Representation theory and Gelfand pairs

Dmitry Gourevitch FUN seminar, WIS

http://www.wisdom.weizmann.ac.il/~dimagur/

December 2013

Representation theory

- Advanced Linear Algebra
- Linear Algebra in presence of symmetries

Representation theory

- Advanced Linear Algebra
- Linear Algebra in presence of symmetries

Definition

A representation π of a group G on a (complex) vector space V is an assignment to every element $g \in G$ of an invertible linear operator $\pi(g)$ such that $\pi(gh)$ is the composition of $\pi(g)$ and $\pi(h)$.

Representation theory

- Advanced Linear Algebra
- Linear Algebra in presence of symmetries

Definition

A representation π of a group G on a (complex) vector space V is an assignment to every element $g \in G$ of an invertible linear operator $\pi(g)$ such that $\pi(gh)$ is the composition of $\pi(g)$ and $\pi(h)$.

Example

An action of G on a set X defines a representation on the space $\mathbb{C}[X]$ of functions on X by $(\pi(g)f)(x):=f(g^{-1}x)$.

One-dimensional representations and Fourier series

• For the cyclic finite group $\mathbb{Z}/n\mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$f_k(m) = \exp(2\pi i k m/n).$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

One-dimensional representations and Fourier series

• For the cyclic finite group $\mathbb{Z}/n\mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$f_k(m) = \exp(2\pi i k m / n).$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

ullet The same holds for the compact group S^1 . The basis vectors are

$$f_k(\theta) = \exp(ik\theta).$$

The decomposition of a function with respect to this basis is called Fourier series.

One-dimensional representations and Fourier series

• For the cyclic finite group $\mathbb{Z}/n\mathbb{Z}$, the space $\mathbb{C}[G]$ has a basis consisting of joint eigenvectors for the whole representation. The basis vectors are

$$f_k(m) = \exp(2\pi i k m / n).$$

The decomposition of a function with respect to this basis is called discrete Fourier transform.

ullet The same holds for the compact group S^1 . The basis vectors are

$$f_k(\theta) = \exp(ik\theta).$$

The decomposition of a function with respect to this basis is called Fourier series.

• For the group SO(3) of rotations in the space this does not hold, neither for $\mathbb{C}[SO(3)]$ nor for $\mathbb{C}[S^2]$ (functions on the sphere)

A representation is called irreducible if the space does not have invariant subspaces.

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

• Any non-zero morphism of irreducible representations is invertible.

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Proof.

• Ker T, Im T are subrepresentations.

A representation is called irreducible if the space does not have invariant subspaces.

Definition

A morphism between representations (π, V) and (τ, W) of a group G is a linear operator $T: V \to W$ s. t. $T \circ \pi(g) = \tau(g) \circ T$ for any $g \in G$.

Lemma (Schur)

- Any non-zero morphism of irreducible representations is invertible.
- Any morphism of an irreducible finite-dimensional representation into itself is scalar.

Proof.

- Ker T, Im T are subrepresentations.
- T has an eigenvalue λ , thus $T-\lambda$ ld is not invertible, thus $T-\lambda$ ld =0.

 H_n :=the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_2^2}$.

 H_n :=the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$.

Theorem

• H_n is an irreducible representation of SO(3)

 H_n :=the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_2^2}$.

- H_n is an irreducible representation of SO(3)
- $\bullet L^2(S^2) = \widehat{\bigoplus}_{n=0}^{\infty} H_n,$

 H_n :=the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_2^2}$.

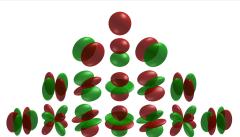
- H_n is an irreducible representation of SO(3)
- $\bullet L^2(S^2) = \widehat{\bigoplus}_{n=0}^{\infty} H_n,$
- Every irreducible representation of SO(3) is isomorphic to H_n for some n.

 H_n :=the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_2^2}$.

- H_n is an irreducible representation of SO(3)
- $L^2(S^2) = \widehat{\bigoplus}_{n=0}^{\infty} H_n$,
- Every irreducible representation of SO(3) is isomorphic to H_n for some n.

