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Abstract. In the first part of the paper we generalize a descent technique due to Harish-Chandra to
the case of a reductive group acting on a smooth affine variety both defined over an arbitrary local field
F of characteristic zero. Our main tool is the Luna Slice Theorem.

In the second part of the paper we apply this technique to symmetric pairs. In particular we prove
that the pairs (GLn+k(F ), GLn(F ) × GLk(F )) and (GLn(E), GLn(F )) are Gelfand pairs for any local
field F and its quadratic extension E. In the non-Archimedean case, the first result was proven earlier
by Jacquet and Rallis and the second by Flicker.

We also prove that any conjugation invariant distribution on GLn(F ) is invariant with respect to
transposition. For non-Archimedean F the latter is a classical theorem of Gelfand and Kazhdan.

Contents

1. Introduction 2
1.1. Main results 2
1.2. Related work 3
1.3. Structure of the paper 3
1.4. Acknowledgements 4

Part 1. Generalized Harish-Chadra descent 4
2. Preliminaries and notation 4
2.1. Conventions 4
2.2. Categorical quotient 5
2.3. Algebraic geometry over local fields 5
2.4. Vector systems 7
2.5. Distributions 7
3. Generalized Harish-Chandra descent 9
3.1. Generalized Harish-Chandra descent 9
3.2. A stronger version 10
4. Distributions versus Schwartz distributions 12
5. Applications of Fourier transform and the Weil representation 12
5.1. Preliminaries 13
5.2. Applications 13
6. Tame actions 14

Part 2. Symmetric and Gelfand pairs 15
7. Symmetric pairs 15
7.1. Preliminaries and notation 16
7.2. Descendants of symmetric pairs 17
7.3. Tame symmetric pairs 18

Key words and phrases. Multiplicity one, Gelfand pairs, symmetric pairs, Luna Slice Theorem, invariant distributions,
Harish-Chandra descent, uniqueness of linear periods.

MSC Classes: 20C99, 20G05, 22E45, 22E50, 46F10, 14L24, 14L30.

1



2 AVRAHAM AIZENBUD AND DMITRY GOUREVITCH

7.4. Regular symmetric pairs 19
7.5. Conjectures 21
7.6. The pairs (G×G,∆G) and (GE/F , G) are tame 21
7.7. The pair (GLn+k,GLn ×GLk) is a GK pair. 22
8. Applications to Gelfand pairs 24
8.1. Preliminaries on Gelfand pairs and distributional criteria 24
8.2. Applications to Gelfand pairs 25

Part 3. Appendices 25
Appendix A. Algebraic geometry over local fields 25
A.1. Implicit Function Theorems 25
A.2. The Luna Slice Theorem 26
Appendix B. Schwartz distributions on Nash manifolds 26
B.1. Preliminaries and notation 26
B.2. Submersion principle 27
B.3. Frobenius reciprocity 28
B.4. K-invariant distributions compactly supported modulo K. 29
Appendix C. Proof of the Archimedean Homogeneity Theorem 30
Appendix D. Localization Principle 31
Appendix E. Diagram 33
References 34

1. Introduction

Harish-Chandra developed a technique based on Jordan decomposition that allows to reduce certain
statements on conjugation invariant distributions on a reductive group to the set of unipotent elements,
provided that the statement is known for certain subgroups (see e.g. [HC99]).

In this paper we generalize an aspect of this technique to the setting of a reductive group acting on a
smooth affine algebraic variety, using the Luna Slice Theorem. Our technique is oriented towards proving
Gelfand property for pairs of reductive groups.

Our approach is uniform for all local fields of characteristic zero – both Archimedean and non-
Archimedean.

1.1. Main results.
The core of this paper is Theorem 3.1.1:

Theorem. Let a reductive group G act on a smooth affine variety X, both defined over a local field F of
characteristic zero. Let χ be a character of G(F ).

Suppose that for any x ∈ X(F ) with closed orbit there are no non-zero distributions on the normal
space at x to the orbit G(F )x which are (G(F )x, χ)-equivariant, where Gx denotes the stabilizer of x.

Then there are no non-zero (G(F ), χ)-equivariant distributions on X(F ).

In fact, a stronger version based on this theorem is given in Corollary 3.2.2. This stronger version
is based on an inductive argument. It shows that it is enough to prove that there are no non-zero
equivariant distributions on the normal space to the orbit G(F )x at x under the assumption that all such
distributions are supported in a certain closed subset which is the analog of the nilpotent cone.

We apply this stronger version to problems of the following type. Let a reductive group G act on a
smooth affine variety X, and τ be an involution of X which normalizes the image of G in Aut(X). We
want to check whether any G(F )-invariant distribution on X(F ) is also τ -invariant. Evidently, there is
the following necessary condition on τ :
(*) Any closed orbit in X(F ) is τ -invariant.
In some cases this condition is also sufficient. In these cases we call the action of G on X tame.
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This is a weakening of the property called ”density” in [RR96]. However, it is sufficient for the purpose
of proving Gelfand property for pairs of reductive groups.

In §6 we give criteria for tameness of actions. In particular, we introduce the notion of ”special” action
in order to show that certain actions are tame (see Theorem 6.0.5 and Proposition 7.3.5). Also, in many
cases one can verify that an action is special using purely algebraic-geometric means.

In the second part of the paper we restrict our attention to the case of symmetric pairs. We transfer
the terminology on actions to terminology on symmetric pairs. For example, we call a symmetric pair
(G,H) tame if the action of H ×H on G is tame.

In addition we introduce the notion of a ”regular” symmetric pair (see Definition 7.4.2), which also
helps to prove Gelfand property. Namely, we prove Theorem 7.4.5.

Theorem. Let G be a reductive group defined over a local field F and let θ be an involution of G. Let
H := Gθ and let σ be the anti-involution defined by σ(g) := θ(g−1). Consider the symmetric pair (G,H).

Suppose that all its ”descendants” (including itself, see Definition 7.2.2) are regular. Suppose also that
any closed H(F )-double coset in G(F ) is σ-invariant.

Then every bi-H(F )-invariant distribution on G(F ) is σ-invariant. In particular, by Gelfand-Kazhdan
criterion, the pair (G,H) is a Gelfand pair (see §8).

Also, we formulate an algebraic-geometric criterion for regularity of a pair (Proposition 7.3.7). We
sum up the various properties of symmetric pairs and their interrelations in a diagram in Appendix E.

As an application and illustration of our methods we prove in §7.7 that the pair (GLn+k,GLn×GLk)
is a Gelfand pair by proving that it is regular, along with its descendants. In the non-Archimedean case
this was proven in [JR96] and our proof is along the same lines. Our technique enabled us to streamline
some of the computations in the proof of [JR96] and to extend it to the Archimedean case.

We also prove (in §7.6) that the pair (G(E), G(F )) is tame for any reductive group G over F and a
quadratic field extension E/F . This implies that the pair (GLn(E),GLn(F )) is a Gelfand pair. In the
non-Archimedean case this was proven in [Fli91]. Also we prove that the adjoint action of a reductive
group on itself is tame. This is a generalization of a classical theorem by Gelfand and Kazhdan, see
[GK75].

In general, we conjecture that any symmetric pair is regular. This would imply the van Dijk conjecture:

Conjecture (van Dijk). Any symmetric pair (G,H) over C such that G/H is connected is a Gelfand
pair.

1.2. Related work.
This paper was inspired by the paper [JR96] by Jacquet and Rallis where they prove that the pair
(GLn+k(F ),GLn(F )×GLk(F )) is a Gelfand pair for any non-Archimedean local field F of characteristic
zero. Our aim was to see to what extent their techniques generalize.

Another generalization of Harish-Chandra descent using the Luna Slice Theorem has been carried out
in the non-Archimedean case in [RR96]. In that paper Rader and Rallis investigated spherical characters
of H-distinguished representations of G for symmetric pairs (G,H) and checked the validity of what they
call the ”density principle” for rank one symmetric pairs. They found out that the principle usually
holds, but also found counterexamples.

In [vD86], van-Dijk investigated rank one symmetric pairs in the Archimedean case and classified the
Gelfand pairs among them. In [BvD94], van-Dijk and Bosman studied the non-Archimedean case and
obtained results for most rank one symmetric pairs. We hope that the second part of our paper will
enhance the understanding of this question for symmetric pairs of higher rank.

1.3. Structure of the paper.
In §2 we introduce notation and terminology which allows us to speak uniformly about spaces of points
of smooth algebraic varieties over Archimedean and non-Archimedean local fields, and equivariant distri-
butions on those spaces.

In §§2.3 we formulate a version of the Luna Slice Theorem for points over local fields (Theorem 2.3.17).
In §§2.5 we formulate results on equivariant distributions and equivariant Schwartz distributions. Most
of those results are borrowed from [BZ76], [Ber84], [Bar03] and [AGS08], and the rest are proven in
Appendix B.

http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
http://annals.math.princeton.edu/issues/2003/Baruch.pdf
http://arxiv.org/pdf/0709.1273v4
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In §3 we formulate and prove the Generalized Harish-Chandra Descent Theorem and its stronger
version.
§4 is of interest only in the Archimedean case. In that section we prove that in the cases at hand if

there are no equivariant Schwartz distributions then there are no equivariant distributions at all. Schwartz
distributions are discussed in Appendix B.

In §5 we formulate a homogeneity Theorem which helps us to check the conditions of the Generalized
Harish-Chandra Descent Theorem. In the non-Archimedean case this theorem had been proved earlier
(see e.g. [JR96], [RS07] or [AGRS07]). We provide the proof for the Archimedean case in Appendix C.

In §6 we introduce the notion of tame actions and provide tameness criteria.
In §7 we apply our tools to symmetric pairs. In §§7.3 we provide criteria for tameness of a symmetric

pair. In §§7.4 we introduce the notion of a regular symmetric pair and prove Theorem 7.4.5 alluded
to above. In §§7.5 we discuss conjectures about the regularity and the Gelfand property of symmet-
ric pairs. In §§7.6 we prove that certain symmetric pairs are tame. In §§7.7 we prove that the pair
(GLn+k(F ),GLn(F )×GLk(F )) is regular.

In §8 we recall basic facts on Gelfand pairs and their connections to invariant distributions. We also
prove that the pairs (GLn+k(F ),GLn(F ) × GLk(F )) and (GLn(E),GLn(F )) are Gelfand pairs for any
local field F and its quadratic extension E.

We start Appendix A by discussing different versions of the Inverse Function Theorem for local fields.
Then we prove a version of the Luna Slice Theorem for points over local fields (Theorem 2.3.17). For
Archimedean F this was done by Luna himself in [Lun75].

Appendices B and C are of interest only in the Archimedean case.
In Appendix B we discuss Schwartz distributions on Nash manifolds. We prove Frobenius reciprocity

for them and construct the pullback of a Schwartz distribution under a Nash submersion. Also we
prove that G-invariant distributions which are (Nashly) compactly supported modulo G are Schwartz
distributions.

In Appendix C we prove the Archimedean version of the Homogeneity Theorem discussed in §5.
In Appendix D we formulate and prove a version of Bernstein’s Localization Principle (Theorem

4.0.1). This appendix is of interest only for Archimedean F since for l-spaces a more general version of
this principle had been proven in [Ber84]. This appendix is used in §4.

In [AGS09] we formulated Localization Principle in the setting of differential geometry. Admittedly,
we currently do not have a proof of this principle in such a general setting. However, in Appendix D we
present a proof in the case of a reductive group G acting on a smooth affine variety X. This generality is
sufficiently wide for all applications we encountered up to now, including the one considered in [AGS09].

Finally, in Appendix E we present a diagram that illustrates the interrelations of various properties of
symmetric pairs.

1.4. Acknowledgements. We would like to thank our teacher Joseph Bernstein for our mathematical
education.

We also thank Vladimir Berkovich, Joseph Bernstein, Gerrit van Dijk, Stephen Gelbart,
Maria Gorelik, Herve Jacquet, David Kazhdan, Erez Lapid, Shifra Reif, Eitan Sayag, David
Soudry, Yakov Varshavsky and Oksana Yakimova for fruitful discussions, and Sun Binyong,
Gerard Schiffmann, and the referees for useful remarks.

Finally we thank Anna Gourevitch for the graphical design of Appendix E.
Both authors are partially supported by BSF grant, GIF grant, and ISF Center of excellency grant.

Part 1. Generalized Harish-Chadra descent

2. Preliminaries and notation

2.1. Conventions.
• Henceforth we fix a local field F of characteristic zero. All the algebraic varieties and algebraic

groups that we will consider will be defined over F .
• For a group G acting on a set X we denote by XG the set of fixed points of X. Also, for an

element x ∈ X we denote by Gx the stabilizer of x.

http://arxiv.org/abs/0705.2168v1
http://arxiv.org/pdf/0709.4215v1
http://www.jstor.org/stable/2373666
http://www.springerlink.com/content/48436n62526244m3/
http://www.springerlink.com/content/48436n62526244m3/
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• By a reductive group we mean a (non-necessarily connected) algebraic reductive group.
• We consider an algebraic variety X defined over F as an algebraic variety over F together with

action of the Galois group Gal(F/F ). On X we only consider the Zariski topology. On X(F ) we
only consider the analytic (Hausdorff) topology. We treat finite-dimensional linear spaces defined
over F as algebraic varieties.

• The tangent space of a manifold (algebraic, analytic, etc.) X at x will be denoted by TxX.
• Usually we will use the letters X,Y, Z,∆ to denote algebraic varieties and the letters G,H to

denote reductive groups. We will usually use the letters V,W,U,K,M,N,C,O, S, T to denote
analytic spaces (such as F -points of algebraic varieties) and the letter K to denote analytic
groups. Also we will use the letters L, V,W to denote vector spaces of all kinds.

2.2. Categorical quotient.

Definition 2.2.1. Let an algebraic group G act on an algebraic variety X. A pair consisting of an
algebraic variety Y and a G-invariant morphism π : X → Y is called the quotient of X by the action
of G if for any pair (π′, Y ′), there exists a unique morphism φ : Y → Y ′ such that π′ = φ ◦ π. Clearly,
if such pair exists it is unique up to a canonical isomorphism. We will denote it by (πX , X/G).

