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Abstract. Let F be a non-Archimedean local field or a finite field. Let n be a natural number and k
be 1 or 2. Consider G := GLn+k(F ) and let M := GLn(F )×GLk(F ) < G be a maximal Levi subgroup.
Let U < G be the corresponding unipotent subgroup and let P = MU be the corresponding parabolic

subgroup. Let J := JG
M : M(G) → M(M) be the Jacquet functor (i.e. the functor of coinvariants w.r.t.

U). In this paper we prove that J is a multiplicity free functor, i.e.

dimHomM (J(π), ρ) ≤ 1,

for any irreducible representations π of G and ρ of M .
To do that we adapt the classical method of Gelfand and Kazhdan that proves ”multiplicity free”

property of certain representations to prove ”multiplicity free” property of certain functors.

At the end we discuss whether other Jacquet functors are multiplicity free.
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1. Introduction

Let F be a non-Archimedean local field or a finite field. Let n be a natural number and k be 1 or 2.
Consider G := GLn+k(F ) and letM := GLn(F )×GLk(F ) < G be a maximal Levi subgroup. Let U < G
be the corresponding unipotent subgroup and let P =MU be the corresponding parabolic subgroup. Let
J := JGM : M(G) → M(M) be the Jacquet functor (i.e. the functor of coinvariants w.r.t. U). We will
fix the notations F, n,G,M and U throughout the paper.

In this paper we prove the following theorem.

Theorem A. Let π be an irreducible representation of G and ρ be an irreducible representation of M .
Then

dimHomM (J(π), ρ) ≤ 1.

As we will show in §3, this theorem is equivalent to the following one.

Theorem B. Let G ×M act on G/U by (g,m)([g′]) = [gg′m−1]. This action is well defined since M
normalizes U . Consider the space of Schwartz measures H(G/U) (i.e. compactly supported measures
which are locally constant w.r.t. the action of G) as a representation of G×M . Then this representation
is multiplicity free, i.e. for any irreducible representation π of G×M we have

dimHomG×M (H(G/U), π) ≤ 1.

By Frobenius reciprocity, this theorem is in turn equivalent to the following one.

Theorem C. Let prM : P →M denote the natural projection. Consider P to be embedded in G×M by
p 7→ (p, prM (p)).

Then the pair (G×M,P ) is a Gelfand pair i.e. for any irreducible representation π of G×M we have

dimHomP (π,C) ≤ 1.

Theorem A implies also the following theorem.

Theorem D. Suppose k = 1 and let H = GLn(F ) be standardly embedded inside G. Let π be an
irreducible representation of G and ρ be an irreducible representation of H. Then

dimHomH(J(π)|H , ρ) ≤ 1.

We will prove the implications mentioned above between theorems A, B, C and D in §3.

1.1. A sketch of the proof.
Using a version of the Gelfand-Kazhdan criterion we deduce Theorem B from the following one

Theorem E. Any distribution on (U t \ G) × (G/U) which is invariant with respect to the action of
G × M given by (g,m)([x], [y]) := ([mxg−1], [gym−1]) is also invariant with respect to the involution
([x], [y]) 7→ ([yt], [xt]).

By the method of Bernstein-Gelfand-Kazhdan-Zelevinski (Theorem 2.5.1) it is enough to prove that
the involution preserves all G×M orbits. This we deduce from the following geometric statement.

Proposition F. Let X := Xn,k := {A,B ∈ Matn+k|AB = BA = 0, rank(A) = n, rank(B) = k}. Let
G act on Xn,k by conjugations. Define the transposition map θ := θn,k : Xn,k → Xn,k by θ(A,B) :=
(At, Bt).

Then any G-orbit in Xn,k is θ-invariant.

We deduce this geometric statement from the key lemma 5.0.2, which states that every M -orbit
in U t \ GLk(F )/U is transposition invariant, where M < GLk(F ) is a Levi subgroup and U is the
corresponding unipotent subgroup. This lemma is a straightforward computation since k ≤ 2, but for
bigger k it is not true.

1.2. Related problems.
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1.2.1. Case k = 1. In case when k = 1 and F is a local field, a stronger theorem holds. Namely, the
functor of restriction from GLn+1(F ) to GLn(F ) is multiplicity free. This is proven in [AGRS] for F
of characteristic 0, in [AAG] for F of positive characteristic. It is also proven for Archimedean F in
[AG09b, SZ].

This stronger statement does not hold for finite fields already for n = 1. Theorem D may be viewed
as a weaker form of this statement that works uniformly for local and finite fields.

