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Abstract. Extending results of [Kaz86] to the relative case, we relate harmonic analysis over some

spherical spaces G(F )/H(F ), where F is a field of positive characteristic, to harmonic analysis over the

spherical spaces G(E)/H(E), where E is a suitably chosen field of characteristic 0.
We apply our results to show that the pair (GLn+1(F ),GLn(F )) is a strong Gelfand pair for all local

fields of arbitrary characteristic, and that the pair (GLn+k(F ),GLn(F )×GLk(F )) is a Gelfand pair for
local fields of any characteristic different from 2. We also give a criterion for finite generation of the

space of K-invariant compactly supported functions on G(E)/H(E) as a module over the Hecke algebra.
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0. Introduction

Local fields of positive characteristic can be approximated by local fields of characteristic zero. If F
and E are local fields, we say that they are m-close if OF /PmF ∼= OE/PmE , where OF , OE are the rings of
integers of F and E, and PF ,PE are their maximal ideals. For example, Fp((t)) is m-close to Qp( m

√
p).

More generally, for any local field F of positive characteristic p and any m there exists a (sufficiently
ramified) extension of Qp that is m-close to F .

Let G be a reductive group defined over Z. For any local field F and conductor ` ∈ Z≥0, the Hecke
algebra H`(G(F )) is finitely generated and finitely presented. Based on this fact, Kazhdan showed in
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[Kaz86] that for any ` there exists m ≥ ` such that the algebras H`(G(F )) and H`(G(E)) are isomorphic
for any m-close fields F and E. This allows one to transfer certain results in representation theory of
reductive groups from local fields of zero characteristic to local fields of positive characteristic.

In this paper we investigate a relative version of this technique. Let G be a reductive group and H be
a spherical subgroup. Suppose for simplicity that both are defined over Z.

In the first part of the paper we consider the space S(G(F )/H(F ))K of compactly supported functions
on G(F )/H(F ) which are invariant with respect to a compact open subgroup K. We prove under certain
assumption on the pair (G,H) that this space is finitely generated (and hence finitely presented) over
the Hecke algebra HK(G(F )).

Theorem A (see Theorem 2.3.1). Let F be a (non-Archimedean) local field. Let G be a reductive group
and H < G be an algebraic subgroup both defined over F . Suppose that for any parabolic subgroup P ⊂ G,
there is a finite number of double cosets P (F )\G(F )/H(F ). Suppose also that for any irreducible smooth
representation ρ of G(F ) we have

(1) dim HomH(F )(ρ|H(F ),C) <∞.

Then for any compact open subgroup K < G(F ), the space S(G(F )/H(F ))K is a finitely generated module
over the Hecke algebra HK(G(F )).

Assumption (1) is rather weak in light of the results of [Del, SV]. In particular, it holds for all symmetric
pairs over fields of characteristic different from 2. One can easily show that the converse is also true.
Namely, that if S(G(F )/H(F ))K is a finitely generated module over the Hecke algebra HK(G(F )) for
any compact open subgroup K < G(F ), then (1) holds.

Remark. Theorem A implies that, if dim HomH(F )(ρ|H(F ),C) is finite, then it is bounded on every
Bernstein component.

In the second part of the paper we introduce the notion of a uniform spherical pair and prove for them
the following analog of Kazhdan’s theorem.

Theorem B. [See Theorem 3.2.3] Let H < G be reductive groups defined over Z. Suppose that the pair
(G,H) is uniform spherical.

Then for any l there exists n such that for any n-close local fields F and E, the module
S(G(F )/H(F ))K`(F ) over the algebra H`(G(F )) is isomorphic to the module S(G(E)/H(E))K`(E) over
the algebra H`(G(E)), where we identify H`(G(F )) and H`(G(E)) using Kazhdan’s isomorphism.

In fact, we prove a more general theorem, see §3. This implies the following corollary.

Corollary C. Let (G,H) be a uniform spherical pair of reductive groups defined over Z. Suppose that

• For any local field F , and any parabolic subgroup P ⊂ G, there is a finite number of double cosets
P (F ) \G(F )/H(F ).

• For any local field F of characteristic zero the pair (G(F ), H(F )) is a Gelfand pair, i.e. for any
irreducible smooth representation ρ of G(F ) we have

dim HomH(F )(ρ|H(F ),C) ≤ 1.

Then for any local field F the pair (G(F ), H(F )) is a Gelfand pair.

In fact, we prove a more general theorem, see §3.

Remark. In a similar way one can deduce an analogous corollary for cuspidal representations. Namely,
suppose that the first two conditions of the last corollary hold and the third condition holds for all cuspidal
representations ρ. Then for any local field F the pair (G(F ), H(F )) is a cuspidal Gelfand pair: for any
irreducible smooth cuspidal representation ρ of G(F ) we have

dim HomH(F )(ρ|H(F ),C) ≤ 1.

http://www.ams.org/journals/tran/2010-362-02/home.html
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Remark. Originally, we included in the formulation of Theorem B an extra condition: we demanded
that the module S(G(F )/H(F ))K`(F ) is finitely generated over the Hecke algebra H`(G(F )) for any F
and l. This was our original motivation for Theorem A. Later we realized that this condition just follows
from the definition of uniform spherical pair. However, we think that Theorem A and the technique we
use in its proof have importance of their own.

In the last part of the paper we apply our technique to show that (GLn+1,GLn) is a strong Gelfand pair
over any local field and (GLn+k,GLn×GLk) is a Gelfand pair over any local field of odd characteristic.

Theorem D. Let F be any local field. Then (GLn+1(F ),GLn(F )) is a strong Gelfand pair, i.e. for any
irreducible smooth representations π of GLn+1(F ) and τ of GLn(F ) we have

dim HomGLn(F )(π, τ) ≤ 1.

Theorem E. Let F be any local field. Suppose that charF 6= 2. Then (GLn+k (F ),GLn (F )×GLk (F ))
is a Gelfand pair.

We deduce these theorems from the zero characteristic case, which was proven in [AGRS] and [JR96]
respectively. The proofs in [AGRS] and [JR96] cannot be directly adapted to the case of positive char-
acteristic since they rely on Jordan decomposition which is problematic in positive characteristic, local
fields of positive characteristic being non-perfect.

Remark. In [AGS08], a special case of Theorem D was proven for all local fields; namely the case when
τ is one-dimensional.

Remark. In [AG09a] and (independently) in [SZ], an analog of Theorem D was proven for Archimedean
local fields. In [AG09b], an analog of Theorem E was proven for Archimedean local fields.

0.1. Structure of the paper.
In Section 1 we introduce notation and give some general preliminaries.

In Section 2 we prove Theorem A.
In Subsection 2.1 we collect a few general facts for the proof. One is a criterion, due to Bernstein,

for finite generation of the space of K-invariant vectors in a representation of a reductive group G; the
other facts concern homologies of l-groups. In Subsection 2.2 we prove the main inductive step in the
proof of Theorem A, and in Subsection 2.3 we prove Theorem A. Subsection 2.4 is devoted to the proofs
of some facts about the homologies of l-groups.

In Section 3 we prove Theorem B and derive Corollary C.
In Subsection 3.1 we introduce the notion of uniform spherical pair. In Subsection 3.2 we prove the

theorem and the corollary.

We apply our results in Section 4. In Subsection 4.1 we prove that the pair (GLn+k,GLn×GLk)
satisfies the assumptions of Corollary C over fields of characteristic different from 2. In Subsections 4.3
and 4.2 we prove that the pair (GLn+1×GLn,∆ GLn) satisfies the assumptions of Corollary C. These
facts imply Theorems D and E.
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1. Preliminaries and notation

Definition 1.0.1. A local field is a locally compact complete non-discrete topological field. In this paper
we will consider only non-Archimedean local fields. All such fields have discrete valuations.

Remark 1.0.2. Any local field of characteristic zero and residue characteristic p is a finite extension
of the field Qp of p-adic numbers and any local field of characteristic p is a finite extension of the field
Fp((t)) of formal Laurent series over the field with p elements.

Notation 1.0.3. For a local field F we denote by valF its valuation, by OF the ring of integers and by
PF its unique maximal ideal. For an algebraic group G defined over OF we denote by K`(G,F ) the kernel
of the (surjective) morphism G(OF ) → G(OF /P`F ). If ` > 0 then we call K`(G,F ) the `-th congruence
subgroup.

We will use the terminology of l-spaces and l-groups introduced in [BZ76]. An l-space is a locally
compact second countable totally disconnected topological space, an l-group is a l-space with a continuous
group structure. For further background on l-spaces, l-groups and their representations we refer the reader
to [BZ76].

Notation 1.0.4. Let G be an l-group. Denote by M(G) the category of smooth complex representations
of G.

Define the functor of coinvariants CIG :M(G)→ V ect by

CIG(V ) := V/(Span{v − gv | v ∈ V, g ∈ G}).
Sometimes we will also denote VG := CIG(V ).

Notation 1.0.5. For an l-space X we denote by S(X) the space of locally constant compactly supported
complex valued functions on X. If X is an analytic variety over a non-Archimedean local field, we denote
by M(X) the space of locally constant compactly supported measures on X.

Notation 1.0.6. For an l-group G and an open compact subgroup K we denote by H(G,K) or HK(G)
the Hecke algebra of G w.r.t. K, i.e. the algebra of compactly supported measures on G that are invariant
w.r.t. both left and right multiplication by K.

For a local field F and a reductive group G defined over OF we will also denote H`(G(F )) :=
HK`(G)(G(F )).

Notation 1.0.7. By a reductive group over a ring R, we mean a smooth group scheme over Spec(R) all
of whose geometric fibers are reductive and connected.

2. Finite Generation of Hecke Modules

The goal of this section is to prove Theorem A.
In this section F is a fixed (non-Archimedean) local field of arbitrary characteristic. All the algebraic

groups and algebraic varieties that we consider in this section are defined over F . In particular, reductive
means reductive over F .