Theorem 2.2.2 (cf. [Dre00]). Let a reductive group G act on an affine variety X. Then the quotient
X/G exists, and every fiber of the quotient map πX contains a unique closed orbit. In fact, X/G :=
SpecO(X)G.

2.3. Algebraic geometry over local fields.

2.3.1. Analytic manifolds.
In this paper we consider distributions over l-spaces, smooth manifolds and Nash manifolds. l-spaces are
locally compact totally disconnected topological spaces and Nash manifolds are semi-algebraic smooth
manifolds.

For basic facts on l-spaces and distributions over them we refer the reader to [BZ76, §1].
For basic facts on Nash manifolds and Schwartz functions and distributions over them see Appendix

B and [AG08a]. In this paper we consider only separated Nash manifolds.
We now introduce notation and terminology which allows a uniform treatment of the Archimedean

and the non-Archimedean cases.
We will use the notion of an analytic manifold over a local field (see e.g. [Ser64, Part II, Chapter III]).

When we say ”analytic manifold” we always mean analytic manifold over some local field. Note that
an analytic manifold over a non-Archimedean field is in particular an l-space and an analytic manifold
over an Archimedean field is in particular a smooth manifold.

Definition 2.3.1. A B-analytic manifold is either an analytic manifold over a non-Archimedean local
field, or a Nash manifold.

Remark 2.3.2. If X is a smooth algebraic variety, then X(F ) is a B-analytic manifold and (TxX)(F ) =
Tx(X(F )).

Notation 2.3.3. Let M be an analytic manifold and S be an analytic submanifold. We denote by NM
S :=

(TM |Y )/TS the normal bundle to S in M . The conormal bundle is defined by CNM
S := (NM

S )∗.
Denote by Symk(CNM

S ) the k-th symmetric power of the conormal bundle. For a point y ∈ S we denote
by NM

S,y the normal space to S in M at the point y and by CNM
S,y the conormal space.

2.3.2. G-orbits on X and G(F )-orbits on X(F ).

Lemma 2.3.4 (see Appendix A.1). Let G be an algebraic group and let H ⊂ G be a closed subgroup.
Then G(F )/H(F ) is open and closed in (G/H)(F ).

Corollary 2.3.5. Let an algebraic group G act on an algebraic variety X. Let x ∈ X(F ). Then

NX
Gx,x(F ) ∼= N

X(F )
G(F )x,x.

http://citeseer.ist.psu.edu/349964.html
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
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Proposition 2.3.6. Let an algebraic group G act on an algebraic variety X. Suppose that S ⊂ X(F ) is
a non-empty closed G(F )-invariant subset. Then S contains a closed orbit.

Proof. The proof is by Noetherian induction on X. Choose x ∈ S. Consider Z := Gx−Gx.
If Z(F )∩S is empty then Gx(F )∩S is closed and hence G(F )x∩S is closed by Lemma 2.3.4. Therefore

G(F )x is closed.
If Z(F ) ∩ S is non-empty then Z(F ) ∩ S contains a closed orbit by the induction assumption. �

Corollary 2.3.7. Let an algebraic group G act on an algebraic variety X. Let U be an open G(F )-
invariant subset of X(F ). Suppose that U contains all closed G(F )-orbits. Then U = X(F ).

Theorem 2.3.8 ([RR96], §2 fact A, pages 108-109). Let a reductive group G act on an affine variety X.
Let x ∈ X(F ). Then the following are equivalent:
(i) G(F )x ⊂ X(F ) is closed (in the analytic topology).
(ii) Gx ⊂ X is closed (in the Zariski topology).

Definition 2.3.9. Let a reductive group G act on an affine variety X. We call an element x ∈ X
G-semisimple if its orbit Gx is closed.

In particular, in the case where G acts on itself by conjugation, the notion of G-semisimplicity coincides
with the usual one.

Notation 2.3.10. Let V be an F -rational finite-dimensional representation of a reductive group G. We
set

QG(V ) := Q(V ) := (V/V G)(F ).
Since G is reductive, there is a canonical embedding Q(V ) ↪→ V (F ). Let π : V (F ) → (V/G)(F ) be the
natural map. We set

ΓG(V ) := Γ(V ) := π−1(π(0)).
Note that Γ(V ) ⊂ Q(V ). We also set

RG(V ) := R(V ) := Q(V )− Γ(V ).

Notation 2.3.11. Let a reductive group G act on an affine variety X. For a G-semisimple element
x ∈ X(F ) we set

Sx := {y ∈ X(F ) |G(F )y 3 x}.

Lemma 2.3.12. Let V be an F -rational finite-dimensional representation of a reductive group G. Then
Γ(V ) = S0.

This lemma follows from [RR96, fact A on page 108] for non-Archimedean F and [Brk71, Theorem
5.2 on page 459] for Archimedean F .

Example 2.3.13. Let a reductive group G act on its Lie algebra g by the adjoint action. Then Γ(g) is
the set of nilpotent elements of g.

Proposition 2.3.14. Let a reductive group G act on an affine variety X. Let x, z ∈ X(F ) be G-
semisimple elements which do not lie in the same orbit of G(F ). Then there exist disjoint G(F )-invariant
open neighborhoods Ux of x and Uz of z.

For the proof of this Proposition see [Lun75] for Archimedean F and [RR96, fact B on page 109] for
non-Archimedean F .

Corollary 2.3.15. Let a reductive group G act on an affine variety X. Suppose that x ∈ X(F ) is a
G-semisimple element. Then the set Sx is closed.

Proof. Let y ∈ Sx. By Proposition 2.3.6, G(F )y contains a closed orbit G(F )z. If G(F )z = G(F )x
then y ∈ Sx. Otherwise, choose disjoint open G-invariant neighborhoods Uz of z and Ux of x. Since
z ∈ G(F )y, Uz intersects G(F )y and hence contains y. Since y ∈ Sx, this means that Uz intersects Sx.
Let t ∈ Uz ∩ Sx. Since Uz is G(F )-invariant, G(F )t ⊂ Uz. By the definition of Sx, x ∈ G(F )t and hence
x ∈ Uz. Hence Uz intersects Ux – contradiction! �

http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
http://www.jstor.org/stable/1970884
http://www.jstor.org/stable/2373666
http://muse.jhu.edu/journals/american_journal_of_mathematics/v118/118.1rader.pdf
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2.3.3. Analytic Luna slices.

Definition 2.3.16. Let a reductive group G act on an affine variety X. Let π : X(F ) → (X/G)(F ) be the
natural map. An open subset U ⊂ X(F ) is called saturated if there exists an open subset V ⊂ (X/G)(F )
such that U = π−1(V ).

We will use the following corollary of the Luna Slice Theorem:

Theorem 2.3.17 (see Appendix A.2). Let a reductive group G act on a smooth affine variety X. Let
x ∈ X(F ) be G-semisimple. Consider the natural action of the stabilizer Gx on the normal space NX

Gx,x.
Then there exist
(i) an open G(F )-invariant B-analytic neighborhood U of G(F )x in X(F ) with a G-equivariant B-analytic
retract p : U → G(F )x and
(ii) a Gx-equivariant B-analytic embedding ψ : p−1(x) ↪→ NX

Gx,x(F ) with an open saturated image such
that ψ(x) = 0.

Definition 2.3.18. In the notation of the previous theorem, denote S := p−1(x) and N := NX
Gx,x(F ).

We call the quintuple (U, p, ψ, S,N) an analytic Luna slice at x.

Corollary 2.3.19. In the notation of the previous theorem, let y ∈ p−1(x). Denote z := ψ(y). Then
(i) (G(F )x)z = G(F )y
(ii) NX(F )

G(F )y,y
∼= NN

G(F )xz,z
as G(F )y-spaces

(iii) y is G-semisimple if and only if z is Gx-semisimple.

2.4. Vector systems. 1

In this subsection we introduce the term ”vector system”. This term allows to formulate statements
in wider generality.

Definition 2.4.1. For an analytic manifold M we define the notions of a vector system and a B-vector
system over it.

For a smooth manifold M , a vector system over M is a pair (E,B) where B is a smooth locally trivial
fibration over M and E is a smooth (finite-dimensional) vector bundle over B.

For a Nash manifold M , a B-vector system over M is a pair (E,B) where B is a Nash fibration over
M and E is a Nash (finite-dimensional) vector bundle over B.

For an l-space M , a vector system over M (or a B-vector system over M) is a sheaf of complex linear
spaces.

In particular, in the case where M is a point, a vector system over M is either a C-vector space
if F is non-Archimedean, or a smooth manifold together with a vector bundle in the case where F is
Archimedean. The simplest example of a vector system over a manifold M is given by the following.

Definition 2.4.2. Let V be a vector system over a point pt. Let M be an analytic manifold. A constant
vector system with fiber V is the pullback of V with respect to the map M → pt. We denote it by VM .

2.5. Distributions.

Definition 2.5.1. Let M be an analytic manifold over F . We define C∞c (M) in the following way.
If F is non-Archimedean then C∞c (M) is the space of locally constant compactly supported complex

valued functions on M . We do not consider any topology on C∞c (M).
If F is Archimedean then C∞c (M) is the space of smooth compactly supported complex valued functions

on M , endowed with the standard topology.
For any analytic manifold M , we define the space of distributions D(M) by D(M) := C∞c (M)∗. We

consider the weak topology on it.

1Subsection 2.4 and in particular the notion of ”vector system” along with the results at the end of §§3.1 and §§3.2 are
not essential for the rest of the paper. They are merely included for future reference.
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Definition 2.5.2. Let M be a B-analytic manifold. We define S(M) in the following way.
If M is an analytic manifold over non-Archimedean field, S(M) := C∞c (M).
If M is a Nash manifold, S(M) is the space of Schwartz functions on M , namely smooth functions

which are rapidly decreasing together with all their derivatives. See [AG08a] for the precise definition.
We consider S(M) as a Fréchet space.

For any B-analytic manifold M , we define the space of Schwartz distributions S∗(M) by S∗(M) :=
S(M)∗. Clearly, S(M)∗ is naturally embedded into D(M).

Notation 2.5.3. Let M be an analytic manifold. For a distribution ξ ∈ D(M) we denote by Supp(ξ)
the support of ξ.

For a closed subset N ⊂M we denote

DM (N) := {ξ ∈ D(M)|Supp(ξ) ⊂ N}.

More generally, for a locally closed subset N ⊂M we denote

DM (N) := DM\(N\N)(N).

Similarly if M is a B-analytic manifold and N is a locally closed subset we define S∗M (N) in a similar
vein. 2

Definition 2.5.4. Let M be an analytic manifold over F and E be a vector system over M . We define
C∞c (M, E) in the following way.

If F is non-Archimedean then C∞c (M, E) is the space of compactly supported sections of E.
If F is Archimedean and E = (E,B) where B is a fibration over M and E is a vector bundle over B,

then C∞c (M, E) is the complexification of the space of smooth compactly supported sections of E over B.
If V is a vector system over a point then we denote C∞c (M,V) := C∞c (M,VM ).

We define D(M, E), DM (N, E), S(M, E), S∗(M, E) and S∗M (N, E) in the natural way.

Theorem 2.5.5. Let an l-group K act on an l-space M . Let M =
⋃l
i=0Mi be a K-invariant stratification

of M . Let χ be a character of K. Suppose that S∗(Mi)K,χ = 0. Then S∗(M)K,χ = 0.

This theorem is a direct corollary of [BZ76, Corollary 1.9].
For the proof of the next theorem see e.g. [AGS08, §B.2].

Theorem 2.5.6. Let a Nash group K act on a Nash manifold M . Let N be a locally closed subset. Let
N =

⋃l
i=0Ni be a Nash K-invariant stratification of N . Let χ be a character of K. Suppose that for any

k ∈ Z≥0 and 0 ≤ i ≤ l,
S∗(Ni,Symk(CNM

Ni
))K,χ = 0.

Then S∗M (N)K,χ = 0.

Theorem 2.5.7 (Frobenius reciprocity). Let an analytic group K act on an analytic manifold M . Let
N be an analytic manifold with a transitive action of K. Let φ : M → N be a K-equivariant map.

Let z ∈ N be a point and Mz := φ−1(z) be its fiber. Let Kz be the stabilizer of z in K. Let ∆K and
∆Kz be the modular characters of K and Kz.

Let E be a K-equivariant vector system over M . Then
(i) there exists a canonical isomorphism

Fr : D(Mz, E|Mz ⊗∆K |Kz ·∆−1
Kz

)Kz ∼= D(M, E)K .

In particular, Fr commutes with restrictions to open sets.
(ii) For B-analytic manifolds Fr maps S∗(Mz, E|Mz ⊗∆K |Kz ·∆−1

Kz
)Kz to S∗(M, E)K .

For the proof of (i) see [Ber84, §§1.5] and [BZ76, §§2.21 - 2.36] for the case of l-spaces and [AGS08,
Theorem 4.2.3] or [Bar03] for smooth manifolds. For the proof of (ii) see Appendix B.

We will also use the following straightforward proposition.

2In the Archimedean case, locally closed is considered with respect to the restricted topology – cf. Appendix B.

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/pdf/0709.1273v4
http://annals.math.princeton.edu/issues/2003/Baruch.pdf
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Proposition 2.5.8. Let Ki be analytic groups acting on analytic manifolds Mi for i = 1 . . . n. Let
Ωi ⊂ Ki be analytic subgroups. Let Ei →Mi be Ki-equivariant vector systems. Suppose that

D(Mi, Ei)Ωi = D(Mi, Ei)Ki

for all i. Then
D(

∏
Mi,�Ei)

Q
Ωi = D(

∏
Mi,�Ei)

Q
Ki ,

where � denotes the external product.
Moreover, if Ωi, Ki, Mi and Ei are B-analytic then the analogous statement holds for Schwartz

distributions.

For the proof see e.g. [AGS08, proof of Proposition 3.1.5].

3. Generalized Harish-Chandra descent

3.1. Generalized Harish-Chandra descent.
In this subsection we will prove the following theorem.

Theorem 3.1.1. Let a reductive group G act on a smooth affine variety X. Let χ be a character of
G(F ). Suppose that for any G-semisimple x ∈ X(F ) we have

D(NX
Gx,x(F ))G(F )x,χ = 0.

Then
D(X(F ))G(F ),χ = 0.

Remark 3.1.2. In fact, the converse is also true. We will not prove it since we will not use it.

