say09, Aiz08].

The proof given here cannot be literally repeated to get a new proof in the
non-Archimedean case since the theory of D-modules is not available there. How-
ever one can develop a non-Archimedean analog of the tools that we gain from the
theory of D-modules and obtain a proof that works uniformly in both cases. This
is done in the subsequent work [Aiz08].

In [AGS], a special case of Theorem B was proven for all local fields; namely
the case when τ is one-dimensional.

Theorem A easily implies the following corollary.

Corollary D. Let Pn ⊂ GLn be the subgroup consisting of all matrices whose
last row is (0, ..., 0, 1). Let GLn act on itself by conjugation. Then every Pn(F ) -
invariant distribution on GLn(F ) is GLn(F ) - invariant.

This theorem has been proven in [Bar] for eigendistributions with respect to
the center of UC(gln). In [Bar] it is also shown that this implies Kirillov’s conjecture.

1.2. Structure of the proof

We will now briefly sketch the main ingredients of our proof of Theorem A.
First we show that we can switch to the following problem. The group GLn(F )

acts on a certain linear space Xn and σ is an involution of Xn. We have to prove
that every GLn(F )-invariant distribution on Xn is also σ-invariant. We do that
by induction on n. Using the Harish-Chandra descent method we show that the
induction hypothesis implies that this holds for distributions on the complement
to a certain small closed subset S ⊂ Xn. We call this set the singular set. This is
done in section 3.

Next we assume the contrary: there exists a non-zero GLn(F )-invariant dis-
tribution ξ on X which is anti-invariant with respect to σ.

We use the notion of singular support of a distribution from the theory of D-
modules. Let T ⊂ T ∗X denote the singular support of ξ. Using Fourier transform
and the fact any such distribution is supported in S we obtain that T is contained
in Š where Š is a certain small subset in T ∗X. This is done in section 4.

Then we use a deep result from the theory of D-modules which states that the
singular support of a distribution is a coisotropic variety in the cotangent bundle.

http://arxiv.org/pdf/0709.4215v1
http://arxiv.org/pdf/0709.4215v1
http://arxiv.org/abs/0810.1853
http://arxiv.org/abs/0811.2768
http://arxiv.org/abs/0811.2768
http://arxiv.org/pdf/0709.1273v4
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.annm/1061030449
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.annm/1061030449
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This enables us to show, using a complicated but purely geometric argument, that
the support of ξ is contained in a much smaller subset of S. This is done in section
5.

Finally it remains to prove that any GLn(F )-invariant distribution that is
supported on this subset together with its Fourier transform is zero. This is proven
in subsection 4.1 using Homogeneity Theorem (Theorem 2.2.13) which in turn uses
Weil representation.

1.3. Content of the paper

In section 2 we give the necessary preliminaries for the paper.
In subsection 2.1 we fix the general notation that we will use.
In subsection 2.2 we discuss invariant distributions and introduce some tools

to work with them. The most advanced are

• The Homogeneity theorem and Fourier transform.
• The Harish-Chandra descent method.

In subsection 2.3 we discuss the notion of singular support of a distribution.
The most important for us property of this singular support is being coisotropic.
This fact is a crucial tool of this paper.

In subsection 2.4 we introduce notation that we will use in our proof.

In section 3 we use the Harish-Chandra descent method.
In subsection 3.1 we linearize the problem to a problem on the linear space

X = sl(V )× V × V ∗, where V = Fn.
In subsection 3.2 we perform the Harish-Chandra descent on the sl(V )-

coordinate and V × V ∗ coordinate separately and then use automorphisms νλ
of X to descend further to the singular set S.

In section 4 we reduce Theorem A to the following geometric statement: any
coisotropic subvariety of Š is contained in a certain set ČX×X . The reduction is
done using the fact that the singular support of a distribution has to be coisotropic,
and the following proposition: any GL(V )-invariant distribution on X such that
it and its Fourier transform are supported on sl(V )× (V × 0 ∪ 0× V ∗) is zero.

In subsection 4.1 we prove this proposition using Homogeneity theorem.

In section 5 we prove the geometric statement. Technically this is the most
complicated part of the paper. However we would like to note that it is purely
algebro-geometric statement that involves no analysis.

In subsection 5.1 we give preliminaries on coisotropic subvarieties. In partic-
ular, we give a geometric partial analog of Frobenius reciprocity for coisotropic
subvarieties (Corollaries 5.1.7 and 5.1.8).

In subsection 5.2 we stratify the set Š and use an inductive argument on the
strata. This reduces the geometric statement to a proposition on one stratum that
we call the Key Proposition.
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In subsection 5.3 we analyze a stratum of Š and then use the geometric
analog of Frobenius reciprocity to reduce the Key Proposition to a lemma on
V × V ∗ × V × V ∗ that we call the Key Lemma.

In subsection 5.4 we prove the Key Lemma.

In Appendix A we prove that Theorem A implies Theorem B using an
archimedean analog of Gelfand-Kazhdan technique.

In Appendix B we give more details on the facts concerning the theory of
D-modules listed in subsection 2.3.

1.4. Acknowledgements

We thank Joseph Bernstein for our mathematical education. We thank Joseph
Bernstein, David Kazhdan, Bernhard Kroetz, Eitan Sayag and Gérard Schiffmann
for fruitful discussions. We also thank Moshe Baruch, Erez Lapid and Siddhartha
Sahi for useful remarks.

Part of the work on this paper was done while we visited the Max Planck
Institute for Mathematics in Bonn. This visit was funded by the Bonn International
Graduate School.

2. Preliminaries

2.1. General notation

• In this paper all the algebraic varieties are defined over F .
• For an algebraic variety X we denote by X(F ) the topological space or

smooth manifold of F points of X.
• We consider linear spaces as algebraic varieties and treat them in the same

way.
• For an algebraic variety X defined over R we denote by XC the natural

algebraic variety defined over R such that XC(R) = X(C). Note that over C,
XC is isomorphic to X ×X.

• For a group G acting on a set X and a point x ∈ X we denote by Gx or by
G(x) the orbit of x and by Gx the stabilizer of x.

• An action of a Lie algebra g on a (smooth, algebraic, etc) manifold M is a
Lie algebra homomorphism from g to the Lie algebra of vector fields on M .
Note that an action of a (Lie, algebraic, etc) group on M defines an action
of its Lie algebra on M .

• For a Lie algebra g acting on M , an element α ∈ g and a point x ∈ M we
denote by α(x) ∈ TxM the value at point x of the vector field corresponding
to α. We denote by gx ⊂ TxM or by g(x) the image of the map α 7→ α(x)
and by gx ⊂ g its kernel.

• For manifolds L ⊂ M we denote by NM
L := (TM |L)/TL the normal bundle

to L in M .
• Denote by CNM

L := (NM
L )∗ the conormal bundle.
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• For a point y ∈ L we denote by NM
L,y the normal space to L in M at the

point y and by CNM
L,y the conormal space.

2.2. Invariant distributions

2.2.1. Distributions on smooth manifolds.

Notation 2.2.1. Let X be a smooth manifold. Denote by C∞c (X) the space of test
functions on X, that is smooth compactly supported functions, with the standard
topology, i.e. the topology of inductive limit of Fréchet spaces.

Denote D(X) := C∞c (X)∗ to be the dual space to C∞c (X).
For any vector bundle E over X we denote by C∞c (X,E) the space of smooth

compactly supported sections of E and by D(X,E) its dual space. Also, for any
finite dimensional real vector space V we denote by C∞c (X,V ) the space of smooth
compactly supported sections of the trivial bundle with fiber V and by D(X,V ) its
dual space.

