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Summary

Let F' be a local field of characteristic zero, e.g. ' =R or F' = Q,.

Consider the standard imbedding GL(n, F') C GL(n+ 1, F). Let GL(n, F') act
on GL(n + 1, F') by conjugation.

The main goal of this thesis was to prove the following theorem.

Theorem. Every GL(n, F')-invariant distribution on GL(n+1, F) is invariant with
respect to transposition.

We proved it in [AGRS07] for non-Archimedean F and in [AGO8d] for
Archimedean F'. For Archimedean F' it was also proven independently, simulta-
neously and in a different way in [SZ0§|. The proof we present here is a combi-
nation of these three approaches and works uniformly for both Archimedean and
non-Archimedean fields.

This theorem is important in representation theory, since it implies the follow-
ing multiplicity one theorem.

Theorem. Let w be an irreducible admissible representation of GL(n+ 1, F) and p
be an irreducible admissible smooth representation of GL(n, F'). Then

dim Home,(n, 7y (7| Gr(n, 7y, p) < 1.
Another corollary of the main theorem is the following one.

Theorem. Let GL(n, F) act on itself by conjugation. Let P(n,F) < GL(n,F) be
the subgroup of matrices whose last row is (0,...,0,1). Then any P(n, F)-invariant
distribution on GL(n, F') is GL(n, F')-invariant.

This theorem in turn implies Kirillov’s conjecture that states that any irre-
ducible unitary representation G L(n, F') remains irreducible unitary representation
when restricted to P(n, F'). In this way Kirillov’s conjecture was originally proven
in [Ber84] (for non-archimedean F') and in [Bar03|(for archimedean F).

Analogs of our theorems hold also for the orthogonal groups. Namely, let V
be a finite dimensional vector space over F' and ¢ be any non-degenerate quadratic
form on V. Extend ¢ to V & F' in the natural way and consider the embedding
OV)—= OV a@F). Let O(V) act on O(V @ F) by conjugation.

Theorem. Every O(V)-invariant distribution on O(V & F') is invariant with respect
to transposition. Also, for any irreducible admissible smooth representations © of
OV @ F) and p of O(V') we have

dim Homo(v) (7'("0(‘/), p) < 1.
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For non-archimedean F' this theorem proved in [AGRS07] and for archimedean
F in [SZ0§|. Both proofs use the theorem for GL(n, F).

In our proofs for non-archimedean F' we used tools dealing with invariant
distributions developed in [BZ76], [Ber84] and [JR96]. For archimedean F we had
to develop archimedean analogs of some of these tools (see chapter [1).

However, the archimedean case is much more difficult and we needed another,
crucial, tool to solve it. This tool was the theory of D-modules. In particular, we
used a theorem on the singular support of a D-module, see section (1.8, To make our
proof be uniform for both kinds of local fields we use the paper [Aiz08§] in which a
non-Archimedean analog of this tool is developed.
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Chapter 0O

Introduction

One may divide the task of representation theory into two parts:

e Classify all irreducible representations of a given group G.

e Understand how a given representation of G ”decomposes” into irreducible
ones.

For a representation m and an irreducible representation 7 one can ask with
what multiplicity 7 occurs in the decomposition of 7. It is interesting to know
what happens if we consider an irreducible representation of G as a representation
of a subgroup H C G. Consider its "decomposition” to irreducible representations
of H. It is said that the pair (G, H) has multiplicity one property if all those
irreducible representations appear in the decomposition with multiplicity one. Such
pairs are also called strong Gelfand pairs. If this property holds just for the trivial
representation instead of 7 then the pair (G, H) is called a Gelfand pair.

Those notions were introduced by .M. Gelfand in the 50s for pairs of compact
topological groups. In the 70s those notions were developed by Gelfand and Kazhdan
(in [GKT75]) in the realm of reductive algebraic groups over non-Archimedean local
fields (like the field of p-adic numbers). We recall their definitions and techniques,
as well as an adaptation to Archimedean local fields (i.e. R and C) in chapter 2]

Let F' be a non-Archimedean local field of characteristic 0. Consider the
standard imbedding GL,(F) — GL,41(F). We consider the action of GL,(F)
on GL,1(F) by conjugation.

In this thesis we prove

Theorem A. The pair (GL,1(F),GL,(F)) is a strong Gelfand pair.

Gelfand and Kazhdan also provided criteria for proving both Gelfand proper-
ties. The criterion for strong Gelfand property is the following. Suppose that we are
given an anti-involution ¢ of GG that preserves H and preserves all distributions on
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G that are invariant with respect to cojugation by elements of H. Then (G, H) is a
strong Gelfand pair. By this criterion Theorem [A] follows from the following one:

Theorem B. Any GL,(F) - invariant distribution on GL,41(F) is invariant with
respect to transposition.

For me, this theorem and invariant distributions in general are of great interest
on their own. Also, they have other applications in representation theory. For
example, Theorem [B|implies the following one.

Theorem C. Let P, C GL,, be the subgroup consisting of all matrices whose last row
is (0,...,0,1). Let GL,, act on itself by conjugation. Then every P,(F') - invariant
distribution on GL,,(F') is GL,(F) - invariant.

Proof. Since GL,_; < P,, any P,(F) - invariant distribution £ on GL,(F) is
GL,,_1(F) - invariant. Hence by Theorem [B] £ is transposition invariant. Since
P, and P! generate GL,, ¢ is GL,(F) - invariant. O

This theorem in turn implies Kirillov’s conjecture that states that any ir-
reducible unitary representation GL(n, F') remains irreducible unitary representa-
tion when restricted to P,(F). In this way Kirillov’s conjecture was originally
proven by Bernstein in [Ber84] for non-Archimedean F' and by Baruch in [Bar03]
for Archimedean F'.

0.1 The techniques and the structure of our proof

Over non-Archimedean fields there is a powerful tool for proving theorems on invari-
ant distributions, due to Bernstein, Gelfand, Kazhdan and Zelevinski. It says that if
an algebraic group G acts on an algebraic variety X and o is an involutive automor-
phism of X (F') that normalizes the action of G and preserves all G(F')-orbits then
all G(F)-invariant distributions on X (F') are o-invariant. For a precise formulation
see Theorem [L.3.5

This theorem is very powerful since it reduces a statement on invariant dis-
tributions to a check of simple geometric conditions. Many theorems on invariant
distributions over non-Archimedean fields were proven using this theorem.

However, in more difficult cases, including the ones under consideration in
this thesis, o preserves a majority of G(F')-orbits but not all of them. In such cases
there actually exist G(F')-invariant but not o-invariant distributions defined on some
locally closed subsets of X (F') and one has to prove that they cannot be invariantly
continued to X (F). For this one has to use some non-geometric tools, like the ones
described in sections [.7 and [L.8
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One can formulate a geometric condition which is necessary (though not suffi-
cient) in all cases. Namely, in order to preserve G(F') invariant distributions ¢ must
preserve all closed G(F)-orbits.

In [AGO8¢| we formulated a sufficient condition that one has to check for all
closed orbits. This condition is not geometric - it is a statement on invariant distribu-
tions on the normal space to the orbit (see section . However, the normal spaces
to most orbits have dimension smaller than X so one can hope that the problem on
invariant distribution on them is simpler. Also, the normal spaces are linear spaces
which enables to apply additional techniques, like the Fourier transform. We called
this method Generalized Harish-Chandra descent, since in the case of a reductive
group acting on itself by conjugation it was developed by Harish-Chandra.

In the case of GL,, acting on GL,, by conjugation, for all closed orbits except
one, the problem we get on the normal space is a product of problems of the same
kind, possibly for other local fields but with smaller n. Hence when proving the main
theorem by induction we may assume those problems to be solved, and there is only
one problematic orbit. This orbit consists of one element - the identity. The normal
space to it is the Lie algebra gl, ,(F). Using the fact that the problem is solved
near other closed orbits, we show that any distribution & which is GL,-invariant
and transposition anti-invariant must be supported in the nilpotent cone. Since the
Fourier transform of £ has the same invariance properties, it also must be supported
in the nilpotent cone.

Now, when we have restrictions on the support of both ¢ and its Fourier
transform we can apply two kinds of "uncertainty principles”, that we develop in
sections and [[.§l We apply them and show that such £ must be zero. This is
the most complicated part of the proof.

0.2 Remarks

Theorem [B| is not proven yet for local fields of positive characteristic (like Fy(2)).
The main difficulty is that the Harish - Chandra descent technique does not work
in this case. We managed to prove a partial analog of Theorem [B] see chapter [3]

Some chapters of this thesis are written uniformly for all local fields. In other
chapters or sections we assume that the field has characteristic 0 and then we specify
that in the beginning of the chapter or section.

The first chapter of the thesis is dedicated to tools for working with invariant
distributions. Some of these tools existed before. Many tools existed only in the non-
Archimedean case and our contribution was to develop their Archimedean analogs.
However, we developed the Generalized Harish-Chandra descent tool for all local
fields, and the tool of singular support (see section was adapted to this kind
of problems first in the Archimedean case (in [AG08d|) and then continued to the

13


http://arxiv.org/abs/0812.5063
http://arxiv.org/abs/0808.2729v1

non-Archimedean case by Aizenbud in [Aiz08].

Theorems [A] and [B| were first proven for the non-Archimedean case in
[AGRS07]. For the Archimedean case it was proven simultaneously, independently
and in different ways in [AG08d] and [SZ08]. The proof we present here is a synthesis
of those three proofs. It works uniformly in both cases thanks to [Aiz08].

The main tools of the proof in [AGRS07] are the Homogeneity Theorem (see
section and certain non-linear automorphisms v, (see subsection . They
are used in the current proof for convenience, but are not essential any more. The
reason that they became less important for us is that we have used a very powerful
tool - the singular support (see Section. In the Archimedean case this tool uses a
deep result from the theory of D-modules. However, the Homogeneity Theorem and
the automorphisms v, are still used in an essential way in the proofs of multiplicity
one theorem for orthogonal groups. I hope that they will continue to be used in
further problems of this kind.

0.3 Applications

Remark D. Using the tools developed here, one can show that Theorem [B implies
an analogous theorem for the unitary groups. Theorem [B will be used during the
Harish-Chandra descent and the main part of the proof will be similar to the one we
describe in chapter[{), since U, is a form of GL,.

Analogs of Theorems[A]and [B hold also for the orthogonal groups. Namely, let
V be a finite dimensional vector space over a local field F' of characteristic zero and
¢ be any non-degenerate quadratic form on V' . Extend ¢ to V @ F' in the natural
way and consider the embedding O(V) < O(V @ F). Let O(V) act on O(V & F)
by conjugation.

Theorem E. Any O(V) - invariant distribution on O(V @ F) is invariant with
respect to transposition.

Corollary F. (O(V @ F),0(V)) is a strong Gelfand pair.

This theorem was conjectured by Bernstein and Rallis in the 1980s. It was
proven in [AGRS07] for non-Achimedean F and in [SZ08] for Archimedean F. Both
proofs use Theorem [B]

These proofs use the same techniques as the proof we present here, except the
singular support, which is not used in [AGRS07] and only a partial analog of it is
used in [SZ0§].

Theorem [B|and its analog for unitary groups are used in [AGRS07] and [SZ08]
during Harish-Chandra descent since the centralizer of a semisimple orthogonal op-
erator is a product of orthogonal, unitary and general linear groups over some finite
field extensions.

14
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Remark. One can ask whether analogous theorems hold for special linear, unitary
and orthogonal groups.

The pairs (SLyy1,SLy) and (SU,41, SU,) are not strong Gelfand pairs already
forn =1 since SLy and SUy are trivial and neither S Ly nor SUy are commutative.

It is not known whether (SO(V @ F),SO(V)) is a strong Gelfand pair. Of
course, not every SO(V') orbit is preserved by transposition already for dimV = 1
(since SO(V') is trivial in this case). On the other hand one can use another invo-
lution, o9, obtained by composition of transposition and conjugation by an element
of O(V) — SO(V). However, one can show that there exists a closed SOy-orbit in
SOs that is not transposition invariant and another closed SOy4-orbit that is not
oo-tnvariant.

In [Sun09] Theorem [B|is used to prove (at least in the non-Archimedean case)
a theorem on distributions on the semidirect product of a symplectic group with its
Heisenberg group, invariant with respect to conjugation by the symplectic group.
That theorem in turn implies a certain multiplicity one theorem involving symplectic
and metaplectic groups, which in turn is used in [GGP0§| to show uniqueness of
Fourier-Jacobi models.

All multiplicity one theorems mentioned above can be used to prove splitting
of periods of automorphic forms.

Assuming multiplicity at most one, a more difficult question is to find when it
is one. Some partial results are known.

For the orthogonal group (in fact the special orthogonal group) this question
has been studied by B. Gross and D. Prasad ([GP92, [Pra93]) who formulated a
precise conjecture. For an up to date account see |[GR0O6, GGPO0S8, Wald09].

Multiplicity one theorems have important applications to the relative trace
formula, to automorphic descent, to local and global liftings of automorphic rep-
resentations, and to determinations of L-functions. In particular, multiplicity at
most one is used as a hypothesis in the work [GPSRI7] in the study of automorphic
L-functions on classical groups.

0.4 Structure of the thesis

In chapter [1| we develop tools to work with invariant distributions.

In chapter [2| we give the definitions of the notions of Gelfand pair and strong
Gelfand pair. We also formulate the Gelfand-Kazhdan criteria for these properties
and prove them in the Archimedean case. In particular, we show that Theorem
implies Theorem [A]

In chapter |3| we prove Gelfand property for the pairs (GL,11(F), GL,(F))
and (O,41(F), O, (F)). For fields of characteristic zero the results of this chapter
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are much weaker then the main results. I decided to include this chapter for two

reasons. First, the proofs in this chapter work over any local field, while the analogs

of the main results for fields of positive characteristic are not known. Second, the

proofs in this chapter are shorter and clearly show how to use some of the tools.
In chapter [4] we prove the main result, Theorem [B]
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Chapter 1

Tools to work with invariant
distributions

This chapter is based on [BZ76, Ber84, Bar(03, [AGS08, [AG08c, AGO08d, [Aiz08]. We
will give more precise bibliographical note in each section.

1.1 Definitions

1.1.1 Conventions

Henceforth we fix a local field F. All the algebraic varieties and algebraic
groups that we will consider will be defined over F'. In some sections and
chapters we will assume that the characteristic of F' is zero, and we will say
so in the beginning of the section or chapter. For simplicity we always assume
that the characteristic of F' is different from 2.

For a group G acting on a set X we denote by X¢ the set of fixed points of
X. Also, for an element x € X we denote by G, the stabilizer of x.

By a reductive group we mean a (non-necessarily connected) algebraic reduc-
tive group.

We consider an algebraic variety X defined over F' as an algebraic variety over
F together with action of the Galois group Gal(F/F). On X we only consider
the Zariski topology. On X (F) we only consider the analytic (Hausdorff)
topology. We treat finite-dimensional linear spaces defined over I as algebraic
varieties.