For the reader’s convenience, we now give an overview of the argument. In Lemma 2.1.10 we present a
criterion, due to Bernstein, for the finite generation of spaces of K-invariants. The proof of the criterion
uses the theory of Bernstein Center. This condition is given in terms of all parabolic subgroups of G.
We directly prove this condition when the parabolic is G (this is Step 1 in the proof of Theorem A).

http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/B-Zel-RepsGL-Usp.pdf
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The case of general parabolic is reduced to the case where the parabolic is G. For this, the main step is
to show that the assumptions of the theorem imply similar assumptions for the Levi components of the
parabolic subgroups of G. This is proved in Lemma 2.2.4 by stratifying the space G(F )/P (F ) according
to the H(F )-orbits inside it. In the proof of this lemma we use two homological tools: Lemma 2.1.11
that which gives a criterion for finite dimensionality of the first homology of a representation and Lemma
2.1.12 which connects the homologies of a representation and of its induction.

2.1. Preliminaries.

Notation 2.1.1. For l-groups H < G we denote by indGH : M(H) → M(G) the compactly supported
induction functor and by IndGH :M(H)→M(G) the full induction functor.

Definition 2.1.2. Let G be a reductive group, let P < G be a parabolic subgroup with unipotent radical
U , and let M := P/U . Such M is called a Levi subquotient of G. Note that every representation of M(F )
can be considered as a representation of P (F ) using the quotient morphism P �M . Define:

(1) The Jacquet functor rGM :M(G(F ))→M(M(F )) by rGM (π) := (π|P (F ))U(F ).

(2) The parabolic induction functor iGM :M(M(F ))→M(G(F )) by iGM (τ) := ind
G(F )
P (F )(τ).

Note that iGM is right adjoint to rGM . A representation π of G(F ) is called cuspidal if rGM (π) = 0 for
any Levi subquotient M of G.

Definition 2.1.3. Let G be an l-group. A smooth representation V of G is called compact if for any

v ∈ V and ξ ∈ Ṽ the matrix coefficient function defined by mv,ξ(g) := ξ(gv) is a compactly supported
function on G.

Theorem 2.1.4 (Bernstein-Zelevinsky). Let G be an l-group. Then any compact representation of G is
a projective object in the category M(G).

Definition 2.1.5. Let G be a reductive group.
(i) Denote by G1 the preimage in G(F ) of the maximal compact subgroup of G(F )/[G,G](F ).
(ii) Denote G0 := G1Z(G(F )).
(iii) A complex character of G(F ) is called unramified if it is trivial on G1. We denote the set of all
unramified characters by ΨG. Note that G(F )/G1 is a lattice and therefore we can identify ΨG with
(C×)n. This defines a structure of algebraic variety on ΨG.
(iv) For any smooth representation ρ of G(F ) we denote Ψ(ρ) := indGG1(ρ|G1). Note that Ψ(ρ) ' ρ ⊗
O(ΨG), where G(F ) acts only on the first factor, but this action depends on the second factor. This
identification gives a structure of O(ΨG)-module on Ψ(ρ).

Remark 2.1.6. The definition of unramified characters above is not the standard one, but it is more
convenient for our purposes.

Theorem 2.1.7 (Harish-Chandra). Let G be a reductive group and V be a cuspidal representation of
G(F ). Then V |G1 is a compact representation of G1.

Corollary 2.1.8. Let G be a reductive group and ρ be a cuspidal representation of G(F ). Then
(i) ρ|G1 is a projective object in the category M(G1).
(ii) Ψ(ρ) is a projective object in the category M(G(F )).

Proof. (i) is clear.
(ii) note that

HomG(Ψ(ρ), π) ∼= HomG/G1
(O(ΨM ), HomG1(ρ, π)),

for any representation π. Therefore the functor π 7→ HomG(Ψ(ρ), π) is a composition of two exact
functors and hence is exact. �
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Definition 2.1.9. Let G be a reductive group and K < G(F ) be a compact open subgroup. Denote

M(G,K) := {V ∈M(G(F )) |V is generated by V K}
and

M(G,K)⊥ := {V ∈M(G(F ) |V K = 0}.
We call K a splitting subgroup if the category M(G(F )) is the direct sum of the categories M(G,K)
and M(G,K)⊥, and M(G,K) ∼=M(HK(G)). Recall that an abelian category A is a direct sum of two
abelian subcategories B and C, if every object of A is isomorphic to a direct sum of an object in B and
an object in C, and, furthermore, that there are no non-trivial morphisms between objects of B and C.

We will use the following statements from Bernstein’s theory on the center of the categoryM(G). Let
P < G be a parabolic subgroup and M be the reductive quotient of P .

(1) The set of splitting subgroups defines a basis at 1 for the topology of G(F ). If G splits over OF
then, for any large enough `, the congruence subgroup K`(G,F ) is splitting.

(2) Let P denote the parabolic subgroup of G opposite to P , and let rGM :M(G(F ))→M(M(F ))
denote the Jacquet functor defined using P . Then rGM is right adjoint to iGM . In particular, iGM
maps projective objects to projective ones and hence for any irreducible cuspidal representation
ρ of M(F ), iGM (Ψ(ρ)) is a projective object of M(G(F )).

(3) Denote by Mρ the subcategory of M(G(F )) generated by iGM (Ψ(ρ)). Then

M(G,K) = ⊕(M,ρ)∈BKMρ,

where BK is some finite set of pairs consisting of a Levi subquotient of G and its cuspidal
representation. Moreover, for any Levi subquotient M < G and a cuspidal representation ρ of
M(F ) such that Mρ ⊂M(G,K) there exist (M ′, ρ′) ∈ BK such that Mρ =Mρ′ .

(4) End(iGM (Ψ(ρ))) is finitely generated over O(Ψ) which is finitely generated over the center of the
ring End(iGM (Ψ(ρ))). The center of the ring End(iGM (Ψ(ρ))) is equal to the center Z(Mρ) of
the category Mρ.

For statements 1 see e.g. [BD84, pp. 15-16] and [vD, §2]. For statement 2 see [Ber87] or [Bus01,
Theorem 3]. For statements 3,4 see [BD84, Proposition 2.10,2.11].

We now present a criterion, due to Bernstein, for finite generation of the space V K , consisting of
vectors in a representation V that are invariant with respect to a compact open subgroup K.

Lemma 2.1.10. Let V be a smooth representation of G(F ). Suppose that for any parabolic P < G
and any irreducible cuspidal representation ρ of M(F ) (where M denotes the reductive quotient of P ),
HomG(F )(iGM (Ψ(ρ)), V ) is a finitely generated module over O(ΨM ). Then V K is a finitely generated
module over Z(HK(G(F ))), for any compact open subgroup K < G(F ).

Proof.
Step 1. Proof for the case when K is splitting and V = iGM (Ψ(ρ)) for some Levi subquotient M of G
and an irreducible cuspidal representation ρ of M(F ). Let P denote the parabolic subgroup that defines
M and U denote its unipotent radical. Denote KM := K/(U(F ) ∩ K) < M(F ). If V K = 0 there is
nothing to prove. Otherwise Mρ is a direct summand of M(G,K). Now

V K = Ψ(ρ)KM = ρKM ⊗O(Ψ).

Hence V K is finitely generated over Z(Mρ). Hence V K is finitely generated over Z(M(G,K)) =
Z(HK(G)).

Step 2. Proof for the case when K is splitting and V ∈Mρ for some Levi subquotient M < G and an
irreducible cuspidal representation ρ of M(F ).

Let

φ : iGM (Ψ(ρ))⊗Hom(iGM (Ψ(ρ)), V ) � V

http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/Bern_Center.pdf
http://www.math.uchicago.edu/\protect \unskip \penalty \@M \ \ignorespaces mitya/langlands/Bernstein/Bernstein87.ps
http://www.math.tau.ac.il/\protect \unskip \penalty \@M \ \ignorespaces bernstei/Publication_list/publication_texts/Bern_Center.pdf
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be the natural epimorphism. We are given that Hom(iGM (Ψ(ρ)), V ) is finitely generated over O(Ψ).
Hence it is finitely generated over Z(M(ρ)). Choose some generators α1, ..., αn ∈ Hom(iGM (Ψ(ρ)). Let

ψ : iGM (Ψ(ρ))n ↪→ iGM (Ψ(ρ))⊗Hom(iGM (Ψ(ρ)), V )

be the corresponding morphism. Im(φ◦ψ) is Z(M(ρ))-invariant and hence coincides with Im(φ). Hence
φ ◦ ψ is onto. The statement now follows from the previous step.

Step 3. Proof for the case when K is splitting.
Let W < V be the subrepresentation generated by V K . By definition W ∈ M(G,K) and hence

W = ⊕ni=1Wi where Wi ∈Mρi for some ρi. The lemma now follows from the previous step.
Step 4. General case
Let K ′ be a splitting subgroup s.t. K ′ < K. Let v1...vn ∈ V K

′
be the generators of V K

′
over

Z(HK′(G(F ))) given by the previous step. Define wi := eKvi ∈ V K where eK ∈ HK(G(F )) is the
normalized Haar measure of K. Let us show that wi generate V K over
Z(HK(G(F ))). Let x ∈ V K . We can represent x as a sum

∑
hivi, where hi ∈ Z(HK′(G(F ))). Now

x = eKx =
∑

eKhivi =
∑

eKeKhivi =
∑

eKhieKvi =
∑

eKhieKeKvi =
∑

eKhieKwi.

�

Finally, in this subsection, we state two facts about homologies of l-groups. The proofs and relevant
definitions are in Subsection 2.4.

Lemma 2.1.11. Let G be an algebraic group and U be its unipotent radical. Let ρ be an irreducible
cuspidal representation of (G/U)(F ). We treat ρ as a representation of G(F ) with trivial action of U(F ).

Let H < G be an algebraic subgroup. Suppose that the space of coinvariants ρH(F ) is finite dimensional.
Then dim H1(H(F ), ρ) <∞.

We will also use the following version of Shapiro Lemma.

Lemma 2.1.12. Let G be an l-group that acts transitively on an l-space X. Let F be a G-equivariant
sheaf over X. Choose a point x ∈ X, let Fx denote the stalk of F at x and Gx denote the stabilizer of x.
Then

Hi(G,F(X)) = Hi(Gx,Fx).