Note that in case when k = 1 and F is a finite field, there is an alternative proof of Theorem D which
is based on the classification of irreducible representations of GLn(F ), see [Fad78, Gre, Zel81]. Also, the
proof given in the current paper can be simplified for this private case, see [Gor10a, Gor10b].

Theorem D is crucial for the study of representation theory of limits of GLn(Fq) when n → ∞, see
[VK98, VK].

1.2.2. The Archimedean case. We believe that the analog of Theorem A for Archimedean F holds. For
k = 1 it holds as explained above. For k = 2 we believe that the proof given in this paper can be adapted
to the Archimedean case. However this will require additional analysis.

1.2.3. Higher rank cases. One can ask whether an analog of Theorem A holds when M is an arbitrary
Levi subgroup of G. If F is a local field, we do not know the answer for this question. If F is a finite field,
such analog of Theorem A holds only in the cases at hand. This is related to the fact that the restriction
of any irreducible representation of the permutation group Sn1+...+nl

to Sn1 × ...×Snl
is multiplicity free

if and only if l ≤ 2 and min(n1, n2) ≤ 2. We discuss those questions in §6.

1.3. Contents of the paper.
In §2 we give the necessary preliminaries. In §§2.1 we introduce notation that we will use throughout

the paper. In §§2.2 we give some preliminaries and notation on l-spaces, l -groups and their representations
based on [BZ76]. In §§2.3 we define multiplicity free functors and formulate two theorems that enable us
to reduce ”multiplicity free” property of a strongly right exact functor between the categories of smooth
representations of two l-groups to ”multiplicity free” property of a certain representation of the product
of those groups. We prove those theorems in Appendix A. In §§2.4 we formulate a version of Gelfand-
Kazhdan criterion for ”multiplicity free” property of representations of the form S(X). We prove this
version in Appendix B. In §§2.5 we recall a criterion for vanishing of equivariant distributions in terms
of stabilizers of points. In §§2.6 we recall the Deligne (weight) filtration attached to a nilpotent operator
on a vector space.

In §3 we prove equivalence of Theorems A, B and C and deduce Theorem D from them.
In §4 we reduce Theorem B to the geometric statement.
In §5 we prove the geometric statement.
In §6 we discuss whether an analog of Theorem A holds whenM is an arbitrary Levi subgroup. In §§6.1

we answer an analogous question for permutation groups. In §§6.2 we discuss the connection between
the questions for permutation groups and general linear groups over finite fields. In §§6.3 we discuss the
local field case.

In Appendix A we prove theorems on strongly right exact functors between the categories of smooth
representations of two reductive groups from §§2.3.

In Appendix B we prove a version of Gelfand-Kazhdan criterion for ”multiplicity free” property of
geometric representations from §§2.4.
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We thank Joseph Bernstein for initiating this work by telling us the case k = 1. We also thank

Joseph Bernstein, Evgeny Goryachko and Erez Lapid for useful discussions.
This work was conceived while the authors were visiting the Max Planck Institute fur Mathematik

(MPIM) in Bonn. We wish to thank the MPIM for its hospitality. D.G. also worked on this paper when
he was a post-doc at the Weizmann Institute of Science. He wishes to thank the Weizmann Institute for
wonderful working conditions during this post-doc and during his graduate studies.

Both authors were partially supported by a BSF grant, a GIF grant, and an ISF Center of excellency
grant. A.A was also supported by ISF grant No. 583/09 and D.G. by NSF grant DMS-0635607. Any
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2. Preliminaries

2.1. General notation.

• For a group H acting on a set X and a point x ∈ X we denote by Hx or by H(x) the orbit of x
and by Hx the stabilizer of x. We also denote by XH the set of fixed points in X.

• For a representation V of a group H we denote by V H the space of invariants and by VH the
space of coinvariants, i.e. VH := V/(Span{v − gv | g ∈ H, v ∈ V }).

• For a Lie algebra g acting on a vector space V we denote by V g the space of invariants. Similarly,
for any element X ∈ g we denote by V X the kernel of the action of X.

• For a linear operator A : V →W we denote the cokernel of A by CokerA :=W/ImA.
• For a linear operator A : V → V and an A-invariant subspace U ⊂ V we denote by A|U : U → U
and A|V/U : V/U → V/U the natural induced operators.

2.2. l-spaces and l-groups.
We will use the standard terminology of l-spaces introduced in [BZ76]. Let us recall it.