2.2.2. Schwartz distributions on Nash manifolds.
Our proof of Theorem A widely uses Fourier transform which cannot be applied
to general distributions. For this we require a theory of Schwartz functions and
distributions as developed in [AG1].

This theory is developed for Nash manifolds. Nash manifolds are smooth semi-
algebraic manifolds but in the present work only smooth real algebraic manifolds
are considered. Therefore the reader can safely replace the word Nash by smooth
real algebraic.

Schwartz functions are functions that decay, together with all their deriva-
tives, faster than any polynomial. On Rn it is the usual notion of Schwartz function.
For precise definitions of those notions we refer the reader to [AG1]. We will use
the following notations.

Notation 2.2.2. Let X be a Nash manifold. Denote by S(X) the Fréchet space of
Schwartz functions on X.

Denote by S∗(X) := S(X)∗ the space of Schwartz distributions on X.
For any Nash vector bundle E over X we denote by S(X,E) the space of

Schwartz sections of E and by S∗(X,E) its dual space.

Notation 2.2.3. Let X be a smooth manifold and let Z ⊂ X be a closed subset. We
denote S∗X(Z) := {ξ ∈ S∗(X)|Supp(ξ) ⊂ Z}.

For a locally closed subset Y ⊂ X we denote S∗X(Y ) := S∗
X\(Y \Y )

(Y ). In the
same way, for any bundle E on X we define S∗X(Y,E).

Remark 2.2.4. Schwartz distributions have the following two advantages over gen-
eral distributions:
(i) For a Nash manifold X and an open Nash submanifold U ⊂ X, we have the
following exact sequence

0→ S∗X(X \ U)→ S∗(X)→ S∗(U)→ 0.

(ii) Fourier transform defines an isomorphism F : S∗(Rn)→ S∗(Rn).

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref


Multiplicity one theorem for (GLn+1(R),GLn(R)) 7

The following theorem allows us to switch between general distributions and
Schwartz distributions.

Theorem 2.2.5. Let a reductive group G act on a smooth affine variety X. Let V
be a finite dimensional continuous representation of G(F ) over R. Suppose that
S∗(X(F ), V )G(F ) = 0. Then D(X(F ), V )G(F ) = 0.

For proof see [AG2], Theorem 4.0.2.

2.2.3. Basic tools.
We present here some basic tools on equivariant distributions that we will use in
this paper.

Proposition 2.2.6. Let a Nash group G act on a Nash manifold X. Let Z ⊂ X be
a closed subset.

Let Z =
⋃l
i=0 Zi be a Nash G-invariant stratification of Z. Let χ be a charac-

ter of G. Suppose that for any k ∈ Z≥0 and 0 ≤ i ≤ l we have S∗(Zi, Symk(CNX
Zi

))G,χ =
0. Then S∗X(Z)G,χ = 0.

For proof see section B.2 in [AGS].

Proposition 2.2.7. Let Gi be Nash groups acting on Nash manifolds Xi for i =
1 . . . n. Let Ei → Xi be Gi-equivariant Nash vector bundles.
(i) Suppose that S∗(Xj , Ej)Gj = 0 for some 1 ≤ j ≤ n. Then

S∗(
n∏
i=1

Xi,�Ei)
∏
Gi = 0,

where � denotes the external product of vector bundles.
(ii) Let Hi < Gi be Nash subgroups. Suppose that S∗(Xi, Ei)Hi = S∗(Xi, Ei)Gi

for all i. Then

S∗(
∏

Xi,�Ei)
∏
Hi = S∗(

∏
Xi,�Ei)

∏
Gi ,

The proof is trivial and the same as the proof of Proposition 3.1.5 in [AGS].

Theorem 2.2.8 (Frobenius reciprocity). Let a unimodular Nash group G act tran-
sitively on a Nash manifold Z. Let ϕ : X → Z be a G-equivariant Nash map.
Let z ∈ Z. Suppose that its stabilizer Gz is unimodular. Note that this implies
that there exists a G-invariant measure on Z. Fix such a measure. Let Xz be the
fiber of z. Let χ be a character of G. Then S∗(X)G,χ is canonically isomorphic to
S∗(Xz)Gz,χ.

Moreover, for any G-equivariant bundle E on X, the space S∗(X,E)G,χ is
canonically isomorphic to S∗(Xz, E|Xz )Gz,χ.

For proof see [AG2], Theorem 2.5.7.

http://arxiv.org/abs/0812.5063
http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/abs/0812.5063
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2.2.4. Fourier transform.
From now till the end of the paper we fix an additive character κ of F given by
κ(x) := e2πiRe(x).

Notation 2.2.9. Let V be a vector space over F . Let B be a non-degenerate bilinear
form on V . Then B defines Fourier transform with respect to the self-dual Haar
measure on V . We denote it by FB : S∗(V )→ S∗(V ).

For any Nash manifold M we also denote by FB : S∗(M ×V )→ S∗(M ×V )
the fiberwise Fourier transform.

If there is no ambiguity, we will write FV instead FB.

We will use the following trivial observation.

Lemma 2.2.10. Let V be a finite dimensional vector space over F . Let a Nash group
G act linearly on V . Let B be a G-invariant non-degenerate symmetric bilinear
form on V . Let M be a Nash manifold with an action of G. Let ξ ∈ S∗(V (F )×M)
be a G-invariant distribution. Then FB(ξ) is also G-invariant.

2.2.5. Homogeneity Theorem.

Notation 2.2.11. Let V be a vector space over F . Consider the homothety action
of F× on V by ρ(λ)v := λ−1v. It gives rise to an action ρ of F× on S∗(V ).

Also, for any λ ∈ F we denote |λ|F := |λ|dimRF .

Notation 2.2.12. Let V be a vector space over F . Let B be a non-degenerate sym-
metric bilinear form on V . We denote

Z(B) := {x ∈ V (F )|B(x, x) = 0}.
Theorem 2.2.13 (Homogeneity Theorem). Let V be a vector space over F . Let B
be a non-degenerate symmetric bilinear form on V . Let M be a Nash manifold.
Let L ⊂ S∗V (F )×M (Z(B) ×M) be a non-zero subspace such that ∀ξ ∈ L we have
FB(ξ) ∈ L and Bξ ∈ L (here B is interpreted as a quadratic form).

Then there exist a non-zero distribution ξ ∈ L and a unitary character
u of F× such that either ρ(λ)ξ = |λ|

dimV
2

F u(λ)ξ for any λ ∈ F× or ρ(λ)ξ =

|λ|
dimV

2 +1

F u(λ)ξ for any λ ∈ F×.

For proof see [AG2], Theorem 5.1.7.

2.2.6. Harish-Chandra descent.

Definition 2.2.14. Let an algebraic group G act on an algebraic variety X. We say
that an element x ∈ X(F ) is G-semisimple if its orbit G(F )x is closed.

Theorem 2.2.15 (Generalized Harish-Chandra descent). Let a reductive group G
act on smooth affine varieties X and Y . Let χ be a character of G(F ). Suppose
that for any G-semisimple x ∈ X(F ) we have

S∗((NX
Gx,x × Y )(F ))G(F )x,χ = 0.

Then S∗(X(F )× Y (F ))G(F )x,χ = 0.

http://arxiv.org/abs/0812.5063
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For proof see [AG2], Theorem 3.1.6.

2.3. D-modules and singular support

In this paper we will use the algebraic theory of D-modules. We will now sum-
marize the facts that we need and give more details in Appendix B. For a good
introduction to the algebraic theory of D-modules we refer the reader to [Ber] and
[Bor].