For the proof of this theorem we will need the following lemma

Lemma 3.1.3. Let a reductive group G act on a smooth affine variety X. Let χ be a character of G(F ).
Let U ⊂ X(F ) be an open saturated subset. Suppose that D(X(F ))G(F ),χ = 0. Then D(U)G(F ),χ = 0.

Proof. Consider the quotient X/G. It is an affine algebraic variety. Embed it in an affine space An. This
defines a map π : X(F ) → Fn. Since U is saturated, there exists an open subset V ⊂ (X/G)(F ) such
that U = π−1(V ). Clearly there exists an open subset V ′ ⊂ Fn such that V ′ ∩ (X/G)(F ) = V .

Let ξ ∈ D(U)G(F ),χ. Suppose that ξ is non-zero. Let x ∈ Suppξ and let y := π(x). Let g ∈ C∞c (V ′)
be such that g(y) = 1. Consider ξ′ ∈ D(X(F )) defined by ξ′(f) := ξ(f · (g ◦ π)). Clearly, Supp(ξ′) ⊂ U
and hence we can interpret ξ′ as an element in D(X(F ))G(F ),χ. Therefore ξ′ = 0. On the other hand,
x ∈ Supp(ξ′). Contradiction. �

Proof of Theorem 3.1.1. Let x be a G-semisimple element. Let (Ux,px,ψx, Sx,Nx) be an analytic Luna
slice at x.

Let ξ′ = ξ|Ux . Then ξ′ ∈ D(Ux)G(F ),χ. By Frobenius reciprocity it corresponds to ξ′′ ∈ D(Sx)Gx(F ),χ.
The distribution ξ′′ corresponds to a distribution ξ′′′ ∈ D(ψx(Sx))Gx(F ),χ.
However, by the previous lemma the assumption implies that D(ψx(Sx))Gx(F ),χ = 0. Hence ξ′ = 0.
Let S ⊂ X(F ) be the set of all G-semisimple points. Let U =

⋃
x∈S Ux. We saw that ξ|U = 0. On the

other hand, U includes all the closed orbits, and hence by Corollary 2.3.7 U = X. �

The following generalization of this theorem is proven in the same way.

Theorem 3.1.4. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an open
subgroup and let χ be a character of K. Suppose that for any G-semisimple x ∈ X(F ) we have

D(NX
Gx,x(F ))Kx,χ = 0.

Then
D(X(F ))K,χ = 0.

Now we would like to formulate a slightly more general version of this theorem concerning K-
equivariant vector systems. 3

3Subsection 2.4 and in particular the notion of ”vector system” along with the results at the end of §§3.1 and §§3.2 are
not essential for the rest of the paper. They are merely included for future reference.

http://arxiv.org/pdf/0709.1273v4
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Definition 3.1.5. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an open
subgroup. Let E be a K-equivariant vector system on X(F ). Let x ∈ X(F ) be G-semisimple. Let E ′ be
a Kx-equivariant vector system on NX

Gx,x(F ). We say that E and E ′ are compatible if there exists an
analytic Luna slice (U, p, ψ, S,N) such that E|S = ψ∗(E ′).

Note that if E and E ′ are constant with the same fiber then they are compatible.
The following theorem is proven in the same way as Theorem 3.1.1.

Theorem 3.1.6. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an
open subgroup and let E be a K-equivariant vector system on X(F ). Suppose that for any G-semisimple
x ∈ X(F ) there exists a K-equivariant vector system E ′ on NX

Gx,x(F ), compatible with E such that

D(NX
Gx,x(F ), E ′)Kx = 0.

Then
D(X(F ), E)K = 0.

If E and E ′ are B-vector systems and K is an open B-analytic subgroup4 of G(F ) then the theorem
also holds for Schwartz distributions. Namely, if S∗(NX

Gx,x(F ), E ′)Kx = 0 for any G-semisimple x ∈ X(F )
then S∗(X(F ), E)K = 0. The proof is the same.

3.2. A stronger version.
In this section we provide means to validate the conditions of Theorems 3.1.1, 3.1.4 and 3.1.6 based on
an inductive argument.

More precisely, the goal of this section is to prove the following theorem.

Theorem 3.2.1. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an open
subgroup and let χ be a character of K. Suppose that for any G-semisimple x ∈ X(F ) such that

D(RGx
(NX

Gx,x))
Kx,χ = 0

we have
D(QGx

(NX
Gx,x))

Kx,χ = 0.

Then for any G-semisimple x ∈ X(F ) we have

D(NX
Gx,x(F ))Kx,χ = 0.

Together with Theorem 3.1.4, this theorem gives the following corollary.

Corollary 3.2.2. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an open
subgroup and let χ be a character of K. Suppose that for any G-semisimple x ∈ X(F ) such that

D(R(NX
Gx,x))

Kx,χ = 0

we have
D(Q(NX

Gx,x))
Kx,χ = 0.

Then D(X(F ))K,χ = 0.

From now till the end of the section we fix G, X, K and χ. Let us introduce several definitions and
notation.

Notation 3.2.3. Denote
• T ⊂ X(F ) the set of all G-semisimple points.
• For x, y ∈ T we say that x > y if Gx % Gy.
• T0 := {x ∈ T | D(Q(NX

Gx,x))
Kx,χ = 0} = {x ∈ T | D((NX

Gx,x))
Kx,χ = 0}.

4In fact, any open subgroup of a B-analytic group is B-analytic.
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Proof of Theorem 3.2.1. We have to show that T = T0. Assume the contrary.
Note that every chain in T with respect to our ordering has a minimum. Hence by Zorn’s lemma every

non-empty set in T has a minimal element. Let x be a minimal element of T −T0. To get a contradiction,
it is enough to show that D(R(NX

Gx,x))
Kx,χ = 0.

Denote R := R(NX
Gx,x). By Theorem 3.1.4, it is enough to show that for any y ∈ R we have

D(NR
G(F )xy,y

)(Kx)y,χ = 0.

Let (U, p, ψ, S,N) be an analytic Luna slice at x.
Since ψ(S) is open and contains 0, we can assume, upon replacing y by λy for some λ ∈ F×, that

y ∈ ψ(S). Let z ∈ S be such that ψ(z) = y. By Corollary 2.3.19, G(F )z = (G(F )x)y $ G(F )x and
NR
G(F )xy,y

∼= NX
Gz,z(F ). Hence (Kx)y = Kz and therefore

D(NR
G(F )xy,y

)(Kx)y,χ ∼= D(NX
Gz,z(F ))Kz,χ.

However z < x and hence z ∈ T0 which means that D(NX
Gz,z(F ))Kz,χ = 0. �

Remark 3.2.4. One can rewrite this proof such that it will use Zorn’s lemma for finite sets only, which
does not depend on the axiom of choice.

Remark 3.2.5. As before, Theorem 3.2.1 and Corollary 3.2.2 also hold for Schwartz distributions, with
a similar proof.

Again, we can formulate a more general version of Corollary 3.2.2 concerning vector systems. 5

Theorem 3.2.6. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an open
subgroup and let E be a K-equivariant vector system on X(F ).

Suppose that for any G-semisimple x ∈ X(F ) satisfying
(*) for any Kx×F×-equivariant vector system E ′ on R(NX

Gx,x) (where F× acts by homothety) compatible
with E we have D(R(NX

Gx,x), E ′)Kx = 0,
the following holds

(**) there exists a Kx × F×-equivariant vector system E ′ on Q(NX
Gx,x) compatible with E such that

D(Q(NX
Gx,x), E ′)Kx = 0.

Then D(X(F ), E)K = 0.

The proof is the same as the proof of Theorem 3.2.1 using the following lemma which follows from the
definitions.

Lemma 3.2.7. Let a reductive group G act on a smooth affine variety X. Let K ⊂ G(F ) be an open
subgroup and let E be a K-equivariant vector system on X(F ). Let x ∈ X(F ) be G-semisimple. Let
(U, p, ψ, S,N) be an analytic Luna slice at x.

Let E ′ be a Kx-equivariant vector system on N compatible with E. Let y ∈ S be G-semisimple, and
let z := ψ(y). Let E ′′ be a (Kx)z-equivariant vector system on NN

Gxz,z
compatible with E ′. Consider the

isomorphism NN
Gxz,z

(F ) ∼= NX
Gy,y(F ) and let E ′′′ be the corresponding Ky-equivariant vector system on

NX
Gy,y(F ).
Then E ′′′ is compatible with E.

Again, if E and E ′ are B-vector systems then the theorem holds also for Schwartz distributions.

5Subsection 2.4 and in particular, the notion of ”vector system” along with the results at the end of §§3.1 and §§3.2 are
not essential for the rest of the paper. They are merely included for future reference.
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4. Distributions versus Schwartz distributions

In this section F is Archimedean. The tools developed in the previous section enable us to prove the
following version of the Localization Principle.

Theorem 4.0.1 (Localization Principle). Let a reductive group G act on a smooth algebraic variety
X. Let Y be an algebraic variety and φ : X → Y be an affine algebraic G-invariant map. Let χ be
a character of G(F ). Suppose that for any y ∈ Y (F ) we have DX(F )((φ−1(y))(F ))G(F ),χ = 0. Then
D(X(F ))G(F ),χ = 0.

For the proof see Appendix D.
In this section we use this theorem to show that if there are no G(F )-equivariant Schwartz distributions

on X(F ) then there are no G(F )-equivariant distributions on X(F ).

Theorem 4.0.2. Let a reductive group G act on a smooth affine variety X. Let V be a finite-dimensional
algebraic representation of G(F ). Suppose that

S∗(X(F ), V )G(F ) = 0.

Then

D(X(F ), V )G(F ) = 0.

For the proof we will need the following definition and theorem.

Definition 4.0.3.
(i) Let a topological group K act on a topological space M . We call a closed K-invariant subset C ⊂M

compact modulo K if there exists a compact subset C ′ ⊂M such that C ⊂ KC ′.
(ii) Let a Nash group K act on a Nash manifold M . We call a closed K-invariant subset C ⊂ M

Nashly compact modulo K if there exist a compact subset C ′ ⊂ M and semi-algebraic closed subset
Z ⊂M such that C ⊂ Z ⊂ KC ′.

Remark 4.0.4. Let a reductive group G act on a smooth affine variety X. Let K := G(F ) and M :=
X(F ). Then it is easy to see that the notions of compact modulo K and Nashly compact modulo K
coincide.

Theorem 4.0.5. Let a Nash group K act on a Nash manifold M . Let E be a K-equivariant Nash bundle
over M . Let ξ ∈ D(M,E)K be such that Supp(ξ) is Nashly compact modulo K. Then ξ ∈ S∗(M,E)K .

The statement and the idea of the proof of this theorem are due to J. Bernstein. For the proof see
Appendix B.4.

Proof of Theorem 4.0.2. Fix any y ∈ (X/G)(F ) and denote M := π−1
X (y)(F ).

By the Localization Principle (Theorem 4.0.1 and Remark D.0.4), it is enough to prove that

S∗X(F )(M,V )G(F ) = DX(F )(M,V )G(F ).

Choose ξ ∈ DX(F )(M,V )G(F ). M has a unique closed stable G-orbit and hence a finite number of
closed G(F )-orbits. By Theorem 4.0.5, it is enough to show that M is Nashly compact modulo G(F ).
Clearly M is semi-algebraic. Choose representatives xi of the closed G(F )-orbits in M . Choose compact
neighborhoods Ci of xi. Let C ′ :=

⋃
Ci. By Corollary 2.3.7, G(F )C ′ ⊃M . �

5. Applications of Fourier transform and the Weil representation

Let G be a reductive group and V be a finite-dimensional F -rational representation of G. Let χ be
a character of G(F ). In this section we provide some tools to verify that S∗(Q(V ))G(F ),χ = 0 provided
that S∗(R(V ))G(F ),χ = 0.



GENERALIZED HARISH-CHANDRA DESCENT 13

5.1. Preliminaries.
For this subsection let B be a non-degenerate bilinear form on a finite-dimensional vector space V over
F . We also fix an additive character κ of F . If F is Archimedean we take κ(x) := e2πi Re(x).

Notation 5.1.1. We identify V and V ∗ via B and endow V with the self-dual Haar measure with respect
to ψ. Denote by FB : S∗(V ) → S∗(V ) the Fourier transform. For any B-analytic manifold M over F
we also denote by FB : S∗(M × V ) → S∗(M × V ) the partial Fourier transform.

Notation 5.1.2. Consider the homothety action of F× on V given by ρ(λ)v := λ−1v. It gives rise to
an action ρ of F× on S∗(V ).

Let | · | denote the normalized absolute value. Recall that for F = R, |λ| is equal to the classical absolute
value but for F = C, |λ| = (Reλ)2 + (Imλ)2.

Notation 5.1.3. We denote by γ(B) the Weil constant. For its definition see e.g. [Gel76, §2.3] for
non-Archimedean F and [RS78, §1] for Archimedean F .

For any t ∈ F× denote δB(t) = γ(B)/γ(tB).

Note that γ(B) is an 8-th root of unity and if dimV is odd and F 6= C then δB is not a multiplicative
character.

Notation 5.1.4. We denote
Z(B) := {x ∈ V | B(x, x) = 0}.

Theorem 5.1.5 (non-Archimedean homogeneity). Suppose that F is non-Archimedean. Let M be a
B-analytic manifold over F . Let ξ ∈ S∗V×M (Z(B)×M) be such that FB(ξ) ∈ S∗V×M (Z(B)×M). Then
for any t ∈ F×, we have ρ(t)ξ = δB(t)|t|dimV/2ξ and ξ = γ(B)−1FB(ξ). In particular, if dimV is odd
then ξ = 0.

For the proof see e.g. [RS07, §§8.1] or [JR96, §§3.1].
For the Archimedean version of this theorem we will need the following definition.

Definition 5.1.6. Let M be a B-analytic manifold over F . We say that a distribution ξ ∈ S∗(V ×M)
is adapted to B if either
(i) for any t ∈ F× we have ρ(t)ξ = δ(t)|t|dimV/2ξ and ξ is proportional to FBξ or
(ii) F is Archimedean and for any t ∈ F× we have ρ(t)ξ = δ(t)t|t|dimV/2ξ.

Note that if dimV is odd and F 6= C then every B-adapted distribution is zero.