2.2. Descent Of Finite Multiplicity.

Definition 2.2.1. We call a pair (G,H) consisting of a reductive group G and an algebraic subgroup H
an F -spherical pair if for any parabolic subgroup P ⊂ G, there is a finite number of double cosets in
P (F ) \G(F )/H(F ).

Remark 2.2.2. If charF = 0 and G is quasi-split over F then (G,H) is an F -spherical pair if and only
if it is a spherical pair of algebraic groups. However, we do not know whether this is true if charF > 0.

Notation 2.2.3. Let G be a reductive group and H be a subgroup. Let P < G be a parabolic subgroup
and M be its Levi quotient. We denote by HM the image of H ∩ P under the projection P �M .

The following Lemma is the main step in the proof of Theorem A

Lemma 2.2.4. Let (G,H) be an F -spherical pair. Let P < G be a parabolic subgroup and M be its Levi
quotient. Then
(i) (M,HM ) is also an F -spherical pair.
(ii) Suppose also that for any smooth irreducible representation ρ of G(F ) we have

dim HomH(F )(ρ|H(F ),C) <∞.
Then for any irreducible cuspidal representation σ of M(F ) we have

dim HomHM (F )(σ|HM (F ),C) <∞.
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Remark 2.2.5. One can show that the converse of (ii) is also true. Namely, if
dim HomHM (F )(σ|HM (F ),C) < ∞ for any irreducible cuspidal representation σ of M(F ) for any Levi
subquotient M then dim HomH(F )(ρ|H(F ),C) < ∞ for any smooth irreducible representation ρ of G(F ).
We will not prove this since we will not use this.

We will need the following lemma.

Lemma 2.2.6. Let M be an l-group and V be a smooth representation of M . Let 0 = F 0V ⊂ ... ⊂
Fn−1V ⊂ FnV = V be a finite filtration of V by subrepresentations. Suppose that for any i, either

dim(F iV/F i−1V )M =∞
or

both dim(F iV/F i−1V )M <∞ and dim H1(M, (F iV/F i−1V )) <∞.
Suppose also that dimVM <∞. Then dim(F iV/F i−1V )M <∞ for any i.

Proof. We prove by a decreasing induction on i that dim(F iV )M < ∞, and, therefore,
dim(F iV/F i−1V )M <∞. Consider the short exact sequence

0→ F i−1V → F iV → F iV/F i−1V → 0,

and the corresponding long exact sequence

...→ H1(M, (F iV/F i−1V ))→ (F i−1V )M → (F iV )M → (F iV/F i−1V )M → 0.

In this sequence dim H1(M, (F iV/F i−1V )) < ∞ and dim(F iV )M < ∞, and hence dim(F i−1V )M <
∞. �

Now we are ready to prove Lemma 2.2.4.

Proof of Lemma 2.2.4.
(i) is trivial.
(ii) Let P < G be a parabolic subgroup, M be the Levi quotient of P and let ρ be a cuspidal representation
of M(F ). We know that dim(iGMρ)H(F ) <∞ and we have to show that dim ρHM (F ) <∞.

Let I denote the natural G(F )-equivariant locally constant sheaf of complex vector spaces on
G(F )/P (F ) such that iGMρ ∼= S(G(F )/P (F ), I). Let Yj denote the H(F ) orbits on G(F )/P (F ). We
know that there exists a natural filtration on S(G(F )/P (F ), I)|H(F ) with associated graded components
isomorphic to S(Yj , Ij), where Ij are H(F )- equivariant sheaves on Yj corresponding to I. For any j
choose a representative yj ∈ Yj . Do it in such a way that there exists j0 such that yj0 = [1]. Let Pj := Gyj
and Mj be its Levi quotient. Note that Pj0 = P and Mj0 = M . Let ρj be the stalk of Ij at the point yj .
Clearly ρj is a cuspidal irreducible representation of Mj(F ) and ρj0 = ρ. By Shapiro Lemma (Lemma
2.1.12)

Hi(H(F ),S(Yj , Ij)) ∼= Hi((H ∩ Pj)(F ), ρj).

By Lemma 2.1.11 either dim H0((H ∩ Pj)(F ), ρj) = ∞ or both dim H0((H ∩ Pj)(F ), ρj) < ∞ and
dim H1((H ∩ Pj)(F ), ρj) < ∞. Hence by Lemma 2.2.6 dim H0((H ∩ Pj)(F ), ρj) < ∞ and hence
dim ρHM (F ) <∞. �

2.3. Proof of Theorem A.
In this subsection we prove Theorem A. Let us remind its formulation.

Theorem 2.3.1. Let (G,H) be an F -spherical pair. Suppose that for any irreducible smooth represen-
tation ρ of G(F ) we have

(2) dim HomH(F )(ρ|H(F ),C) <∞.

Then for any compact open subgroup K < G(F ), S(G(F )/H(F ))K is a finitely generated module over
the Hecke algebra HK(G(F )).
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Remark 2.3.2. Conjecturally, any F -spherical pair satisfies the condition (2). In [Del] and in [SV] this
is proven for wide classes of spherical pairs, which include all symmetric pairs over fields of characteristic
different from 2.

We will need several lemmas and definitions.

Lemma 2.3.3. Let (G,H) be an F -spherical pair, and denote H̃ = H(F )Z(G(F )) ∩ G1. Sup-
pose that for any smooth (respectively cuspidal) irreducible representation ρ of G(F ) we have
dim HomH(F )(ρ|H(F ),C) < ∞. Then for any smooth (respectively cuspidal) irreducible representation

ρ of G(F ) and for every character χ̃ of H̃ whose restriction to H(F ) ∩G1 is trivial, we have

dim HomH̃(ρ|H̃ , χ̃) <∞.

Proof. Let ρ be a smooth (respectively cuspidal) irreducible representation of G(F ), and let χ̃ be a

character of H̃ whose restriction to H(F ) ∩G1 is trivial.

HomH̃

(
ρ|H̃ , χ̃

)
= Hom(H(F )Z(G(F )))∩G0

(
ρ|(H(F )Z(G(F )))∩G0

, Ind
(H(F )Z(G(F )))∩G0

H̃
χ̃
)
.

Since
H(F )Z(G(F )) ∩G0 = H̃Z(G(F )) ∩G0 = H̃Z(G(F )),

the subspace of Ind
(H(F )Z(G(F )))∩G0

H̃
χ̃ that transforms under Z(G(F )) according to the central character

of ρ is at most one dimensional. If this subspace is trivial, then the lemma is clear. Otherwise, denote it

by τ . Since H(F ) ∩G1 is normal in H(F )Z(G(F )), we get that the restriction of Ind
(H(F )Z(G(F )))∩G0

H̃
χ̃

to H(F ) ∩G1 is trivial, and hence that τ |H(F )∩G1 is trivial. Hence HomH̃

(
ρ|H̃ , χ̃

)
is equal to

Hom(H(F )Z(G(F )))∩G0

(
ρ|(H(F )Z(G(F )))∩G0

, τ
)

= HomH(F )∩G0

(
ρ|H(F )∩G0

, τ |H(F )∩G0

)
=

= HomH(F )

(
ρ|H(F ), Ind

H(F )
H(F )∩G0

τ |H(F )∩G0

)
.

Since H(F )/H(F ) ∩ G0 is finite and abelian, the representation Ind
H(F )
H(F )∩G0

τ |H(F )∩G0
is a finite direct

sum of characters of H(F ), the restrictions of all to H(F )∩G1 are trivial. Any character θ of H(F ) whose
restriction to H(F ) ∩G1 is trivial can be extended to a character of G(F ), because H(F )/(H(F ) ∩G1)
is a sub-lattice of G(F )/G1. Denoting the extension by Θ, we get that

HomH(F )

(
ρ|H(F ), θ

)
= HomH(F )

(
(ρ⊗Θ−1)|H(F ),C

)
,

but ρ⊗Θ−1 is again smooth (respectively cuspidal) irreducible representation of G(F ), so this last space
is finite-dimensional.

�

Lemma 2.3.4. Let A be a commutative unital Noetherian algebra without zero divisors and let K be its
field of fractions. Let KN be the space of all sequences of elements of K. Let V be a finite dimensional
subspace of KN and let M := V ∩AN. Then M is finitely generated.

Proof. Since A does not have zero divisors, M injects into KN. There is a number n such that the
projection of V to K{1,...n} is injective. Therefore, M injects into A{1,...n}, and, since A is Noetherian,
M is finitely generated. �

Lemma 2.3.5. Let M be an l-group, let L ⊂M be a closed subgroup, and let L′ ⊂ L be an open normal
subgroup of L such that L/L′ is a lattice. Let ρ be a smooth representation of M of countable dimension.
Suppose that for any character χ of L whose restriction to L′ is trivial we have

dim HomL(ρ|L, χ) <∞.
Consider HomL′(ρ,S(L/L′)) as a representation of L, where L acts by ((hf)(x))([y]) = (f(x))([yh]).
Then this representation is finitely generated.

http://www.ams.org/journals/tran/2010-362-02/home.html


10 AVRAHAM AIZENBUD, NIR AVNI, AND DMITRY GOUREVITCH

Proof. By assumption, the action of L on HomL′(ρ,S(L/L′)) factors through L/L′. Since L/L′ is discrete,
S(L/L′) is the group algebra C[L/L′]. We want to show that HomL′(ρ,C[L/L′]) is a finitely generated
module over C[L/L′].

Let C(L/L′) be the fraction field of C[L/L′]. Choosing a countable basis for the vector space of ρ, we
can identify any C-linear map from ρ to C[L/L′] with an element of C[L/L′]N. Moreover, the condition
that the map intertwines the action of L/L′ translates into a collection of linear equations that the tuple
in C[L/L′]N should satisfy. Hence, HomL′(ρ,C[L/L′]) is the intersection of the C(L/L′)-vector space
HomL′(ρ,C(L/L′)) and C[L/L′]N. By Lemma 2.3.4, it suffices to prove that HomL′(ρ,C(L/L′)) is finite
dimensional over C(L/L′).