More specifically, we will use the notion of singular support of a distribution.
For those who are not familiar with the theory of D-modules, Corollary 2.3.7 and
the facts that are listed after it are the only properties of singular support that we
use.

In this subsection F = R.

Definition 2.3.1. Let X be a smooth algebraic variety. Let ξ ∈ S∗(X(R)). Consider
the DX-submoduleMξ of S∗(X(R)) generated by ξ. We define the singular support
of ξ to be the singular support of Mξ. We denote it by SS(ξ).

Remark 2.3.2. A similar, but not equivalent notion is sometimes called in the
literature a ’wave front of ξ’ .

Notation 2.3.3. Let (V,B) be a quadratic space. Let X be a smooth algebraic vari-
ety. Consider B as a map B : V → V ∗. Identify T ∗(X × V ) with T ∗X × V × V ∗.
We define FV : T ∗(X × V )→ T ∗(X × V ) by FV (α, v, φ) := (α,−B−1φ,Bv).

Definition 2.3.4. Let M be a smooth algebraic variety and ω be a symplectic form
on it. Let Z ⊂ M be an algebraic subvariety. We call it M -coisotropic if one of
the following equivalent conditions holds.
(i) The ideal sheaf of regular functions that vanish on Z is closed under Poisson
bracket.
(ii) At every smooth point z ∈ Z we have TzZ ⊃ (TzZ)⊥. Here, (TzZ)⊥ denotes
the orthogonal complement to (TzZ) in (TzM) with respect to ω.
(iii) For a generic smooth point z ∈ Z we have TzZ ⊃ (TzZ)⊥.

If there is no ambiguity, we will call Z a coisotropic variety.

Note that every non-empty M -coisotropic variety is of dimension at least
1
2dimM .

Notation 2.3.5. For a smooth algebraic variety X we always consider the stan-
dard symplectic form on T ∗X. Also, we denote by pX : T ∗X → X the standard
projection.

The following theorem is crucial in this paper.

Theorem 2.3.6. [Integrability Theorem] Let X be a smooth algebraic variety. Let
M be a finitely generated DX-module. Then SS(M) is a T ∗X-coisotropic variety.

This is a special case of Theorem I in [Gab]. For similar versions see also
[KKS, Mal].

http://arxiv.org/abs/0812.5063
http://www.math.uchicago.edu/\unskip \penalty \@M \ \ignorespaces mitya/langlands.html
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Corollary 2.3.7. Let X be a smooth algebraic variety. Let ξ ∈ S∗(X(R)). Then
SS(ξ) is coisotropic.

We will also use the following well-known facts from the theory of D-modules.
Let X be a smooth algebraic variety.

Fact 2.3.8. Let ξ ∈ S∗(X(R)). Then Supp(ξ)Zar = pX(SS(ξ))(R), where Supp(ξ)Zar
denotes the Zariski closure of Supp(ξ).

Fact 2.3.9.
Let an algebraic group G act on X. Let g denote the Lie algebra of G. Let ξ ∈
S∗(X(R))G(R). Then

SS(ξ) ⊂ {(x, φ) ∈ T ∗X | ∀α ∈ gφ(α(x)) = 0}.

Fact 2.3.10. Let (V,B) be a quadratic space. Let Z ⊂ X×V be a closed subvariety,
invariant with respect to homotheties in V . Suppose that Supp(ξ) ⊂ Z(R). Then

SS(FV (ξ)) ⊂ FV (p−1
X×V (Z)).

For proofs of those facts see Appendix B.

2.4. Specific notation

The following notations will be used in the body of the paper.

• Let V := Vn be the standard n-dimensional linear space defined over F .
• Let sl(V ) denote the Lie algebra of operators with zero trace.
• Denote X := Xn := sl(Vn)× Vn × V ∗n
• G := Gn := GL(Vn)
• g := gn := Lie(Gn) = gl(Vn)
• G̃ := G̃n := Gn o {1, σ}, where the action of the 2-element group {1, σ} on
G is given by the involution g 7→ gt

−1.
• We define a character χ of G̃ by χ(G) = {1} and χ(G̃−G) = {−1}.
• Let Gn act on Gn+1, gn+1 and on sl(Vn) by g(A) := gAg−1.
• Let G act on V × V ∗ by g(v, φ) := (gv, (g∗)−1φ). This gives rise to an action

of G on X.
• Extend the actions of G to actions of G̃ by σ(A) := At and σ(v, φ) := (φt, vt).
• We consider the standard scalar products on sl(V ) and V × V ∗. They give

rise to a scalar product on X.
• We identify the cotangent bundle T ∗X with X × X using the above scalar

product.
• Let N := Nn ⊂ sl(Vn) denote the cone of nilpotent operators.
• C := (V × 0) ∪ (0× V ∗) ⊂ V × V ∗.
• Č := (V × 0× V × 0) ∪ (0× V ∗ × 0× V ∗) ⊂ V × V ∗ × V × V ∗.
• ČX×X := (sl(V )×V ×0× sl(V )×V ×0)∪ (sl(V )×0×V ∗× sl(V )×0×V ∗) ⊂
X ×X.

• S := {(A, v, φ) ∈ Xn|An = 0 and φ(Aiv) = 0 for any 0 ≤ i ≤ n}.
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•

Š := {((A1, v1, φ1), (A2, v2, φ2)) ∈ X ×X | ∀i, j ∈ {1, 2}
(Ai, vj , φj) ∈ S and ∀α ∈ gl(V ), α(A1, v1, φ1)⊥(A2, v2, φ2)}

.
• Note that

Š = {((A1, v1, φ1), (A2, v2, φ2)) ∈ X ×X | ∀i, j ∈ {1, 2}
(Ai, vj , φj) ∈ S and [A1, A2] + v1 ⊗ φ2 − v2 ⊗ φ1 = 0}.

• Š′ := Š − ČX×X .
• Γ := {(v, φ) ∈ V × V ∗ |φ(V ) = 0}.
• For any λ ∈ F we define νλ : X → X by νλ(A, v, φ) := (A + λv ⊗ φ −
λ 〈φ,v〉n Id, v, φ).

• It defines ν̌λ : X ×X → X ×X. It is given by

ν̌λ((A1, v1, φ1), (A2, v2, φ2)) =

= ((A1 + λv1 ⊗ φ1 − λ
〈φ1, v1〉
n

Id, v1, φ1), (A2, v2 − λA2v1, φ2 − λA∗2φ1)).

3. Harish-Chandra descent

3.1. Linearization

In this subsection we reduce Theorem A to the following one

Theorem 3.1.1. S∗(X(F ))G̃(F ),χ = 0.

We will divide this reduction to several propositions.

Proposition 3.1.2. If D(Gn+1(F ))G̃n(F ),χ = 0 then Theorem A holds.

The proof is straightforward.

Proposition 3.1.3. If S∗(Gn+1(F ))G̃n(F ),χ = 0 then D(Gn+1(F ))G̃n(F ),χ = 0.

Follows from Theorem 2.2.5.

Proposition 3.1.4. If S∗(gn+1(F ))G̃n(F ),χ = 0 then S∗(Gn+1(F ))G̃n(F ),χ = 0.