The tangent space of a manifold (algebraic, analytic, etc.) X at z will be
denoted by T, X.

17
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e Usually we will use the letters X,Y,Z, A to denote algebraic varieties and
the letters GG, H to denote reductive groups. We will usually use the letters
V,W,U, K, M,N,C,0,S,T to denote analytic spaces (such as F-points of al-
gebraic varieties) and the letter K to denote analytic groups. Also we will use
the letters L, V, W to denote vector spaces of all kinds.

e For an algebraic variety X defined over R we denote by X¢ the natural alge-
braic variety defined over R such that X¢(R) = X (C). Note that over C, X¢
is isomorphic to X x X.

e An action of a Lie algebra g on a (smooth, algebraic, etc) manifold M is a Lie
algebra homomorphism from g to the Lie algebra of vector fields on M. Note
that an action of a (Lie, algebraic, etc) group on M defines an action of its
Lie algebra on M.

e For a Lie algebra g acting on M, an element a € g and a point x € M we
denote by a(z) € T, M the value at point = of the vector field corresponding
to . We denote by gx C T, M or by g(x) the image of the map a — a(z)
and by g, C g its kernel.

1.1.2 Analytic manifolds

In this paper we consider distributions over [-spaces, smooth manifolds and Nash
manifolds. [-spaces are locally compact totally disconnected topological spaces and
Nash manifolds are semi-algebraic smooth manifolds.

For basic facts on [-spaces and distributions over them we refer the reader to
[BZ76, §1].

For basic facts on Nash manifolds and Schwartz functions and distributions
over them see subsection and [AGO8a]. In this paper we consider only separated
Nash manifolds.

We now introduce notation and terminology which allows a uniform treatment
of the Archimedean and the non-Archimedean cases.

We will use the notion of an analytic manifold over a local field (see e.g.
[Ser64, Part II, Chapter I11]). When we say "analytic manifold” we always mean
analytic manifold over some local field. Note that an analytic manifold over a
non-Archimedean field is in particular an [-space and an analytic manifold over an
Archimedean field is in particular a smooth manifold.

Definition 1.1.1. A B-analytic manifold is either an analytic manifold over a
non-Archimedean local field, or a Nash manifold.

Example 1.1.2. If X is a smooth algebraic variety, then X(F) is a B-analytic
manifold and (T, X)(F) = T.(X(F)).
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Notation 1.1.3. Let M be an analytic manifold and S be an analytic submanifold.
We denote by N} := (Tw|y)/Ts the normal bundle to S in M. The conormal
bundle is defined by CNY .= (N¥)*. Denote by Sym*(CONE) the k-th symmetric
power of the conormal bundle. For a point y € S we denote by Ngi the normal
space to S in M at the point y and by CN% the conormal space.

Now let us introduce the term "wvector system”. This term allows to formulate
statements in wider generality.

Definition 1.1.4. For an analytic manifold M we define the notions of a vector
system and a B-vector system over it.

For a smooth manifold M, a vector system over M is a pair (E, B) where B
is a smooth locally trivial fibration over M and E is a smooth (finite-dimensional)
vector bundle over B.

For a Nash manifold M, a B-vector system over M is a pair (E, B) where B
is a Nash fibration over M and E is a Nash (finite-dimensional) vector bundle over
B.

For an l-space M, a vector system over M (or a B-vector system over M ) is
a sheaf of complex linear spaces.

In particular, in the case where M is a point, a vector system over M is either
a C-vector space if F' is non-Archimedean, or a smooth manifold together with a
vector bundle in the case where F' is Archimedean. The simplest example of a vector
system over a manifold M is given by the following.

Definition 1.1.5. Let V be a vector system over a point pt. Let M be an analytic
manifold. A constant vector system with fiber V is the pullback of V with
respect to the map M — pt. We denote it by V).

1.1.3 Distributions

Definition 1.1.6. Let M be an analytic manifold over F. We define C(M) in
the following way.

If F is non-Archimedean then C2° (M) is the space of locally constant compactly
supported complex valued functions on M. We do not consider any topology on
C>®(M).

If Fis Archimedean then C2°(M) is the space of smooth compactly supported
complex valued functions on M, endowed with the standard topology.

For any analytic manifold M, we define the space of distributions D(M) by
D(M) := C(M)*. We consider the weak topology on it.

Definition 1.1.7. Let M be a B-analytic manifold. We define S(M) in the follow-
mg way.
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If M is an analytic manifold over non-Archimedean field, S(M) := C°(M).

If M is a Nash manifold, S(M) is the space of Schwartz functions on M,
namely smooth functions which are rapidly decreasing together with all their deriva-
tives. See [AG08d|] for the precise definition. We consider S(M) as a Fréchet space.

For any B-analytic manifold M, we define the space of Schwartz distri-
butions S*(M) by S*(M) := S(M)*. Clearly, S(M)* is naturally embedded into
D(M).

Remark 1.1.8. Schwartz distributions have the following two advantages over gen-

eral distributions:
(i) For a Nash manifold X and an open Nash submanifold U C X, we have the
following exact sequence

0= Sx(X\U) = §(X) =5 (U) —0.
(ii) Fourier transform defines an isomorphism F : S*(R") — S*(R").

For a short survey on Schwartz functions and distributions on Nash manifolds
see section [1.2] and for more information see [AG0Sa].

Notation 1.1.9. Let M be an analytic manifold. For a distribution & € D(M) we
denote by Supp(&) the support of €.
For a closed subset N C M we denote

Dy (N) :={¢ € D(M)[Supp(§) C N}
More generally, for a locally closed subset N C M we denote
Du(N) = DM\(N\N)(N)-

Stmilarly if M s a B-analytic manifold and N s a locally closed subset we
define S;;(N) in a similar vein. [[

Definition 1.1.10. Let M be an analytic manifold over F' and £ be a vector system
over M. We define C°(M,E) in the following way.

If F is non-Archimedean then C°(M,E) is the space of compactly supported
sections of £.

If F is Archimedean and € = (E, B) where B is a fibration over M and E is a
vector bundle over B, then C°(M, &) is the complezification of the space of smooth
compactly supported sections of E over B.

If V is a vector system over a point then we denote C°(M,V) := C(M, V).

We define D(M, E), Dy (N, E), S(M, E), S*(M, E) and S;;(N, £) in the natural
way.

n the Archimedean case, locally closed is considered with respect to the restricted topology -

see section @
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1.2 Schwartz distributions on Nash manifolds

In this section we give a short survey on Schwartz functions and distributions on
Nash manifolds. We will also prove some properties of K-equivariant Schwartz
distributions. We work in the notation of [AG08a], where one can read about Nash
manifolds and Schwartz distributions over them. More detailed references on Nash
manifolds are [BCRO8] and [Shi87].

Nash manifolds are equipped with the restricted topology, in which open
sets are open semi-algebraic sets. This is not a topology in the usual sense of the
word as infinite unions of open sets are not necessarily open sets in the restricted
topology. However, finite unions of open sets are open and therefore in the restricted
topology we consider only finite covers. In particular, if £ — M is a Nash vector
bundle it means that there exists a finite open cover U; of M such that E|y, is trivial.

Notation 1.2.1. Let M be a Nash manifold. We denote by Dy; the Nash bundle of
densities on M. It is the natural bundle whose smooth sections are smooth measures.
For the precise definition see e.g. [AG08d).

An important property of Nash manifolds is

Theorem 1.2.2 (Local triviality of Nash manifolds; [Shi87], Theorem 1.5.12 ).
Any Nash manifold can be covered by a finite number of open submanifolds Nash
diffeomorphic to R".

Definition 1.2.3. Let M be a Nash manifold. We denote by G(M) := S*(M, D)
the space of Schwartz generalized functions on M. Similarly, for a Nash
bundle E — M we denote by G(M, E) := S*(M, E*® D)) the space of Schwartz
generalized sections of E.

In the same way, for any smooth manifold M we denote by C~°(M) =
D(M, Dyy) the space of generalized functions on M and for a smooth bundle
E — M we denote by C~>°(M,E) := D(M, E* ® D)) the space of generalized
sections of E.

Usual L!-functions can be interpreted as Schwartz generalized functions but
not as Schwartz distributions. We will need several properties of Schwartz functions
from [AGO8al.

Property 1.2.4 ([AGO08a], Theorem 4.1.3). S(R™) = Classical Schwartz functions
on R™.

Property 1.2.5 ([AG08a], Theorem 5.4.3). Let U C M be a (semi-algebraic) open
subset, then

SWU,E)={pecS(IM,E)| ¢ is 0 on M\ U with all derivatives}.
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Property 1.2.6 (see [AG08al, §5). Let M be a Nash manifold. Let M = |JU; be a
finite open cover of M. Then a function f on M 1is a Schwartz function if and only

if it can be written as f =) f; where f; € S(U;) (extended by zero to M ).
i=1

n
Moreover, there exists a smooth partition of unity 1 = > \; such that for any
i=1
Schwartz function f € S(M) the function \;f is a Schwartz function on U; (extended

by zero to M ).

Property 1.2.7 (see [AG08al, §5). Let M be a Nash manifold and E be a Nash
bundle over it. Let M = |JU; be a finite open cover of M. Let & € G(U;, E) such
that &y, = &5lu,. Then there exists a unique £ € G(M, E) such that {|y, = &.

We will also use the following notation.

Notation 1.2.8. Let M be a metric space and x € M. We denote by B(z,r) the
open ball with center x and radius r.

1.2.1 Submersion principle

Theorem 1.2.9 (JAGO8b], Theorem 2.4.16). Let M and N be Nash manifolds and

s: M — N be a surjective submersive Nash map. Then locally it has a Nash section,
k

i.e. there exists a finite open cover N = |J U; such that s has a Nash section on

=1
each U;.

Corollary 1.2.10. An étale map ¢ : M — N of Nash manifolds is locally an
isomorphism. That means that there exists a finite cover M = |JU; such that ¢|y,
s an isomorphism onto its open image.

Theorem 1.2.11. Let p: M — N be a Nash submersion of Nash manifolds. Then
there exist a finite open (semi-algebraic) cover M = \JU; and isomorphisms ¢; :
U; = W; and ;- p(Us) = V; where W; C R% and V; C R¥ are open (semi-algebraic)
subsets, k; < d; and p|y, correspond to the standard projections.

Proof. The problem is local, hence without loss of generality we can assume that
N = RF, M is an equidimensional closed submanifold of R™ of dimension d, d > k,
and p is given by the standard projection R® — RF.

Let Q be the set of all coordinate subspaces of R™ of dimension d which contain
N. For any V' € Q consider the projection pr : M — V. Define Uy = {z € M|d,pr
is an isomorphism }. It is easy to see that pr|y, is etale and {Uy}yeq gives a
finite cover of M. The theorem now follows from the previous corollary (Corollary

T2.10). 0

22


http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf

Theorem 1.2.12. Let ¢ : M — N be a Nash submersion of Nash manifolds. Let
E be a Nash bundle over N. Then

(i) there exists a unique continuous linear map ¢, : S(M, ¢*(E)® Dyr) — S(N, E®
Dy) such that for any f € S(N, E*) and p € S(M, ¢*(E) ® Dy) we have

[y enten = [ s,

In particular, we mean that both integrals converge.
(i) If ¢ is surjective then ¢, is surjective.

Proof.

(i)

Step 1. Proof for the case when M = R, N = R*, k < n, ¢ is the standard
projection and F is trivial.
Fix Haar measure on R and identify Dy with the trivial bundle for any [. Define

0.N@= [ sy

Convergence of the integral and the fact that ¢.(f) is a Schwartz function follows
from standard calculus.

Step 2. Proof for the case when M C R™ and N C R¥ are open (semi-algebraic)
subsets, ¢ is the standard projection and E is trivial.

Follows from the previous step and Property [I.2.5

Step 3. Proof for the case when E is trivial.
Follows from the previous step, Theorem and partition of unity (Property
12.6).

Step 4. Proof in the general case.
Follows from the previous step and partition of unity (Property .

(ii) The proof is the same as in (i) except of Step 2. Let us prove (ii) in the
case of Step 2. Again, fix Haar measure on R and identify Dy with the trivial
bundle for any [. By Theorem and partition of unity (Property we can
assume that there exists a Nash section v : N — M. We can write v in the form
v(z) = (z,5(x)).

For any z € N define R(z) := sup{r € Rx¢|B(v(z),r) C M}. Clearly, R is
continuous and positive. By Tarski - Seidenberg principle (see e.g. [AG08al, Theorem
2.2.3]) it is semi-algebraic. Hence (by [AG08a, Lemma A.2.1]) there exists a positive
Nash function r(z) such that r(x) < R(z). Let p € S(R"*) such that p is supported
in the unit ball and its integral is 1. Now let f € S(N). Let g € C°°(M) defined by
g(z,y) :== f(x)p((y — s(x))/r(x))/r(z) where z € N and y € R"*. It is easy to see
that g € S(M) and ¢.g = f. O
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Notation 1.2.13. Let ¢ : M — N be a Nash submersion of Nash manifolds. Let E
be a bundle on N. We denote by ¢* : G(N, E) — G(M, ¢*(FE)) the dual map to ¢..

Remark 1.2.14. Clearly, the map ¢* : G(N,E) — G(M, ¢*(E)) extends to the map
¢*: C~°(N,E) — C~°°(M, ¢*(E)) described in [AGSOS, Theorem A.0.4].

Proposition 1.2.15. Let ¢ : M — N be a surjective Nash submersion of Nash
manifolds. Let E be a bundle on N. Let £ € C~°(N). Suppose that ¢*(&) € G(M).
Then & € G(N).

Proof. Tt follows from Theorem [1.2.12|and Banach Open Map Theorem (see [Rud73|
Theorem 2.11]). O

1.3 Basic tools
This section is based on [BZ76, Ber84, Bar(3, AGS0S].

Theorem 1.3.1. Let an l-group K act on an l-space M. Let M = Ué:o M; be a K-
invariant stratification of M. Let x be a character of K. Suppose that S*(M;)5X =
0. Then S*(M)5x = 0.

This theorem is a direct corollary of [BZ76, Corollary 1.9].

Theorem 1.3.2. Let a Nash group K act on a Nash manifold M. Let N be a locally
closed subset. Let N = Ué:o N; be a Nash K-invariant stratification of N. Let x be
a character of K. Suppose that for any k € Z>y and 0 <1 </,

S*(N;, Sym" (CN{)Fx = 0.
Then i (N)Kx = 0.

For the proof see e.g. [AGS08, §B.2].

The following proposition sometimes helps to verify the conditions of this the-
orem.

Proposition 1.3.3. Let a Nash group K act on a Nash manifold M. Let V be
a real finite dimensional representation of K. Suppose that K preserves the Haar

measure on V. Let U C V be an open non-empty K-invariant subset. Let x be a
character of K. Suppose that S*(M x U)5X =0. Then S*(M, Sym*(V))Ex = 0.