Theorem 5.1.7 (Archimedean homogeneity). Let M be a Nash manifold. Let L ⊂ S∗V×M (Z(B) ×M)
be a non-zero subspace such that for all ξ ∈ L we have FB(ξ) ∈ L and B · ξ ∈ L (here B is viewed as a
quadratic function).

Then there exists a non-zero distribution ξ ∈ L which is adapted to B.

For Archimedean F we prove this theorem in Appendix C. For non-Archimedean F it follows from
Theorem 5.1.5.

We will also use the following trivial observation.

Lemma 5.1.8. Let a B-analytic group K act linearly on V and preserving B. Let M be a B-analytic
K-manifold over F . Let ξ ∈ S∗(V ×M) be a K-invariant distribution. Then FB(ξ) is also K-invariant.

5.2. Applications.
The following two theorems easily follow form the results of the previous subsection.

Theorem 5.2.1. Suppose that F is non-Archimedean. Let G be a reductive group. Let V be a finite-
dimensional F -rational representation of G. Let χ be character of G(F ). Suppose that S∗(R(V ))G(F ),χ =
0. Let V = V1 ⊕ V2 be a G-invariant decomposition of V . Let B be a G-invariant symmetric non-
degenerate bilinear form on V1. Consider the action ρ of F× on V by homothety on V1.

Then any ξ ∈ S∗(Q(V ))G(F ),χ satisfies ρ(t)ξ = δB(t)|t|dimV1/2ξ and ξ = γ(B)FBξ. In particular, if
dimV1 is odd then ξ = 0.

http://www.jstor.org/view/00029327/di994428/99p0186g/0
http://arxiv.org/abs/0705.2168v1
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Theorem 5.2.2. Let G be a reductive group. Let V be a finite-dimensional F -rational representation
of G. Let χ be character of G(F ). Suppose that S∗(R(V ))G(F ),χ = 0. Let Q(V ) = W ⊕ (

⊕k
i=1 Vi) be a

G-invariant decomposition of Q(V ). Let Bi be G-invariant symmetric non-degenerate bilinear forms on
Vi. Suppose that any ξ ∈ S∗Q(V )(Γ(V ))G(F ),χ which is adapted to each Bi is zero.

Then S∗(Q(V ))G(F ),χ = 0.

Remark 5.2.3. One can easily generalize Theorems 5.2.2 and 5.2.1 to the case of constant vector systems.

6. Tame actions

In this section we consider problems of the following type. A reductive group G acts on a smooth
affine variety X, and τ is an automorphism of X which normalizes the image of G in Aut(X). We want
to check whether any G(F )-invariant Schwartz distribution on X(F ) is also τ -invariant.

Definition 6.0.1. Let π be an action of a reductive group G on a smooth affine variety X. We say that
an algebraic automorphism τ of X is G-admissible if
(i) τ normalizes π(G(F )) and τ2 ∈ π(G(F )).
(ii) For any closed G(F )-orbit O ⊂ X(F ), we have τ(O) = O.

Proposition 6.0.2. Let π be an action of a reductive group G on a smooth affine variety X. Let τ be a
G-admissible automorphism of X. Let K := π(G(F )) and let K̃ be the group generated by π(G(F )) and
τ . Let x ∈ X(F ) be a point with closed G(F )-orbit. Let τ ′ ∈ K̃x −Kx. Then dτ ′|NX

Gx,x
is Gx-admissible.

Proof. Let G̃ denote the group generated by π(G) and τ . We check that the two properties of Gx-
admissibility hold for dτ ′|NX

Gx,x
. The first one is obvious. For the second, let y ∈ NX

Gx,x(F ) be an element
with closed Gx-orbit. Let y′ = dτ ′(y). We have to show that there exists g ∈ Gx(F ) such that gy = y′.
Let (U, p, ψ, S,N) be an analytic Luna slice at x with respect to the action of G̃. We can assume that
there exists z ∈ S such that y = ψ(z). Let z′ = τ ′(z). By Corollary 2.3.19, z is G-semisimple. Since
τ is admissible, this implies that there exists g ∈ G(F ) such that gz = z′. Clearly, g ∈ Gx(F ) and
gy = y′. �

Definition 6.0.3. We call an action of a reductive group G on a smooth affine variety X tame if for
any G-admissible τ : X → X, we have S∗(X(F ))G(F ) ⊂ S∗(X(F ))τ .

Definition 6.0.4. We call an F -rational representation V of a reductive group G linearly tame if for
any G-admissible linear map τ : V → V , we have S∗(V (F ))G(F ) ⊂ S∗(V (F ))τ .

We call a representation weakly linearly tame if for any G-admissible linear map τ : V → V , such
that S∗(R(V ))G(F ) ⊂ S∗(R(V ))τ we have S∗(Q(V ))G(F ) ⊂ S∗(Q(V ))τ .

Theorem 6.0.5. Let a reductive group G act on a smooth affine variety X. Suppose that for any G-
semisimple x ∈ X(F ), the action of Gx on NX

Gx,x is weakly linearly tame. Then the action of G on X is
tame.

The proof is rather straightforward except for one minor complication: the group of automorphisms
of X(F ) generated by the action of G(F ) is not necessarily a group of F -points of any algebraic group.

Proof. Let τ : X → X be an admissible automorphism.
Let G̃ ⊂ Aut(X) be the algebraic group generated by the actions of G and τ . Let K ⊂ Aut(X(F ))

be the B-analytic group generated by the action of G(F ). Let K̃ ⊂ Aut(X(F )) be the B-analytic group
generated by the actions of G and τ . Note that K̃ ⊂ G̃(F ) is an open subgroup of finite index. Note
that for any x ∈ X(F ), x is G̃-semisimple if and only if it is G-semisimple. If K = K̃ we are done, so we
will assume K 6= K̃. Let χ be the character of K̃ defined by χ(K) = {1}, χ(K̃ −K) = {−1}.

It is enough to prove that S∗(X) eK,χ = 0. By Generalized Harish-Chandra Descent (Corollary 3.2.2)
it is enough to prove that for any G-semisimple x ∈ X such that

S∗(R(NX
Gx,x))

eKx,χ = 0
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we have

S∗(Q(NX
Gx,x))

eKx,χ = 0.

Choose any automorphism τ ′ ∈ K̃x −Kx. Note that τ ′ and Kx generate K̃x. Denote

η := dτ ′|NX
Gx,x(F ).

By Proposition 6.0.2, η is Gx-admissible. Note that

S∗(R(NX
Gx,x))

Kx = S∗(R(NX
Gx,x))

G(F )x and S∗(Q(NX
Gx,x))

Kx = S∗(Q(NX
Gx,x))

G(F )x .

Hence we have

S∗(R(NX
Gx,x))

G(F )x ⊂ S∗(R(NX
Gx,x))

η.

Since the action of Gx is weakly linearly tame, this implies that

S∗(Q(NX
Gx,x))

G(F )x ⊂ S∗(Q(NX
Gx,x))

η

and therefore S∗(Q(NX
Gx,x))

eKx,χ = 0. �

Definition 6.0.6. We call an F -rational representation V of a reductive group G special if there is no
non-zero ξ ∈ S∗Q(V )(Γ(V ))G(F ) such that for any G-invariant decomposition Q(V ) = W1 ⊕W2 and any
two G-invariant symmetric non-degenerate bilinear forms Bi on Wi the Fourier transforms FBi(ξ) are
also supported in Γ(V ).

Proposition 6.0.7. Every special representation V of a reductive group G is weakly linearly tame.

The proposition follows immediately from the following lemma.

Lemma 6.0.8. Let V be an F -rational representation of a reductive group G. Let τ be an admissible
linear automorphism of V . Let V = W1⊕W2 be a G-invariant decomposition of V and Bi be G-invariant
symmetric non-degenerate bilinear forms on Wi. Then Wi and Bi are also τ -invariant.

This lemma follows in turn from the following one.

Lemma 6.0.9. Let V be an F -rational representation of a reductive group G. Let τ be an admissible
automorphism of V . Then O(V )G ⊂ O(V )τ .

Proof. Consider the projection π : V → V/G. We have to show that τ acts trivially on V/G and
let x ∈ π(V (F )). Let X := π−1(x). By Proposition 2.3.6 G(F ) has a closed orbit in X(F ). The
automorphism τ preserves this orbit and hence preserves x. Thus τ acts trivially on π(V (F )), which is
Zariski dense in V/G. Hence τ acts trivially on V/G. �

Now we introduce a criterion that allows to prove that a representation is special. It follows immediately
from Theorem 5.1.7.

Lemma 6.0.10. Let V be an F -rational representation of a reductive group G. Let Q(V ) =
⊕
Wi be

a G-invariant decomposition. Let Bi be symmetric non-degenerate G-invariant bilinear forms on Wi.
Suppose that any ξ ∈ S∗Q(V )(Γ(V ))G(F ) which is adapted to all Bi is zero. Then V is special.

Part 2. Symmetric and Gelfand pairs

7. Symmetric pairs

In this section we apply our tools to symmetric pairs. We introduce several properties of symmetric
pairs and discuss their interrelations. In Appendix E we present a diagram that illustrates the most
important ones.
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7.1. Preliminaries and notation.

Definition 7.1.1. A symmetric pair is a triple (G,H, θ) where H ⊂ G are reductive groups, and θ is
an involution of G such that H = Gθ. We call a symmetric pair connected if G/H is connected.

For a symmetric pair (G,H, θ) we define an antiinvolution σ : G→ G by

σ(g) := θ(g−1),

denote g := LieG, h := LieH. Let θ and σ act on g by their differentials and denote

gσ := {a ∈ g | σ(a) = a} = {a ∈ g | θ(a) = −a}.

Note that H acts on gσ by the adjoint action. Denote also

Gσ := {g ∈ G | σ(g) = g}

and define a symmetrization map s : G→ Gσ by

s(g) := gσ(g).

We will consider the action of H ×H on G by left and right translation and the conjugation action of
H on Gσ.

Definition 7.1.2. Let (G1,H1, θ1) and (G2,H2, θ2) be symmetric pairs. We define their product to be
the symmetric pair (G1 ×G2,H1 ×H2, θ1 × θ2).

Theorem 7.1.3. For any connected symmetric pair (G,H, θ) we have O(G)H×H ⊂ O(G)σ.

Proof. Consider the multiplication map H × Gσ → G. It is étale at 1 × 1 and hence its image HGσ

contains an open neighborhood of 1 in G. Hence the image of HGσ in G/H is dense. Thus HGσH is
dense in G. Clearly O(HGσH)H×H ⊂ O(HGσH)σ and hence O(G)H×H ⊂ O(G)σ. �

Corollary 7.1.4. For any connected symmetric pair (G,H, θ) and any closed H ×H orbit ∆ ⊂ G, we
have σ(∆) = ∆.

Proof. Denote Υ := H ×H. Consider the action of the 2-element group (1, τ) on Υ given by τ(h1, h2) :=
(θ(h2), θ(h1)). This defines the semi-direct product Υ̃ := (1, τ) n Υ. Extend the two-sided action of Υ to
Υ̃ by the antiinvolution σ. Note that the previous theorem implies that G/Υ = G/Υ̃. Let ∆ be a closed
Υ-orbit. Let ∆̃ := ∆ ∪ σ(∆). Let a := πG(∆̃) ⊂ G/Υ̃. Clearly, a consists of one point. On the other
hand, G/Υ̃ = G/Υ and hence π−1

G (a) contains a unique closed G-orbit. Therefore ∆ = ∆̃ = σ(∆). �

Corollary 7.1.5. Let (G,H, θ) be a connected symmetric pair. Let g ∈ G(F ) be H × H-semisimple.
Suppose that the Galois cohomology H1(F, (H ×H)g) is trivial. Then σ(g) ∈ H(F )gH(F ).

For example, if (H × H)g is a product of general linear groups over some field extensions then
H1(F, (H ×H)g) is trivial.

Definition 7.1.6. A symmetric pair (G,H, θ) is called good if for any closed H(F )×H(F ) orbit O ⊂
G(F ), we have σ(O) = O.

Corollary 7.1.7. Any connected symmetric pair over C is good.

Definition 7.1.8. A symmetric pair (G,H, θ) is called a GK-pair if

S∗(G(F ))H(F )×H(F ) ⊂ S∗(G(F ))σ.

We will see later in §8 that GK-pairs satisfy a Gelfand pair property that we call GP2 (see Definition
8.1.2 and Theorem 8.1.5). Clearly every GK-pair is good and we conjecture that the converse is also true.
We will discuss it in more detail in §§7.5.

Lemma 7.1.9. Let (G,H, θ) be a symmetric pair. Then there exists a G-invariant θ-invariant non-
degenerate symmetric bilinear form B on g. In particular, g = gσ ⊕ h is an orthogonal direct sum with
respect to B.
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Proof.
Step 1. Proof for semisimple g.

Let B be the Killing form on g. Since it is non-degenerate, it is enough to show that h is orthogonal
to gσ. Let A ∈ h and C ∈ gσ. We have to show Tr(ad(A) ad(C)) = 0. This follows from the fact that
ad(A) ad(C)(h) ⊂ gσ and ad(A) ad(C)(gσ) ⊂ h.

Step 2. Proof in the general case.
Let g = g′ ⊕ z such that g′ is semisimple and z is the center. It is easy to see that this decomposition
is invariant under Aut(g) and hence θ-invariant. Now the proposition easily follows from the previous
case. �

Remark 7.1.10. Let (G,H, θ) be a symmetric pair. Let U(G) be the set of unipotent elements in G(F )
and N (g) the set of nilpotent elements in g(F ). Then the exponent map exp : N (g) → U(G) is σ-
equivariant and intertwines the adjoint action with conjugation.

Lemma 7.1.11. Let (G,H, θ) be a symmetric pair. Let x ∈ gσ be a nilpotent element. Then there exists
a group homomorphism φ : SL2 → G such that

dφ(
(

0 1
0 0

)
) = x, dφ(

(
0 0
1 0

)
) ∈ gσ and φ(

(
t 0
0 t−1

)
) ∈ H.

In particular 0 ∈ Ad(H)(x).

This lemma was essentially proven for F = C in [KR73]. The same proof works for any F and we
repeat it here for the convenience of the reader.