Proof. Let ξ ∈ S∗(Gn+1(F ))G̃n(F ),χ. We have to prove ξ = 0. Assume the
contrary. Take p ∈ Supp(ξ). Let t = det(p). Let f ∈ S(F ) be such that f
vanishes in a neighborhood of 0 and f(t) 6= 0. Consider the determinant map
det : Gn+1(F ) → F . Consider ξ′ := (f ◦ det) · ξ. It is easy to check that
ξ′ ∈ S∗(Gn+1(F ))G̃n(F ),χ and p ∈ Supp(ξ′). However, we can extend ξ′ by
zero to ξ′′ ∈ S∗(gn+1(F ))G̃n(F ),χ, which is zero by the assumption. Hence ξ′

is also zero. Contradiction. �
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Proposition 3.1.5. If S∗(Xn(F ))G̃n(F ),χ = 0 then S∗(gn+1(F ))G̃n(F ),χ = 0.

Proof. The G̃n(F )-space gln+1(F ) is isomorphic to Xn(F )×F×F with trivial
action on F × F . This isomorphism is given by(

An×n vn×1

φ1×n λ

)
7→ ((A− TrA

n
Id, v, φ), λ,TrA).

�

3.2. Harish-Chandra descent

Now we start to prove Theorem 3.1.1. The proof is by induction on n. Till
the end of the paper we will assume that Theorem 3.1.1 holds for all k < n
for both archimedean local fields.

The theorem obviously holds for n = 0. Thus from now on we assume
n ≥ 1. The goal of this subsection is to prove the following theorem.

Proposition 3.2.1. S∗(X(F )− S(F ))G̃(F ),χ = 0.

In fact, one can prove this theorem directly using Theorem 2.2.15. How-
ever, this will require long computations. Thus, we will divide the proof to
several steps and use some tricks to avoid part of those computations.

Proposition 3.2.2. S∗(X(F )− (N × V × V ∗)(F ))G̃(F ),χ = 0.

Proof. By Theorem 2.2.15 it is enough to prove that for any semi-simple
A ∈ sl(V ) we have

S∗((N sl(V )
GA,A × (V × V ∗))(F ))G̃(F )A,χ = 0.

Now note that G̃(F )A ∼=
∏
G̃ni

(Fi) where ni < n and Fi are some field
extensions of F . Note also that

(N sl(V )
GA,A × V × V

∗)(F ) ∼= sl(V )A × (V × V ∗)(F ) ∼=
∏

Xni(Fi)×Z(sl(V )A)(F ),

where Z(sl(V )A) is the center of sl(V )A. Clearly, G̃A acts trivially on Z(sl(V )A).
Now by Proposition 2.2.7 the induction hypothesis implies that

S∗(
∏

Xni
(Fi)×Z(sl(V )A)(F ))

∏
G̃ni

(Fi),χ = 0.

�

In the same way we obtain the following proposition.

Proposition 3.2.3. S∗(X(F )− (sl(V )× Γ)(F ))G̃(F ),χ = 0.

Corollary 3.2.4. S∗(X(F )− (N × Γ)(F ))G̃(F ),χ = 0.

Lemma 3.2.5. Let A ∈ sl(V ), v ∈ V and φ ∈ V ∗. Suppose A + λv ⊗ φ is
nilpotent for all λ ∈ F . Then φ(Aiv) = 0 for any i ≥ 0.

Proof. Since A + λv ⊗ φ is nilpotent, we have tr(A + λv ⊗ φ)k = 0 for any
k ≥ 0 and λ ∈ F . By induction on i this implies that φ(Aiv) = 0. �
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Proof of Theorem 3.2.1. By the previous lemma,
⋂
λ∈F νλ(N×Γ) ⊂ S. Hence⋃

λ∈F νλ(X −N × Γ) ⊃ X − S.
By Corollary 3.2.4 S∗(X(F ) − (N × Γ)(F ))G̃(F ),χ = 0. Note that νλ

commutes with the action of G̃(F ). Thus S∗(νλ(X(F )−(N×Γ)(F )))G̃(F ),χ =
0 and hence S∗(X(F )− S(F ))G̃(F ),χ = 0. �

4. Reduction to the geometric statement

In this section coisotropic variety means X ×X-coisotropic variety.
The goal of this section is to reduce Theorem 3.1.1 to the following

statement, which is purely geometric and involves no distributions.

Theorem 4.0.1 (geometric statement). For any coisotropic subvariety of T ⊂
Š we have T ⊂ ČX×X .

Till the end of this section we will assume the geometric statement.

Proposition 4.0.2. Let ξ ∈ S∗(X(F ))G̃(F ),χ = 0. Then Supp(ξ) ⊂ (sl(V ) ×
C)(F ).

Proof for the case F = R.
Step 1. SS(ξ) ⊂ Š.

We know that

Supp(ξ),Supp(F−1
sl(V )ξ),Supp(F−1

V×V ∗(ξ)),Supp(F−1
X (ξ)) ⊂ S(F ).

By Fact 2.3.10 this implies that

SS(ξ) ⊂ (S ×X) ∩ Fsl(V )(S ×X) ∩ FV×V ∗(S ×X) ∩ FX(S ×X).

On the other hand, ξ is G(F )-invariant and hence by Fact 2.3.9

SS(ξ) ⊂ {((x1, x2) ∈ X ×X | ∀g ∈ g, g(x1)⊥x2}.

Thus SS(ξ) ⊂ Š.
Step 2. SS(ξ) ⊂ ČX×X .

By Corollary 2.3.6, SS(ξ) is X ×X-coisotropic and hence by the geometric
statement SS(ξ) ⊂ ČX×X .

Step 3. Supp(ξ) ⊂ (sl(V )× C)(F ).
Follows from the previous step by Fact 2.3.8. �

The case F = C is proven in the same way using the following corollary
of the geometric statement.

Proposition 4.0.3. Any (X × X)C-coisotropic subvariety of ŠC is contained
in (ČX×X)C.

Now it is left to prove the following proposition.



14 Avraham Aizenbud and Dmitry Gourevitch

Proposition 4.0.4. Let ξ ∈ S∗(X(F ))G̃(F ),χ be such that

Supp(ξ),Supp(FV×V ∗(ξ)) ⊂ (sl(V )× C)(F ).

Then ξ = 0.

4.1. Proof of proposition 4.0.4

Proposition 4.0.4 follows from the following lemma.

Lemma 4.1.1. Let F× act on V × V ∗ by λ(v, φ) := (λv, φλ ). Let ξ ∈ S∗((V ×
V ∗)(F ))F

×
be such that

Supp(ξ),Supp(FV×V ∗(ξ)) ⊂ C(F ).

Then ξ = 0.

By Homogeneity Theorem (Theorem 2.2.13) it is enough to prove the
following lemma.

Lemma 4.1.2. Let µ be a character of F× given by | · |nFu or | · |n+1
F u where

u is some unitary character. Let F× × F× act on V × V ∗ by (x, y)(v, φ) =
( yxv,

1
xyφ). Then S∗(V×V ∗)(F )(C(F ))F

××F×,µ×1 = 0.

By Proposition 2.2.6 this lemma follows from the following one.

Lemma 4.1.3. For any k ≥ 0 we have
(i) S∗(((V − 0)× 0)(F ), Symk(CNV×V ∗

(V−0)×0(F )))F
××F×,µ×1 = 0.

(ii) S∗((0× (V ∗ − 0))(F ), Symk(CNV×V ∗
0×(V ∗−0)(F )))F

××F×,µ×1 = 0.

(iii) S∗(0, Symk(CNV×V ∗
0 (F )))F

××F×,µ×1 = 0.

Proof.
(i) Cover V − 0 by standard affine open sets Vi := {xi 6= 0}. It is enough to
show that S∗((Vi × 0)(F ), Symk(CNV×V ∗

(Vi×0)(F )(F )))F
××F×,µ×1 = 0.