For proof see [AGS08, Section B.4].
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Theorem 1.3.4 (Frobenius descent). Let an analytic group K act on an analytic
manifold M. Let N be an analytic manifold with a transitive action of K. Let
¢: M — N be a K-equivariant map.

Let z € N be a point and M, := ¢~1(2) be its fiber. Let K, be the stabilizer of
zin K. Let Ax and Ak, be the modular characters of K and K,.

Let £ be a K -equivariant vector system over M. Then
(i) there exists a canonical isomorphism

Fr: D(M., E|u, ® Mgk, - A )™ =2 D(M, ).

In particular, Fr commutes with restrictions to open sets.
(ii) For B-analytic manifolds Fr maps S*(M.,E|y, @ Akl|k, - Ax))™ to
S*(M, &)K.

For the proof of (i) see [Ber84, §§1.5] and [BZ76, §5§2.21 - 2.36] for the case
of l-spaces and [AGS08, Theorem 4.2.3] or [Bar03|] for smooth manifolds. For the
proof of (ii) see [AG08c|, Appendix B.

The following fundamental theorem is a combination of [BZ76, Theorem 6.13
and Theorem 6.15].

Theorem 1.3.5. Suppose that F' is non-Archimedean. Let v be an algebraic action
of a linear algebraic group G on an algebraic variety X. Let o : X(F) — X(F) be
a homemorphism such that:
(i) For each g € G(F) there exists G° € G(F) such that v(g)o = o7v(g7).
(ii) For some number n and go € G(F), c™ = v(go).
(i11) o preserves all G(F') orbits.

Then each G(F)-invariant distribution on X (F') is invariant under o.

Remark 1.3.6. This theorem is very powerful since it reduces a statement on in-
variant distributions to check of simple geometric conditions. Many theorems on
invariant distributions over non-Archimedean fields were proven using this theorem.

However, in more difficult cases, including the ones under consideration in
this thesis, o preserves majority of G(F)-orbits but not all of them. In such cases
there actually exist G(F')-invariant but not o-invariant distributions defined on some
locally closed subsets of X(F') and one has to prove that they cannot be invariantly
continued to X (F'). For this one has to use some non-geometric tools, like the ones

described in sections and 1.8

We will also use the following straightforward proposition.

Proposition 1.3.7. Let K; be analytic groups acting on analytic manifolds M; for
1=1...n. Let Q); C K; be analytic subgroups. Let & — M; be K;-equivariant vector
systems. Suppose that

D(M;, E;)% = D(M;, E;)%i
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for alli. Then
D(][ M, RENL? = D(] [ Mi, RE)ILS

where K denotes the external product.
Moreover, if Q;, K;, M; and &; are B-analytic then the analogous statement
holds for Schwartz distributions.

For the proof see e.g. [AGS08, proof of Proposition 3.1.5].

1.4 Generalized Harish-Chandra descent

Harish-Chandra developed a technique based on Jordan decomposition that allows
to reduce certain statements on conjugation invariant distributions on a reductive
group to the set of unipotent elements, provided that the statement is known for
certain subgroups (see e.g. [HC99]).

In this section we generalize an aspect of this technique to the setting of a
reductive group acting on a smooth affine algebraic variety, using the Luna Slice
Theorem. Our technique is oriented towards proving Gelfand property for pairs of
reductive groups.

In this section we assume that the characteristic of the local field F' is zero.
This section is based on [AGO08c].

We start with some preliminaries from algebraic geometry and invariant theory.

Categorical quotient

Definition 1.4.1. Let an algebraic group G act on an algebraic variety X. A pair
consisting of an algebraic variety Y and a G-invariant morphism m : X — Y is
called the quotient of X by the action of G if for any pair (7',Y"), there exists
a unique morphism ¢ Y — Y’ such that 7' = ¢ o w. Clearly, if such pair exists it
is unique up to a canonical isomorphism. We will denote it by (7x, X/G).

Theorem 1.4.2 (cf. [Dre00]). Let a reductive group G act on an affine variety X.
Then the quotient X/G exists, and every fiber of the quotient map mx contains a
unique closed orbit. In fact, X/G = Spec O(X)¢.

1.4.1 Preliminaries on algebraic geometry over local fields
G-orbits on X and G(F)-orbits on X (F)

Lemma 1.4.3 (JAGO8c], Lemma 2.3.4). Let G be an algebraic group and let H C G
be a closed subgroup. Then G(F)/H(F) is open and closed in (G/H)(F).
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Corollary 1.4.4. Let an algebraic group G act on an algebraic variety X. Let
x € X(F). Then

~ A X(F
Proposition 1.4.5. Let an algebraic group G act on an algebraic variety X. Sup-
pose that S C X (F') is a non-empty closed G(F')-invariant subset. Then S contains
a closed orbit.

Proof. The proof is by Noetherian induction on X. Choose x € S. Consider Z :=
Gz — Gx.

If Z(F)N S is empty then Gz(F) N S is closed and hence G(F)z NS is closed
by Lemma [1.4.3] Therefore G(F)z is closed.

If Z(F)NS is non-empty then Z(F')NS contains a closed orbit by the induction
assumption. ]

Corollary 1.4.6. Let an algebraic group G act on an algebraic variety X. Let
U be an open G(F)-invariant subset of X(F). Suppose that U contains all closed
G(F)-orbits. Then U = X (F).

Theorem 1.4.7 ([JRR96], §2 fact A, pages 108-109). Let a reductive group G act on
an affine variety X. Let x € X (F'). Then the following are equivalent:

(i) G(F)x C X(F) is closed (in the analytic topology).

(ii) Gx C X is closed (in the Zariski topology).

Definition 1.4.8. Let a reductive group G act on an affine variety X. We call an
element x € X G-semisimple if its orbit Gx is closed.

In particular, in the case where G acts on itself by conjugation, the notion of
G-semisimplicity coincides with the usual one.

Notation 1.4.9. Let V' be an F-rational finite-dimensional representation of a re-
ductive group G. We set

Qa(V) :=Q(V) := (V/VE)(F).

Since G is reductive, there is a canonical embedding Q(V') — V(F). Letw : V(F) —
(V/G)(F) be the natural map. We set

Note that I'(V) C Q(V'). We also set


http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf

Notation 1.4.10. Let a reductive group G act on an affine variety X. For a G-
semisimple element v € X (F) we set

Se:={ye X(F)|G(F)y > x}.

Lemma 1.4.11. Let V be an F-rational finite-dimensional representation of a re-
ductive group G. Then I'(V) = Sp.

This lemma follows from [RR96, fact A on page 108] for non-Archimedean F
and [Brk71, Theorem 5.2 on page 459] for Archimedean F'.

Example 1.4.12. Let a reductive group G act on its Lie algebra g by the adjoint
action. Then I'(g) is the set of nilpotent elements of g.

Proposition 1.4.13. Let a reductive group G act on an affine variety X. Let
x,z € X(F) be G-semisimple elements which do not lie in the same orbit of G(F).
Then there ezist disjoint G(F')-invariant open neighborhoods U, of x and U, of z.

For the proof of this Proposition see [Lun75] for Archimedean F' and [RR96,
fact B on page 109] for non-Archimedean F'.

Corollary 1.4.14. Let a reductive group G act on an affine variety X. Suppose
that x € X(F) is a G-semisimple element. Then the set S, is closed.

Proof. Let y € S,. By Proposition [1.4.5, G(F)y contains a closed orbit G(F)z. If
G(F)z = G(F)x then y € S,. Otherwise, choose disjoint open G-invariant neigh-
borhoods U, of z and U, of z. Since z € G(F)y, U, intersects G(F')y and hence
contains y. Since y € S,, this means that U, intersects S,. Let t € U, N S,. Since
U, is G(F)-invariant, G(F)t C U,. By the definition of S,, x € G(F)t and hence
x € U,. Hence U, intersects U, — contradiction! ]

Analytic Luna slices

The Luna Slice Theorem is an important theorem in invariant theory of algebraic
reductive groups (see [Lun73, [Dre00]). Here we formulate a version of the Luna
Slice Theorem for points over local fields. For Archimedean F this was done by
Luna himself in [Lun75].

Definition 1.4.15. Let a reductive group G act on an affine variety X. Let
m: X(F) — (X/G)(F) be the natural map. An open subset U C X(F) is called
saturated if there exists an open subset V C (X/G)(F) such that U = 7= 1(V).

We will use the following corollary of the Luna Slice Theorem:
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Theorem 1.4.16 ([AGO08c], Theorem 2.3.17). Let a reductive group G act on a
smooth affine variety X. Let © € X(F) be G-semisimple. Consider the natural
action of the stabilizer G,, on the normal space Néxm Then there exist

(i) an open G(F)-invariant B-analytic neighborhood U of G(F)x in X (F) with a
G-equivariant B-analytic retract p : U — G(F)x and

(i1) a G-equivariant B-analytic embedding ¢ : p~'(z) — N&, .(F) with an open
saturated image such that 1(x) = 0.

Definition 1.4.17. In the notation of the previous theorem, denote S := p~1(x)
and N := NéxI(F) We call the quintuple (U,p,, S, N) an analytic Luna slice
at x.

Corollary 1.4.18. In the notation of the previous theorem, let y € p~'(x). Denote

z:=(y). Then

() (G(F)). = G(P),

(it) Nepyyy = Ng(F)zm as G(F),-spaces

(1ii) y is G-semisimple if and only if z is G-semisimple.

1.4.2 Generalized Harish-Chandra descent

In this subsection we will prove the following theorem.

Theorem 1.4.19. Let a reductive group G act on a smooth affine variety X. Let
X be a character of G(F). Suppose that for any G-semisimple v € X (F') we have

DN, , ()60 = .

Then
D(X(F))¢F)x =g,

Remark 1.4.20. In fact, the converse is also true. We will not prove it since we
will not use 1t.

For the proof of this theorem we will need the following lemma

Lemma 1.4.21. Let a reductive group G act on a smooth affine variety X. Let x
be a character of G(F'). Let U C X(F) be an open saturated subset. Suppose that
D(X(F))CE)xX = 0. Then D(U)CFxX = 0.

Proof. Consider the quotient X/G. It is an affine algebraic variety. Embed it in an
affine space A". This defines a map 7 : X(F) — F". Since U is saturated, there
exists an open subset V' C (X/G)(F) such that U = 7= }(V). Clearly there exists
an open subset V' C F™ such that V' N (X/G)(F) =V.
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Let ¢ € D(U)SF)X. Suppose that ¢ is non-zero. Let x € Suppé and let
y :=m(x). Let g € C°(V’) be such that g(y) = 1. Consider &' € D(X(F')) defined
by &'(f) :=&(f - (gom)). Clearly, Supp(§’) C U and hence we can interpret & as
an element in D(X (F))¢F)X, Therefore ¢’ = 0. On the other hand, x € Supp(¢’).
Contradiction. O

Proof of Theorem[1.4.19. Let x be a G-semisimple element. Let (Uy,pr,0z, Se,Ne)

be an analytic Luna slice at x.

Let & = ¢|y,. Then ¢ € D(U,)“)X. By Frobenius descent it corresponds to
5// c D(Sg;)G”(F)’X.

The distribution ¢” corresponds to a distribution ¢” € D(1,(S,))%=F)x,

However, by the previous lemma the assumption implies that
D(,(S,))C=F)x = 0. Hence & = 0.

Let S C X(F) be the set of all G-semisimple points. Let U = (J,.qU,. We

saw that {|y = 0. On the other hand, U includes all the closed orbits, and hence by
Corollary U=X. O

The following generalization of this theorem is proven in the same way.

Theorem 1.4.22. Let a reductive group G act on a smooth affine variety X. Let
K C G(F) be an open subgroup and let x be a character of K. Suppose that for any
G-semisimple x € X (F') we have

D(Nggy o(F)) =X = 0.

Then
D(X(F))*x =0.

Remark 1.4.23. If K is an open B-analytic subgrougﬂ of G(F') then the theorem
also holds for Schwartz distributions. Namely, if S*(Ngx,x(F))Kz =0 for any G-
semisimple © € X (F) then S*(X(F))X = 0. The proof is the same.

The following generalization of Theorem [1.4.19|is proven in the same way.

Theorem 1.4.24. Let a reductive group G act on smooth affine varieties X and
Y. Let x be a character of G(F). Suppose that for any G-semisimple x € X (F') we
have

S* (NG x Y)(F)) =X = 0.

Then S*(X(F) x Y(F))¢ex =,

2In fact, any open subgroup of a B-analytic group is B-analytic.
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1.4.3 A stronger version

In this subsection we provide means to validate the conditions of Theorems [1.4.19
and [1.4.22| based on an inductive argument.
More precisely, the goal of this subsection is to prove the following theorem.

Theorem 1.4.25. Let a reductive group G act on a smooth affine variety X. Let
K C G(F) be an open subgroup and let x be a character of K. Suppose that for any
G-semisimple © € X (F') such that

D(Rg,(Niy.0)) " =0

we have
D(QGI(NGXx,Z‘))KI7X = 0

Then for any G-semisimple v € X (F') we have
D(NE, ,(F))e = 0.

Together with Theorem [1.4.22] this theorem gives the following corollary.
Corollary 1.4.26. Let a reductive group G act on a smooth affine variety X. Let
K C G(F) be an open subgroup and let x be a character of K. Suppose that for any
G-semisimple v € X (F') such that

D(R(NGg)) X =0

we have
D(Q(Ng,,)) X = 0.

Then D(X (F))5X = 0.

From now till the end of the subsection we fix G, X, K and x. Let us introduce
several definitions and notation.

Notation 1.4.27. Denote
o T'C X(F) the set of all G-semisimple points.
o Forx,y €T we say that x >y if G, 2 Gy,

o Ty :={z €T | D(QNG,,) =0} ={z €T | D((Ng,.))" " = 0}.
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Proof of Theorem[1.4.25. We have to show that T'= Tj. Assume the contrary.
Note that every chain in T with respect to our ordering has a minimum.
Hence by Zorn’s lemma every non-empty set in 7" has a minimal element. Let x
be a minimal element of T' — Tj. To get a contradiction, it is enough to show that
D(R(NE, )<+ = 0.
Denote R := R(Ng, ,). By Theorem , it is enough to show that for any
y € R we have

D(NEp). )X = 0.

zY,Y

Let (U, p,1, S, N) be an analytic Luna slice at z.

Since ¥(.S) is open and contains 0, we can assume, upon replacing y by Ay
for some A € F*, that y € ¢(S). Let z € S be such that ¢(z) = y. By Corollary
1418 G(F). = (G(F)y)y G G(F), and N& = N&, (F). Hence (K,), = K.,
and therefore

v
D(N(pyayy) X 2 DNG, (F)) "+,
However z < x and hence z € Ty which means that D(NG, ,(F))** =0. O

Remark 1.4.28. One can rewrite this proof such that it will use Zorn’s lemma for
finite sets only, which does not depend on the axiom of choice.