Proof. By the Jacobson-Morozov Theorem (see [Jac62, Chapter III, Theorems 17 and 10]) we can com-
plete x to an sl2-triple (x−, s, x). Let s′ := s+θ(s)

2 . It satisfies [s′, x] = 2x and lies in the ideal [x, g] and
hence by the Morozov Lemma (see [Jac62, Chapter III, Lemma 7]), x and s′ can be completed to an
sl2 triple (x−, s′, x). Let x′− := x−−θ(x−)

2 . Note that (x′−, s
′, x) is also an sl2-triple. Exponentiating this

sl2-triple to a map SL2 → G we get the required homomorphism. �

Notation 7.1.12. In the notation of the previous lemma we denote

Dt(x) := φ(
(
t 0
0 t−1

)
) ∈ H and d(x) := dφ(

(
1 0
0 −1

)
) ∈ h.

These elements depend on the choice of φ. However, whenever we use this notation, nothing will depend
on their choice.

7.2. Descendants of symmetric pairs. Recall that for a symmetric pair (G,H, θ) we consider the
H ×H action on G by left and right translation and the conjugation action of H on Gσ.

Proposition 7.2.1. Let (G,H, θ) be a symmetric pair. Let g ∈ G(F ) be H×H-semisimple. Let x = s(g).
Then
(i) x is semisimple (both as an element of G and with respect to the H-action).
(ii) Hx

∼= (H ×H)g and (gx)σ ∼= NG
HgH,g as Hx-spaces.

Proof.
(i) Since the symmetrization map is closed, it is clear that the H-orbit of x is closed. This means that

x is semisimple with respect to the H-action. Now we have to show that x is semisimple as an element of
G . Let x = xsxu be the Jordan decomposition of x. The uniqueness of the Jordan decomposition implies
that both xu and xs belong to Gσ. To show that xu = 1 it is enough to show that Ad(H)(x) 3 xs. We
will do that in several steps.

Step 1. Proof for the case when xs = 1.
It follows immediately from Remark 7.1.10 and Lemma 7.1.11.

Step 2. Proof for the case when xs ∈ Z(G).
This case follows from Step 1 since conjugation acts trivially on Z(G).

Step 3. Proof in the general case.
Note that x ∈ Gxs

and Gxs
is θ-invariant. The statement follows from Step 2 for the group Gxs

.

http://www.jstor.org/view/00029327/di994396/99p0264d/0
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(ii) The symmetrization map gives rise to an isomorphism (H × H)g ∼= Hx. Let us now show that
(gx)σ ∼= NG

HgH,g. First of all, NG
HgH,g

∼= g/(h + Ad(g)h). Let θ′ be the involution of G defined by
θ′(y) = xθ(y)x−1. Note that Ad(g)h = gθ

′
. Fix a non-degenerate G-invariant symmetric bilinear form B

on g as in Lemma 7.1.9. Note that B is also θ′-invariant and hence

(Ad(g)h)⊥ = {a ∈ g|θ′(a) = −a}.

Now
NG
HgH,g

∼= (h + Ad(g)h)⊥ = h⊥ ∩Ad(g)h⊥ = {a ∈ g|θ(a) = θ′(a) = −a} = (gx)σ.
�

It is easy to see that the isomorphism NG
HgH,g

∼= (gx)σ is independent of the choice of B.

Definition 7.2.2. In the notation of the previous proposition we will say that the pair (Gx,Hx, θ|Gx) is
a descendant of (G,H, θ).

7.3. Tame symmetric pairs.

Definition 7.3.1. We call a symmetric pair (G,H, θ)
(i) tame if the action of H ×H on G is tame.
(ii) linearly tame if the action of H on gσ is linearly tame.
(iii) weakly linearly tame if the action of H on gσ is weakly linearly tame.

Remark 7.3.2. Evidently, any good tame symmetric pair is a GK-pair.

The following theorem is a direct corollary of Theorem 6.0.5.

Theorem 7.3.3. Let (G,H, θ) be a symmetric pair. Suppose that all its descendants (including itself)
are weakly linearly tame. Then (G,H, θ) is tame and linearly tame.

Definition 7.3.4. We call a symmetric pair (G,H, θ) special if gσ is a special representation of H (see
Definition 6.0.6).

The following proposition follows immediately from Proposition 6.0.7.

Proposition 7.3.5. Any special symmetric pair is weakly linearly tame.

Using Lemma 7.1.9 it is easy to prove the following proposition.

Proposition 7.3.6. A product of special symmetric pairs is special.

Now we would like to give a criterion of speciality for symmetric pairs. Recall the notation d(x) of
7.1.12.

Proposition 7.3.7 (Speciality criterion). Let (G,H, θ) be a symmetric pair. Suppose that for any nilpo-
tent x ∈ gσ either
(i) Tr(ad(d(x))|hx

) < dimQ(gσ) or
(ii) F is non-Archimedean and Tr(ad(d(x))|hx) 6= dimQ(gσ).

Then the pair (G,H, θ) is special.

For the proof we will need the following auxiliary results.

Lemma 7.3.8. Let (G,H, θ) be a symmetric pair. Then Γ(gσ) is the set of all nilpotent elements in
Q(gσ).

This lemma is a direct corollary from Lemma 7.1.11.

Lemma 7.3.9. Let (G,H, θ) be a symmetric pair. Let x ∈ gσ be a nilpotent element. Then all the
eigenvalues of ad(d(x))|gσ/[x,h] are non-positive integers.

This lemma follows from the existence of a natural surjection g/[x, g] � gσ/[x, h] (given by the de-
composition g = h⊕ gσ) using the following straightforward lemma.
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Lemma 7.3.10. Let V be a representation of an sl2 triple (e, h, f). Then all the eigenvalues of h|V/e(V )

are non-positive integers.

Now we are ready to prove the speciality criterion.

Proof of Proposition 7.3.7. We will give a proof in the case where F is Archimedean. The case of non-
Archimedean F is done in the same way but with less complications.

By Lemma 6.0.10 and the definition of adapted it is enough to prove

S∗Q(gσ)(Γ(gσ))H(F )×F×,(1,χ) = 0

for any character χ of F× of the form χ(λ) = u(λ)|λ|dimQ(gσ)/2 or χ(λ) = u(λ)|λ|dimQ(gσ)/2+1, where u
is some unitary character.

The set Γ(gσ) has a finite number of H(F )-orbits (it follows from Lemma 7.3.8 and the introduction
of [KR73]). Hence it is enough to show that for any x ∈ Γ(gσ) we have

S∗(Ad(H(F ))x,Symk(CNQ(gσ)
Ad(H(F ))x))

H(F )×F×,(1,χ) = 0 for any k.

Let K := {(Dt(x), t2)|t ∈ F×} ⊂ (H(F )× F×)x.
Note that

∆(H(F )×F×)x
((Dt(x), t2)) = |det(Ad(Dt(x))|hx)| = |t|Tr(ad(d(x))|hx ).

By Lemma 7.3.9 the eigenvalues of the action of (Dt(x), t2) on (Symk(Q(gσ)/[x, h])) are of the form
tl where l is a non-positive integer.

Now by Frobenius reciprocity (Theorem 2.5.7) we have

S∗
(
(H(F ))x,Symk(CNQ(gσ)

Ad(H(F ))x)
)H(F )×F×,(1,χ)

=

= S∗
(
{x},Symk(CNQ(gσ)

Ad(H(F ))x,x)⊗∆H(F )×F× |(H(F )×F×)x
·∆−1

(H(F )×F×)x
⊗ (1, χ)

)(H(F )×F×)x

=

=
(
Symk(Q(gσ)/[x, h])⊗∆(H(F )×F×)x

⊗ (1, χ)−1 ⊗R C
)(H(F )×F×)x

⊂

⊂
(
Symk(Q(gσ)/[x, h])⊗∆(H(F )×F×)x

⊗ (1, χ)−1 ⊗R C
)K

which is zero since all the absolute values of the eigenvalues of the action of any (Dt(x), t2) ∈ K on

Symk(Q(gσ)/[x, h])⊗∆(H(F )×F×)x
⊗ (1, χ)−1

are of the form |t|l where l < 0. �

7.4. Regular symmetric pairs.
In this subsection we will formulate a property which is weaker than weakly linearly tame but still enables
us to prove the GK property for good pairs.

Definition 7.4.1. Let (G,H, θ) be a symmetric pair. We call an element g ∈ G(F ) admissible if
(i) Ad(g) commutes with θ (or, equivalently, s(g) ∈ Z(G)) and
(ii) Ad(g)|gσ is H-admissible.

Definition 7.4.2. We call a symmetric pair (G,H, θ) regular if for any admissible g ∈ G(F ) such that
S∗(R(gσ))H(F ) ⊂ S∗(R(gσ))Ad(g) we have

S∗(Q(gσ))H(F ) ⊂ S∗(Q(gσ))Ad(g).

Remark 7.4.3. Clearly, every weakly linearly tame pair is regular.

Proposition 7.4.4. Let (G1,H1, θ1) and (G2,H2, θ2) be regular symmetric pairs. Then their product
(G1 ×G2,H1 ×H2, θ1 × θ2) is also a regular pair.

Proof. This follows from Proposition 2.5.8, since a product of admissible elements is admissible, and
R(gσ2

1 )×R(gσ2
2 ) is an open saturated subset of R((g1 × g2)σ1×σ2). �

http://www.jstor.org/view/00029327/di994396/99p0264d/0
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The goal of this subsection is to prove the following theorem.

Theorem 7.4.5. Let (G,H, θ) be a good symmetric pair such that all its descendants are regular. Then
it is a GK-pair.

We will need several definitions and lemmas.

Definition 7.4.6. Let (G,H, θ) be a symmetric pair. An element g ∈ G is called normal if g commutes
with σ(g).

Note that if g is normal then
gσ(g)−1 = σ(g)−1g ∈ H.

The following lemma is straightforward.

Lemma 7.4.7. Let (G,H, θ) be a symmetric pair. Then any σ-invariant H(F ) × H(F )-orbit in G(F )
contains a normal element.

Proof.
Let g′ ∈ O. We know that σ(g′) = h1g

′h2 where h1, h2 ∈ H(F ). Let g := g′h1. Then

σ(g)g = h−1
1 σ(g′)g′h1 = h−1

1 σ(g′)σ(σ(g′))h1 =

= h−1
1 h1g

′h2σ(h1g
′h2))h1 = g′σ(g′) = g′h1h

−1
1 σ(g′) = gσ(g).

Thus g in O is normal. �

Notation 7.4.8. Let (G,H, θ) be a symmetric pair. We denote

H̃ ×H := H ×H o {1, σ}
where

σ · (h1, h2) = (θ(h2), θ(h1)) · σ.

The two-sided action of H ×H on G is extended to an action of H̃ ×H in the natural way. We denote
by χ the character of H̃ ×H defined by

χ(H̃ ×H −H ×H) = {−1}, χ(H ×H) = {1}.

Proposition 7.4.9. Let (G,H, θ) be a good symmetric pair. Let O ⊂ G(F ) be a closed H(F ) ×H(F )-
orbit.

Then for any g ∈ O there exist τ ∈ (H̃ ×H)g(F ) − (H × H)g(F ) and g′ ∈ Gs(g)(F ) such that
Ad(g′) commutes with θ on Gs(g) and the action of τ on NG

O,g corresponds via the isomorphism given by
Proposition 7.2.1 to the adjoint action of g′ on gσs(g).

Proof. Clearly, if the statement holds for some g ∈ O then it holds for all g ∈ O.
Let g ∈ O be a normal element. Let h := gσ(g)−1. Recall that h ∈ H(F ) and gh = hg = σ(g). Let

τ := (h−1, 1) ·σ. Evidently, τ ∈ (H̃ ×H)g(F )−(H×H)g(F ). Consider dτg : TgG→ TgG. It corresponds
via the identification dg : g ∼= TgG to some A : g → g. Clearly, A = da where a : G → G is defined by
a(α) = g−1h−1σ(gα). However, g−1h−1σ(gα) = θ(g)σ(α)θ(g)−1. Hence A = Ad(θ(g)) ◦ σ. By Lemma
7.1.9, there exists a non-degenerate G-invariant σ-invariant symmetric bilinear form B on g. By Theorem
7.1.3, A preserves B. Therefore τ corresponds to A|gσ

s(g)
via the isomorphism given by Proposition 7.2.1.

However, σ is trivial on gσs(g) and hence A|gσ
s(g)

= Ad(θ(g))|gσ
s(g)

. Since g is normal, θ(g) ∈ Gs(g). It is
easy to see that Ad(θ(g)) commutes with θ on Gs(g). Hence we take g′ := θ(g). �

Now we are ready to prove Theorem 7.4.5.

Proof of Theorem 7.4.5. We have to show that S∗(G(F ))H̃×H,χ = 0. By Theorem 3.2.2 it is enough to
show that for any H ×H-semisimple x ∈ G(F ) such that

D(R(NG
HxH,x))

˜(H(F )×H(F ))x,χ = 0
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we have
D(Q(NG

HxH,x))
˜(H(F )×H(F ))x,χ = 0.

This follows immediately from the regularity of the pair (Gx,Hx) using the last proposition. �

7.5. Conjectures.

Conjecture 1 (van Dijk). If F = C then any connected symmetric pair is a Gelfand pair (GP3, see
Definition 8.1.2 below).

By Theorem 8.1.5 this would follow from the following stronger conjecture.

Conjecture 2. If F = C then any connected symmetric pair is a GK-pair.

By Corollary 7.1.7 this in turn would follow from the following more general conjecture.

Conjecture 3. Every good symmetric pair is a GK-pair.

which in turn follows (by Theorem 7.4.5) from the following one.

Conjecture 4. Any symmetric pair is regular.

Remark 7.5.1. In the next two subsections we prove this conjecture for certain symmetric pairs. In
subsequent works [AG08c, Say08a, AS08, Say08b, Aiz08] this conjecture was verified for most classical
symmetric pairs and several exceptional ones.

Remark 7.5.2. An indirect evidence for this conjecture is that every GK-pair is regular. One can easily
show this by analyzing a Luna slice for an orbit of an admissible element.

Remark 7.5.3. It is well known that if F is Archimedean, G is connected and H is compact then the
pair (G,H, θ) is good, Gelfand (GP1, see Definition 8.1.2 below) and in fact also GK. See e.g. [Yak04].