Note that Vi is isomorphic as an F× × F×-manifold to Fn−1 × F×

with the action given by (x, y)(v, α) = (v, yxα). Note also that the bundle
Symk(CNV×V ∗

(Vi×0)(F )(F )) is a constant bundle with fiber Symk(V ).

Hence by Proposition 2.2.7 it is enough to show that S∗(F×, Symk(V ))F
××F×,µ×1 =

0. Let H := (F××F×)1 = {(t, t) ∈ F××F×}. Now by Frobenius reciprocity
(Theorem 2.2.8) it is enough to show that (Symk(V ∗(F ))⊗R C)H,µ×1|H = 0.
This is clear since (t, t) acts on (Symk(V ∗(F )) by multiplication by t−2k.
(ii) is proven in the same way.
(iii) is equivalent to the statement ((Symk(V ×V ∗)(F ))⊗RC)F

××F×,µ×1 = 0.
This is clear since (t, 1) acts on Symk(V × V ∗)(F ) by multiplication by
t−k. �
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5. Proof of the geometric statement

5.1. Preliminaries on coisotropic subvarieties

Proposition 5.1.1. Let M be a smooth algebraic variety with a symplectic form
on it. Let R ⊂ M be an algebraic subvariety. Then there exists a maximal
M -coisotropic subvariety of R i.e. an M -coisotropic subvariety T ⊂ M that
includes all M -coisotropic subvarieties of R.

Proof. Let T ′ be the union of all smooth M -coisotropic subvarieties of R.
Let T be the Zariski closure of T ′ in R. Clearly, T includes all M -coisotropic
subvarieties of R. Let U denote the set of regular points of T . Clearly U ∩T ′
is dense in U . On the other hand, for any x ∈ U ∩T ′, the tangent space to T
at x is coisotropic. Hence T is coisotropic. �

Remark 5.1.2. Suppose M is affine. Then T can be computed explicitly in the
following way. Let I be the ideal of regular functions that vanish on R. We can
iteratively close it with respect to Poisson brackets and taking radical. Since
O(M) is Noetherian, this process will stabilize. Let J denote the obtained
closure and Z(J) denote the zero set of J . Then T = Z(J) ∩R.

The following lemma is trivial.

Lemma 5.1.3. Let M be a smooth algebraic variety and ω be a symplectic form
on it. Let a group G act on M preserving ω. Let S be a G -invariant subva-
riety. Then the maximal M -coisotropic subvariety of S is also G-invariant.

Definition 5.1.4. Let Y be a smooth algebraic variety. Let Z ⊂ Y be a smooth
subvariety and R ⊂ T ∗Y be any subvariety. We define the restriction R|Z ⊂
T ∗Z of R to Z in the following way. Let R′ = p−1

Y (Z)∩R. Let q : p−1
Y (Z)→

T ∗Z be the projection. We define R|Z := q(R′).

Lemma 5.1.5. Let Y be a smooth algebraic variety. Let Z ⊂ Y be a smooth
subvariety and R ⊂ T ∗Y be a coisotropic subvariety. Assume that any smooth
point z ∈ p−1

Y (Z) ∩ R is also a smooth point of R and we have Tz(p−1
Y (Z) ∩

R) = Tz(p−1
Y (Z)) ∩ TzR.

Then R|Z is T ∗Z coisotropic.

In the proof we will use the following straightforward lemma.

Lemma 5.1.6. Let W be a linear space. Let L ⊂ W be a linear subspace and
R ⊂W ⊕W ∗ be a coisotropic subspace. Then R|L is L⊕ L∗ coisotropic.

Proof of lemma 5.1.5. Without loss of generality we assume that R is irre-
ducible. Let R′ = p−1

Y (Z)∩R. Without loss of generality we assume that R′ is
irreducible. Let R′′ be the set of smooth points of R′. Let q : p−1

Y (Z)→ T ∗Z
be the projection. Let R′′′ be the set of smooth points in q(R′′). Clearly R′′′

is dense in R|Z . Hence it is enough to prove that for any x ∈ R′′′ the space
Tx(R|Z) is coisotropic. Let y ∈ R′′ s.t. x = q(y). Denote W := TpY (y)Y . Let
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Q := TyR ⊂W ⊕W ∗. Let L := TpY (y)Z. By the assumption Tx(R|Z) ⊃ Q|L.
By the lemma, Q|L is coisotropic and hence Tx(R|Z) is also coisotropic. �

Corollary 5.1.7. Let Y be a smooth algebraic variety. Let an algebraic group
H act on Y . Let q : Y → B be an H-equivariant morphism. Let O ⊂ B be
an orbit. Consider the natural action of G on T ∗Y and let R ⊂ T ∗Y be an
H-invariant subvariety. Suppose that pY (R) ⊂ q−1(O). Let x ∈ O. Denote
Yx := q−1(x). Then

– if R is T ∗Y -coisotropic then R|Yx is T ∗(Yx)-coisotropic.

Corollary 5.1.8. In the notation of the previous corollary, if R|Yx has no (non-
empty) T ∗(Yx)-coisotropic subvarieties then R has no (non-empty) T ∗(Y )-
coisotropic subvarieties.

Note that the converse statement does not hold in general.

5.2. Reduction to the Key Proposition

In this subsection coisotropic variety means X ×X-coisotropic variety.
We will use the following notation.

Notation 5.2.1.
(i) For any nilpotent operator A ∈ sl(V ) we denote

QA := {(v, φ) ∈ V × V ∗ | v ⊗ φ ∈ [A, g]} = {(v, φ) ∈ V × V ∗ | (v ⊗ φ)⊥gA}.

(ii) Denote by T the maximal coisotropic subvariety of Š′.
(iii) For any two nilpotent orbits O1, O2 ⊂ N denote

U(O1, O2) := {(A1, v1, φ1, A2, v2, φ2) ∈ X ×X| ∀i, j ∈ {1, 2}
Ai ∈ Oi, (vj , φj) ∈ QAi

, [A1, A2] + v1 ⊗ φ2 − v2 ⊗ φ1 = 0, (v1, φ1, v2, φ2) /∈ Č}.

The geometric statement is equivalent to the following theorem

Theorem 5.2.2. T = ∅.

The goal of this subsection is to reduce the geometric statement to the
following Key Proposition.

Proposition 5.2.3 (Key Proposition). For any two nilpotent orbits O1, O2

there are no (non-empty) coisotropic subvarieties in U(O1, O2).

The reduction will be in the spirit of the beginning of section 3 in
[AGRS].

Notation 5.2.4. Let

N i = {(A1, A2) ∈ N ×N|dimG(A1) + dimG(A2) ≤ i}.

N̂ i := {(A1, v1, φ1, A2, v2, φ2) ∈ Š′|(A1, A2) ∈ N i}.

http://arxiv.org/pdf/0709.4215v1
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We will prove by descending induction that T ⊂ N̂ i. From now on we
fix i, suppose that this holds for i and prove that holds for i−1. Let S denote
the subgroup of automorphisms of X×X generated by ν̌λ, Fsl(V ) and FV×V ∗ .

Denote Ñ i :=
⋂
ν∈S ν(N̂ i). We know that T ⊂ N̂ i, and hence T ⊂ Ñ i.

Let U i := Ñ i−N̂ i−1. It is enough to show that U i does not have (non-empty)
coisotropic subvarieties.

Notation 5.2.5. Let O1, O2 be nilpotent orbits such that dimO1 + dimO2 = i.
Denote U ′(O1, O2) := {(A1, v1, φ1, A2, v2, φ2) ∈ U i|A1 ∈ O1, A2 ∈ O2}.