Remark 1.4.29. As before, Theorem [1.4.25 and Corollary also hold for
Schwartz distributions, with a similar proof.

1.5 Localization Principle

In this section we formulate and prove localization principle. For non-Archimedean
local fields, a more general theorem is proven in [Ber84) Section 1.5]. The proofs we
give in this section work for local fields of characteristic zero. This section is based
on [AGO8c, Appendix D].

Theorem 1.5.1 (Localization Principle). Let a reductive group G act on a smooth
algebraic variety X. Let'Y be an algebraic variety and ¢ : X — Y be an affine
algebraic G-invariant map. Let x be a character of G(F'). Suppose that for any
y € Y(F) we have Dx (¢~ (y))(F))¢E)X = 0. Then D(X(F))“Fx = 0.

Proof. Clearly, it is enough to prove the theorem for the case when X and Y are
affine. In this case there exists a categorical quotient X/G (see Theorem [1.4.2). By
the definition of categorical quotient ¢ is a composition of Ty : X — X/G and some
morphism X/G — Y. Since every fiber of 7x is included in some fiber of Y, it is
enough to prove the theorem for the case when Y = X/G and ¢ = 7y.
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By the Generalized Harish-Chandra Descent (Corollary [1.4.26)), it is enough
to prove that for any G-semisimple x € X (F), we have

Dyx, (7 (T(Ngp )X = 0.
Let (U,p,v,S, N) be an analytic Luna slice at z. Clearly,
Dyx. (7 (D(NGy.0)) X 2 Dy ) (D(NG,, ) X = D (7 (D(NG,,))) X,
By Frobenius descent (Theorem ,
Ds (¢~ (T(NE,.))) % = Dy (G(F)~H (T(NE,,,))) T
By Lemma [1.4.17],
G(F) H(T(Ngy) = {y € X(F)|lz € G(F)y}.
Hence by Corollary , G(F)y ' (T(N&,,)) is closed in X (F). Hence
Dy (G(F)e ™ (D(NG;.0) )N = Dy (GIF) 0 (D (NG, ) M.

Now,
G(F)Y  (D(Ng, ) C mx (F) ™ (mx (F) ()
and we are given
Dy (mx (F) (mx (F)(z)))FFx = 0

for any G-semisimple x. O

Remark 1.5.2. An analogous statement holds for Schwartz distributions and the
proof is the same.

Corollary 1.5.3. Let a reductive group G act on a smooth algebraic variety X.
Let Y be an algebraic variety and ¢ : X — Y be an affine algebraic G-invariant
submersion. Suppose that for any y € Y (F) we have S*(¢~(y))¢U)X = 0. Then
S*(X(F))EU)x =0,
Proof. For any y € Y (F'), denote X (F'), := (¢'(y))(F). Since ¢ is a submersion,
for any y € Y(F) the set X(F), is a smooth manifold. Moreover, d¢ defines an
isomorphism between N))((((g))y’z and Ty(py, for any z € X(F),. Hence the bundle
C’N))((((If))y is a trivial G(F)-equivariant bundle.

We know that

8 (X (F),)0T =0,

Therefore for any k, we have
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Thus by Theorem [1.3.2]
S;}(F) (X(F)y)G(F)’X =0.

Now, the Localization Principle implies that
S*(X(F))¢Ex =,
m

Remark 1.5.4. Theorem and Corollary admit obvious generalizations
to constant vector systems. The same proofs hold.

1.6 Distributions versus Schwartz distributions

This section is relevant only for Archimedean F.

In this section we show that if there are no G(F)-equivariant Schwartz distri-
butions on X (F') then there are no G(F)-equivariant distributions on X (F'). This
section is based on [AGO08c].

Theorem 1.6.1. Let a reductive group G act on a smooth affine variety X. Let V
be a finite-dimensional algebraic representation of G(F'). Suppose that

S*(X(F), V)¢ = .

Then
D(X(F), V)¢ = .

For the proof we will need the following definition and theorem.

Definition 1.6.2. (i) Let a topological group K act on a topological space M. We
call a closed K-invariant subset C' C M compact modulo K if there exists a
compact subset C' C M such that C C KC".

(i1) Let a Nash group K act on a Nash manifold M. We call a closed K-
invariant subset C' C M Nashly compact modulo K if there exist a compact
subset C' C M and semi-algebraic closed subset Z C M such that C C Z C KC".

Remark 1.6.3. Let a reductive group G act on a smooth affine variety X. Let
K := G(F) and M := X(F). Then it is easy to see that the notions of compact
modulo K and Nashly compact modulo K coincide.

Theorem 1.6.4. Let a Nash group K act on a Nash manifold M. Let E be a K-
equivariant Nash bundle over M. Let & € D(M, E)X be such that Supp(€) is Nashly
compact modulo K. Then & € S*(M, E)X.

For the proof see the next subsection.
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Proof of Theorem [1.6.1. Fix any y € (X/G)(F) and denote M := 73! (y)(F).
By the Localization Principle (Theorem and Remark , it is enough
to prove that
S;((F)<M’ V)G(F) = DX(F)(M7 V)G(F)'

Choose § € Dxp)(M, V)G(F ). M has a unique closed stable G-orbit and hence
a finite number of closed G(F)-orbits. By Theorem it is enough to show
that M is Nashly compact modulo G(F'). Clearly M is semi-algebraic. Choose
representatives x; of the closed G(F')-orbits in M. Choose compact neighborhoods

C; of z;. Let C' := | JC;. By Corollary [1.4.6| G(F)C" > M. O
y Yy b

1.6.1 K-invariant distributions compactly supported mod-
ulo K.

In this subsection we prove Theorem |1.6.4.
For the proof we will need the following lemmas.

Lemma 1.6.5. Let M be a Nash manifold. Let C C M be a compact subset. Then
there exists a relatively compact open (semi-algebraic) subset U C M that includes

C.

Proof. For any point x € C' choose an affine chart, and let U, be an open ball with
center at x inside this chart. Those U, give an open cover of C'. Choose a finite
subcover {U;}?_, and let U := | J_, U. O

Lemma 1.6.6. Let M be a Nash manifold. Let E be a Nash bundle over M. Let
U C M be a relatively compact open (semi-algebraic) subset. Let & € D(M, E).
Then &|y € S*(U, E|y).

Proof. 1t follows from the fact that extension by zero ext : S(U, E|y) — CX(M, E)
is a continuous map. ]

Proof of Theorem[1.6.4 Let Z C M be a semi-algebraic closed subset and C' C M
be a compact subset such that Supp(§) C Z C KC.

Let U D C be as in Lemma . Let & := &|gy. Since &|y—z = 0, it is
enough to show that & is Schwartz.

Consider the surjective submersion my : K x U — KU. Let

" i=my() € DIK x Ump(E))".
By Proposition [1.2.15] it is enough to show that
" e S*(K x Umj(E)).
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By Frobenius descent, " corresponds to n € D(U, E). It is enough to prove that
n € §*(U, E). Consider the submersion m : K x M — M and let

" :=m*(&) €e D(K x M,m*(F)).

By Frobenius descent, £” corresponds to ' € D(M, E). Clearly n = n/|y. Hence by

Lemma |1.6.6] n € S*(U, E). O

1.7 Fourier transform and Homogeneity Theo-
rems

This section is based on [AG08c].
Let G be a reductive group and V' be a finite-dimensional F-rational represen-
tation of G. Let x be a character of G(F'). In this section we provide some tools to

verify that S*(Q(V))¢F)x = 0 provided that S*(R(V))“#F)x = 0.

1.7.1 Formulation

For this subsection let B be a non-degenerate bilinear form on a finite-dimensional
vector space V over F'. We also fix an additive character x of F. If F'is Archimedean
we take k(z) := e?miRe@)

Notation 1.7.1. We identify V and V* via B and endow V with the self-dual Haar
measure with respect to 1. Denote by Fp : S*(V) — S*(V') the Fourier transform.
For any B-analytic manifold M over F we also denote by Fp : S*(M x V) —
S*(M x V) the partial Fourier transform.

Notation 1.7.2. Consider the homothety action of F* on'V given by p(A\)v := A\~ 1w.
It gives rise to an action p of F* on S*(V).

Let | - | denote the normalized absolute value. Recall that for F = R, |A| is
equal to the classical absolute value but for F = C, |\| = (ReA\)? + (Im \)?,

Notation 1.7.3. We denote by v(B) the Weil constant. For its definition see e.g.
|Gel76, §2.3] for non-Archimedean F and [RS78, §1] for Archimedean F.
For any t € F* denote dp(t) = v(B)/v(tB).

Note that v(B) is an 8-th root of unity and if dim V' is odd and F' # C then
0p is not a multiplicative character.

Notation 1.7.4. We denote

Z(B):={x eV | B(zx,z) =0}.
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Theorem 1.7.5 (non-Archimedean homogeneity). Suppose that F is non-
Archimedean. Let M be a B-analytic manifold over F. Let & € S (Z(B) x M)
be such that Fg(§) € Sy (Z(B) x M). Then for any t € F*, we have
p(t)€ = 6p(t)[t|4™V/2¢ and € = (B) ' Fg(€). In particular, if dimV is odd then
£=0.

For the proof see e.g. [RS07, §§8.1] or [JR96] §§3.1].
For the Archimedean version of this theorem we will need the following defi-
nition.

Definition 1.7.6. Let M be a B-analytic manifold over F'. We say that a distribu-
tion £ € S*(V x M) is adapted to B if either

(i) for any t € F* we have p(t)¢ = §(t)|t|]™V/2¢ and & is proportional to Fgé or
(ii) F is Archimedean and for anyt € F* we have p(t)€ = §(t)t|t|4mV/2¢.

Note that if dimV is odd and F' # C then every B-adapted distribution is
Z€ero.

Theorem 1.7.7 (Homogeneity Theorem). Let M be a Nash manifold. Let L C
Sy (Z(B) x M) be a non-zero subspace such that for all § € L we have Fg(§) € L
and B -§ € L (here B is viewed as a quadratic function).

Then there exists a non-zero distribution & € L which is adapted to B.

For Archimedean F' we prove this theorem in subsection [1.7.3 For non-
Archimedean F it follows from Theorem [L.7.5

We will also use the following trivial observation.

Lemma 1.7.8. Let a B-analytic group K act linearly on V and preserving B. Let
M be a B-analytic K-manifold over F. Let & € S*(V x M) be a K-invariant
distribution. Then Fg(€) is also K -invariant.

1.7.2 Applications

The following two theorems easily follow form the results of the previous subsection.

Theorem 1.7.9. Suppose that F is non-Archimedean. Let G be a reductive group.
Let V' be a finite-dimensional F-rational representation of G. Let x be character
of G(F). Suppose that S*(R(V))CU)X = 0. Let V = Vi @ Vy be a G-invariant
decomposition of V. Let B be a G-invariant symmetric non-degenerate bilinear
form on Vy. Consider the action p of F* on V' by homothety on V;.

Then any & € S*(Q(V))CEX satisfies p(t)E = Sp(t)|t|]™V1/2¢ and ¢ =
v(B)Fg&. In particular, if dim V; is odd then & = 0.
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Theorem 1.7.10. Let G be a reductive group. Let V be a finite-dimensional
F-rational representation of G. Let x be character of G(F). Suppose that
S*(R(V))CIX = 0. Let Q(V) = W & (@Y, Vi) be a G-invariant decomposition
of Q(V). Let B; be G-invariant symmetric non-degenerate bilinear forms on V;.
Suppose that any & € Sé(v)(F(V))G(F)’X which is adapted to each B; is zero.

Then 8*(Q(V))EHF)x = (.

Remark 1.7.11. One can easily generalize Theorems |1.7.10} and [1.7.9 to the case
of constant vector systems.

1.7.3 Proof of the Archimedean Homogeneity Theorem

The goal of this subsection is to prove Theorem for Archimedean F. We fix V
and B.

We will need some facts about the Weil representation. For a survey on the
Weil representation in the Archimedean case we refer the reader to [RS78, §1].

1. There exists a unique (infinitesimal) action 7 of sly(F) on S*(V') such that

0 w((y o) = —ime(mic and w(( 5y ()6 =~ mRe(BFR(E)

(i) If F = C then 7r(<8 6)) :ﬂ(ﬂ 8)) —0

2. It can be lifted to an action of the metaplectic group Mp(2, F).
We will denote this action by II.

3. In case F = C we have Mp(2,F) = SLy(F') and in case F' = R the group
Mp(2, F) is a connected 2-fold covering of SLy(F'). We will denote by ¢ €
Mp(2, F') the central element of order 2 satisfying SLy(F') = Mp(2, F))/{1,¢}.

4. In case F = R we have I1(¢) = (=1)4™V and therefore if dim V' is even then
IT factors through SLy(F') and if dim V' is odd then no nontrivial subrepresen-
tation of II factors through SLo(F'). In particular if dim V' is odd then II has
no nontrivial finite-dimensional representations, since every finite-dimensional
representation of Mp(2, F') factors through SLy(F).

5. In case ' = C or in case dimV is even we have H((é tg))ﬁ =

ol p(n and 1i(( ) ))e = (5)

We also need the following straightforward lemma.
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Lemma 1.7.12. Let (A, L) be a continuous finite-dimensional representation of
SLs(R). Then there exists a non-zero & € L such that either

A( (3 t()l))f =& and A((_O1 (1)) )¢ is proportional to &

Mg et

or

for all t.
Now we are ready to prove the theorem.

Proof of Theorem[1.7.7. Without loss of generality assume M = pt.

Let £ € L be a non-zero distribution. Let L' := Ug(slx(R))¢ € L. Here, U
means the complexified universal enveloping algebra.

We are given that &, Fp(€) € Si(Z(B)). By Lemma below this implies
that L' C S*(V) is finite-dimensional. Clearly, L’ is also a subrepresentation of II.
Therefore by Fact (), F = C or dimV is even. Hence II factors through SLy(F).

Now by Lemma there exists ¢’ € L' which is B-adapted. O

Lemma 1.7.13. Let V' be a representation of sly. Let v € V' be a vector such that

e*v = fmv = 0 for some n,k. Then the representation generated by v is finite-

dimensional Pl

This lemma is probably well-known. Since we have not found any reference
we include the proof.

Proof. The proof is by induction on k.

Base k=1:

It is easy to see that
-1

e flo=1(JJh—i)w

i=0
for all {. This can be checked by direct computation, and also follows from the fact
that e’ f! is of weight 0, hence it acts on the singular vector v by its Harish-Chandra
projection which is

HC(e f1) = 1! ﬁ(h — ).

Therefore (T]7—, (b — i))v = 0.

3For our purposes it is enough to prove this lemma, for k=1.
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Hence W := Ug(h)v is finite-dimensional and h acts on it semi-simply. Here,
Uc(h) denotes the universal enveloping algebra of h. Let {v;}7*; be an eigenbasis of
hin W. It is enough to show that Ug(sls)v; is finite-dimensional for any i. Note that
elw = f"lw = 0. Now, Ug(slz)v; is finite-dimensional by the Poincare-Birkhoff-Witt
Theorem.