Remark 7.5.4. In general, not every symmetric pair is good. For example, (SL2(R), T ) where T is the
split torus. Also, it is not a Gelfand pair (not even GP3, see Definition 8.1.2 below).

Remark 7.5.5. It seems unlikely that every symmetric pair is special. However, in the next two subsec-
tions we will prove that certain symmetric pairs are special.

7.6. The pairs (G×G,∆G) and (GE/F , G) are tame.

Notation 7.6.1. Let E be a quadratic extension of F . Let G be an algebraic group defined over F . We
denote by GE/F the restriction of scalars from E to F of G viewed as a group over E. Thus, GE/F is
an algebraic group defined over F and GE/F (F ) = G(E).

In this section we will prove the following theorem.

Theorem 7.6.2. Let G be a reductive group.
(i) Consider the involution θ of G × G given by θ((g, h)) := (h, g). Its fixed points form the diagonal
subgroup ∆G. Then the symmetric pair (G×G,∆G, θ) is tame.
(ii) Let E be a quadratic extension of F . Consider the involution γ of GE/F given by the nontrivial
element of Gal(E/F ). Its fixed points form G. Then the symmetric pair (GE/F , G, γ) is tame.

Corollary 7.6.3. Let G be a reductive group. Then the adjoint action of G on itself is tame. In
particular, every conjugation invariant distribution on GLn(F ) is transposition invariant 6.

For the proof of the theorem we will need the following straightforward lemma.

Lemma 7.6.4.
(i) Every descendant of (G×G,∆G, θ) is of the form (H ×H,∆H, θ) for some reductive group H.
(ii) Every descendant of (GE/F , G, γ) is of the form (HE/F ,H, γ) for some reductive group H.

Now in view of Theorem 7.4.5, Theorem 7.6.2 follows from the following theorem.

6In the non-Archimedean case, the latter is a classical result of Gelfand and Kazhdan, see [GK75].

http://arxiv.org/abs/0805.2504
http://arxiv.org/abs/0805.2625
http://arxiv.org/abs/0810.1853v1
http://arxiv.org/abs/0811.2768
http://bib.math.uni-bonn.de/pdf/BMS-374.pdf
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Theorem 7.6.5. The pairs (G×G,∆G, θ) and (GE/F , G, γ) are special for any reductive group G.

By the speciality criterion (Proposition 7.3.7) this theorem follows from the following lemma.

Lemma 7.6.6. Let g be a semisimple Lie algebra. Let {e, h, f} ⊂ g be an sl2 triple. Then Tr(ad(h)|ge
)

is an integer smaller than dim g.

Proof. Consider g as a representation of sl2 via the triple (e, h, f). Decompose it into irreducible repre-
sentations g =

⊕
Vi. Let λi be the highest weights of Vi. Clearly

Tr(ad(h)|ge
) =

∑
λi while dim g =

∑
(λi + 1).

�

7.7. The pair (GLn+k,GLn ×GLk) is a GK pair.

Notation 7.7.1. We define an involution θn,k : GLn+k → GLn+k by θn,k(x) = εxε where ε =(
In 0
0 −Ik

)
. Note that (GLn+k,GLn×GLk, θn,k) is a symmetric pair. If there is no ambiguity we

will denote θn,k simply by θ.

Theorem 7.7.2. The pair (GLn+k,GLn×GLk, θn,k) is a GK-pair.

By Theorem 7.4.5 it is enough to prove that our pair is good and all its descendants are regular.
In §§§7.7.1 we compute the descendants of our pair and show that the pair is good.
In §§§7.7.2 we prove that all the descendants are regular.

7.7.1. The descendants of the pair (GLn+k,GLn×GLk).

Theorem 7.7.3. All the descendants of the pair (GLn+k,GLn×GLk, θn,k) are products of pairs of the
types

(i) ((GLm)E/F × (GLm)E/F ,∆(GLm)E/F , θ) for some field extension E/F
(ii) ((GLm)E/F , (GLm)L/F , γ) for some field extension L/F and its quadratic extension E/L
(iii) (GLm+l,GLm×GLl, θm,l).

Proof. Let x ∈ GLσn+k(F ) be a semisimple element. We have to compute Gx and Hx. Since x ∈ Gσ, we
have εxε = x−1. Let V = Fn+k. Decompose V :=

⊕s
i=1 Vi such that the minimal polynomial of x|Vi is

irreducible. Now Gx(F ) decomposes as a product of GLEi(Vi), where Ei is the extension of F defined by
the minimal polynomial of x|Vi and the Ei-vector space structure on Vi is given by x.

Clearly, ε permutes the Vi’s. Now we see that V is a direct sum of spaces of the following two types
A. W1 ⊕W2 such that the minimal polynomials of x|Wi are irreducible and ε(W1) = W2.
B. W such that the minimal polynomial of x|W is irreducible and ε(W ) = W .

It is easy to see that in case A we get the symmetric pair (i).
In case B there are two possibilities: either x = x−1 or x 6= x−1. It is easy to see that these cases

correspond to types (iii) and (ii) respectively. �

Corollary 7.7.4. The pair (GLn+k,GLn×GLk) is good.

Proof. Theorem 7.7.3 implies that for any (GLn×GLk) × (GLn×GLk)-semisimple element x ∈
GLn+k(F ), the stabilizer ((GLn×GLk) × (GLn×GLk))x is a product of groups of types (GLm)E/F
for some extensions E/F . Hence H1(F, ((GLn×GLk) × (GLn×GLk))x) = 0 and hence by Corollary
7.1.5 the pair (GLn+k,GLn×GLk) is good. �

7.7.2. All the descendants of the pair (GLn+k,GLn×GLk) are regular.
Clearly, for any field extension E/F , if a pair (G,H, θ) is regular as a symmetric pair over E then the
pair (GE/F ,HE/F , θ) is regular. Therefore by Theorem 7.7.3 and Theorem 7.6.2 it is enough to prove
that the pair (GLn+k,GLn×GLk, θn,k) is regular as a symmetric pair over F .

In the case n 6= k this follows from the definition since in this case the normalizer of GLn×GLk in
GLk+n is GLn×GLk and hence, any admissible g ∈ GLn+k lies in GLn×GLk.

So we can assume n = k > 0. Hence by Proposition 7.3.7 it suffices to prove the following Key Lemma.
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Lemma 7.7.5 (Key Lemma). 7 Let x ∈ glσ2n(F ) be a nilpotent element and d := d(x). Then

Tr(ad(d)|(gln(F )×gln(F ))x
) < 2n2.

We will need the following definition and lemmas.

Definition 7.7.6. We fix a grading on sl2(F ) given by h ∈ sl2(F )0 and e, f ∈ sl2(F )1 where (e, h, f) is
the standard sl2-triple. A graded representation of sl2 is a representation of sl2 on a graded vector
space V = V0 ⊕ V1 such that sl2(F )i(Vj) ⊂ Vi+j where i, j ∈ Z/2Z.

The following lemma is standard.

Lemma 7.7.7.
(i) Every irreducible graded representation of sl2 is irreducible (as a usual representation of sl2).
(ii) Every irreducible representation V of sl2 admits exactly two gradings. In one grading the highest
weight vector lies in V0 and in the other grading it lies in V1.

Notation 7.7.8. Denote by V wλ be the irreducible graded representation of sl2 with highest weight λ and
highest weight vector of parity w ∈ Z/2Z.

Lemma 7.7.9. 8 Consider Hom((V w1
λ1
, V w2
λ2

)e)0 - the even part of the space of e-equivariant linear maps
V w1
λ1

→ V w2
λ2

. Let ri := dimV wi

λi
= λi + 1 and let

m := Tr(h|(Hom((V
w1

λ1
,V

w2
λ2

)e)0
) + Tr(h|Hom((V

w2
λ2

,V
w1

λ1
)e)0

)− r1r2.

Then

m =


−min(r1, r2), if r1 6= r2 (mod 2);
−2 min(r1, r2), if r1 ≡ r2 ≡ 0 (mod 2) and w1 = w2;
0, if r1 ≡ r2 ≡ 0 (mod 2) and w1 6= w2;
|r1 − r2| − 1, if r1 ≡ r2 ≡ 1 (mod 2) and w1 = w2;
−(r1 + r2 − 1), if r1 ≡ r2 ≡ 1 (mod 2) and w1 6= w2;

This lemma follows by a direct computation from the following straightforward lemma.

Lemma 7.7.10. One has

Tr(h|((V w
λ )e)0) =

{
λ, if w = 0
0, if w = 1(1)

(V wλ )∗ = V w+λ
λ(2)

V w1
λ1

⊗ V w2
λ2

=
min(λ1,λ2)⊕

i=0

V w1+w2+i
λ1+λ2−2i.(3)

Proof of the Key Lemma. Let V0 := V1 := Fn. Let V := V0 ⊕ V1 be a Z/2Z-graded vector space. We
consider gl2n(F ) as the Z/2Z-graded Lie algebra End(V ). Note that gln(F )× gln(F ) is the even part of
End(V ) with respect to this grading. Consider V as a graded representation of the sl2 triple (x, d, x−).
Decompose V into graded irreducible representations Wi. Let ri := dimWi and wi be the parity of the
highest weight vector of Wi. Note that if ri is even then dim(Wi ∩ V0) = dim(Wi ∩ V1). If ri is odd then
dim(Wi ∩ V0) = dim(Wi ∩ V1) + (−1)wi . Since dimV0 = dimV1, we get that the number of indices i such
that ri is odd and wi = 0 is equal to the number of indices i such that ri is odd and wi = 1. We denote
this number by l. Now

Tr(ad(d)|(gln(F )×gln(F ))x
)− 2n2 = Tr(d|(Hom(V,V )x)0)− 2n2 =

1
2

∑
i,j

mij ,

where
mij := Tr(d|(Hom(Wi,Wj)x)0) + Tr(d|(Hom(Wj ,Wi)x)0)− rirj .

The mij can be computed using Lemma 7.7.9.

7This Lemma is similar to [JR96, §§3.2, Lemma 3.1]. The proofs are also similar.
8This Lemma is similar to [JR96, Lemma 3.2] but computes a different quantity.
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As we see from the lemma, if either ri or rj is even then mij is non-positive and mii is negative.
Therefore, if all ri are even then we are done. Otherwise l > 0 and we can assume that all ri are odd.
Reorder the spaces Wi so that wi = 0 for i ≤ l and wi = 1 for i > l. Now

∑
1≤i,j≤2l

mij =
∑

i≤l,j≤l

(|ri − rj | − 1) +
∑

i>l,j>l

(|ri − rj | − 1)−
∑

i≤l,j>l

(ri + rj − 1)−
∑

i>l,j≤l

(ri + rj − 1) =

=
∑

i≤l,j≤l

|ri − rj |+
∑

i>l,j>l

|ri − rj | −
∑

i≤l,j>l

(ri + rj)−
∑

i>l,j≤l

(ri + rj) <

<
∑

i≤l,j≤l

(ri + rj) +
∑

i>l,j>l

(ri + rj)−
∑

i≤l,j>l

(ri + rj)−
∑

i>l,j≤l

(ri + rj) = 0.

The Lemma follows. �

8. Applications to Gelfand pairs

8.1. Preliminaries on Gelfand pairs and distributional criteria.
In this section we recall a technique due to Gelfand-Kazhdan which allows to deduce statements in
representation theory from statements on invariant distributions. For more detailed description see
[AGS08, §2].

Definition 8.1.1. Let G be a reductive group. By an admissible representation of G we mean an
admissible representation of G(F ) if F is non-Archimedean (see [BZ76]) and admissible smooth Fréchet
representation of G(F ) if F is Archimedean.

We now introduce three a-priori distinct notions of Gelfand pair.

Definition 8.1.2. Let H ⊂ G be a pair of reductive groups.
• We say that (G,H) satisfy GP1 if for any irreducible admissible representation (π,E) of G we have

dim HomH(F )(E,C) ≤ 1.

• We say that (G,H) satisfy GP2 if for any irreducible admissible representation (π,E) of G we have

dim HomH(F )(E,C) · dim HomH(Ẽ,C) ≤ 1.

• We say that (G,H) satisfy GP3 if for any irreducible unitary representation (π,H) of G(F ) on a
Hilbert space H we have

dim HomH(F )(H∞,C) ≤ 1.

Property GP1 was established by Gelfand and Kazhdan in certain p-adic cases (see [GK75]). Property
GP2 was introduced in [Gro91] in the p-adic setting. Property GP3 was studied extensively by various
authors under the name generalized Gelfand pair both in the real and p-adic settings (see e.g. [vDP90],
[vD86], [BvD94]).

We have the following straightforward proposition.

Proposition 8.1.3. GP1 ⇒ GP2 ⇒ GP3.

Remark 8.1.4. It is not known whether some of these notions are equivalent.

We will use the following theorem from [AGS08] which is a version of a classical theorem of Gelfand
and Kazhdan (see [GK75]).

Theorem 8.1.5. Let H ⊂ G be reductive groups and let τ be an involutive anti-automorphism of G and
assume that τ(H) = H. Suppose τ(ξ) = ξ for all bi H(F )-invariant Schwartz distributions ξ on G(F ).
Then (G,H) satisfies GP2.

Corollary 8.1.6. Any symmetric GK-pair satisfies GP2.

In some cases, GP2 is known to be equivalent to GP1. For example, see Corollary 8.2.3 below.

http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/pdf/0709.1273v4
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8.2. Applications to Gelfand pairs.

Theorem 8.2.1. Let G be a reductive group and let σ be an Ad(G)-admissible anti-automorphism of
G. Let θ be the automorphism of G defined by θ(g) := σ(g−1). Let (π,E) be an irreducible admissible
representation of G.

Then Ẽ ∼= Eθ, where Ẽ denotes the smooth contragredient representation and Eθ is E twisted by θ.

Proof. By Corollary 7.6.3, the characters of Ẽ and Eθ are identical. Since these representations are
irreducible, this implies that they are isomorphic (see e.g. [Wal88, Theorem 8.1.5]). �

Remark 8.2.2. This theorem has an alternative proof using Harish-Chandra’s Regularity Theorem, which
says that the character of an admissible representation is a locally integrable function.