Since the sets U ′(O1, O2) form an open cover of U i, it is enough to show
that each U ′(O1, O2) does not have (non-empty) coisotropic subvarieties. This
fact clearly follows from the Key Proposition using the following easy lemma.

Lemma 5.2.6. U ′(O1, O2) ⊂ U(O1, O2).

5.3. Reduction to the Key Lemma

We will use the following notation

Notation 5.3.1.

RA := {(v1, φ1, v2, φ2) ∈ QA ×QA − Č |
∃B ∈ [A, g] ∩N such that [A,B] + v1 ⊗ φ2 − v2 ⊗ φ1 = 0}.

The goal of this subsection is to reduce the Key Proposition to the
following Key Lemma.

Lemma 5.3.2 (Key Lemma). RA does not have (non-empty) V ×V ∗×V ×V ∗-
coisotropic subvarieties.

Notation 5.3.3. Denote

U ′′(O1, O2) := {(A1, v1, φ1, A2, v2, φ2) ∈ U(O1, O2)|gA1⊥gA2}.

Lemma 5.3.4. Any X×X-coisotropic subvariety of U(O1, O2) lies in U ′′(O1, O2).

Proof. Denote M := O1×V ×V ∗×O2×V ×V ∗. Note that U(O1, O2) ⊂M .
Note that any coisotropic subvariety ofM is contained inM ′ := {(A1, v1, φ1, A2, v2, φ2) ∈
M | gA1⊥gA2}. Hence any coisotropic subvariety of U(O1, O2) is contained in
U(O1, O2) ∩M ′. �

The following straightforward lemma together with Corollary 5.1.8 fin-
ish the reduction.

Lemma 5.3.5. U ′′(O1, O2)|A×V×V ∗ ⊂ RA.

5.4. Proof of the Key Lemma

We will first give a short description of the proof for the case when A is one
Jordan block. Then we will present the proof in the general case.

During the whole subsection coisotropic variety means V ×V ∗×V ×V ∗-
coisotropic variety.



18 Avraham Aizenbud and Dmitry Gourevitch

5.4.1. Proof in the case when A is one Jordan block.
In this case QA =

⋃n
i=0(KerAi)× (Ker(A∗)n−i). Hence

QA ×QA =
n⋃

i,j=0

(KerAi)× (Ker(A∗)n−i)× (KerAj)× (Ker(A∗)n−j).

Denote Lij := (KerAi)× (Ker(A∗)n−i)× (KerAj)× (Ker(A∗)n−j).
It is easy to see that any coisotropic subvariety of QA×QA is contained

in
⋃n
i=0 Lii. Hence it is enough to show that for any i, dimRA ∩ Lii < 2n.

For i = 0, n it is clear since RA ∩ Lii is empty. So we will assume 0 < i < n.
Let f ∈ O(Lii) be the polynomial defined by f(v1, φ1, v2, φ2) := (v1)i(φ2)i+1−

(v2)i(φ1)i+1, where (·)i means the i-th coordinate. It is enough to show that
f(RA ∩ Lii) = {0}.

Let (v1, φ1, v2, φ2) ∈ Lii. Let M := v1 ⊗ φ2 − v2 ⊗ φ1. Clearly, M is of
the form

M =
(

0i×i ∗
0(n−i)×i 0(n−i)×(n−i)

)
.

Note also that Mi,i+1 = f(v1, φ1, v2, φ2).
It is easy to see that any B satisfying [A,B] = M is upper triangular. On

the other hand, we know that there exists a nilpotent B satisfying [A,B] =
M . Hence this B is upper nilpotent, which implies Mi,i+1 = 0 and hence
f(v1, φ1, v2, φ2) = 0.

5.4.2. Notation on filtrations.

Notation 5.4.1.
(i) Let L be a vector space with a gradation GiL. It defines a filtration G≥iL
by G≥iL :=

⊕
j≥iG

jL .
(ii) Let L be a vector space with a descending filtration F≥i. We define
F>iL :=

⋃
j>i F

≥jL.

Notation 5.4.2. Let L and M be vector spaces with descending filtrations
F≥iL and F≥iM .

Define filtrations F≥i(L⊗M) :=
∑
k+l=i F

≥kL⊗F≥lM and F≥i(L∗) :=
(F>−iL)⊥.

Similarly for gradations GiL and GiM we define gradations Gi(L ⊕
M) :=

⊕
k+l=iG

kL⊗GlM and Gi(L∗) := (
⊕

j 6=−iG
jL)⊥.

We fix a standard basis {E,H,F} of sl2.

Notation 5.4.3. Let L be a representation of sl2. We define

– A gradation Wα(L) := Ker(H − αId) and
– An ascending filtration Ki(L) := Ker(Ei).

Note that if L is an irreducible representation thenKi(L) = W≥dimL+1−2i(L).
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5.4.3. Proof of the Key Lemma.
We will cover RA by linear spaces and show that every one of them does not
include coisotropic subvarieties of RA.

Fix a morphism of Lie algebras ψ : sl2 → sl(V ) such that ψ(E) = A.
Decompose V to irreducible representations of sl2: V =

⊕k
i=1 Vi such that

dimVi ≥ dimVi+1.

Notation 5.4.4. Denote Di := dimVi. Let D denote the multiindex D :=
(D1, ..., Dk).

For any multiindex I = (I1, ..., Ik) such that 0 ≤ Il ≤ Dl, I 6= 0 and
I 6= D we define

– LI := W≥D1+1−2I1(V1)⊕...⊕W≥Dk+1−2Ik(Vk) = KI1(V1)⊕...⊕KIk
(Vk)

– L′I := W≥D1+1−2I1(V ∗1 ) ⊕ ... ⊕ W≥Dk+1−2Ik(V ∗k ) = KI1(V ∗1 ) ⊕ ... ⊕
KIk

(V ∗k )
– LIJ := LI × L′D−I × LJ × L′D−J

The following two lemmas are straightforward

Lemma 5.4.5.
RA ⊂

⋃
I,J

LIJ

Lemma 5.4.6. LIJ is not coisotropic if I 6= J .

Hence it is enough to prove the following proposition.

Proposition 5.4.7. dimLII ∩RA < 2n.

From here on we fix I and suppose that the proposition does not hold
for this I. Our aim now is to get a contradiction. Note that if Proposition
5.4.7 holds for I then it holds for D− I. Hence without loss of generality we
can (and will) assume Ik < Dk.

Lemma 5.4.8. For any m < l we have Dm −Dl ≥ Im − Il ≥ 0.

Before we prove this lemma we introduce some notation.
We fix a Jordan basis of A in each Vi.

Notation 5.4.9. For any v ∈ V, φ ∈ V ∗, X ∈ V ⊗ V ∗ we define vl to be the
l-th component of v with respect to the decomposition V = ⊕Vl and vlα to be
its α coordinate.

Similarly we define φl, φlα, X
lm, X lm

α,β

Proof of lemma 5.4.8. It is enough to prove that for any l,m we have Il +
(Dm − Im) ≤ max(Dl, Dm). Assume that the contrary holds for some l,m.
It is enough to show that in this case dim(QA ∩ (LI ×L′D−I)) < n. Consider
the function g ∈ O(LI ×L′D−I) defined by g(v, φ) = φmIm+1 · vlIl

. It is enough
to show that g(QA ∩ (LI × LD−I)) = {0}.

Let B ∈ Vm ⊗ V ∗l be defined by Bα,β = δα−β,Im−Il+1. Consider B
as an element of g. Note that B ∈ gA and 〈B, v ⊗ φ〉 = g(v, φ) for any
(v, φ) ∈ LI × L′D−I . Hence g(QA ∩ (LI × LD−I)) = {0}. �
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Corollary 5.4.10.
(i) If Im = 0 then Il = 0 for any l > m.
(ii) If Im = Dm then Il = Dl for any l > m.