Since L′ is separable, and ρ is smooth and of countable dimension, there are only countably many linear
equations defining HomL′(ρ,C(L/L′)); denote them by φ1, φ2, . . . ∈

(
C(L/L′)N

)∗
. Choose a countable

subfield K ⊂ C that contains all the coefficients of the elements of C(L/L′) that appear in any of
the φi’s. If we define W as the K(L/L′)-linear subspace of K(L/L′)N defined by the φi’s, then
HomL′(ρ,C(L/L′)) = W ⊗K(L/L′) C(L/L′), so dimC(L/L′) HomL′(ρ,C(L/L′)) = dimK(L/L′)W .

Since L/L′ is a lattice generated by, say, g1, . . . , gn, we get that K(L/L′) = K(t±1
1 , . . . , t±1

n )
= K(t1, . . . , tn). Choosing elements π1, . . . , πn ∈ C such that tr.degK(K(π1, . . . , πn)) = n, we get an
injection ι of K(L/L′) into C. As before, we get that if we denote the C-vector subspace of CN cut
by the equations ι(φi) by U , then dimK(L/L′)W = dimC U . However, U is isomorphic to HomL′(ρ, χ),
where χ is the character of L/L′ such that χ(gi) = πi. By assumption, this last vector space is finite
dimensional. �

Now we are ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. By Lemma 2.1.10 it is enough to show that for any parabolic P < G
and any irreducible cuspidal representation ρ of M(F ) (where M denotes the Levi quotient of P ),
Hom(iGM (Ψ(ρ)),S(G(F )/H(F ))) is a finitely generated module over O(ΨM ).

Step 1. Proof for the case P = G.
We have

HomG(F )(iGM (Ψ(ρ)),S(G(F )/H(F ))) = HomG(F )(Ψ(ρ),S(G(F )/H(F ))) = HomG1(ρ,S(G(F )/H(F ))).

Here we consider the space HomG1(ρ,S(G(F )/H(F ))) with
the natural action of G. Note that G1 acts trivially and hence this action gives rise to an action of

G/G1, which gives the O(ΨG) - module structure.
Now consider the subspace

V := HomG1(ρ,S(G1/(H(F ) ∩G1))) ⊂ HomG1(ρ,S(G(F )/H(F ))).

It generates HomG1(ρ,S(G(F )/H(F ))) as a representation of G(F ), and therefore also as an O(ΨG) -
module. Note that V is H(F ) invariant. Therefore it is enough to show that V is finitely generated over
H(F ). Denote H ′ := H(F ) ∩G1 and H ′′ := (H(F )Z(G(F ))) ∩G1. Note that

S(G1/H ′) ∼= indG
1

H′′(S(H ′′/H ′)) ⊂ IndG
1

H′′(S(H ′′/H ′)).

Therefore V is canonically embedded into HomH′′(ρ,S(H ′′/H ′)). The action of H on V is naturally
extended to an action Π on HomH′′(ρ,S(H ′′/H ′)) by

((Π(h)(f))(v))([k]) = f(h−1v)([h−1kh]).

Let Ξ be the action of H ′′ on HomH′′(ρ,S(H ′′/H ′)) as described in Lemma 2.3.5, i.e.

((Ξ(h)(f))(v))([k]) = f(v)([kh]).

By Lemmas 2.3.5 and 2.3.3 it is enough to show that for any h ∈ H ′′ there exist an h′ ∈ H and a scalar
α s.t.

Ξ(h) = αΠ(h′).
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In order to show this let us decompose h to a product h = zh′ where h′ ∈ H and z ∈ Z(G(F )). Now

((Ξ(h)(f))(v))([k]) = f(v)([kh]) = f(h−1v)([h−1kh]) = f(h
′−1z−1v)([h

′−1kh′]) =

= αf(h′−1v)([h
′−1kh′]) = α((Π(h′)(f))(v))([k]),

where α is the scalar with which z−1 acts on ρ.
Step 2. Proof in the general case.

HomG(F )(iGM (Ψ(ρ)),S(G(F )/H(F ))) = HomM(F )(Ψ(ρ), rMG(S(G(F )/H(F )))) =

= HomM(F )(Ψ(ρ), ((S(G(F )/H(F )))|P (F ))U(F )),

where U is the unipotent radical of P , the parabolic opposite to P . Let {Yi}ni=1 be the orbits of
P (F ) on G(F )/H(F ). We know that there exists a filtration on (S(G(F )/H(F )))|P (F ) such that

the associated graded components are isomorphic to S(Yi). Consider the corresponding filtration on
((S(G(F )/H(F )))|P (F ))U(F ). Let Vi be the associated graded components of this filtration. We have

a natural surjection S(Yi)U � Vi. In order to prove that HomM(F )(Ψ(ρ), ((S(G(F )/H(F )))|P (F ))U(F ))

is finitely generated it is enough to prove that HomM(F )(Ψ(ρ), Vi) is finitely generated. Since Ψ(ρ) is a
projective object ofM(M(F )) (by Corollary 2.1.8), it is enough to show that HomM(F )(Ψ(ρ),S(Yi)U(F ))

is finitely generated. Denote Zi := U(F ) \ Yi. It is easy to see that Zi ∼= M(F )/((Hi)M (F )), where Hi

is some conjugation of H. Now the assertion follows from the previous step using Lemma 2.2.4. �

2.4. Homologies of l-groups.
The goal of this subsection is to prove Lemma 2.1.11 and Lemma 2.1.12.
We start with some generalities on abelian categories.

Definition 2.4.1. Let C be an abelian category. We call a family of objects A ⊂ Ob(C) generating
family if for any object X ∈ Ob(C) there exists an object Y ∈ A and an epimorphism Y � X.

Definition 2.4.2. Let C and D be abelian categories and F : C → D be a right-exact additive functor.
A family of objects A ⊂ Ob(C) is called F-adapted if it is generating , closed under direct sums and for
any exact sequence 0 → A1 → A2 → ... with Ai ∈ A, the sequence 0 → F(A1) → F(A2) → ... is also
exact.

For example, a generating, closed under direct sums system consisting of projective objects is F-adapted
for any right-exact functor F . For an l-group G the system of objects consisting of direct sums of copies
of S(G) is an example of such system.

The following results are well-known.

Theorem 2.4.3. Let C and D be abelian categories and F : C → D be a right-exact additive functor.
Suppose that there exists an F-adapted family A ⊂ Ob(C). Then F has derived functors.

Lemma 2.4.4. Let A, B and C be abelian categories. Let F : A → B and G : B → C be right-exact
additive functors. Suppose that both F and G have derived functors.

(i) Suppose that F is exact. Suppose also that there exists a class E ⊂ Ob(A) which is G ◦ F-adapted
and such that F(X) is G-acyclic for any X ∈ E. Then the functors Li(G ◦F) and LiG ◦F are isomorphic.

(ii) Suppose that there exists a class E ⊂ Ob(A) which is G ◦ F-adapted and F-adapted and such that
F(X) is G-acyclic for any X ∈ E. Let Y ∈ A be an F-acyclic object. Then Li(G ◦ F)(Y ) is (naturally)
isomorphic to LiG(F(Y )).

(iii) Suppose that G is exact. Suppose that there exists a class E ⊂ Ob(A) which is G ◦ F-adapted and
F-adapted. Then the functors Li(G ◦ F) and G ◦ LiF are isomorphic.



12 AVRAHAM AIZENBUD, NIR AVNI, AND DMITRY GOUREVITCH

Definition 2.4.5. Let G be an l-group. For any smooth representation V of G denote Hi(G,V ) :=
LiCIG(V ). Recall that CIG denotes the coinvariants functor.

Proof of Lemma 2.1.12. Note that F(X) = indGGxFx. Note also that indGGx is an exact functor, and

CIGx = CIG ◦ indGGx . The lemma follows now from Lemma 2.4.4(i). �

Lemma 2.4.6. Let L be a lattice. Let V be a linear space. Let L act on V by a character. Then

H1(L, V ) = H0(L, V )⊗C (L⊗Z C).

The proof of this lemma is straightforward.

Lemma 2.4.7. Let L be an l-group and L′ < L be a subgroup. Then
(i) for any representation V of L we have

Hi(L
′, V ) = LiF(V ),

where F :M(L)→ V ect is the functor defined by F(V ) = VL′ .
(ii) Suppose that L′ is normal. Let F ′ :M(L)→M(L/L′) be the functor defined by F ′(V ) = VL′ . Then
for any representation V of L we have Hi(L

′, V ) = LiF ′(V ).

Proof. (i) Consider the restriction functor ResLL′ :M(L)→M(L′). Note that it is exact. Consider also
the functor G :M(L′) → V ect defined by G(ρ) := ρL′ . Note that F = G ◦ ResLL′ . The assertion follows
now from Lemma 2.4.4(i) using the fact that S(L) is a projective object in M(L′).
(ii) follows from (i) in a similar way, but using part (iii) of Lemma 2.4.4 instead part (i). �

Lemma 2.4.8. Let G be a reductive group and H < G be a subgroup. Consider the functor

F :M(G(F ))→M(H(F )/(H(F ) ∩G1)) defined by F(V ) = VH(F )∩G1 .

Then any finitely generated cuspidal representation of G(F ) is an F-acyclic object.

Proof. Consider the restriction functors

Res
H(F )/(H(F )∩G1)
1 :M(H(F )/(H(F ) ∩G1))→ V ect

and

Res
G(F )
G1 :M(G(F ))→M(G1).

Note that they are exact. Consider also the functor G : M(G1) → V ect defined by G(ρ) := ρG1∩H(F ).

Denote E := G ◦ResG(F )
G1 . Note that E = Res

H(F )/(H(F )∩G1)
1 ◦ F .

M(G(F ))
F //

E

))SSSSSSSSSSSSSSS

Res
G(F )

G1

��

M(H(F )/(H(F ) ∩G1))

Res
H(F )∩G1

1

��
M(G1)

G // V ect

Let π be a cuspidal finitely generated representation of G(F ). By Corollary 2.1.8, Res
G(F )
G1 (π) is

projective and hence G-acyclic. Hence by Lemma 2.4.4(ii) π is E-acyclic. Hence by Lemma 2.4.4(iii) π is
F-acyclic.