Corollary 8.2.3. Let H ⊂ G be reductive groups and let τ be an Ad(G)-admissible anti-automorphism
of G such that τ(H) = H. Then GP1 is equivalent to GP2 for the pair (G,H).

This corollary, together with Corollary 8.1.6 and Theorem 7.7.2 implies the following result.

Theorem 8.2.4. The pair (GLn+k,GLn×GLk) satisfies GP1.

For non-Archimedean F this theorem is proven in [JR96].

Theorem 8.2.5. Let E be a quadratic extension of F . Then the pair ((GLn)E/F ,GLn) satisfies GP1.

For non-Archimedean F this theorem is proven in [Fli91].

Proof. By Theorem 7.6.2 this pair is tame. Hence it is enough to show that this symmetric pair is good.
Consider the adjoint action of GLn on itself. Let x ∈ GLn(E)σ be semisimple. The stabilizer (GLn)x
is a product of groups of the form (GLn)F ′/F for some extensions F ′/F . Hence H1(F, (GLn)x) = 0.
Therefore, by Corollary 7.1.5, the symmetric pair in question is good. �

Part 3. Appendices

Appendix A. Algebraic geometry over local fields

A.1. Implicit Function Theorems.

Definition A.1.1. An analytic map φ : M → N is called étale if dxφ : TxM → Tφ(x)N is an
isomorphism for any x ∈ M . An analytic map φ : M → N is called a submersion if dxφ : TxM →
Tφ(x)N is onto for any x ∈M .

We will use the following version of the Inverse Function Theorem.

Theorem A.1.2 (cf. [Ser64], Theorem 2 in §9 of Chapter III in part II). Let φ : M → N be an étale
map of analytic manifolds. Then it is locally an isomorphism.

Corollary A.1.3. Let φ : X → Y be a morphism of (not necessarily smooth) algebraic varieties. Suppose
that φ is étale at x ∈ X(F ). Then there exists an open neighborhood U ⊂ X(F ) of x such that φ|U is a
homeomorphism to its open image in Y (F ).

For the proof see e.g. [Mum99, Chapter III, §5, proof of Corolary 2]. There, the proof is given for the
case F = C but it works in general.

Remark A.1.4. If F is Archimedean then one can choose U to be semi-algebraic.

The following proposition is well known (see e.g. §10 of Chapter III in part II of [Ser64]).

Proposition A.1.5. Any submersion φ : M → N is open.

Corollary A.1.6. Lemma 2.3.4 holds. Namely, for any algebraic group G and a closed algebraic subgroup
H ⊂ G the subset G(F )/H(F ) is open and closed in (G/H)(F ).

Proof. Consider the map φ : G(F ) → (G/H)(F ) defined by φ(g) = gH. Clearly, it is a submersion and
its image is exactly G(F )/H(F ). Hence, G(F )/H(F ) is open. Since each G(F )-orbit in (G/H)(F ) is
open for the same reason, G(F )/H(F ) is also closed. �
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A.2. The Luna Slice Theorem.
In this subsection we formulate the Luna Slice Theorem and show how it implies Theorem 2.3.17. For a
survey on the Luna Slice Theorem we refer the reader to [Dre00] and the original paper [Lun73].

Definition A.2.1 (cf. [Dre00]). Let a reductive group G act on affine varieties X and Y . A G-equivariant
algebraic map φ : X → Y is called strongly étale if
(i) φ/G : X/G→ Y/G is étale
(ii) φ and the quotient morphism πX : X → X/G induce a G-isomorphism X ∼= Y ×Y/G X/G.

Definition A.2.2. Let G be a reductive group and H be a closed reductive subgroup. Suppose that H acts
on an affine variety X. Then G×HX denotes (G×X)/H with respect to the action h(g, x) = (gh−1, hx).

Theorem A.2.3 (Luna Slice Theorem). Let a reductive group G act on a smooth affine variety X. Let
x ∈ X be G-semisimple.

Then there exists a locally closed smooth affine Gx-invariant subvariety Z 3 x of X and a strongly
étale algebraic map of Gx spaces ν : Z → NX

Gx,x such that the G-morphism φ : G×Gx Z → X induced by
the action of G on X is strongly étale .

Proof. It follows from [Dre00, Proposition 4.18, Lemma 5.1 and Theorems 5.2 and 5.3], noting that one
can choose Z and ν (in our notation) to be defined over F . �

Corollary A.2.4. Theorem 2.3.17 holds. Namely:
Let a reductive group G act on a smooth affine variety X. Let x ∈ X(F ) be G-semisimple.

Then there exist
(i) an open G(F )-invariant B-analytic neighborhood U of G(F )x in X(F ) with a G-equivariant B-analytic
retract p : U → G(F )x and
(ii) a Gx-equivariant B-analytic embedding ψ : p−1(x) ↪→ NX

Gx,x(F ) with an open saturated image such
that ψ(x) = 0.

Proof. Let Z, φ and ν be as in the last theorem.
Let Z ′ := Z/Gx ∼= (G×Gx Z)/G and X ′ := X/G. Consider the natural map φ′ : Z ′(F ) → X ′(F ). By

Corollary A.1.3 there exists a neighborhood S′ ⊂ Z ′(F ) of πZ(x) such that φ′|S′ is a homeomorphism to
its open image.

Consider the natural map ν′ : Z ′(F ) → NX
Gx,x/Gx(F ). Let S′′ ⊂ Z(F ) be a neighborhood of πZ(x)

such that ν′|S′′ is an isomorphism to its open image. In case that F is Archimedean we choose S′ and S′′

to be semi-algebraic.
Let S := π−1

Z (S′′ ∩ S′) ∩ Z(F ). Clearly, S is B-analytic.
Let ρ : (G ×Gx Z)(F ) → Z ′(F ) be the natural projection. Let O = ρ−1(S′′ ∩ S′). Let q : O →

(G/Gx)(F ) be the natural map. Let O′ := q−1(G(F )/Gx(F )) and q′ := q|O′ .
Now put U := φ(O′) and put p : U → G(F )x be the morphism that corresponds to q′. Note that

p−1(x) ∼= S and put ψ : p−1(x) → NX
Gx,x(F ) to be the imbedding that corresponds to ν|S . �

Appendix B. Schwartz distributions on Nash manifolds

B.1. Preliminaries and notation.
In this appendix we will prove some properties ofK-equivariant Schwartz distributions on Nash manifolds.
We work in the notation of [AG08a], where one can read about Nash manifolds and Schwartz distributions
over them. More detailed references on Nash manifolds are [BCR98] and [Shi87].

Nash manifolds are equipped with the restricted topology, in which open sets are open semi-algebraic
sets. This is not a topology in the usual sense of the word as infinite unions of open sets are not necessarily
open sets in the restricted topology. However, finite unions of open sets are open and therefore in the
restricted topology we consider only finite covers. In particular, if E → M is a Nash vector bundle it
means that there exists a finite open cover Ui of M such that E|Ui is trivial.

Notation B.1.1. Let M be a Nash manifold. We denote by DM the Nash bundle of densities on M .
It is the natural bundle whose smooth sections are smooth measures. For the precise definition see e.g.
[AG08a].

http://citeseer.ist.psu.edu/349964.html
http://www.numdam.org/numdam-bin/fitem?id=MSMF_1973__33__81_0
http://citeseer.ist.psu.edu/349964.html
http://citeseer.ist.psu.edu/349964.html
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
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An important property of Nash manifolds is

Theorem B.1.2 (Local triviality of Nash manifolds; [Shi87], Theorem I.5.12 ). Any Nash manifold can
be covered by a finite number of open submanifolds Nash diffeomorphic to Rn.

Definition B.1.3. Let M be a Nash manifold. We denote by G(M) := S∗(M,DM ) the space of
Schwartz generalized functions on M . Similarly, for a Nash bundle E →M we denote by G(M,E) :=
S∗(M,E∗ ⊗DM ) the space of Schwartz generalized sections of E.

In the same way, for any smooth manifold M we denote by C−∞(M) := D(M,DM ) the space of
generalized functions on M and for a smooth bundle E →M we denote by C−∞(M,E) := D(M,E∗⊗
DM ) the space of generalized sections of E.

Usual L1-functions can be interpreted as Schwartz generalized functions but not as Schwartz distribu-
tions. We will need several properties of Schwartz functions from [AG08a].

Property B.1.4 ([AG08a], Theorem 4.1.3). S(Rn) = Classical Schwartz functions on Rn.

Property B.1.5 ([AG08a], Theorem 5.4.3). Let U ⊂M be a (semi-algebraic) open subset, then

S(U,E) ∼= {φ ∈ S(M,E)| φ is 0 on M \ U with all derivatives}.

Property B.1.6 (see [AG08a], §5). Let M be a Nash manifold. Let M =
⋃
Ui be a finite open cover of

M . Then a function f on M is a Schwartz function if and only if it can be written as f =
n∑
i=1

fi where

fi ∈ S(Ui) (extended by zero to M).

Moreover, there exists a smooth partition of unity 1 =
n∑
i=1

λi such that for any Schwartz function

f ∈ S(M) the function λif is a Schwartz function on Ui (extended by zero to M).

Property B.1.7 (see [AG08a], §5). Let M be a Nash manifold and E be a Nash bundle over it. Let
M =

⋃
Ui be a finite open cover of M . Let ξi ∈ G(Ui, E) such that ξi|Uj = ξj |Ui . Then there exists a

unique ξ ∈ G(M,E) such that ξ|Ui = ξi.

We will also use the following notation.

Notation B.1.8. Let M be a metric space and x ∈ M . We denote by B(x, r) the open ball with center
x and radius r.

B.2. Submersion principle.

Theorem B.2.1 ([AG08b], Theorem 2.4.16). Let M and N be Nash manifolds and s : M → N be a
surjective submersive Nash map. Then locally it has a Nash section, i.e. there exists a finite open cover

N =
k⋃
i=1

Ui such that s has a Nash section on each Ui.

Corollary B.2.2. An étale map φ : M → N of Nash manifolds is locally an isomorphism. That means
that there exists a finite cover M =

⋃
Ui such that φ|Ui is an isomorphism onto its open image.

Theorem B.2.3. Let p : M → N be a Nash submersion of Nash manifolds. Then there exist a finite open
(semi-algebraic) cover M =

⋃
Ui and isomorphisms φi : Ui ∼= Wi and ψi : p(Ui) ∼= Vi where Wi ⊂ Rdi

and Vi ⊂ Rki are open (semi-algebraic) subsets, ki ≤ di and p|Ui correspond to the standard projections.

Proof. The problem is local, hence without loss of generality we can assume that N = Rk, M is an
equidimensional closed submanifold of Rn of dimension d, d ≥ k, and p is given by the standard projection
Rn → Rk.

Let Ω be the set of all coordinate subspaces of Rn of dimension d which contain N . For any V ∈ Ω
consider the projection pr : M → V . Define UV = {x ∈ M |dxpr is an isomorphism }. It is easy to see
that pr|UV

is étale and {UV }V ∈Ω gives a finite cover of M . The theorem now follows from the previous
corollary (Corollary B.2.2). �

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
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Theorem B.2.4. Let φ : M → N be a Nash submersion of Nash manifolds. Let E be a Nash bundle
over N . Then
(i) there exists a unique continuous linear map φ∗ : S(M,φ∗(E) ⊗DM ) → S(N,E ⊗DN ) such that for
any f ∈ S(N,E∗) and µ ∈ S(M,φ∗(E)⊗DM ) we have∫

x∈N
〈f(x), φ∗µ(x)〉 =

∫
x∈M

〈φ∗f(x), µ(x)〉.

In particular, we mean that both integrals converge.
(ii) If φ is surjective then φ∗ is surjective.

Proof.
(i)
Step 1. Proof for the case when M = Rn, N = Rk, k ≤ n, φ is the standard projection and E is

trivial.
Fix Haar measure on R and identify DRl with the trivial bundle for any l. Define

φ∗(f)(x) :=
∫
y∈Rn−k

f(x, y)dy.

Convergence of the integral and the fact that φ∗(f) is a Schwartz function follows from standard calculus.
Step 2. Proof for the case when M ⊂ Rn and N ⊂ Rk are open (semi-algebraic) subsets, φ is the

standard projection and E is trivial.
Follows from the previous step and Property B.1.5.

Step 3. Proof for the case when E is trivial.
Follows from the previous step, Theorem B.2.3 and partition of unity (Property B.1.6).

Step 4. Proof in the general case.
Follows from the previous step and partition of unity (Property B.1.6).

(ii) The proof is the same as in (i) except of Step 2. Let us prove (ii) in the case of Step 2. Again, fix
Haar measure on R and identify DRl with the trivial bundle for any l. By Theorem B.2.1 and partition
of unity (Property B.1.6) we can assume that there exists a Nash section ν : N →M . We can write ν in
the form ν(x) = (x, s(x)).

For any x ∈ N define R(x) := sup{r ∈ R≥0|B(ν(x), r) ⊂M}. Clearly, R is continuous and positive. By
Tarski - Seidenberg principle (see e.g. [AG08a, Theorem 2.2.3]) it is semi-algebraic. Hence (by [AG08a,
Lemma A.2.1]) there exists a positive Nash function r(x) such that r(x) < R(x). Let ρ ∈ S(Rn−k) such
that ρ is supported in the unit ball and its integral is 1. Now let f ∈ S(N). Let g ∈ C∞(M) defined by
g(x, y) := f(x)ρ((y − s(x))/r(x))/r(x) where x ∈ N and y ∈ Rn−k. It is easy to see that g ∈ S(M) and
φ∗g = f . �

Notation B.2.5. Let φ : M → N be a Nash submersion of Nash manifolds. Let E be a bundle on N .
We denote by φ∗ : G(N,E) → G(M,φ∗(E)) the dual map to φ∗.

Remark B.2.6. Clearly, the map φ∗ : G(N,E) → G(M,φ∗(E)) extends to the map φ∗ : C−∞(N,E) →
C−∞(M,φ∗(E)) described in [AGS08, Theorem A.0.4].

Proposition B.2.7. Let φ : M → N be a surjective Nash submersion of Nash manifolds. Let E be a
bundle on N . Let ξ ∈ C−∞(N). Suppose that φ∗(ξ) ∈ G(M). Then ξ ∈ G(N).