Corollary 5.4.11. D1 > I1 > 0.

Notation 5.4.12. Let k′ be the maximal index such that Dk′ > Ik′ > 0.

Notation 5.4.13. Define fl ∈ O(V × V ∗ × V × V ∗) by

fl(v1, φ1, v2, φ2) := (v1)lIl
(φ2)lIl+1 − (v2)lIl

(φ1)lIl+1.

Define also f :=
∑k′

l=1
Dl−Il

Dl
fl.

Now it is enough to prove the following proposition.

Proposition 5.4.14.

f(RA ∩ LII) = {0}.

We will need several notations and straightforward lemmas.

Lemma 5.4.15. For any α ≤ |Dm − Dl| we have W≥α(Vl ⊗ V ∗m) = {X ∈
Vl ⊗ V ∗m|E(X) ∈W≥α+2(Vl ⊗ V ∗m)}.

Definition 5.4.16. Define gradation W i
I on Vl by W i

I (Vl) = W i+(Dl+l−2Il)(Vl).
It gives rise to gradations W i

I on V ∗l , Vm ⊗ V ∗l , V, V ∗.

Lemma 5.4.17.
(i) If i is odd then W i

I = 0.
(ii) W≥0

I (V ) = LI .
(iii) W≥2

I (V ∗) = L′D−I .

Definition 5.4.18. Let A be the algebra W≥0
I (V ⊗ V ∗) and I be its ideal

W>0
I (V ⊗ V ∗) = W≥2

I (V ⊗ V ∗). Clearly A/I ∼=
∏
End(W i

I (V )). This gives
rise to a homomorphism ε : A → End(W 0

I (V )).

Lemma 5.4.19.
(i) A =

⊕
1≤l,m≤kW

≥Dl−Dm−2(Il−Im)(Vl ⊗ V ∗m).
(ii) I :=

⊕
1≤l,m≤kW

≥Dl−Dm−2(Il−Im)+2(Vl ⊗ V ∗m).
(iii) dim(W 0

I (V )) = k′

(iv) Consider the basis on W 0
I (V ) corresponding to the one on V and identify

End(W 0
I (V )) with gl(k′). Then

ε(X)lm := X lm
Il,Im

.

Corollary 5.4.20. A = {X ∈ End(V )|[A,X] ∈ I}.

Proof. Follows from the previous lemma using Lemma 5.4.15. �
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Proof of Proposition 5.4.14. Let (v1, φ1, v2, φ2) ∈ LII ∩ RA. Let M := v1 ⊗
φ2 − v2 ⊗ φ1. We know that there exists a nilpotent matrix B ∈ [A, gl(V )]
such that [A,B] = M . By Corollary 5.4.20 B ∈ A. Denote ∆ := ε(B).
Fix 1 ≤ l ≤ k′. Denote al := M ll

Il,Il+1. Note that [Al, Bll] = M ll. Hence
B11
ll = ... = BIl,Il

ll = ∆ll = BIl+1,Il+1
ll − al = ... = BDl,Dl

ll − al. Since
B ∈ [A,End(V )] we have tr(Bll) = 0. Thus ∆ll = Dl−Il

Dl
al.

SinceB is nilpotent ∆ is nilpotent. Hence tr(∆) = 0 and thus
∑k′

l=1
Dl−Il

Dl
al =

0 which means f(v1, φ1, v2, φ2) = 0. �

Appendix A. Theorem A implies Theorem B

This appendix is analogous to section 1 in [AGRS]. There, the classical theory
of Gelfand and Kazhdan (see [GK]) is used. Here we use an archimedean ana-
log of this theory which is described in [AGS], section 2. We work in the nota-
tions of [AGS]. In particular, what we call a smooth Fréchet representation is
sometimes called in the literature smooth Fréchet representation of moderate
growth (see e.g. [Wal]).

We will also use the theory of nuclear Fréchet spaces. For a good brief
survey on this theory we refer the reader to [CHM], Appendix A.

Notation A.0.1.
(i) For a smooth Fréchet representation π of a real reductive group we denote
by π̃ the smooth dual of π.
(ii) For a representation π of GLn(F ) we let π̂ be the representation of
GLn(F ) defined by π̂ = π ◦θ, where θ is the (Cartan) involution θ(g) = g−1t.

We will use the following theorem.

Theorem A.0.2 (Casselman - Wallach globalization). Let G be a real reductive
group. There is a canonical equivalence of categories between the category of
admissible smooth Fréchet representations of G and the category of admissi-
ble (g,K)- modules.

See e.g. [Wal], chapter 11.
We will also use the embedding theorem of Casselman.

Theorem A.0.3. Any irreducible (g,K)-module can be imbedded into a (g,K)-
module of principal series.

Those two theorems have the following corollary.

Corollary A.0.4. The underlying topological vector space of any admissible
smooth Fréchet representation is a nuclear Fréchet space.

Definition A.0.5. Let G and H be real reductive groups. Let (π,E) and (τ,W )
be admissible smooth Fréchet representations of G and H respectively. We
define π ⊗ τ to be the natural representation of G×H on the space E⊗̂W .

http://arxiv.org/pdf/0709.4215v1
http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/pdf/0709.1273v4


22 Avraham Aizenbud and Dmitry Gourevitch

Proposition A.0.6. Let G and H be real reductive groups. Let π and τ be
irreducible admissible Harish-Chandra modules of G and H respectively. Then
π ⊗ τ is irreducible Harish-Chandra module of G×H.

This proposition is well known. For the benefit of the reader we include
its proof in subsection A.1. An analogous proposition in the non-Archimedean
case appears in [BZ, subsection 2.16], and the proof we give here is along the
same lines.

Corollary A.0.7. Let G and H be real reductive groups. Let π and τ be irre-
ducible admissible smooth Fréchet representations of G and H respectively.
Then π ⊗ τ is an irreducible representation of G×H.

Lemma A.0.8. Let G and H be real reductive groups. Let (π,E) and (τ,W )
be admissible smooth Fréchet representations of G and H respectively. Then
HomC(π, τ) is canonically embedded to HomC(π ⊗ τ̃ ,C).

Proof. For a nuclear Fréchet space V we denote by V ′ its dual space equipped
with the strong topology. Let W̃ denote the underlying space of τ̃ . By the
theory of nuclear Fréchet spaces, we know HomC(E,W ) ∼= E′⊗̂W and
HomC(E⊗̂W̃ ,C) ∼= E′⊗̂W̃ ′. The lemma follows now from the fact that W is
canonically embedded to W̃ ′. �

We will use the following two archimedean analogs of theorems of Gelfand
and Kazhdan.

Theorem A.0.9. Let π be an irreducible admissible representation of GLn(F ).
Then π̂ is isomorphic to π̃.

For proof see [AGS], Theorem 2.4.4.

Theorem A.0.10. Let H ⊂ G be real reductive groups and let σ be an involu-
tive anti-automorphism of G and assume that σ(H) = H. Suppose σ(ξ) = ξ
for all H-bi-invariant Schwartz distributions ξ on G. Let π be an irreducible
admissible smooth Fréchet representation of G. Then

dim HomH(π,C) · dim HomH(π̃,C) ≤ 1.

For proof see [AGS], Theorem 2.3.2.

Corollary A.0.11. Let H ⊂ G be real reductive groups and let σ be an involu-
tive anti-automorphism of G such that σ(H) = H. Suppose σ(ξ) = ξ for all
Schwartz distributions ξ on G which are invariant with respect to conjugation
by H.