�

Lemma 2.4.9. Let L be an l-group and L′ < L be a normal subgroup. Suppose that Hi(L
′,C) = 0 for

all i > 0. Let ρ be a representation of L/L′. Denote by Ext(ρ) the natural representation of L obtained
from ρ. Then Hi(L/L

′, ρ) = Hi(L,Ext(ρ)).
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Proof. Consider the coinvariants functors E : M(L) → V ect and F : M(L/L′) → V ect defined by
E(V ) := VL and F(V ) := VL/L′ . Note that F = E ◦ Ext and Ext is exact. By Shapiro Lemma
(Lemma 2.1.12), S(L/L′) is acyclic with respect to both E and F . The lemma follows now from Lemma
2.4.4(ii). �

Remark 2.4.10. Recall that if L′ = N(F ) where N is a unipotent algebraic group, then Hi(L
′) = 0 for

all i > 0.

Now we are ready to prove Lemma 2.1.11

Proof of Lemma 2.1.11. By Lemma 2.4.9 we can assume that G is reductive.
Let F :M(G(F ))→ V ect be the functor defined by F(V ) := VH(F ). Let

G :M(G(F ))→M(H(F )/(H(F ) ∩G1))

be defined by

G(V ) := VH(F )∩G1 .

Let

E :M(H(F )/(H(F ) ∩G1))→ V ect

be defined by

E(V ) := VH(F )/(H(F )∩G1).

Clearly, F = E ◦ G. By Lemma 2.4.8, ρ is G-acyclic. Hence by Lemma 2.4.4(ii), LiF(ρ) = LiE(G(ρ)).

M(G(F ))
G //

F

))
M(H(F )/(H(F )∩G1))

E

))K //M(H(F )/(H(F )∩G0))
C // V ect

Consider the coinvariants functors K : M(H(F )/(H(F ) ∩ G1)) → M(H(F )/(H(F ) ∩ G0)) and C :
M(H(F )/(H(F ) ∩G0))→ V ect defined by K(ρ) := ρ(H(F )∩G0)/(H(F )∩G1) and C(ρ) := ρH(F )/(H(F )∩G1).
Note that E = C ◦ K.

Note that C is exact since the group H(F )/(H(F ) ∩ G1) is finite. Hence by Lemma 2.4.4(iii), LiE =
C ◦ LiK.

Now, by Lemma 2.4.7,

Hi(H(F ), ρ) = LiF(ρ) = LiE(G(ρ)) = C(LiK(G(ρ))) = C(Hi((H(F ) ∩G0)/(H(F ) ∩G1),G(ρ))).

Hence, by Lemma 2.4.6, if H0(H(F ), ρ) is finite dimensional then H1(H(F ), ρ) is finite dimensional. �

3. Uniform Spherical Pairs

In this section we introduce the notion of uniform spherical pair and prove Theorem B.
We follow the main steps of [Kaz86], where the author constructs an isomorphism between the Hecke

algebras of a reductive group over close enough local fields. First, he constructs a linear isomorphism
between the Hecke algebras, using Cartan decomposition. Then, he shows that for two given elements of
the Hecke algebra there exists m such that if the fields are m-close then the product of those elements
will be mapped to the product of their images. Then he uses the fact that the Hecke algebras are finitely
generated and finitely presented to deduce the theorem.

Roughly speaking, we call a pair H < G of reductive groups a uniform spherical pair if it possesses a
relative analog of Cartan decomposition, i.e. a “nice” description of the set of double cosets K0(G,F ) \
G(F )/H(F ) which in some sense does not depend on F . We give the precise definition in the first
subsection and prove Theorem B in the second subsection.



14 AVRAHAM AIZENBUD, NIR AVNI, AND DMITRY GOUREVITCH

3.1. Definitions.
Let R be a complete and smooth local ring, let m denote its maximal ideal, and let π be an element

in m \m2. A good example to keep in mind is the ring Zp[[π]]. An (R, π)-local field is a local field F
together with an epimorphism of rings R → OF , such that the image of π (which we will continue to
denote by π) is a uniformizer. Denote the collection of all (R, π)-local fields by FR,π.

Suppose that G is a reductive group defined and split over R. Let T be a fixed split torus, and
let X∗(T ) be the coweight lattice of T . For every λ ∈ X∗(T ) and every (R, π)-local field F , we write
πλ = λ(π) ∈ T (F ) ⊂ G(F ). We denote the subgroup G(OF ) by K0(F ), and denote its `’th congruence
subgroup by K`(F ).

Definition 3.1.1. Let F be a local field. Let X ⊂ AnOF be a closed subscheme. For any x, y ∈ X(F ),
define the valuative distance between x and y to be valF (x, y) := min{valF (xi − yi)}. Also, for any
x ∈ X(F ), define valF (x) := min{valF (xi)}. The ball of valuative radius ` around a point x in X(F )
will be denoted by B(x, `)(F ).

Definition 3.1.2. Let G be a split reductive group defined over R and let H ⊂ G be a smooth reductive
subgroup defined over R. We say that the pair (G,H) is uniform spherical if there are

• An R-split torus T ⊂ G,
• An affine embedding G/H ↪→ An.
• A finite subset X ⊂ G(R)/H(R).
• A subset Υ ⊂ X∗(T ).

such that

(1) The map x 7→ K0(F )x from πΥX to K0(F )\G(F )/H(F ) is onto for every F ∈ FR,π.
(2) For every x, y ∈ πΥX ⊂ (G/H)(R[π−1]), the closure in G of the R[π−1]-scheme

Tx,y := {g ∈ G×Spec(R) Spec(R[π−1])|gx = y}

is smooth over R. We denote this closure by Sx,y.
(3) For every x ∈ πΥX, the valuation valF (x) does not depend on F ∈ FR,π.
(4) There exists l0 s.t. for any l > l0, for any F ∈ FR,π and for every x ∈ X and α ∈ Υ we have

Klπ
αKlx = Klπ

αx .

If G,H are defined over Z, we say that the pair (G,H) is uniform spherical if, for every R as above,
the pair (G×Spec(Z) Spec(R), H ×Spec(Z) Spec(R)) is uniform spherical.

In Section 4 we give two examples of uniform spherical pairs. We will list now several basic properties
of uniform spherical pairs. In light of the recent developments in the structure theory of symmetric and
spherical pairs (e.g. [Del], [SV]), we believe that the majority of symmetric pairs and many spherical
pairs defined over local fields are specializations of appropriate uniform spherical pairs.

From now and until the end of the section we fix a uniform spherical pair (G,H). First note that,
since H is smooth, the fibers of G→ G/H are smooth. Hence the map G→ G/H is smooth.

Lemma 3.1.3. Let (G,H) be a uniform spherical pair. Let x, y ∈ πΥX. Let F be an (R, π)-local field.
Then

Sx,y(OF ) = Tx,y(F ) ∩G(O).

Proof. The inclusion Sx,y(OF ) ⊂ Tx,y(F ) ∩ G(OF ) is evident. In order to prove the other inclu-
sion we have to show that any map ψ : Spec(OF )→ G×SpecR SpecOF such that Im(ψ|SpecF ) ⊂
Tx,y ×SpecR[π−1] SpecF satisfies Imψ ⊂ Sx,y ×SpecR SpecOF .

This holds since Sx,y ×SpecR SpecOF lies in the closure of Tx,y ×SpecR[π−1] SpecF in
G×SpecR SpecOF . �

http://www.ams.org/journals/tran/2010-362-02/home.html
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Lemma 3.1.4. If (G,H) is uniform spherical, then there is a subset ∆ ⊂ πΥX such that, for every
F ∈ FR,π, the map x 7→ K0(F )x is a bijection between ∆ and K0(F )\G(F )/H(F ).

Proof. It is enough to show that for any F, F ′ ∈ FR,π and for any x, y ∈ πΥX, the equality K0(F )x =
K0(F )y is equivalent to K0(F ′)x = K0(F ′)y.

The scheme Sx,y ⊗ OF is smooth over R, and hence it is smooth over OF . Therefore, it is formally
smooth. This implies that the map Sx,y(OF ) → Sx,y(Fq) is onto and hence {g ∈ G(OF )|gx = y} 6= ∅ if
and only if Sx,y(Fq) 6= ∅.

Hence, the two equalities K0(F )x = K0(F )y and K0(F ′)x = K0(F ′)y are equivalent to Sx,y(Fq) 6=
∅. �

From now untill the end of the section we fix ∆ as in the lemma.

Proposition 3.1.5. If (G,H) is uniform spherical, then for every x ∈ πΥX and every ` ∈ N, there is
M ∈ N such that for every F ∈ FR,π, the set K`(F )x contains a ball of radius M around x.

Proof. Since, for every δ ∈ X∗(T ) and every ` ∈ N, there is n ∈ N such that Kn(F ) ⊂ πδK`(F )π−δ for
every F , we can assume that x ∈ X. The claim now follows from the following version of the implicit
function theorem.

Lemma 3.1.6. Let F be a local field. Let X and Y be affine schemes defined over OF . Let ψ : X → Y be
a smooth morphism defined over OF . Let x ∈ X(OF ) and y := ψ(x). Then ψ(B(x, `)(F )) = B(y, `)(F )
for any natural number l.

Proof. The inclusion ψ(B(x, `)(F )) ⊂ B(y, `)(F ) is clear. We prove the inclusion ψ(B(x, `)(F )) ⊃
B(y, `)(F ).
Case 1: X and Y are affine spaces and ψ is etale. The proof is standard.
Case 2: X = Am, ψ is etale: We can assume that Y ⊂ Am+n is defined by f1, . . . , fn with independent
differentials, and that ψ is the projection. The proof in this case follows from Case 1 by considering the
map F : Am+n → Am+n given by F (x1, . . . , xm+n) = (x1, . . . , xm, f1, . . . , fn).
Case 3: ψ is etale: Follows from Case 2 by restriction from the ambient affine spaces.
Case 4: In general, a smooth morphism is a composition of an etale morphism and a projection, for which
the claim is trivial. �

�

Lemma 3.1.7. For every λ ∈ X∗(T ) and x ∈ πΥX, there is a finite subset B ⊂ πΥX such that
πλK0(F )x ⊂

⋃
y∈BK0(F )y for all F ∈ FR,π.