Induction step:
Let w := e*~'v. Let us show that f"** 1w = 0. Consider the element f"t+=tek=1 ¢
Uc(sly). It is of weight —2n, hence by the Poincare-Birkhoff-Witt Theorem it can
be rewritten as a combination of elements of the form e®*h’f¢ such that ¢ — a = n
and hence ¢ > n. Therefore f"++=1lef=1y = 0.

Now let V] := Ug(slz)v and Vy := Ug(sly)w. By the base of the induction V5
is finite-dimensional, by the induction hypotheses Vi /V4 is finite-dimensional, hence
V] is finite-dimensional. O

1.8 Singular support

In this section we assume that F' has zero characteristic. This section is based on
[AGO8d], [Aiz08] and [Hef]. In this section we will introduce the notion of singular
support of a distribution and prove some of its properties.

The most important property states that the singular support of a distribution
on X is a (weakly) coisotropic subvariety of 7*X. Therefore we dedicate the first
subsection to coisotropic and weakly coisotropic varieties.

1.8.1 Coisotropic varieties

Definition 1.8.1. Let X be a smooth algebraic variety and w be a symplectic form
on it. Let Z C X be an algebraic subvariety. We call it X-coisotropic if one of
the following equivalent conditions holds.
(i) The ideal sheaf of reqular functions that vanish on Z is closed under Poisson
bracket.
(ii) At every smooth point z € Z we have T,Z D (T.Z)*. Here, (T.Z)* denotes the
orthogonal complement to T,Z in T, X with respect to w.
(iii) For a generic smooth point z € Z we have T,Z D (T,Z)*.

If there is no ambiguity, we will call Z a coisotropic variety.

Note that every non-empty X-coisotropic variety is of dimension at least
%dim X.

Notation 1.8.2. For a smooth algebraic variety X we always consider the standard
symplectic form on T* X . Also, we denote by px : T*X — X the standard projection.
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Definition 1.8.3. Let (V,w) be a symplectic vector space with a fived Lagrangian
subspace L C V. Let p : V. — V/L be the standard projection. Let W C V be
a linear subspace. We call it V-weakly coisotropic with respect to L if one of the
following equivalent conditions holds.

(i)Z*NLcZnL

Here, Z+ denotes the orthogonal complement with respect to w.

(ii) p(Z+) C p(2).

(i) p(Z)+ € ZnN L.

Here, p(Z)*+ denotes the orthogonal complement in L under the identification L =

(V/L).

Definition 1.8.4. Let X be a smooth algebraic variety. Let Z C T*X be an al-
gebraic subvariety. We call it T* X-weakly coisotropic if one of the following
equivalent conditions holds.
(i) At every smooth point z € Z the space T,(Z) is T,(T*(X)) -weakly coisotropic
with respect to Ker(dpx).
(ii)For a generic smooth point z € Z the space T.(Z) is T.(T*(X)) -weakly
coisotropic with respect to Ker(dpx).
(i4i) For a generic smooth point x € Z and for a generic smooth pointy € py' (x)NZ
we have

CNy (20 C T,(px' (2) N Z).

(iv) For any smooth point x € px(Z) the fiber px'(x) N Z is locally invariant with
respect to shifts by C’N;;(Z) .- Le. for any pointy € px () the intersection

(¥ + CNy(2)2) N 0y () N Z)

is Zariski open in y + CNyy (z).
If there is no ambiguity, we will call Z a weakly coisotropic variety.

Note that every non-empty 7™ X-weakly coisotropic variety is of dimension at
least dim X.
The following lemma is straightforward.

Lemma 1.8.5. Any T*X -coisotropic variety is T* X -weakly coisotropic.

Proposition 1.8.6. Let X be a smooth algebraic variety with a symplectic form on
it. Let R C T*X be an algebraic subvariety. Then there exists a mazimal T* X -
weakly coisotropic subvariety of R i.e. a T* X -weakly coisotropic subvariety T C R
that includes all T X -weakly coisotropic subvarieties of R.

Proof. Let T" be the union of all smooth 7™ X-weakly coisotropic subvarieties of R.
Let T be the Zariski closure of 7" in R. It is easy to see that T is the maximal
T* X-weakly coisotropic subvariety of R. O
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The following lemma is trivial.

Lemma 1.8.7. Let X be a smooth algebraic variety. Let a group G act on X. This
induces an action on T*X. Let S C T*X be a G-invariant subvariety. Then the
maximal T* X -weakly coisotropic subvariety of S is also G-invariant.

Notation 1.8.8. Let Y be a smooth algebraic variety. Let Z C Y be a smooth
subvariety and R C T*Y be any subvariety. We define the restriction R|, C T*Z
of R to Z by R|; :=1i"(R), where i : Z — Y s the embedding.

Lemma 1.8.9. Let Y be a smooth algebraic variety. Let Z C Y be a smooth
subvariety and R C T*Y be a weakly coisotropic subvariety. Assume that any smooth
point z € Z N py(R) is also a smooth point of py(R) and we have T,(Z N py(R)) =
TZ<Z) N Tz(pY(R)>'

Then R|z is T*Z-weakly coisotropic.

Proof. Let x € Z, let M :=py () N R C py'(x) and L := CN;;(R),Q; C py'(x). We
know that M is locally invariant with respect to shifts in L. Let M’ := p,' (z)NR|; C
p, (z) and L' := CN;/Z(MZM C p,'(x). We want to show that M’ is locally invariant
with respect to shifts in L'. Let ¢ : py'(x) — p,'(z) be the standard projection.
Note that M’ = (M) and L' = ¢q(L). Now clearly M’ is locally invariant with

respect to shifts in L'. O

Corollary 1.8.10. Let Y be a smooth algebraic variety. Let an algebraic group
H act onY. Let q :' Y — B be an H-equivariant morphism. Let O C B be an
orbit. Consider the natural action of G on T*Y and let R C T*Y be an H-invariant
subvariety. Suppose that py (R) C ¢~ (O). Let x € O. Denote Y, := q*(x). Then

o if R is T*Y -weakly coisotropic then Ry, is T*(Y:)-weakly coisotropic.

Corollary 1.8.11. In the notation of the previous corollary, if R|y, has no (non-
empty) T*(Y,)-weakly coisotropic subvarieties then R has no (non-empty) T*(Y)-
weakly coisotropic subvarieties.

Remark 1.8.12. The results on weakly coistropic varieties that we presented here
have versions for coistropic varieties, see [AG08d, section 5.1].

1.8.2 Definition and properties of singular support

Notation 1.8.13.

Let M, N be (smooth, algebraic, etc) manifolds. Let S C (T*(N)). Let ¢ : M — N
be a morphism. We denote ¢*(S) := d(¢)*(S xn M).
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Let V' be a linear space. For a point v = (v,¢) € V x V* we denote T = (¢, —v) €
V*xV, similarly for subset X C V xV* we define X. for a (smooth, algebraic, etc)
manifold and a subset X C T*(M x V) we denote Xy C T*(M x V*) in a similar
way.

Let B be a non-degenerate bilinear form on V. This gives an identification between
V and V* and therefore, by the previous notation, defines maps Fg : VXV — V XV
and Fp : T*"M xV xV —T*M xV x V. If there is bo ambiguity we will denote it
by Fv.

Definition 1.8.14. Let F' be non-Archimedean. Let U C F™ be an open subset and
€ € §*(U) be a distribution. We say that £ is smooth at (xo,ve) € T*U if there
are open neighborhoods A of xy and B of vy such that for any ¢ € S(A) there is
an Ng > 0 for which for any A\ € F satisfying A > Ny we have (gz5/z)|,\3 = 0. The

complement in T*U of the set of smooth pairs (xg,vy) of & is called the wave front
set of € and denoted by W (£).

Remark 1.8.15. Sometimes in the literature (cf. [Hef]) the wave front set is defined
to be a subset of T*U — U x 0. In our notation this subset will be WF () — U x 0.

We will use the following proposition.

Proposition 1.8.16 (JAiz08], Proposition 2.1.19). Let F' be non-Archimedean. Let
V.U C F" be open subsets and f :V — U be an analytic isomorphism. Then for
any £ € S*(V) we have WF(f*(&)) = ff(WF(€)).

Corollary 1.8.17. Let F' be non-Archimedean. Let X be an F-analytic manifold.
Then we can define the the wave front set of any element in S*(X).

Definition 1.8.18. Let X be a smooth algebraic variety let £ € S*(X(F)). We will
now define the singular support of &, it is an algebraic subvariety of T*X and we
will denote it by SS(E).

In the case when F' is non-Archimedean we define it to be the Zariski closure of
WF(). In the case when F is Archimedean we define it to be the singular support
of the Dx-module generated by .

Remark 1.8.19. For Archimedean F' one can also define the wave front set in a way
similar to the above. In this case the singular support always includes the Zariski
closure of WF(§) but is sometimes bigger.

For readers who are not familiar with the theory of D-modules, the next the-
orem summarizes the only properties of singular support that we use. We will give
more details on the algebraic theory of D-modules in subsection [1.8.4, For a good
introduction to the algebraic theory of D-modules we refer the reader to [Ber| and
[Bor8&7].
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Theorem 1.8.20. Let X be a smooth algebraic variety. Then

1. Let £ € S*(X(F)). Then Supp(§),,,. = px(SS(&))(F), where Supp(§),,, de-
notes the Zariski closure of Supp(§).

2. Let an algebraic group G act on X. Let g denote the Lie algebra of G. Let
£ € S(X(F)9H). Then

§5() C{(x,¢) e T"X |Va € g p(a(x)) = 0}.

3. Let V' be a linear space. Let Z C X x V be a closed subvariety, invariant with
respect to homotheties in' V. Suppose that Supp(§) C Z(F). Then SS(Fy(§)) C

Fy(pxv(2)).
4. Let X be a smooth algebraic variety. Let &€ € S*(X(F')). Then SS(&) is weakly
coisotropic.

For non-Archimedean fields these properties are proven in [Aiz(8, Section 4].
For non-Archimedean fields, properties|[I]-[3]are proven in subsection[I.8.4] Property
which is crucial for us, follows from the following theorem.

Theorem 1.8.21 (Integrability Theorem). Let X be a smooth algebraic variety. Let
M be a finitely generated Dx-module. Then SS(M) is a T* X -coisotropic variety.

This is a special case of Theorem I in [Gab81]. For similar versions see also
[KKST73, Mal79).

Remark 1.8.22. FEvidently, in the Archimedean case the Integrability Theorem im-
plies a stronger property. Namely it implies that SS() is coisotropic and not only
weakly coisotropic. We conjecture that this holds for the non-Archimedean case also.

1.8.3 Distributions on non distinguished nilpotent orbits

Definition 1.8.23. Let V' be an algebraic finite dimensional representation over F'

of a reductive group G. Suppose that there is a finite number of G orbits in T'(V).

Let v € T(V). We will call it G-distinguished, if CNg.) € T(V*). We will call a G

orbit G-distinguished if all (or equivalently one of ) its elements are G- distinguished.
If there is no ambiguity we will omit the "G-".

Example 1.8.24. For the case of a semisimple group acting on its Lie algebra, the
notion of G-distinguished element coincides with the standard notion of distinguished
nilpotent element. In particular, in the case when G = SL, and V = sl,, the set of
G-distinguished elements is exactly the set of reqular nilpotent elements.

Proposition 1.8.25. Let V' be an algebraic finite dimensional representation over
F of a reductive group G. Suppose that there is a finite number of G orbits on I'(V).
Let W :=Q(V), let A be the set of non-distinguished elements in I'(V'). Then there
are no non-empty W x W*-weakly coisotropic subvarieties of A x T'(V*).
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The proof is clear.

~

Corollary 1.8.26. Let £ € S*(W) and suppose that Supp(§) C I'(V') and supp(§) C
L(V*). Then the set of distinguished elements in Supp(§) is dense in Supp(&).

Remark 1.8.27. In the same way one can prove an analogous result for distribu-
tions on W x M for any B-analytic manifold M.

1.8.4 D-modules and proof of properties - in the
Archimedean case

In this subsection X denotes a smooth affine variety defined over R. All the state-
ments of this section extend automatically to general smooth algebraic varieties
defined over R. In this thesis we use only the case when X is an affine space.

Definition 1.8.28. Let D(X) denote the algebra of polynomial differential operators
on X. We consider the filtration F<'D(X) on D(X) given by the order of differential

operator.

Definition 1.8.29. We denote by Gr D(X) the associated graded algebra of D(X).

Define the symbol map o : D(X) — Gr D(X) in the following way. Let d €
D(X). Let i be the minimal index such that d € F='. We define o(d) to be the
image of d in (F='D(X))/(F=~'D(X))

Proposition 1.8.30. Gr D(X) = O(T*X).
For proof see e.g. [Bor8T].

Notation 1.8.31. Let (V, B) be a quadratic space.
(i) We define a morphism of algebras ®2 : D(X x V) — D(X x V) in the following
way.

Consider B as a map B : V. — V*. For any f € V* we set PP (f) := Op-1(y).
For any v € V we set ®2(8,) := —B(v) and for any d € D(X) we set ®D(d) :=d.
(ii) It defines a morphism of algebras ®$) : O(T*X) — O(T*X).

The following lemma is straightforward.

Lemma 1.8.32. Let f be a homogeneous polynomial. Consider it as a differential
operator. Then o(®L(f)) = ®9(a(f)).

The D-modules we use in the paper are right D-modules. The difference be-
tween right and left D-modules is not essential (see e.g. section V1.3 in [Bor87]). We
will use the notion of good filtration on a D-module, see e.g. section I1.4 in [Bor87].
Let us now remind the definition of singular support of a module and a distribution.
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Notation 1.8.33. Let M be a D(X)-module. Let « € M be an element. Then we
denote by Annp(x) the annihilator of o.

Definition 1.8.34. Let M be a D(X)-module. Choose a good filtration on M.
Consider grM as a module over Gr D(X) = O(T*X). We define

SS(M) := Supp(Gr M) C T*X.
This does not depend on the choice of the good filtration on M (see e.g. [Bor87],
section 11.4).

For a distribution £ € S*(X(R)) we define SS(&) to be the singular support of
the module of distributions generated by &.

The following proposition is trivial.

Proposition 1.8.35. Let [ < D(X) be a right ideal. Consider the induced filtrations
on I and D(X)/I. Then Gr(D(X)/I) = Gr(D(X))/Gr(I).

Corollary 1.8.36. Let £ € S*(X). Then SS(§) is the zero set of Gr(Annpx)§).

Corollary 1.8.37. Let I < O(T*X) be the ideal generated by {o(d)|d €
Annpx)(&)}. Then SS(§) is the zero set of I.

Corollary 1.8.38. Property[9 holds.

Lemma 1.8.39. Let £ € S*(X). Let Z C X be a closed subvariety such that
Supp(§) € Z(R). Let f € O(X) be a polynomial that vanishes on Z. Then there
exists k € N such that f*¢ = 0.