 H_n :=the space of homogeneous harmonic polynomials of degree n in three variables. Harmonic means that they vanish under the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_2^2}$.

- H_n is an irreducible representation of SO(3)
- $\bullet L^2(S^2) = \widehat{\bigoplus}_{n=0}^{\infty} H_n,$
- Every irreducible representation of SO(3) is isomorphic to H_n for some n.



Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

• The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^H of H-invariant vectors is at most one-dimensional.

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^H of H-invariant vectors is at most one-dimensional.
- The algebra $\mathbb{C}[G]^{H \times H}$ of functions on G that are invariant under the action of H on both sides is commutative with respect to convolution.

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^H of H-invariant vectors is at most one-dimensional.
- The algebra $\mathbb{C}[G]^{H \times H}$ of functions on G that are invariant under the action of H on both sides is commutative with respect to convolution.

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^H of H-invariant vectors is at most one-dimensional.
- The algebra $\mathbb{C}[G]^{H \times H}$ of functions on G that are invariant under the action of H on both sides is commutative with respect to convolution.

The convolution is defined on the basis of δ -functions by $\delta_g*\delta_{g'}=\delta_{gg'}$, or explicitly by

$$f * h(x) = \sum_{y \in G} f(y)g(y^{-1}x)$$

Let G be a (finite) group and $H \subset G$ be a subgroup.

Lemma

The following conditions are equivalent

- The representation $\mathbb{C}[G/H]$ is multiplicity free, i.e. includes each irreducible representation of G with multiplicity at most one.
- For any irreducible representation (π, V) of G, the space V^H of H-invariant vectors is at most one-dimensional.
- The algebra $\mathbb{C}[G]^{H \times H}$ of functions on G that are invariant under the action of H on both sides is commutative with respect to convolution.

The convolution is defined on the basis of δ -functions by $\delta_g*\delta_{g'}=\delta_{gg'}$, or explicitly by

$$f * h(x) = \sum_{y \in G} f(y)g(y^{-1}x)$$

If the above conditions are satisfied, the pair (G, H) is called a Gelfand pair.

Example:
$$G = SO(3)$$
, $H = SO(2)$, $G/H = S^2$

Lemma (Gelfand-Selberg trick)

Suppose that there exists $\sigma: G \to G$ such that

$$\bullet \ \sigma(\mathbf{g}\mathbf{g}') = \sigma(\mathbf{g}')\sigma(\mathbf{g})$$

Then the pair (G, H) is a Gelfand pair.

Lemma (Gelfand-Selberg trick)

Suppose that there exists $\sigma: G \to G$ such that

Then the pair (G, H) is a Gelfand pair.

Proof.

Define σ on $\mathbb{C}[G]$ by $\delta_g^\sigma = \delta_{\sigma(g)}$. From (1) we see that $(a*b)^\sigma = b^\sigma * a^\sigma$.

On the other hand, for any $a \in \mathbb{C}[G]^{H \times H}$ we have

$$a^{\sigma}(x) = a(\sigma(x)) = a(hxh') = a(x),$$

and thus
$$a * b = (a * b)^{\sigma} = b^{\sigma} * a^{\sigma} = b * a$$

Lemma (Gelfand-Selberg trick)

Suppose that there exists $\sigma: G \to G$ such that

$$\circ$$
 $\sigma(g) \in HgH$

Then the pair (G, H) is a Gelfand pair.

Proof.

Define σ on $\mathbb{C}[G]$ by $\delta_g^{\sigma} = \delta_{\sigma(g)}$. From (1) we see that $(a*b)^{\sigma} = b^{\sigma} * a^{\sigma}$. On the other hand, for any $a \in \mathbb{C}[G]^{H \times H}$ we have

i, for any
$$a \in \mathbb{C}[\mathbb{G}]$$
 we have

$$a^{\sigma}(x) = a(\sigma(x)) = a(hxh') = a(x),$$

and thus
$$a * b = (a * b)^{\sigma} = b^{\sigma} * a^{\sigma} = b * a$$

Using the anti-involution $\sigma(g) = g^t = g^{-1}$ one can show that (SO(n+1), SO(n)) is a Gelfand pair, and thus $L^2(S^n)$ is a multiplicity-free representation of SO(n+1).