Proof. By Lemma 3.1.4, we can assume that the sets K0(F )πλx0 for λ ∈ Υ are disjoint. There is a
constant C such that for every F and for every g ∈ πλK0(F )πδ, valF (gx0) ≥ C. Fix F and assume
that g ∈ K0(F )πλK0(F )πδ. From the proof of Proposition 3.1.5, it follows that K0(F )gx0 contains a
ball whose radius depends only on λ, δ. Since F is locally compact, there are only finitely many disjoint
such balls in the set {x ∈ G(F )/H(F ) | valF (x) ≥ C}, so there are only finitely many η ∈ Υ such
that valF (πλx0) ≥ C. By definition, this finite set, S, does not depend on the field F . Therefore,
πλK0(F )πδx0 ⊂

⋃
η∈S K0(F )πηx0. �

Notation 3.1.8.

• Denote by M`(G(F )/H(F )) the space of K`(F )-invariant compactly supported measures on
G(F )/H(F ).

• For a Kl invariant subset U ⊂ G(F )/H(F ) we denote by 1U ∈ M`(G(F )/H(F )) the Haar
measure on G(F )/H(F ) multiplied by the characteristic function of U and normalized s.t. its
integral is 1. We define in a similar way 1V ∈ H`(G,F ) for a Kl-double invariant subset V ⊂
G(F ).
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Proposition 3.1.9. If (G,H) is uniform spherical then M`(G(F )/H(F )) is finitely generated over
H`(G,F ) for any `.

Proof. As in step 4 of Lemma 2.1.10, it is enough to prove the assertion for large enough l. Thus we
may assume that for every x ∈ X and α ∈ Υ we have Klπ

αKlx = Klπ
αx. Therefore, 1KlπαKl1Klx =

1Klπαx. Hence for any g ∈ K0/Kl we have (g1KlπαKl)1Klx = 1gKlπαx. Now, the elements 1gKlπαx
span M`(G(F )/H(F )) by condition 1 in definition 3.1.2. This implies that the elements 1Klx generate
M`(G(F )/H(F )). �

3.2. Close Local Fields.

Definition 3.2.1. Two (R, π)-local fields F,E ∈ FR,π, are n-close if there is an isomorphism φE,F :
OF /π

n → OE/π
n such that the two maps R → OF → OF /π

n → OE/π
n and R → OE → OE/π

n

coincide. In this case, φ is unique.

Theorem 3.2.2 ([Kaz86]). Let F be an (R, π) local field. Then, for any `, there exists n such that, for any
E ∈ FR,π, which is n-close to F , there exists a unique isomorphism ΦH,` between the algebras H`(G,F )
and H`(G,E) that maps the Haar measure on K`(F )πλK`(F ) to the Haar measure on K`(E)πλK`(E),

for every λ ∈ X∗(T ), and intertwines the actions of the finite group K0(F )/K`(F )
φF,E∼= K0(E)/K`(E).

In this section we prove the following refinement of Theorem B from the Introduction:

Theorem 3.2.3. Let (G,H) be a uniform spherical pair. Then, for any ` ∈ N and F ∈ FR,π, there
exists n such that, for any E ∈ FR,π that is n-close to F , there exists a unique map

M`(G(F )/H(F ))→M`(G(E)/H(E))

which is an isomorphism of modules over the Hecke algebra

H(G(F ),K`(F ))
ΦH,`∼= H(G(E),K`(E))

that maps the Haar measure on K`(F )x to the Haar measure on K`(E)x, for every x ∈ ∆ ⊂ πλΥ, and

intertwines the actions of the finite group K0(F )/K`(F )
φF,E∼= K0(E)/K`(E).

For the proof we will need notation and several lemmas.

Notation 3.2.4. For any valued field F with uniformizer π and any integer m ∈ Z, we denote by
resm : F → F/πmO the projection. Note that the groups πnO are naturally isomorphic for all n. Hence
if two local fields F,E ∈ FR,π are n-close, then for any m we are given an isomorphism, which we also
denote by φF,E between πm−nOF /π

mOF and πm−nOE/π
mOE, which are subgroups of F/πmOF and

E/πmOE.

Lemma 3.2.5. Suppose that (G,H) is a uniform spherical pair, and suppose that F,E ∈ FR,π are `-close.
Then for all δ ∈ ∆,

φF,E(StabK0(F )/K`(F )K`(F )δ) = StabK0(E)/K`(E)K`(E)δ.

Proof. The stabilizer of K`(F )δ in K0/K` is the projection of the stabilizer of δ in K0 to K0/K`. In
other words, it is the image of Sδ,δ(OF ) in Sδ,δ(OF /π

`). Since Sδ,δ is smooth over R, it is smooth over
OF . Hence Sδ,δ is formally smooth, and so this map is onto. The same applies to the stabilizer of K`(E)δ
in K0(E)/K`(E), but φF,E(Sδ,δ(O/π

`)) = Sδ,δ(O
′/π′`). �

Corollary 3.2.6. Let ` ∈ N.
Then, for any F,E ∈ FR,π that are `-close, there exists a unique morphism of vector spaces

ΦM,` :M`(G(F )/H(F ))→M`(G(E)/H(E))
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that maps the Haar measure on K`(F )x to the Haar measure on K`(E)x, for every x ∈ ∆, and inter-

twines the actions of the finite group K0(F )/K`(F )
φF,E∼= K0(E)/K`(E). Moreover, this morphism is an

isomorphism.

Proof. The uniqueness is evident. By Lemma 3.2.5 and Lemma 3.1.4, the map between
K`(F )\G(F )/H(F ) and K`(E)\G(E)/H(E) given by

K`(F )gδ 7→ K`(E)g′δ,

where g ∈ K0(F ) and g′ ∈ K0(E) satisfy that φF,E(res`(g)) = res`(g
′), is a bijection. This bijection

gives the required isomorphism. �

Remark 3.2.7. A similar construction can be applied to the pair (G × G,∆G). In this case, the main
result of [Kaz86] is that the obtained linear map ΦH,` between the Hecke algebras H(G(F ),K`(F )) and
H(G(E),K`(E)) is an isomorphism of algebras if the fields F and E are close enough.

The following Lemma is evident:

Lemma 3.2.8. Let P (x) ∈ R[π−1][x1, . . . , xd] be a polynomial. For any natural numbers M and k, there
is N such that, if F,E ∈ FR,π are N -close, and x0 ∈ π−kOdF , y0 ∈ π−kOdE satisfy that P (x0) ∈ π−kOF
and φF,E(resN (x0)) = resN (y0), then P (y0) ∈ π−kOE and φF,E(resM (P (x0))) = resM (P (y0)).

Corollary 3.2.9. Suppose that (G,H) is a uniform spherical pair. Fix an embedding of G/H to an affine
space Ad. Let λ ∈ X∗(T ), x ∈ πΥX, F ∈ FR,π, and k ∈ G(OF ). Choose m such that πλkx ∈ π−mOdF .
Then, for every M , there is N ≥M +m such that, for any E ∈ FR,π that is N -close to F , and for any
k′ ∈ G(OE) such that φF,E(resN (k)) = resN (k′),

πλk′x ∈ G(E)/H(E) ∩ π−mOdE and φF,E(resM (πλkx)) = resM (πλk′x).

Corollary 3.2.10. Suppose that (G,H) is a uniform spherical pair. Fix an embedding of G/H to an
affine space Ad. Let m be an integer. For every M , there is N such that, for any F,E ∈ FR,π that are N -
close, any x ∈ G(F )/H(F )∩ π−mOdF and any y ∈ G(E)/H(E)∩ π−mOdE, such that φF,E(resN−m(x)) =
resN−m(y), we have ΦM(1KM (F )x) = 1KM (E)y.

Proof. Let kF ∈ G(OF ) and δ ∈ ∆ such that x = kF δ. By Proposition 3.1.5, there is an l such that, for
any L ∈ FR,π and any kL ∈ G(OL), we have KM (L)kLδ contains a ball of radius l.

Using the previous corollary, choose an integer N such that, for any F and E that are N -close and
any kE ∈ G(OE), such that φF,E(resN (kF )) = resN (kE), we have

kEδ ∈ (G(E)/H(E)) ∩ π−mOdE and φF,E(resl(x)) = resl(kEδ).

Choose such kE ∈ G(OE) and let z = kEδ. Since resl(z) = φF,E(resl(x)) = resl(y), we have that
z ∈ B(y, l), and hence z ∈ KM (E)y. Hence

1KM (E)y = 1KM (E)z = ΦM(1KM (F )x).

�

From the last two corollaries we obtain the following one.

Corollary 3.2.11. Given ` ∈ N, λ ∈ X∗(T ), and δ ∈ ∆, there is n such that if F,E ∈ FR,π are n-
close, and gF ∈ G(OF ), gE ∈ G(OE) satisfy that φF,E(resn(gF )) = resn(gE), then ΦM,`(1K`(F )π

λgF δ) =

1K`(E)π
λgEδ.

Proposition 3.2.12. Let F ∈ FR,π. Then for every `, and every two elements f ∈ H`(F ) and v ∈
M`(F ), there is n such that, if E ∈ FR,π is n-close to F , then ΦM,`(f · v) = ΦH,`(f) · ΦM,`(v).
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Proof. By linearity, we can assume that f = 1K`(F )k1π
λk21K`(F ) and that v = 1K`(F )k3δ, where

k1, k2, k3 ∈ K0(F ). Choose N ≥ l big enough so that πλKN (F )π−λ ⊂ K`(F ).
Choose k′i ∈ G(OE) such that φF,E(resN (ki)) = resN (k′i). Since ΦM,` and ΦH,` intertwine left

multiplication by 1K`(F )k11K`(F ) to left multiplication by 1K`(E)k
′
11K`(E), we can assume that k1 = 1 =

k′1. Also, since k2 normalizes K`(F ), we can assume that k2 = 1 = k′2. Let K`(F ) =
⋃s
i=1KN (F )gi be a

decomposition of K`(F ) into cosets. Choose g′i ∈ K`(E) such that φF,E(resN (gi)) = resN (g′i). Then

1K`(F ) = c

s∑
i=1

1KN (F )gi and 1K`(E) = c

s∑
i=1

1KN (E)g
′
i

where c = |K`(F )/KN (F )| = |K`(E)/KN (E)|. Hence

fv = 1K`(F )π
λ1K`(F )k3δ = c

s∑
i=1

1K`(F )π
λ1KN (F )gik3δ = c

s∑
i=1

1K`(F )π
λgik3δ.

and

ΦH,`(f)ΦM,`(v) = 1K`(E)π
λ1K`(E)k

′
3δ = c

s∑
i=1

1K`(E)π
λ1KN (E)gik

′
3δ = c

s∑
i=1

1K`(E)π
λg′ik

′
3δ.