Proof.

Step 1. Proof for the case when X is affine space and f is a coordinate function.
This follows from the proof of Corollary 5.5.4 in [AGO08a].

Step 2. Proof for the general case.
Embed X into an affine space A" such that f will be a coordinate function and
consider ¢ as distribution on A" supported in X. By Step 1, f*¢ = 0 for some
k. O

Corollary 1.8.40. Property[1] holds.

Proposition 1.8.41. Property|3 holds. Namely:
Let (V, B) be a quadratic space. Let Z C X xV be a closed subvariety, invariant
with respect to homotheties in' V. Suppose that Supp(§) C Z(R). Then SS(Fy(§)) C

Fv(p}le(Z)).

Proof. Let f € O(X x V) be homogeneous with respect to homotheties in V. Sup-
pose that f vanishes on Z. Then ®{(f*) € Annpx)(Fv(£)). Therefore o (P (f*))
vanishes on SS(Fy(€)). On the other hand, o(®L(f*)) = @9 (a(f*)) = (P (a(f)))*.
Hence SS(Fy(€)) is included in the zero set of ®Y(a(f)). Intersecting over all such
f we obtain the required inclusion. O]
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Chapter 2

Gelfand Pairs and
Gelfand-Kazhdan criterion

This chapter is based on [GKT75, [AGS08, AG08c, AG08d].

2.1 Gelfand Pairs

Definition 2.1.1. Let G be a reductive group. By an admissible representa-
tion of G we mean an admissible smooth representation of G(F') if F is non-
Archimedean (see |[BZ76]) and admissible smooth Fréchet representation of G(F') if
F is Archimedean (see section[2.9).

We now introduce three a-priori distinct notions of Gelfand pair.

Definition 2.1.2. Let H C G be a pair of reductive groups.

o We say that (G, H) satisfy GP1 if for any irreducible admissible representation
(m, E) of G we have

o We say that (G, H) satisfy GP2 if for any irreducible admissible representation
(m, E) of G we have

dim Homp ) (£, C) - dim Homy (E,C) < 1.

o We say that (G, H) satisfy GP3 if for any irreducible unitary representation
(m,H) of G(F') on a Hilbert space H we have

dim Hompg g (H>,C) < 1.

We will call pairs that satisfy GP1 Gelfand pairs and pairs that satisfy GP3
generalized Gelfand pairs.
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Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases
(see |[GKT5]). Property GP2 was introduced in [Gro91] in the p-adic setting. Prop-
erty GP3 was studied extensively by various authors both in the real and p-adic
settings (see e.g. [vDP90], [vD86], [BvD94]).

We have the following straightforward proposition.

Proposition 2.1.3. GP1 = GP2 = GP3.
Remark 2.1.4. It is not known whether some of these notions are equivalent.
The most powerful tool for proving Gelfand property is the following theorem.

Theorem 2.1.5 (Gelfand-Kazhdan criterion). Let H C G be reductive groups and
let o be an involutive anti-automorphism of G and assume that o(H) = H. Suppose
o(§) =& for all bi H(F)-invariant Schwartz distributions & on G(F). Then (G, H)
satisfies GP2.

For non-Archimedean F' this theorem is proven in |[GKT75]. We adapt their
proof to the Archimedean case in the next subsection.

Remark 2.1.6. This theorem is the main reason for introducing the property G P2.

Remark 2.1.7. In [Tho84)] it is proven that if o preserves for all bi H(F)-invariant
positive definite distributions on G(F') then (G, H) satisfies GP3.

In some cases, GP2 is known to be equivalent to GP1. For example, see
Corollary below.

Theorem 2.1.8. Let G be a reductive group and let o be an anti-involution of G.
Let 0 be the involution of G defined by 6(g) := o(g~'). Let (m, E) be an irreducible
admissible representation of G. Suppose that either o preserves all conjugacy classes
in G(F) or char F' = 0 and o preserves all semisimple conjugacy classes in G(F).

Then E = EY, where E denotes the smooth contragredient representation and
EY is E twisted by 0.

Proof. Since the representations E and EY are irreducible, they are isomorphic if
and only if their characters are identical (see e.g. [Wall88, Theorem 8.1.5]).

If F is non-archimedean and o preserves all conjugacy classes in G(F') then
the identity of characters follows from Theorem [[.3.5] If char F' = 0 and o preserves
all semisimple conjugacy classes in G(F') then this follows from [AG08c, Corollary
7.6.3]. O

Corollary 2.1.9. Let H C G be reductive groups and let o be an anti-involution
of G that preserves all conjugacy classes and such that o(H) = H. Then GP1 is
equivalent to GP2 for the pair (G, H).

Choosing o(g) := g* we obtain

Corollary 2.1.10. GP1 is equivalent to GP2 for the pairs (GL,.1,GL,) and
OV & F),0(V)).
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2.2 Smooth Fréchet representations and proof of
Theorem [2.1.5] in the Archimedean case

The theory of representations in the context of Fréchet spaces is developed in
[Cas89b] and [Wall92]. We present here a well-known slightly modified version of
that theory. In this section the field £’ is Archimedean.

Definition 2.2.1. Let V' be a complete locally convex topological vector space. A
representation (m,V, Q) is a continuous map G xV — V. A representation is called
Fréchet if there exists a countable family of semi-norms p; on V defining the
topology of V' and such that the action of G s continuous with respect to each p;.
We will say that V' is smooth Fréchet representation if, for any X € g the
differentiation map v — w(X)v is a continuous linear map from V to V.

An important class of examples of smooth Fréchet representations is ob-
tained from continuous Hilbert representations (mw, H) by considering the subspace
of smooth vectors H*> as a Fréchet space (see [Wall88| section 1.6] and [Wall92,
section 11.5]).

We will consider mostly smooth Fréchet representations.

Remark 2.2.2. In the language of [Wall92] and [Cas89d] the representations above
are called smooth Fréchet representations of moderate growth.

Recall that a smooth Fréchet representation is called admissible if its un-
derlying (g, K)-module is admissible (in particular finitely generated). In what
follows admissible representation will always refer to admissible smooth Fréchet
representation. B

For an admissible (smooth Fréchet ) representation (7, E') we denote by (7, F)
the contragredient representation.

We will require the following corollary of the globalization theorem of Cassel-
man and Wallach (see [Wall92] , chapter 11).

Theorem 2.2.3. Let E be an admissible Fréchet representation, then there exists
a continuous Hilbert space representation (m, H) such that E = H®.

This theorem follows easily from the embedding theorem of Casselman com-
bined with Casselman-Wallach globalization theorem.

Fréchet representations of G can be lifted to representations of S(G), the
Schwartz space of G.

For a Fréchet representation (7, E') of G, the algebra S(G) acts on E through

/ o(g (2.2.0.1)
(see [Wall8§], section 8.1.1).
The following lemma is straightforward:
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Lemma 2.2.4. Let (w, E) be an admissible Fréchet representation of G and let
A € E*. Then ¢ — w(@)\ is a continuous map S(G) — E.

The following proposition follows from Schur’s lemma for (g, K) modules (see
[Wall88] page 80) in light of Casselman-Wallach theorem.

Proposition 2.2.5. Let G be a real reductive group. Let W be a Fréchet
representation of G and let E be an irreducible admissible representation of G. Let
Ty, 15 : W — E be two embeddings of W into E. Then Ty and Ty are proportional.

Now we are ready to prove Theorem [2.1.5]

Proof of Theorem[2.1.5. Let (m,E) be an irreducible admissible Fréchet

representation. If F or E are not distinguished by H we are done. Thus we
can assume that there exists a non-zero A : E' — C which is H-invariant. Now let
{1, 5 be two non-zero H-invariant functionals on . We wish to show that they are
proportional. For this we define two distributions Dy, Dy as follows

Di(¢) = li(w(0)A)

for i = 1,2. Here ¢ € S(G). Note that D; are also Schwartz distributions. Both
distributions are bi-H-invariant and hence, by the assumption, both distributions
are o invariant. Now consider the bilinear forms on S(G) defined by

Bi(¢1, ¢2) = Di(1 * ¢a).

Since E is irreducible, the right kernel of Bj is equal to the right kernel of By. We
now use the fact that D; are ¢ invariant. Denote by J; the left kernels of B;. Then
J1 = J which we denote by J. Consider the Fréchet representation W = S(G)/J

and define the maps T} : S(G) — E = E by Tj(¢) = m(¢)l;. These are well
defined by Lemma and we use the same letters to denote the induced maps
T, : W — E. By Proposition [2.2.5] T} and T; are proportional and hence ¢; and /5
are proportional and the proof is complete. O

2.3 Strong Gelfand Pairs

Like in the previous section, there are several notions of strong Gelfand pair.

Definition 2.3.1. Let H C G be a pair of reductive groups.

o We say that (G, H) that is a strong Gelfand pair or that (G, H) satisfy SGP1
if for any irreducible admissible representations m of G and T of H we have

dim Homg gy (7, 7) < 1.
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o We say that (G, H) satisfy SGP2 if for any irreducible admissible representa-
tions ™ of G and T of H we have

dim Hom gy (7, 7) - dim Hompy (7, 7) < 1.

o We say that (G, H) is a generalized strong Gelfand pair or that (G, H) satisfy
SGP3 if for any irreducible unitary representations m of G and T of H we
have

dim Hom g gy (m, 7) < 1.

We will use the following two known theorems.

Theorem 2.3.2. Let G and H be reductive groups. Let m and T be irreducible
admissible smooth representations of G and H respectively. Then m® T is irreducible
representation G x H.

Is theorem is proven by reduction to an analogous statement on finite-
dimensional representations of algebras with 1. For the statement see [Boub8, Ch.
VIII, §7, Proposition 8§].

For the non-Archimedean case this reduction is done in [BZ76, Proposition
2.16]. For the Archimedean case see e.g. [AG08d, Appendix A].

Theorem 2.3.3. Let H be a reductive group. Let m and T be smooth (Fréchet )
representations of H. Suppose that T is admissible.
Then Hom(m,T) is canonically isomorphic to Hom(m @ 7, C).

Sketch of proof. Consider the canonical embeddings

Hom(m,7) < Hom(n ® 7,C) — Hom(m,T).
Since for admissible representations o= 7, those embeddings are isomorphisms. [

Corollary 2.3.4. Let G and H be real reductive groups. The pair (G, H) is a strong
Gelfand pair (respectively satisfies SGP2) if and only if the pair (G x H,AH) is a
Gelfand pair (respectively satisfies GP2).

Using Corollary we obtain

Corollary 2.3.5. Let H C G be reductive groups and let o be an anti-involution of
G that preserves all conjugacy classes and such that o(H) = H.

Then SGP1 is equivalent to SGP2 for the pair (G, H). In particular SGP1
is equivalent to SGP2 for the pair (GL,y1, GL,).

Corollary also enables to formulate the following analog of Gelfand-
Kazhdan criterion for strong Gelfand pairs.
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Theorem 2.3.6. Let H C G be reductive groups and let o be an involutive anti-
automorphism of G and assume that o(H) = H. Suppose o(§) = & for all AdH(F)-
invariant Schwartz distributions & on G(F'). Then (G, H) satisfies SGP2.

Proof. Define o' : G x H— G x H by d'(g,h) :== (c(g),0(h)). Let AH < G x H be
the diagonal. Consider the projection G x H — H. By Frobenius descent (Theorem
, the assumption implies that any AH-bi-invariant distribution on G x H is
invariant with respect to o’.

Hence by Theorem (G x H, AH) satisfies GP2 and hence by the previous
corollary (G, H) satisfies SGP2. O

Corollary 2.3.7. Theorem B implies Theorem [A].

52



Chapter 3

Gelfand property for the pairs
(GLp1(F),GLy(F)) and
(On-l-l(F)aon(F))

For fields of characteristic zero the results of this chapter are much weaker then the
main results. I decided to include this chapter for two reasons. First, the proofs
in this chapter work over any local field, while the analogs of the main results for
fields of positive characteristic are not known. Second, the proofs in this chapter
are shorter and clearly show how to use some of the tools. The first section of this
chapter is based on [AGS08] and the second on [AGS09].

3.1 The pair (GL,1(F),GL,(F))

Consider the standard imbedding GL,,(F) < GL,4+1(F). We consider the two-sided
action of GL,(F) x GL,(F) on GL,.1(F) defined by (g1, g2)h := gi1hg;'. The goal
of this section is to prove the following theorem.

Theorem 3.1.1. Any GL,(F) x GL,(F) invariant distribution on GL, 1 (F) is
mwvariant with respect to transposition.

By Theorem and Corollary [2.1.10| this implies
Theorem 3.1.2. The pair (GL,41(F),GL,(F)) is a Gelfand pair.

Since any character of GL,(F") can be extended to GL,41(F), we obtain

Corollary 3.1.3. Let (m, E) be an irreducible admissible representation of GLy, 1 (F)
and let x be a character of GL,,(F). Then

dim HomGLn(F) (7'(', X) S 1.

93


http://arxiv.org/pdf/0709.1273v4
http://www.springerlink.com/content/48436n62526244m3/

For the proof of Theorem [3.1.1f we will use the following notation.

Notation 3.1.4. Denote H := H,, := GL,,. Denote
G =Gy, = {(h1, he) € GL,, x GL,,| det(hy) = det(hs)}.

We consider H to be diagonally embedded to G.
Consider the action of the 2-element group Sy on G given by the involution
(h1, ha) — (k3" hTY). It defines a semidirect product G := Gy := G % S,. Denote

also H .= H,, .= H,, x S5.
Let V.= F" and X := X, :=gl, x V x V™.
The group G acts on X by

hu,he)(A, v, ¢) i= (hiAhy Y hav, hy Y 8) and
2 2

(A, v, ¢) == (A", ¢', 0"
where (hy, he) € G and o is the genemtor~0f Ss. Note that G acts separately on gl
and on 'V x V*. Define a character x of G by x(g,s) := sign(s).
We will show that the following theorem implies Theorem [3.1.1}

Theorem 3.1.5. S*(X (F))¢x = 0.

3.1.1 Proof that Theorem [3.1.5 implies Theorem (3.1.1

We will divide this reduction to several propositions.
Consider the action of G}, on GL,4; and on gl ;, where G,, acts by the two-sided
action and the generator of Sy acts by transposition.

Proposition 3.1.6. If D(GLy41(F))*F)X = 0 then Theorem holds.
The proof is straightforward.