Let π be an irreducible admissible smooth Fréchet representation of G
and τ be an irreducible admissible smooth Fréchet representation of H. Then

dimHomH(π, τ) · dim HomH(π̃, τ̃) ≤ 1.

http://www.math.tau.ac.il/\unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/pdf/0709.1273v4
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Proof. Define σ′ : G × H → G × H by σ′(g, h) := (σ(g), σ(h)). Let ∆H <
G × H be the diagonal. Consider the projection G × H → H. By Frobe-
nius reciprocity (Theorem 2.2.8), the assumption implies that any ∆H-bi-
invariant distribution on G×H is invariant with respect to σ′.

Hence by the previous theorem, for any irreducible admissible smooth
Fréchet representation π′ ofG×H we have dim Hom∆H(π′,C)·dim Hom∆H(π̃′,C) ≤
1.

Taking π′ := π ⊗ τ̃ we obtain the required inequality. �

Corollary A.0.12. Theorem A implies Theorem B.

Proof. By Theorem A.0.9, dim HomH(π̃, τ̃) = dim HomH(π̂, τ̂) = dim HomH(π, τ).
�

A.1. Proof of proposition A.0.6

Notation A.1.1. Let G be a reductive group, g be its Lie algebra and K be its
maximal compact subgroup. Let π be an admissible (g,K)-module.
Let ρ be an irreducible representation of K.
(i) We denote by eρ : π → π the projection to the K-type ρ.
(ii) We denote by Gπρ the subalgebra of End(eρ(π)) generated by the actions
of K and eρU(g)eρ.

The following lemma is well-known

Lemma A.1.2. Let π be an irreducible admissible (g,K)-module. Let ρ be an
irreducible representation of K. Suppose that eρ(π) 6= 0. Then eρ(π) is an
irreducible representation of Gπρ .

We will also use Bernside theorem.

Theorem A.1.3. Let V be a finite dimensional complex vector space. Let A ⊂
End(V ) be a subalgebra such that V does not have any non-trivial A-invariant
subspaces. Then A = End(V ).

Now we are ready to prove proposition A.0.6.

Proof of proposition A.0.6. Let g and h be the Lie algebras of G and H. Let
K and L be maximal compact subgroups of G and H. Let ω ⊂ π ⊗ τ be a
nonzero (g×h,K×L)-submodule. Then ω intersects non-trivially some K×L
type. Denote this type by ρ ⊗ σ. By Lemma A.1.2, eρ(π) is an irreducible
representation of Gπρ and eσ(τ) is an irreducible representation of Hτ

σ . Hence
by Bernside theorem Gπρ = End(eρ(π)) and Hτ

σ = End(eσ(τ)). Hence (G ×
H)π⊗τρ⊗σ = End(eρ(π)⊗ eσ(τ)). Thus ω ∩ eρ⊗σ(π ⊗ τ) = eρ⊗σ(π ⊗ τ).

This means that ω contains an element of the form v⊗w, which implies
that ω = π ⊗ τ . �
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Appendix B. D-modules

In this appendix X denotes a smooth affine variety defined over R. All the
statements of this section extend automatically to general smooth algebraic
varieties defined over R. In this paper we use only the case when X is an
affine space.

Definition B.0.1. Let D(X) denote the algebra of polynomial differential op-
erators on X. We consider the filtration F≤iD(X) on D(X) given by the
order of differential operator.

Definition B.0.2. We denote by GrD(X) the associated graded algebra of
D(X).

Define the symbol map σ : D(X)→ GrD(X) in the following way. Let
d ∈ D(X). Let i be the minimal index such that d ∈ F≤i. We define σ(d) to
be the image of d in (F≤iD(X))/(F≤i−1D(X))

Proposition B.0.3. GrD(X) ∼= O(T ∗X).

For proof see e.g. [Bor].

Notation B.0.4. Let (V,B) be a quadratic space.
(i) We define a morphism of algebras ΦDV : D(X × V ) → D(X × V ) in the
following way.

Consider B as a map B : V → V ∗. For any f ∈ V ∗ we set ΦDV (f) :=
∂B−1(f). For any v ∈ V we set ΦDV (∂v) := −B(v) and for any d ∈ D(X) we
set ΦDV (d) := d.
(ii) It defines a morphism of algebras ΦOV : O(T ∗X)→ O(T ∗X).

The following lemma is straightforward.

Lemma B.0.5. Let f be a homogeneous polynomial. Consider it as a differ-
ential operator. Then σ(ΦDV (f)) = ΦOV (σ(f)).

The D-modules we use in the paper are right D-modules. The difference
between right and left D-modules is not essential (see e.g. section VI.3 in
[Bor]). We will use the notion of good filtration on a D-module, see e.g.
section II.4 in [Bor]. Let us now remind the definition of singular support of
a module and a distribution.

Notation B.0.6. Let M be a D(X)-module. Let α ∈ M be an element. Then
we denote by AnnD(X) the annihilator of α.

Definition B.0.7. Let M be a D(X)-module. Choose a good filtration on M .
Consider grM as a module over GrD(X) ∼= O(T ∗X). We define

SS(M) := Supp(GrM) ⊂ T ∗X.
This does not depend on the choice of the good filtration on M (see e.g. [Bor],
section II.4).

For a distribution ξ ∈ S∗(X(R)) we define SS(ξ) to be the singular
support of the module of distributions generated by ξ.
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The following proposition is trivial.

Proposition B.0.8. Let I < D(X) be a right ideal. Consider the induced
filtrations on I and D(X)/I. Then Gr(D(X)/I) ∼= Gr(D(X))/Gr(I).

Corollary B.0.9. Let ξ ∈ S∗(X). Then SS(ξ) is the zero set of Gr(AnnD(X)ξ).

Corollary B.0.10. Let I < O(T ∗X) be the ideal generated by {σ(d) | d ∈
AnnD(X)(ξ)}. Then SS(ξ) is the zero set of I.

Corollary B.0.11. Fact 2.3.9 holds.

Lemma B.0.12. Let ξ ∈ S∗(X). Let Z ⊂ X be a closed subvariety such that
Supp(ξ) ⊂ Z(R). Let f ∈ O(X) be a polynomial that vanishes on Z. Then
there exists k ∈ N such that fkξ = 0.

Proof.
Step 1. Proof for the case when X is affine space and f is a coordinate

function.
This follows from the proof of Corollary 5.5.4 in [AG1].

Step 2. Proof for the general case.
Embed X into an affine space AN such that f will be a coordinate function
and consider ξ as distribution on AN supported in X. By Step 1, fkξ = 0
for some k. �

Corollary B.0.13. Fact 2.3.8 holds.

Proposition B.0.14. Fact 2.3.10 holds. Namely:
Let (V,B) be a quadratic space. Let Z ⊂ X × V be a closed subvariety,

invariant with respect to homotheties in V . Suppose that Supp(ξ) ⊂ Z(R).
Then SS(FV (ξ)) ⊂ FV (p−1

X×V (Z)).

Proof. Let f ∈ O(X × V ) be homogeneous with respect to homotheties in
V . Suppose that f vanishes on Z. Then ΦDV (fk) ∈ AnnD(X)(FV (ξ)). There-
fore σ(ΦDV (fk)) vanishes on SS(FV (ξ)). On the other hand, σ(ΦDV (fk)) =
ΦOV (σ(fk)) = (ΦOV (σ(f)))k. Hence SS(FV (ξ)) is included in the zero set of
ΦOV (σ(f)). Intersecting over all such f we obtain the required inclusion. �
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