The proposition follows now from Corollary 3.2.11. �

Now we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. We have to show for any ` there exists n such that if F,E ∈ FR,π are n-close then

the map ΦM,l constructed in Corollary 3.2.6 is an isomorphism of modules over H(G(F ),K`(F ))
ΦH,`∼=

H(G(E),K`(E)).
Since H(G(F ),K`(F )) is Noetherian,M`(G(F )/H(F )) is generated by a finite set v1, . . . , vn satisfying

a finite set of relations
∑
i fi,jvi = 0. Without loss of generality we may assume that for any x ∈ X the

Haar measure on K`(F )x is contained in the set {vi}.
By Proposition 3.2.12, if E is close enough to F , then ΦM,`(vi) satisfy the above relations.
Therefore there exists a homomorphism of Hecke modules Φ′ :M`(G(F )/H(F ))→M`(G(E)/H(E))

given on the generators vi by Φ′(vi) := ΦM,`(vi).

Φ′ intertwines the actions of the finite group K0(F )/K`(F )
φF,E∼= K0(E)/K`(E). Therefore, by Corollary

3.2.6, in order to show that Φ′ coincides with ΦM,` it is enough to check that Φ′ maps the normalized
Haar measure on K`(F )x to the normalized Haar measure on K`(E)x for every x ∈ ∆. In order to do
this let us decompose x = παx0 where x0 ∈ X and α ∈ Υ. Now, since (G,H) is uniformly spherical we
have

1Kn(F )x = 1Kn(F )παKn(F )1Kn(F )x0

and
1Kn(E)x = 1Kn(E)παKn(E)1Kn(E)x0

.

Therefore, since Φ′ is a homomorphism, we have

Φ′(1Kn(F )x) = Φ′(1Kn(F )παKn(F )1Kn(F )x0
) = 1Kn(E)παKn(E)1Kn(E)x0

= 1Kn(F )x.

Hence the linear map ΦM,` : M`(G(F )/H(F )) → M`(G(E)/H(E)) is a homomorphism of Hecke
modules. Since it is a linear isomorphism, it is an isomorphism of Hecke modules. �

Now we obtain the following generalization of Corollary C:

Corollary 3.2.13. Let (G,H) be a uniform spherical pair. Suppose that

• For any F ∈ FR,π, the pair (G,H) is F -spherical.
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• For any E ∈ FR,π and natural number n, there is a field F ∈ FR,π such that E and F are n-close
and the pair (G(F ), H(F )) is a Gelfand pair, i.e. for any irreducible smooth representation ρ of
G(F ) we have

dim HomH(F )(ρ|H(F ),C) ≤ 1.

Then (G(F ), H(F )) is a Gelfand pair for any F ∈ FR,π.

Remark 3.2.14. Fix a prime power q = pk. Let F be the unramified extension of Qp of degree k, let W
be the ring of integers of F , and let R = W [[π]]. Then FR,π includes all local fields with residue field Fq,
and so Corollary 3.2.13 implies Corollary C.

Corollary 3.2.13 follows from Theorem 3.2.3, Theorem 2.3.1, and the following lemma.

Lemma 3.2.15. Let F be a local field and H < G be a pair of reductive groups defined over F . Suppose
that G is split over F . Then (G(F ), H(F )) is a Gelfand pair if and only if for any large enough l ∈ Z>0

and any simple module ρ over Hl(G(F )) we have

dim HomHl(G(F ))(Ml(G(F )/H(F )), ρ) ≤ 1.

This lemma follows from statement (1) formulated in Subsection 2.1.

4. Applications

In this section we prove that the pair (GLn+k(F ),GLn(F )×GLk(F )) is a Gelfand pair for any local
field F of characteristic different from 2 and the pair (GLn+1(F ),GLn(F )) is a strong Gelfand pair for
any local field F . We use Corollary 3.2.13 to deduce those results from the characteristic zero case which
were proven in [JR96] and [AGRS] respectively. Let R = W [[π]].

To verify condition (2) in Definition 3.1.2, we use the following straightforward lemma:

Lemma 4.0.1. Let G = (GLn1)R × · · · × (GLnk)R and let C < G ⊗R R[π−1] be a sub-group scheme
defined over R[π−1]. Suppose that C is defined by equations of the following type:

l∑
i=1

εiaµiπ
λi = πν ,

or
l∑
i=1

εiaµiπ
λi = 0,

where εi = ±1, a1, ..., an2
1+...+n2

k
are entries of matrices, 1 ≤ µi ≤ n2

1 + ... + n2
k are some indices, and

ν, λi are integers. Suppose also that the indices µi are distinct for all the equations. Then the closure C
of C in G is smooth over R.

To verify condition (4) in Definition 3.1.2, we use the following straightforward lemma:

Lemma 4.0.2. Suppose that there exists a natural number `0 such that, for any F ∈ FR,π and any
` > `0, there is a subgroup P` < K`(G,F ) satisfying that for every x ∈ X

(1) For any α ∈ Υ we have παP`π
−α ⊂ K`.

(2) K`x = P`x.

Then condition (4) in Definition 3.1.2 is satisfied.

In our applications, we use the following to show that the pairs we consider are F -spherical.

Proposition 4.0.3. Let F be an infinite field, and consider G = GLn1 × · · · × GLnk embedded in the
standard way in M = Matn1

× · · · ×Matnk . Let A,B ⊂ G⊗ F be two F -subgroups whose closures in M
are affine subspaces MA,MB.

http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_1/CM_1996__102_1_65_0/CM_1996__102_1_65_0.pdf
http://arxiv.org/pdf/0709.4215v1
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(1) For any x, y ∈ G(F ), if the variety {(a, b) ∈ A × B|axb = y} is non-empty, then it has an
F -rational point.

(2) If (G,A) is a spherical pair, then it is also an F -spherical pair.

Proof. (1) Denote the projections G → GLnj by πj . Assume that x, y ∈ G(F ), and there is a pair

(a, b) ∈ (A×B)(F ) such that axb = y. Let L ⊂MA×MB be the affine subspace {(α, β)|αx = yβ},
defined over F . By assumption, the functions (α, β) 7→ detπj(α) and (α, β) 7→ detπj(β), for

j = 1, . . . , k, are non-zero on L(F ). Hence there is (a, b) ∈ L(F )∩G, which means that axb−1 = y.
(2) Applying (1) to A and any parabolic subgroup B ⊂ G, any (A × B)(F )-orbit in G(F ) contains

at most one (A×B)(F )-orbit. Since there are only finitely many (A×B)(F )-orbits in G(F ), the
pair (G,A) is F -spherical.

�

4.1. The Pair (GLn+k,GLn×GLk).
In this subsection we assume p 6= 2 and consider only local fields of characteristic different from 2.
Let G := (GLn+k)R and H := (GLn)R × (GLk)R < G be the subgroup of block matrices. Note that

H is a symmetric subgroup since it consists of fixed points of conjugation by ε =

(
Idk 0
0 −Idn

)
. We

prove that (G,H) is a Gelfand pair using Corollary C. The pair (G,H) is a symmetric pair, hence it is a
spherical pair and therefore by Proposition 4.0.3 it is F -spherical. The second condition of Corollary C
is [JR96, Theorem 1.1]. It remains to prove that (G,H) is a uniform spherical pair.

Proposition 4.1.1. The pair (G,H) is uniform spherical.

Proof. Without loss of generality suppose that n ≥ k. Let X = {x0}, where

x0 :=

Idk 0 Idk
0 Idn−k 0
0 0 Idk

H and Υ = {(µ1, ..., µk, 0, ..., 0) ∈ X∗(T ) |µ1 ≤ ... ≤ µk ≤ 0}.

To show the first condition we show that every double coset in K0\G/H includes an element of the
formIdk 0 diag(πµ1 , ..., πµk)

0 Idn−k 0
0 0 Idk

 s.t. µ1 ≤ ... ≤ µk ≤ 0. Take any g ∈ G. By left multiplication by

K0 we can bring it to upper triangular form. By right multiplication by H we can bring it to a form(
Idn A
0 Idk

)
. Conjugating by a matrix

(
k1 0
0 k2

)
∈ K0 ∩ H we can replace it by

(
Idn k1Ak

−1
2

0 Idk

)
.

Hence we can bring A to be a k-by-(n− k) block of zero, followed by the a diagonal matrix of the form

diag(πµ1 , ..., πµk) s.t. µ1 ≤ ... ≤ µk. Multiplying by an element of K0 of the form

Idk 0 k
0 Idn−k 0
0 0 Idk


we can bring A to the desired form.

As for the second condition, we first compute the stabilizer Gx0
of x0 in G. Note that the coset

x0 ∈ G/H equals 
g1 g2 h
g3 g4 0
0 0 h

 |(g1 g2

g3 g4

)
∈ (GLn)R, h ∈ (GLk)R



http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_1/CM_1996__102_1_65_0/CM_1996__102_1_65_0.pdf
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and A B C
D E F
G H I

Idk 0 Idk
0 Idn−k 0
0 0 Idk

 =

A B A+ C
D E D + F
G H G+ I

 .

Hence

Gx0
=


g1 g2 h− g1

g3 g4 −g3

0 0 h

 |(g1 g2

g3 g4

)
∈ (GLn)R, h ∈ (GLk)R

 .