Proposition 3.1.7. If 8*(GLy41(F))% )X =0 then D(GLHH(F))C?"(F)’X =0.
Follows from Theorem [LG.l

Proposition 3.1.8. If §*(gl,,, (F)) )X = 0 then 8*(GL, . (F))%E):x = 0,

Proof. [Y| Let ¢ € S*(GL,1(F))F)X. We have to prove ¢ = 0. Assume the
contrary. Take p € Supp(§). Let t = det(p). Let f € C®(F) be such that
f vanishes in a neighborhood of zero and f(t) # 0. Consider the determinant
map det : GL,.1(F) — F. Consider & := (f odet) - £. It is easy to check that
¢ € S*(CLy1 (F) U)X and p € Supp(¢’). However, we can extend &' by zero to

¢" € 8*(gl, 1 (F))¢ )X which is zero by the assumption. Hence ¢’ is also zero.
Contradiction. []

!This proposition is an adaption of a statement in [Ber84], section 2.2.
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Proposition 3.1.9. If S*(X,,(F))%(F)x = 0 then S*(gl,,,(F))%F)x =0,

Proof. Note that gl is isomorphic as a én-equivariant space to X,, X I where the
action on F'is trivial. This isomorphism is given by

Apxn  Unx

The proposition now follows from Proposition [1.3.7] O]

This finishes the proof that Theorem [3.1.5| implies Theorem [3.1.1

3.1.2 Proof of Theorem [3.1.5]
We will now stratify X (= gl,, x V' x V*) and deal with each strata separately.

Notation 3.1.10. Denote W := W, :=V,, & V.*. Denote by Q" := Q' C gl,, the set
of all matrices of rank i. Denote Z' := Z' := Q' x W,,.

Note that X = |J Z*. Hence by Theorems [1.3.1/and [1.3.2] it is enough to prove
the following proposition.

Proposition 3.1.11. -
(i) If F is non-Archimedean then S*(Z'(F))¢F)X =0 for any i.
(ii) If F is Archimedean then

S*(Z(F), Sym*(CNZ)(F))7 " = 0
for any k and i.
We will use the following important lemma.
Lemma 3.1.12. S*(W(F))Z®)x =,
For proof see subsection below.
Corollary 3.1.13. Proposition holds for i = n.

Proof. Clearly, one can extend the actions of G on Q" and on Z" to actions of
GL, x GL,, := (GL, x GL,) x Sy in the obvious way.

Step 1. S*(Z7(F))GEnxGLaF)x = (.
Consider the projection on the first coordinate from Z" to the transitive
GL, X GL,-space Q" = GL,  Choose the point Id € @Q". Its stabi-
lizer is H and its fiber is W. Hence by Frobenius descent (Theorem ,
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S*(Z”(F))GL"(FT;C/;L"(F)’X >~ S*(W(F))HE:X which is zero by the key lemma.

Step 2. S*(Z"(F))GF)x =
Consider the space Y = Z" x F* and let the group GL, x GL, act on it
by (h1,h2)(2,A) = ((hi,hs)z,det hy det h;'A\). Extend this action to action of

GLn/>\</GLn by o(z,A) := (0(2),A). Consider the projection Z" x F* — F*. By
Frobenius descent (Theorem [1.3.4)),

—_——

S* (Y(F))GLn(F)XGLn(F),X ~ S*<Zn(F)>G’X.

Let Y’ be equal to Y as an [-space and let GLH/;E?LH act on Y’ by (hy, he)(z,\) :=

—_—

((h1,ha)z, A) and o(z, A) := (c(2),A). Now Y is isomorphic to Y’ as a GL,, x GL,
space by ((4,v,9),A) = ((A,v,¢), Adet A71).

Since S*(Z"(F))GLnF)xGLa(F)x = 0 Proposition [1.3.7] implies that
S*(Y/(F))CEnEXCLaEX = 0 and hence S*(V (F))FEnEXCLalE)X — 0 and thus
S*(Z™M(F))EnF)x = (. O

Till the end of the subsection we assume that F' is Archimedean, since the
argument in the non-Archimedean case is similar but much easier.

Corollary 3.1.14. S*(W,,(F), SymF*(gl*)(F))¢U)x = 0.

Proof. Consider the Killing form K : gl — gl,. Let U := K~'(Q}). In the same
way as in the previous corollary one can show that S*(W,,(F) x U(F))¢F)x = 0.

Hence by Proposition S*(W,(F), Sym*(gl*)(F))¢Fx = 0. O

Corollary 3.1.15. We have

S* (Wil F) x Wi F), Sym* (0 x glf,_;) (F)) (0 GneslF) =
= S (Wi(F) x W,_i(F), Sym*(0 x gli,_,)(F))™(F1<CneslF),

Proof. Tt follows from Lemma [3.1.12] the last corollary and Proposition [1.3.7 [
Now we are ready to prove Proposition |3.1.11

Proof of Proposition[3.1.11. Fix i < n. Consider the projection pry : Z' — Q". It is
casy to see that the action of G on ' is transitive. Denote

Idixi O i
AZ-._( 0 O)e@.
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Denote by G 4, := Stabg(4;) and CNJAi := Stabgz(A;). Note that they are unimodular.
By Frobenius descent (Theorem [1.3.4)),

S*(ZH(F), Sym*(CNZ)(F))FOX = S*(W(F), SymF(CNg? , )(F)) G4,
Hence it is enough to show that
S*(W(F), Symk(C'Ngi’in)(F))GA = S*(W(F), Symk(CNng:Ai)(F))éAi(F)'

It is easy to check by explicit computation that
o H;, x G,_; is canonically embedded into G 4,
e W is isomorphic to W; x W,,_; as H; x GG,,_;-spaces
° CNglgj A is isomorphic to 0 x gl* . as H; X G,,_; representations.
Let £ € S*(W, Symk(C’Ngli"A_)(F))GAi(F). By the previous corollary, ¢ is H;(F) X

Gi(F)-invariant. Since € is also G o, (F)-invariant, it is G 4, (F)-invariant. O

3.1.3 Proof of Lemma [3.1.12

Proposition 3.1.16. [t is enough to prove the key lemma for n = 1.

Proof. Consider the subgroup T, C H,, consisting of diagonal matrices, and T =
T, x Sy C H,. It is enough to prove S*(W,(F))(F)x = (.

Now by Proposition [1.3.7]it is enough to prove S*(Wl(F)) )X = 0. O

From now on we fix n := 1, H := H;, H = ]:11 and W := Wj;. Note
that H(F) = F* and W(F) = F?. The action of H(F) is given by p(\)(x,y) :=
(Az, A"'y) and extended to the action of H(F) by the involution o(z,y) = (y, z).

Let YV :={(z,y) € F?|lxy = 0} C W be the cross and Y’ :=Y \ {0}.

Lemma 3.1.17. Every (ﬁI(F), X)-equivariant distribution on W is supported inside
the cross Y.

Proof. Denote U := W \ Y. We have to show S*(U(F))Z#)x = 0. Consider the
coordinate change U(F) = F* x ™ given by (z,y) — (zy,x/y). It is an isomor-
phism of H(F)-spaces where the action of H(F) o F x F* is only on the second

coordinate, and given by )\ = Nw and o(w) = . Clearly, S*(Fx)ﬁ(F)’X =0
and hence by Proposition |1.3.7| S*(F* x F*) H(F), 0. O

Lemma 3.1.18. -
(i) S*(W(F)\ Y (F)"Fx =o0.

(i) Any distribution & € S*(Y’(F))ﬁ(F)’X is invariant with respect to homotheties.
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Moreover, if F is Archimedean then for all k € Zso, any distribution
¢ € SHY'(F),SymF(CNY)(F)HEE)x is R-homogeneous of type oy where
ag(A) == A7k,

(ii1) S*({O})ﬁ(F)’X = 0. Moreover, if F is Archimedean then

S*({0}, Sym*(CN{)(F))TF)x =

If F is non-Archimedean this proposition is clear. Let us prove it for
Archimedean F'.

Proof. We have proven (i) in the proof of the previous lemma.

ii) Fix 29 := (1,0) € Y'(F). Now we want to use Frobenius descent (Theorem
) for the group H(F') x R* and character x x cy. Note that Stabgz () is trivial
and Staby g~ (20) = R*. Note that Ny, . (F) =2 F and Stabg g (o) acts on

it by p(A\)a = A%a. So we have
Sym* (N (F)) = Sym*(NY,, (F))F o

So by Frobenius descent any distribution & € S*(Y’(F), Sym*(C N )(F))HE)X is
R-homogeneous of type ay.

(iii) is a simple computation. Also, it can be deduced from (i) using Proposition
11.3.9l [

Proof of Lemma[3.1.13, Let ¢ € S*(W(F))2E)x. Consider the quadratic form on
W = F? given by B(z,y) := zy. It defines a Fourier transform on S*(W(F')). By
Lemma [1.7.8) F(¢) € (W (F))HE)x,

Hence by Lemma Supp&, SuppF(£) C Y. By Homogeneity Theorem
(Theorem this implies that £ is B-adapted.

Finally, the previous lemma and Theorem imply that all B-adapted dis-
tributions in S*(W (F))#U)x are 0. O

3.2 The pair (O,1(F),O,(F))

Let (W, Q) be a quadratic space defined over F' and fix e € W a unit vector.
Consider the quadratic space V = et with ¢ = Q|y. Define the standard imbedding
O(V) < O(W) and consider the two-sided action of O(V') x O(V) on O(W) defined
by (g1,92)h = g1hgy 1. We also consider the anti-involution o of O¢q given by
o(g) = ¢g~'. In this paper we prove the following Theorem

Theorem 3.2.1. Any O(V) x O(V) invariant distribution on O(W) is invariant
under o.

By Theorem and Corollary [2.1.10| this theorem implies
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Theorem 3.2.2. The pair (O(W),0(V)) is a Gelfand pair.

Remark 3.2.3. In fact, our proof can be easily adapted to prove also an analogous
theorem for unitary groups.

Remark 3.2.4. This result was earlier proven in a bit different form in [vD86]
for F = R, in [AvD06] for F = C and in |[BvD9j] for non-Archimedean F of
characteristic zero. Here we give a different proof.

Also, an analogous theorem for unitary groups over R is proven in [vD09].

For the proof we need some further notations.

O, = O(V, q) is the group of isometries of the quadratic space (V).
G, =0(V,q) x O(V,q).
A: O, — G, the diagonal. H, = A(O,) C G,,.
Z(/!h,Qz) = (92, 91)- s
G, =G, x{1,0}, same for H,
X : Gy — {41, —1} the non trivial character with x(G,) = 1.
CTQ acts on Og by (g1, 92)r = g1xg, ' and o(x) = 271
By Theorem Theorem follows from the following theorem:

Theorem 3.2.5. B
S*(0g)%+X = 0.

3.2.1 Proof of Theorem [3.2.5!

We denote by I' = {w € W : Q(w) = 1}. Note that by Witt’s theorem I' is an Og
transitive set and therefore I' x I' is a transitive éQ set where the action of G¢ is
the standard action on W & W and o acts by flip.

Applying Frobenuis descent (Theorem to projections of Og x I x I first
on I' x I" and then on Og we have

S*(0g)%X = 8§*(Og x T x I')Gax
and also that

S*(Og x T' x F)@’X =8I x F)%’X

In what follows we will abuse notation and write Q(u,v) for the bilinear form
defined by Q. Define amap D : T'xI' — Z where Z = {(v,u) e W W : Q(v,u) =
0,Q(v+u) =4} by

D(z,y) = (z +y,z —y).
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D defines an GQ—equivariant homeomorphism and thus we need to show that
S*(Z)Hex =0
Here, the action of Gg on Z C W @ W is the restriction of its action on W & W

while the action of ¢ is given by o(v,u) = (v, —u).
Now we cover Z = U; U Uy where

Ur = {(v,u) € Z: Q(v) # 0}
and
Uy = {(v,u) € Z : Q(u) £ 0}

We will show S *(Ul)%’x = 0, and the proof for U, is analogous. This will finish the
proof.

Lemma 3.2.6. S*(Ul)ﬁz?’x =0
Proof for non-archimedean F. Consider ¢; : Uy — F — {0} defined as ¢,(v,u) =

Q(v). By the Localization Principle (Corollary [1.5.3), it is enough to show
S*(U)Hex = 0 where U = ¢7*(a), for any o € F — {0}. But

U ={(v,u)|Q(v) = @, Q(u) =4 — a,Q(v,u) = 0}
Let W* = {w € W|Q(w) = a} and let py : U — W be given by p;(v,u) = v.
On W< our group acts transitively. Fix a vector vy € W*.

Denote H(vy) := H(Q|vd_) and H (vp) := H(QIUOL)'

The stabilizer in Hy, of vy is H (vg). The fiber p;!(vg) = {a € vE|Q(a) = 4—a}.
Frobenius descent implies that

8 (U)X = 5 (py (w)) T
But clearly S*(pl_l(vo))ﬁ(vo)’x =0as —Id € H(v). O

Proof for archimedean F. Now let us consider the archimedean case. Define U :=
{(v,u) € Uj|lu # 0}. Note that the map (1| is a submersion, so the same argu-
ment as in the non-archimedean case shows that S*(U)7@X = 0. Let Y := {(v €
W|Q(v) = 4} x {0} be the complement to U in U;. By Theorem [1.3.2} it is enough

to prove

S*(Y, Symk(C’Ngl))ﬁé’X = 0.

Note that the action of ﬁQ on Y is transitive, and fix a point (v,0) € Y. The
stabilizer in Hg of (v,0) is H(v), and the normal space to Y at (v,0) is v*+. So
Frobenius descent (Theorem [1.3.4]) implies that

S*(Y, Symk(CNgl))%’X = Symk(vl)ﬁ(v),x.
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But clearly Sym*(vH)#@X =0 as —Id € H(v)
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Chapter 4

Proof of the main results

In this chapter we assume that F' has zero characteristic. This chapter is based on
[AGO8d, [AiZ08).

Consider the standard imbedding GL,(F) — GL,1(F). We consider the
action of GL, (F) on GL,.(F) by conjugation. In this chapter we prove Theorem

B], namely

Theorem. Any GL,(F) - invariant distribution on GL,+1(F) is invariant with
respect to transposition.

By Corollary it implies Theorem [A], namely

Theorem. (GL,1(F),GL,(F)) is a strong Gelfand pair.

4.1 Structure of the proof

We will now briefly sketch the main ingredients of our proof of Theorem

First we show that we can switch to the following problem. The group GL,,(F)
acts on a certain linear space X,, and ¢ is an involution of X,,. We have to prove
that every GL, (F)-invariant distribution on X, is also o-invariant. We do that
by induction on n. Using the Harish-Chandra descent method we show that the
induction hypothesis implies that this holds for distributions on the complement to
a certain small closed subset S C X,,. We call this set the singular set.

Next we assume the contrary: there exists a non-zero GL,,(F')-invariant distri-
bution ¢ on X which is anti-invariant with respect to o.

We use the notion of singular support of a distribution (see section . Let
T C T*X denote the singular support of £. Using Fourier transform and the fact
any such distribution is supported in S we obtain that 7 is contained in S where S
is a certain small subset in 7% X.
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Then we use a powerful tool, Theorem [1.8.20] which states that the singular
support of a distribution is a weakly coisotropic variety in the cotangent bundle.
This enables us to show, using a complicated but purely geometric argument, that
the support of ¢ is contained in a much smaller subset of S.