Proof. It follows from Theorem B.2.4 and Banach Open Map Theorem (see [Rud73, Theorem 2.11]). �

B.3. Frobenius reciprocity.
In this subsection we prove Frobenius reciprocity for Schwartz functions on Nash manifolds.

Proposition B.3.1. Let M be a Nash manifold. Let K be a Nash group. Let E →M be a Nash bundle.
Consider the standard projection p : K ×M → M . Then the map p∗ : G(M,E) → G(M ×K, p∗E)K is
an isomorphism.

This proposition follows from in [AG08b, Proposition 4.0.11].

http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/pdf/0709.1273v4
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
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Corollary B.3.2. Let a Nash group K act on a Nash manifold M . Let E be a K-equivariant Nash
bundle over M . Let N ⊂M be a Nash submanifold such that the action map K×N →M is submersive.
Then there exists a canonical map

HC : G(M,E)K → G(N,E|N ).

Theorem B.3.3. Let a Nash group K act on a Nash manifold M . Let N be a K-transitive Nash
manifold. Let φ : M → N be a Nash K-equivariant map.

Let z ∈ N be a point and Mz := φ−1(z) be its fiber. Let Kz be the stabilizer of z in K. Let E be a
K-equivariant Nash vector bundle over M .

Then there exists a canonical isomorphism

Fr : G(Mz, E|Mz
)Kz ∼= G(M, E)K .

Proof. Consider the map az : K → N given by az(g) = gz. It is a submersion. Hence by Theorem B.2.1

there exists a finite open cover N =
k⋃
i=1

Ui such that az has a Nash section si on each Ui. This gives an

isomorphism φ−1(Ui) ∼= Ui ×Mz which defines a projection p : φ−1(Ui) →Mz. Let ξ ∈ G(Mz, E|Mz )Kz .
Denote ξi := p∗ξ. Clearly it does not depend on the section si. Hence ξi|Ui∩Uj = ξj |Ui∩Uj and hence by
Property B.1.7 there exists η ∈ G(M, E) such that η|Ui = ξi. Clearly η does not depend on the choices.
Hence we can define Fr(ξ) = η.

It is easy to see that the map HC : G(M,E)K → G(Mz, E|Mz
) described in the last corollary gives the

inverse map. �

Since our construction coincides with the construction of Frobenius reciprocity for smooth manifolds
(see e.g. [AGS08, Theorem A.0.3]) we obtain the following corollary.

Corollary B.3.4. Part (ii) of Theorem 2.5.7 holds.

B.4. K-invariant distributions compactly supported modulo K.

In this subsection we prove Theorem 4.0.5. Let us first remind its formulation.

Theorem B.4.1. Let a Nash group K act on a Nash manifold M . Let E be a K-equivariant Nash bundle
over M . Let ξ ∈ D(M,E)K such that Supp(ξ) is Nashly compact modulo K. Then ξ ∈ S∗(M,E)K .

For the proof we will need the following lemmas.

Lemma B.4.2. Let M be a Nash manifold. Let C ⊂ M be a compact subset. Then there exists a
relatively compact open (semi-algebraic) subset U ⊂M that includes C.

Proof. For any point x ∈ C choose an affine chart, and let Ux be an open ball with center at x inside this
chart. Those Ux give an open cover of C. Choose a finite subcover {Ui}ni=1 and let U :=

⋃n
i=1 Ui. �

Lemma B.4.3. Let M be a Nash manifold. Let E be a Nash bundle over M . Let U ⊂M be a relatively
compact open (semi-algebraic) subset. Let ξ ∈ D(M,E). Then ξ|U ∈ S∗(U,E|U ).

Proof. It follows from the fact that extension by zero ext : S(U,E|U ) → C∞c (M,E) is a continuous
map. �

Proof of Theorem B.4.1. Let Z ⊂M be a semi-algebraic closed subset and C ⊂M be a compact subset
such that Supp(ξ) ⊂ Z ⊂ KC.

Let U ⊃ C be as in Lemma B.4.2. Let ξ′ := ξ|KU . Since ξ|M−Z = 0, it is enough to show that ξ′ is
Schwartz.

Consider the surjective submersion mU : K × U → KU . Let

ξ′′ := m∗
U (ξ′) ∈ D(K × U,m∗

U (E))K .

By Proposition B.2.7, it is enough to show that

ξ′′ ∈ S∗(K × U,m∗
U (E)).

http://arxiv.org/pdf/0709.1273v4
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By Frobenius reciprocity, ξ′′ corresponds to η ∈ D(U,E). It is enough to prove that η ∈ S∗(U,E).
Consider the submersion m : K ×M →M and let

ξ′′′ := m∗(ξ) ∈ D(K ×M,m∗(E)).

By Frobenius reciprocity, ξ′′′ corresponds to η′ ∈ D(M,E). Clearly η = η′|U . Hence by Lemma B.4.3,
η ∈ S∗(U,E). �

Appendix C. Proof of the Archimedean Homogeneity Theorem

The goal of this appendix is to prove Theorem 5.1.7 for Archimedean F . First we remind its formula-
tion.

Theorem C.0.1 (Archimedean Homogeneity). Let V be a vector space over F . Let B be a non-degenerate
symmetric bilinear form on V . Let M be a Nash manifold. Let L ⊂ S∗V×M (Z(B) ×M) be a non-zero
subspace such that for all ξ ∈ L we have FB(ξ) ∈ L and Bξ ∈ L (here B is interpreted as a quadratic
form).

Then there exists a non-zero distribution ξ ∈ L which is adapted to B.

Till the end of the section we assume that F is Archimedean and we fix V and B.
First we will need some facts about the Weil representation. For a survey on the Weil representation

in the Archimedean case we refer the reader to [RS78, §1].
(1) There exists a unique (infinitesimal) action π of sl2(F ) on S∗(V ) such that

(i) π(
(

0 1
0 0

)
)ξ = −iπRe(B)ξ and π(

(
0 0
−1 0

)
)ξ = −F−1

B (iπRe(B)FB(ξ)).

(ii) If F = C then π(
(

0 i
0 0

)
) = π(

(
0 0
−i 0

)
) = 0

(2) It can be lifted to an action of the metaplectic group Mp(2, F ).
We will denote this action by Π.

(3) In case F = C we have Mp(2, F ) = SL2(F ) and in case F = R the group Mp(2, F ) is a connected
2-fold covering of SL2(F ). We will denote by ε ∈ Mp(2, F ) the central element of order 2 satisfying
SL2(F ) = Mp(2, F )/{1, ε}.

(4) In case F = R we have Π(ε) = (−1)dimV and therefore if dimV is even then Π factors through
SL2(F ) and if dimV is odd then no nontrivial subrepresentation of Π factors through SL2(F ). In
particular if dimV is odd then Π has no nontrivial finite-dimensional representations, since every
finite-dimensional representation of Mp(2, F ) factors through SL2(F ).

(5) In case F = C or in case dimV is even we have Π(
(
t 0
0 t−1

)
)ξ = δ−1(t)|t|− dimV/2ρ(t)ξ and

Π(
(

0 1
−1 0

)
)ξ = γ(B)−1FBξ.

We also need the following straightforward lemma.

Lemma C.0.2. Let (Λ, L) be a continuous finite-dimensional representation of SL2(R). Then there exists
a non-zero ξ ∈ L such that either

Λ(
(
t 0
0 t−1

)
)ξ = ξ and Λ(

(
0 1
−1 0

)
)ξ is proportional to ξ

or

Λ(
(
t 0
0 t−1

)
)ξ = tξ,

for all t.

Now we are ready to prove the theorem.

Proof of Theorem 5.1.7. Without loss of generality assume M = pt.
Let ξ ∈ L be a non-zero distribution. Let L′ := UC(sl2(R))ξ ⊂ L. Here, UC means the complexified

universal enveloping algebra.

http://www.jstor.org/view/00029327/di994428/99p0186g/0
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We are given that ξ,FB(ξ) ∈ S∗V (Z(B)). By Lemma C.0.3 below this implies that L′ ⊂ S∗(V ) is
finite-dimensional. Clearly, L′ is also a subrepresentation of Π. Therefore by Fact (4), F = C or dimV
is even. Hence Π factors through SL2(F ).

Now by Lemma C.0.2 there exists ξ′ ∈ L′ which is B-adapted. �

Lemma C.0.3. Let V be a representation of sl2. Let v ∈ V be a vector such that ekv = fnv = 0 for
some n, k. Then the representation generated by v is finite-dimensional.9

This lemma is probably well-known. Since we have not found any reference we include the proof.

Proof. The proof is by induction on k.

Base k=1:
It is easy to see that

elf lv = l!(
l−1∏
i=0

(h− i))v

for all l. This can be checked by direct computation, and also follows from the fact that elf l is of weight
0, hence it acts on the singular vector v by its Harish-Chandra projection which is

HC(elf l) = l!
l−1∏
i=0

(h− i).

Therefore (
∏n−1
i=0 (h− i))v = 0.

Hence W := UC(h)v is finite-dimensional and h acts on it semi-simply. Here, UC(h) denotes the
universal enveloping algebra of h. Let {vi}mi=1 be an eigenbasis of h in W . It is enough to show that
UC(sl2)vi is finite-dimensional for any i. Note that e|W = fn|W = 0. Now, UC(sl2)vi is finite-dimensional
by the Poincare-Birkhoff-Witt Theorem.

Induction step:
Let w := ek−1v. Let us show that fn+k−1w = 0. Consider the element fn+k−1ek−1 ∈ UC(sl2). It is
of weight −2n, hence by the Poincare-Birkhoff-Witt Theorem it can be rewritten as a combination of
elements of the form eahbfc such that c− a = n and hence c ≥ n. Therefore fn+k−1ek−1v = 0.

Now let V1 := UC(sl2)v and V2 := UC(sl2)w. By the base of the induction V2 is finite-dimensional, by
the induction hypotheses V1/V2 is finite-dimensional, hence V1 is finite-dimensional. �

Appendix D. Localization Principle

by Avraham Aizenbud, Dmitry Gourevitch and Eitan Sayag

In this appendix we formulate and prove the Localization Principle in the case of a reductive
group G acting on a smooth affine variety X. This is of interest only for Archimedean F since for
l-spaces, a more general version of this principle has been proven in [Ber84]. In [AGS09], we formulated
without proof a Localization Principle in the setting of differential geometry. Admittedly, we currently
do not have a proof of this principle in such a general setting. However, the current generality is
sufficiently wide for all applications we encountered up to now, including the one in [AGS09].

Theorem D.0.1 (Localization Principle). Let a reductive group G act on a smooth algebraic variety
X. Let Y be an algebraic variety and φ : X → Y be an affine algebraic G-invariant map. Let χ be
a character of G(F ). Suppose that for any y ∈ Y (F ) we have DX(F )((φ−1(y))(F ))G(F ),χ = 0. Then
D(X(F ))G(F ),χ = 0.

9For our purposes it is enough to prove this lemma for k=1.

http://www.springerlink.com/content/48436n62526244m3/
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Proof. Clearly, it is enough to prove the theorem for the case when X is affine, Y = X/G and φ = πX(F ).
By the Generalized Harish-Chandra Descent (Corollary 3.2.2), it is enough to prove that for any G-
semisimple x ∈ X(F ), we have

DNX
Gx,x(F )(Γ(NX

Gx,x))
Gx(F ),χ = 0.

Let (U, p, ψ, S,N) be an analytic Luna slice at x. Clearly,

DNX
Gx,x(F )(Γ(NX

Gx,x))
Gx(F ),χ ∼= Dψ(S)(Γ(NX

Gx,x))
Gx(F ),χ ∼= DS(ψ−1(Γ(NX

Gx,x)))
Gx(F ),χ.

By Frobenius reciprocity (Theorem 2.5.7),

DS(ψ−1(Γ(NX
Gx,x)))

Gx(F ),χ = DU (G(F )ψ−1(Γ(NX
Gx,x)))

G(F ),χ.

By Lemma 2.3.12,
G(F )ψ−1(Γ(NX

Gx,x)) = {y ∈ X(F )|x ∈ G(F )y}.
Hence by Corollary 2.3.15, G(F )ψ−1(Γ(NX

Gx,x)) is closed in X(F ). Hence

DU (G(F )ψ−1(Γ(NX
Gx,x)))

G(F ),χ = DX(F )(G(F )ψ−1(Γ(NX
Gx,x)))

G(F ),χ.

Now,
G(F )ψ−1(Γ(NX

Gx,x)) ⊂ πX(F )−1(πX(F )(x))
and we are given

DX(F )(πX(F )−1(πX(F )(x)))G(F ),χ = 0
for any G-semisimple x. �

Remark D.0.2. An analogous statement holds for Schwartz distributions and the proof is the same.

Corollary D.0.3. Let a reductive group G act on a smooth algebraic variety X. Let Y be an algebraic
variety and φ : X → Y be an affine algebraic G-invariant submersion. Suppose that for any y ∈ Y (F )
we have S∗(φ−1(y))G(F ),χ = 0. Then D(X(F ))G(F ),χ = 0.

Proof. For any y ∈ Y (F ), denote X(F )y := (φ−1(y))(F ). Since φ is a submersion, for any y ∈ Y (F ) the
set X(F )y is a smooth manifold. Moreover, dφ defines an isomorphism between N

X(F )
X(F )y,z

and TY (F ),y

for any z ∈ X(F )y. Hence the bundle CNX(F )
X(F )y

is a trivial G(F )-equivariant bundle.
We know that

S∗(X(F )y)G(F ),χ = 0.
Therefore for any k, we have

S∗(X(F )y,Symk(CNX(F )
X(F )y

))G(F ),χ = 0.

Thus by Theorem 2.5.6, S∗X(F )(X(F )y)G(F ),χ = 0. Now, by Theorem D.0.1 (and Remark D.0.2) this
implies that S∗(X(F ))G(F ),χ = 0. Finally, by Theorem 4.0.2 this implies D(X(F ))G(F ),χ = 0. �

Remark D.0.4. Theorem 4.0.1 and Corollary D.0.3 admit obvious generalizations to constant vector
systems. The same proofs hold.
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Appendix E. Diagram

The following diagram illustrates the interrelations of the various properties of a symmetric pair
(G,H). On the non-trivial implications we put the numbers of the statements that prove them. Near
the important notions we put the numbers of the definitions which define those notions.
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