Therefore, for any δ1 = (λ1,1, ..., λ1,k, 0, ..., 0), δ2 = (λ2,1, ..., λ2,k, 0, ..., 0) ∈ Υ,

G(F )πλ1x0,πλ2x0
=


πλ2g1π

−λ1 πλ2g2 πλ2(h− g1)
g3π
−λ1 g4 −g3

0 0 h

 | (g1 g2

g3 g4

)
∈ (GLn)R, h ∈ (GLk)R

 =

=


A B C
D E F
0 0 I

 ∈ GLn+k, |D = −Fπ−λ1 , C = πλ2I −Aπλ1

 .

The second condition of Definition 3.1.2 follows now from Lemma 4.0.1.

As for the third condition, we use the embedding G/H → G given by g 7→ gεg−1ε. It is easy to see
that valF (πµx0) = µ1, which is independent of F .

Let us now prove the last condition using Lemma 4.0.2. Take l0 = 1 and

P :=


Id 0 0
D E F
G H I

 ∈ GLn+k

 .

Let Pl := P (F )∩Kl(GLn+k, F ). The first condition of Lemma 4.0.2 obviously holds. To show the second
condition, we have to show that for any F , any l ≥ 1 and any g ∈ Kl(GLn+k, F ) there exist p ∈ Pl and
h ∈ H(F ) such that gx0 = pxoh. In other words, we have to solve the following equation:

Idk +A B Idk +A+ C
D Idn−k + E D + F
G H Idk +G+ I

 =

Idk 0 Idk
D′ Idn−k + E′ D′ + F ′

G′ H ′ Idk +G′ + I ′

Idk + x y 0
z Idk + w 0
0 0 Idk + h

 ,

where all the capital letters denote matrices of appropriate sizes with entries in πlOF , and the matrices
in the left hand side are parameters and matrices in the right hand side are unknowns.

The solution is given by:

x = A, y = B, z = D, w =E, h = A+ C

D′ = 0, E′ = 0, F ′ = (D + F )(Idk +A+ C)−1,

H ′ = (H −G(Idk +A)−1B)(−D(Idk +A)−1B + Idn−k + E)−1

G′ = (G−H ′D)(Idk +A)−1, I ′ = (G+ I −A− C)(Idk +A+ C)−1 −G′

�
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4.2. Structure of the spherical space (GLn+1×GLn)/∆ GLn. Consider the embedding ι : GLn ↪→
GLn+1 given by

A 7→
(

1 0
0 A

)
.

Denote G = GLn+1(F ) × GLn(F ) and H = ∆ GLn(F ). The quotient space G/H is isomorphic to
(GLn+1)R via the map (g, h) 7→ gι(h−1). Under this isomorphism, the action of G on G/H becomes
(g, h) ·X = gXι(h−1).

The space G/H is spherical. Indeed, let B ⊂ G be the Borel subgroup consisting of pairs (b1, b2),
where b1 is lower triangular and b2 is upper triangular, and let x0 ∈ G/H be the point represented by
the matrix

x0 =

(
1 e
0 I

)
,

where e is a row vector of 1’s. We claim that Bx0 is open in G/H. Let b be the Lie algebra of B. It
consists of pairs (X,Y ) where X is lower triangular and Y is upper triangular. The infinitesimal action
of b on X at x0 is given by (X,Y ) 7→ Xx0− x0dι(Y ). To show that the image is Matn+1, it is enough to
show that the images of the maps X 7→ Xx0 and Y 7→ x0dι(Y ) have trivial intersection. Suppose that
Xx0 = x0dι(Y ). Then X = x0dι(Y )x−1

0 , i.e.

X =

(
1 e

I

)(
0 0
0 Y

)(
1 −e

I

)
=

(
0 eY
0 Y

)
.

Since X is lower triangular and Y is upper triangular, both have to be diagonal. But eY = 0 implies
that Y = 0, and hence also X=0. Proposition 4.0.3 implies that the pair (G,H) is F -spherical.

The following describes the quotient G(OF )\G(F )/H(F ).

Lemma 4.2.1. For every matrix A ∈ Matn+1(F ) there are k1 ∈ GLn+1(O) and k2 ∈ GLn(O) such that

(3) k1Aι(k2) =


πa πb1 πb2 . . . πbn

πc1

πc2

. . .

πcn

 ,

where the numbers a, bi, ci satisfy that if i < j then ci − cj ≤ bi − bj ≤ 0 and b1 ≤ c1.

Proof. Let a be the minimal valuation of an element in the first column of A. There is an integral
matrix w1 such that the first column of the matrix w1A is πa, 0, 0, . . . , 0. Let C be the n× n lower-right
sub-matrix of w1A. By Cartan decomposition, there are integral matrices w2, w3 such that w2Cw

−1
3 is

diagonal, and its diagonal entries are πci for a non-decreasing sequence ci. Finally, there are integral and
diagonal matrices d1, d2 such that the matrix d1ι(w2)w1Aι(w

−1
3 )ι(d−1

2 ) has the form (3).
Suppose that i < j and bi > bj . Then adding the j’th column to the i’th column and subtracting

πcj−ci times the i’th row to the j’th row, we can change the matrix (3) so that bi = bj . Similarly, if i < j
and bi − bj < ci − cj , then adding πbj−bi−1 times the i’th column to the j’th column, and subtracting
πci+bj−bi−1−cj times the j’th row to the i’th row changes the matrix (3) so that bi becomes smaller in 1.
Finally, if c1 < b1 than adding the second row to the first changes the matrix so that c1 = b1. �

Let T ⊂ G be the torus consisting of pairs (t1, t2) such that ti are diagonal. The co-character group of
T is the group Zn+1 × Zn. The positive Weyl chamber of T that is defined by B1 is the set ∆ ⊂ X∗(T )
consisting of pairs (µ, ν) such that the µi’s are non-decreasing and the νi’s are non-increasing. Lemma

1The positive Weyl chamber defined by the Borel B is the subset of co-weights λ such that πλB(O)π−λ ⊂ B(O)



SPHERICAL PAIRS OVER CLOSE LOCAL FIELDS 23

4.2.1 implies that the set
{
πλx0

}
λ∈∆

is a complete set of orbit representatives for G(O)\G(F )/H(F ).

We are ready to prove that (G,H) is uniform spherical.

Proposition 4.2.2. The pair ((GLn+1)R × (GLn)R,∆(GLn)R) is uniform spherical.

Proof. Let Υ ⊂ X∗(T ) be the positive Weyl chamber and let X := {x0}. By the above, the first
condition of Definition 3.1.2 holds. As for the second condition, an easy computation shows that if
a, b1, . . . , bn, c1, . . . , cn ∈ Z, a′, b′1, . . . , b

′
n, c
′
1, . . . , c

′
n ∈ Z satisfy the conclusion of Lemma 4.2.1, and

(k1, k2) ∈ G(O) satisfy that

k1


πa πb1 πb2 . . . πbn

πc1

πc2

. . .

πcn

 ι(k1) =


πa
′

πb
′
1 πb

′
2 . . . πb

′
n

πc
′
1

πc
′
2

. . .

πc
′
n

 ,

then a = a′, ci = c′i, k1 has the form

(
1 B
0 D

)
, where B is a 1 × n matrix and D is an n × n matrix

that satisfy the equations D = πck2π
−c and Bπc = πb − πb′k2, where πc denotes the diagonal matrix

with entries πc1 , . . . , πcn , πb denotes the row vector with entries πbi , and πb
′

denotes the row vector with
entries πb

′
i . The second condition of Definition 3.1.2 holds by Lemma 4.0.1.

The third condition follows because, using the affine embedding as above, πλx0 has the form (3) and
so valF (πλx0) is independent of F .

Finally it is left to verify the last condition. In the following, we will distinguish between the `th
congruence subgroup in GLn+1(F ), which we denote by K`(GLn+1(F )), the `th congruence subgroup in
GLn(F ), which we denote by K`(GLn(F )), and the `th congruence subgroup in G = GLn+1(F )×GLn(F ),
which we denote by K`. By lemma 4.0.2 it is enough to show that (B ∩Kl)x0 = Klx0. It is easy to see
that Klx0 = x0 + πlMatn(OF ). Let y ∈ x0 + πlMatn(OF ). We have to show that y ∈ (B ∩Kl)x0. In
order to do this let us represent y as a block matrix

y =

(
a b
c D

)
,

where a is a scalar and D is n × n matrix. Using left multiplication by lower triangular matrix from

Kl(GLn+1(F )) we may bring y to the form

(
1 b′

0 D′

)
. We can decompose D′ = LU , where L,U ∈

Kl(GLn+1(F )) and L is lower triangular and U is upper triangular. Therefore by action of an element

from B ∩Kl we may bring y to the form

(
1 b′′

0 Id

)
. Using right multiplication by diagonal matrix from

Kl(GLn+1(F )) (with first entry 1) we may bring y to the form

(
1 e
0 D′′

)
, where e is a row vector of 1’s

and D′′ is a diagonal matrix. Finally, using left multiplication by diagonal matrix from Kl(GLn+1(F ))
we may bring y to be x0. �

4.3. The Pair (GLn+1×GLn,∆ GLn).
In this section we prove Theorem D which states that (GLn+1(F ),GLn(F )) is a strong Gelfand pair

for any local field F , i.e. for any irreducible smooth representations π of GLn+1(F ) and τ of GLn(F ) we
have

dim HomGLn(F )(π, τ) ≤ 1.



24 AVRAHAM AIZENBUD, NIR AVNI, AND DMITRY GOUREVITCH

It is well known (see e.g. [AGRS, section 1]) that this theorem is equivalent to the statement that
(GLn+1(F ) × GLn(F ),∆ GLn(F )), where ∆ GLn is embedded in GLn+1×GLn by the map ι × Id, is a
Gelfand pair.

By Corollary C this statement follows from Proposition 4.2.2, and the following theorem:

Theorem 4.3.1 ([AGRS], Theorem 1). Let F be a local field of characteristic 0. Then
(GLn+1(F ),GLn(F )) is a strong Gelfand pair.
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