Finally it remains to prove that any GL,(F)-invariant distribution that is
supported on this subset together with its Fourier transform is zero. This is proven
using Homogeneity Theorem (Theorem 1.7.7)) which in turn uses Weil representation.

Now let us describe the chapter section by section.

In section 4.2| we introduce notation that we will use in our proof.

In section .3] we use the Harish-Chandra descent method.

In subsection we linearize the problem to a problem on the linear space
X =sl(V) x V x V* where V = F".

In subsection we perform the Harish-Chandra descent on the sl(V)-
coordinate and V' x V* coordinate separately and then use non-linear automorphisms
vy of X to descend further to the singular set S. The automorphisms v of X first
appeared in the first proof of Theorem [B| for non-Archimedean fields, in [AGRS07],
and were essential part of the proof. In the proof we give here they are used mainly
to shorten computations. However, in the proof of an analogous theorem for orthog-
onal groups over Archimedean fields in [SZ0§| they are again used in an essential way.

In section 4.4 we reduce Theorem [B] to the following geometric statement: any
coisotropic subvariety of S is contained in a certain set Cxxy. The reduction is
done using the fact that the singular support of a distribution has to be coisotropic,
and the following proposition: any GL(V')-invariant distribution on X such that it
and its Fourier transform are supported on sl(V) x (V' x 0U 0 x V*) is zero.

In subsection we prove this proposition using Homogeneity theorem.

In section we prove the geometric statement. On one hand, this section
is rather complicated. On the other hand, it is purely geometric and involves no
distributions. Using the fact that the only non-distinguished orbit in sl,, is the
regular orbit, we reduce the geometric statement to the Key Lemma that states
that a certain subset R4 of V x V* x V' x V* contains no non-empty coisotropic
subvarieties. This subset has Lagrangian dimension, i.e. dim R4 = 2n. Hence in
order to prove the Key Lemma it is enough to exhibit one additional equation on
R 4. We write this equation explicitly.
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4.2 Notation

In this chapter we will use the following notation

Let V :=V,, be the standard n-dimensional linear space defined over F'.

Let sl(V') denote the Lie algebra of operators with zero trace.

Denote X := X,, :=sl(V,,) x V,, x V¥

G :=G, :=GL(V},)

g := g, := Lie(G) = gl(Vp)

G =G, := G, x {1,0}, where the action of the 2-element group {1,c} on G
is given by the involution ¢ — ¢* .

We define a character x of G by X(G) = {1} and X(é - G)={-1}.

Let G, act on Gy 1, gny1 and on sl(V;,) by g(A) := gAg™'.

Let G act on V x V* by g(v,¢) := (gv, (¢*)"'¢). This gives rise to an action of
G on X.

Extend the actions of G to actions of G by o(A) := A’ and (v, ¢) := (¢, v}).

We consider the standard scalar products on sl(V') and V' x V*. They give rise
to a scalar product on X.

We identify the cotangent bundle T*X with X x X using the above scalar
product.

Let N := N,, C sl(V;,) denote the cone of nilpotent operators.
C:=Vx0)UOxV*cCVxV*~
C=(Vx0xVx0OUOXxV*x0xVCVxV*xVxV*

Cxxx = (SI(V)xVx0xsl(V)xVx0)U(sl(V)x0x V*xsl(V)x0xV*) € X x X.
S:={(A,v,9) € X,|A" = 0 and ¢(Aw) = 0 for any 0 < i < n}.

S = {((Ahvlv(bl)a (A27U27¢2)) eX xX |\V/'l,] S {1,2}
(Aiavj>¢j) € S and Vo € gl(V),CY(Al,’Ul, ¢1)J-(A27’U27¢2)}

Note that

S ={((A1,v1,¢1), (Az,v2,02)) € X x X |Vi,j € {1,2}
(Ai,v;,¢;5) € S and [Ay, Ao] + v1 ® ¢ — 12 ® ¢y = 0}.

S/ = S—C’XX)(.
I:={(v,0) €V x V*| (V) =0}.
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e Forany A € Fwedefinev, : X — X byv\(A,v,¢) := (A+)\v®¢—)\@1d,v, ?).
e It defines ) : X x X — X x X. It is given by

n((Ar, 01, 61), (Ag, va, do)) =
= ((A1 + vy ® 1 — >\<¢17U1>

n

Id, vy, ¢1), (A2, v — AAgvy, P2 — AASP1)).

4.3 Harish-Chandra descent

4.3.1 Linearization

In this subsection we reduce Theorem A to the following one
Theorem 4.3.1. S*(X(F))¢U)x = 0.

We will divide this reduction to several propositions.

Proposition 4.3.2. If D(Gy1(F)) )X = 0 then Theorem A holds.

The proof is straightforward.

Proposition 4.3.3. If 8* (Gt (F))5F)X = 0 then D(Gpyy (F))GE)X = 0.
Follows from Theorem [L.6.11

Proposition 4.3.4. If 8*(gns1(F))C"E)X =0 then 8*(Gpi1(F))CF)x = 0,

Proof. Let € € S*(Gpy1(F))E )X We have to prove £ = 0. Assume the
contrary. Take p € Supp(§). Let t = det(p). Let f € S(F) be such that f
vanishes in a neighborhood of 0 and f(¢) # 0. Consider the determinant map
det : Gp1(F) — F. Consider ¢ = (f odet) - & It is easy to check that
¢ € S (G (F))G U)X and p € Supp(¢'). However, we can extend & by zero
to £" € S*(gny1(F))E )X which is zero by the assumption. Hence & is also
zero. Contradiction. O

Proposition 4.3.5. If 8*(X,,(F))%"F)X = 0 then 8* (g1 (F))% )X = 0.

Proof. The G, (F)-space gl 1 (F) is isomorphic to X,,(F) x F x F with trivial
action on F' x F'. This isomorphism is given by

Anxn Unx1 Tr A
( glen A ) = ((A_ n Idﬂv7¢),)\,TrA),

66



4.3.2 Harish-Chandra descent

Now we start to prove Theorem [4.3.1] The proof is by induction on n. Till the
end of the paper we will assume that Theorem holds for all & < n for both
archimedean local fields.

The theorem obviously holds for n = 0. Thus from now on we assume n > 1.
The goal of this subsection is to prove the following theorem.

Theorem 4.3.6. S*(X(F) — S(F))¢H)x = .

In fact, one can prove this theorem directly using Theorem [1.4.24) However,
this will require long computations. Thus, we will divide the proof to several
steps and use some tricks to avoid part of those computations.

Proposition 4.3.7. S*(X(F) — (N x V x V*)(F))é(F),x —0.
Proof. By Theorem [1.4.24] it is enough to prove that for any semisimple A €
sl(V') we have )

S* (NG h x (V x V)(F))Fax = 0,

Now note that G(F)4 2 [] Gn,(F;) where n; < n and F; are some field exten-
sions of F'. Note also that

(NEYA X V X VYF) Zsl(V)a x (V x VYEF) =2 [] X, (Fr) x Z(s1(V)a)(F),

where Z(s1(V) 4) is the center of sI(V) 4. Clearly, G4 acts trivially on Z(sl(V) 4).
Now by Proposition the induction hypothesis implies that

S (T X (F) x Z(UV)a) (F) L Fx = g,

In the same way we obtain the following proposition.

Proposition 4.3.8. S$*(X(F) — (sl(V) x T)(F))¢®)x = 0.

Corollary 4.3.9. §*(X(F) — (N x I)(F))GF)x = .

Lemma 4.3.10. Let A € sl(V), v € V and ¢ € V*. Suppose A+ \v ® ¢ is
nilpotent for all X € F. Then ¢(Av) =0 for any i > 0.

Proof. Since A+ \v® ¢ is nilpotent, we have tr(A+ M ® ¢)* = 0 for any k > 0
and A € F. By induction on 4 this implies that ¢(Av) = 0. O

Proof of Theorem[{.3.6. By the previous lemma, (), zvA(N x I') C S. Hence
Usrer a(X — NXF)DX S.

By Corollary 4 - S*(X(F) — (N x T)(F))%®)x = 0. Note that vy commutes
with the action of G. Thus S*(vA(X(F) — (N x T')(F))) G(F)X = 0 and hence
S*(X(F) — S(F))¢®)x = 0. 0
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Remark 4.3.11. The automorphisms vy of X first appeared in the first proof
of Theorem @ for non-Archimedean fields, in [AGRS07], and were essential
part of the proof. In the proof we give here they are used mainly to shorten
computations. However, in the proof of an analogous theorem for orthogonal
groups over Archimedean fields in |[SZ0S] they are again used in an essential
way.

Remark 4.3.12. The main ingredient of vy, i.e. the map (A,v,¢) — A+v® ¢
is the moment map corresponding to the action of G on g x V x V*.

4.4 Reduction to the geometric statement

In this section coisotropic variety means X X X-coisotropic variety.
The goal of this section is to reduce Theorem to the following geometric
statement.

Theorem 4.4.1v(geometric statement). For any coisotropic subvariety of T C
S we have T C Cxyx.

Till the end of this section we will assume the geometric statement.
Proposition 4.4.2. Let £ € S*(X(F))F)X = 0. Then Supp(§) C (sl(V) x
Proof for the case F' = R.

Step 1. SS(¢) € S.
We know that

Supp(€), Supp(Fy1)&), Supp(Fyxy-(€)), Supp(F ' (€)) € S(F).
By property of the singular support this implies that
SS(&) C (S X X) N Fsl(v)(s X X) N FVXV*(S X X) N Fx(S X X)

On the other hand, £ is G(F')-invariant and hence by property (2 of the singular

support
SS(€) C {((z1,22) € X x X |Vg € g, g(x1) Lo}

Thus SS(€) C S.

Step 2. SS(€) C Cxxx-

By Corollary [1.8.21] SS(£) is X x X-coisotropic and hence by the geometric
statement SS(€) C Cxxx.

Step 3. Supp(¢) C (sl(V) x C)(F).

Follows from the previous step by property of the singular support. O

The case F' = C is proven in the same way using the following corollary of the
geometric statement.
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Proposition 4.4.3. Any (X x X)¢-coisotropic subvariety of Sc is contained in
(OXXX)C'

Now it is left to prove the following proposition.

Proposition 4.4.4. Let £ € S*(X(F))é(F)’X be such that

Supp(§), Supp(Fvxv=(€)) C (sl(V) x C)(F).
Then & = 0.

4.4.1 Proof of Proposition 4.4.4

Proposition [£.4.4] follows from the following lemma.
Lemma 4.4.5. Let F* act on V x V* by AN(v,¢) == (A, 2). Let £ € S*((V x
V(F)E be such that

Supp(§), Supp(Fvxv+(§)) € C(F).

Then £ = 0.
By Homogeneity Theorem (Theorem [1.7.7)) it is enough to prove the following
lemma.

Lemma 4.4.6. Let i1 be a character of F* given by ||-|["™u or ||-||"™u where u is
some unitary character. Let F* X F* act on V X V* by (z,y)(v, ¢) = (Lv, é ).
Then S}y ey (C(F) X F7mxt = 0,

We will prove this lemma for Archimedean F', since the proof for non-

Archimedean is similar but simpler.
By Theorem [1.3.2] this lemma follows from the following one.

Lemma 4.4.7. For any k > 0 we have

(i) S*(((V = 0) x 0)(F), Sym*(CNYXY ((F)))F* <<t — .
(i6) §((0 % (V* = 0))(F), Sym*(CNY Vo (F)F*<F <t =,

(i) S*(0, SymF(CNy V" (F)))F**F amxl =,

Proof.

(i) Cover V' — 0 by standard affine open sets V; := {z; # 0}. It is enough to
show that S*((V; x 0)(F), Sym* (C’N‘(/XX‘G;( )(117’)))1[”””’“Xl = 0.

Note that V; is isomorphic as an F™* x F*-manifold to F"~! x ' with the action

given by (z,y)(v, @) = (v, La). Note also that the bundle Sym* (C’NVXV ) (F))

Vix0)(F
is a constant bundle with fiber Sym*(V).
Hence by  Proposition it is enough to show that
SH(F*, SymF(V)) ">t — 0 Let H := (F* x F*); = {(t,t) € F* x F*}.
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Now by Frobenius descent (Theorem it is enough to show that
(Sym*(V*(F)) @ C)#*1ls = 0. This is clear since (¢,t) acts on (SymF(V*(F))
by multiplication by ¢=2.

(ii) is proven in the same way.

(iil) is equivalent to the statement ((Sym*(V x V*)(F)) ®@g C)F™*F >l =,
This is clear since (¢, 1) acts on Sym”*(V x V*)(F) by multiplication by ¢t=*. [

4.5 Proof of the geometric statement

Notation 4.5.1. Denote S" := {((A1,v1, ¢1), (As, v, ¢)) € S"|AT™F =0},

By Theorem [1.8.25 and Example [1.8.24] there are no non-empty X x X-weakly
coisotropic subvarieties of S”. Therefore it is enough to prove the following Key
proposition.

Proposition 4.5.2 (Key proposition). There are no non-empty X x X -weakly
coisotropic subvarieties of " — S”.

Notation 4.5.3. Let A € sl(V') be a nilpotent Jordan block. Denote

RA = (S/ — S//)’{A}XVXV*’

By Proposition [1.8.11] the Key proposition follows from the following Key
Lemma.

Lemma 4.5.4 (Key Lemma). There are no non-empty V x V* x V x V*-weakly
coisotropic subvarieties of Ry.

Proof. Denote Q4 = U;:ll(KerAi) x (Ker(A*)"). It is easy to see that Ry C
Qa x Qa and
QaxQa= U (KerAY) x (Ker(A*)"™") x (KerA’) x (Ker(A*)"™7),

i.j=0

Denote L;; := (KerA") x (Ker(A*)"™") x (KerA’) x (Ker(A*)"7).
It is easy to see that any weakly coisotropic subvariety of Q4 X (4 is contained
in U:.L*ll L;;. Hence it is enough to show that for any 0 < ¢ < n, we have

dim R4 N L; < 2n.
Let f € O(L;;) be the polynomial defined by

f(vl, o1, V2, ¢2) = (Ul)i(¢2)i+1 - (02)¢(¢1)¢+1,

where (-); means the i-th coordinate. It is enough to show that f(Ra N L) =

{0}.
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Let (v1, 1,09, ¢2) € Ly;. Let M = v; ® ¢g — v9 ® ¢. Clearly, M is of the form

M — ( Oixi * ) '
Otn—iyxi  O(n—i)x(n—i)

Note also that M, ;.1 = f(v1, 1, va, P2).

It is easy to see that any B satisfying [A, B] = M is upper triangular. On
the other hand, we know that there exists a nilpotent B satisfying [A, B] =
M. Hence this B is upper nilpotent, which implies M;,;;; = 0 and hence
f(vb ¢1; V2, ¢2) =0.

To sum up, we have shown that f(R4 N L; = {0}, hence dim(Ra N L) <
2n. Hence every coisotropic subvariety of R4 has dimension less than 2n and
therefore is empty. O
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