• An l-space is a Hausdorff locally compact totally disconnected topological space.
• For an l-space X we denote by S(X) the space of Schwartz functions on X, i.e. locally constant
compactly supported) functions on X. We denote by S∗(X) the dual space and call its elements
distributions.

• In [BZ76] there was introduced the notion of ”l-sheaf”. As it was later realized (see e.g. [Ber,
§§1.3]) this notion is equivalent to the usual notion of sheaf on an l-space, so we will use the
results of [BZ76] for sheaves.

• For a sheaf F on an l-space X we denote by S(X,F) the space of compactly supported sections
of F and by S∗(X,F) its dual space.

• Note that S(X1,F1)⊗ S(X2,F2) ∼= S(X1 ×X2,F1 � F2) for any l-spaces Xi and sheaves Fi on
them.

• An l-group is a topological group which has a basis of topology at 1 consisting of open compact
subgroups. In fact, any topological group which is an l-space is an l-group.

• Let an l-group G acts (continuously) on an l-space X. Let a : G × X → X be the action map
and p : G ×X → X be the projection. A G-equivariant sheaf on X is a sheaf F on X together
with an isomorphism a∗F → p∗F which satisfy the natural conditions.

• For a representation V of an l-group H we denote by V∞ the space of smooth vectors, i.e. vectors
whose stabilizers are open.

• We denote Ṽ := (V ∗)∞.
• For an l-group H we denote by H(H) the convolution algebra of smooth (i.e. locally constant
w.r.t. the action of H) compactly supported measures on H.

• Similarly for a transitiveH-spaceX we denote byH(X) the space of smooth compactly supported
measures on X.

• For an l-group H we denote by M(H) the category of smooth representations of H.
• Recall that if an l-group H acts (continuously) on an l-space X and F is an H-equivariant sheaf
on X then S(X,F) is a smooth representation of H.

Definition 2.2.1. A representation V of an l-group H is called admissible if one of the following
equivalent conditions holds.

(1) For any open compact subgroup K < H we have dimV K <∞.
(2) There exists an open compact subgroup K < H such that dimV K <∞.
(3) For any open compact subgroup K < H, V |K =

⊕
ρ∈IrrK

nρρ, where nρ are finite numbers and

IrrK denotes the collection of isomorphism classes of irreducible representations of K.

(4) The natural morphism V → ˜̃
V is an isomorphism.
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Theorem 2.2.2 (Harish-Chandra). Let H be a reductive (not necessarily connected) group defined over
F . Then every smooth irreducible representation of H(F ) is admissible.

Definition 2.2.3. Let H be an l-group. An H(H)-module M is called unital if H(H)M =M .

Theorem 2.2.4 (Bernstein-Zelevinsky). Let H be an l-group. Then
(i) the natural functor between M(H) and the category of unital H(H)-modules is an equivalence of
categories.
(ii) The category M(H) is abelian.

2.3. Multiplicity free functors.

Definition 2.3.1. Let H be an l-group. We call a representation π ∈ M(H) multiplicity free if for
any irreducible admissible representation τ ∈ M(H) we have dimC Hom(π, τ) ≤ 1.

Let H ′ be an l-group. We call a functor F : M(H) → M(H ′) a multiplicity free functor if for any
irreducible admissible representation π ∈ M(H), the representation F(π) is multiplicity free.

Remark 2.3.2. Note that if H is not reductive then the ”multiplicity free” property might be rather weak
since there might be too few admissible representations.

Theorem 2.3.3. Let H and H ′ be l-groups.
Let F : M(H) → M(H ′) be a C-linear functor that commutes with arbitrary direct limits (or, equivalently,
is right exact and commutes with arbitrary direct sums). Let Π := F(H(H)). Consider the action of H
on H(H) given by gµ := µ ∗ δg−1 . It defines an action of H on Π which commutes with the action of H ′.
In this way Π becomes a representation of H ×H ′. Then
(i) Π is a smooth representation.
(ii) F is canonically isomorphic to the functor given by π 7→ (Π⊗ π)H .

This theorem is known. For the sake of completeness we include its proof in Appendix A.1.

Theorem 2.3.4. Let H and H ′ be l-groups.
Let F : M(H) → M(H ′) be a C-linear functor that commutes with arbitrary direct limits. Then F is a
multiplicity free functor if and only if F(H(H)) is a multiplicity free representation of H ×H ′.

For proof see Appendix A.2.

2.4. Gelfand Kazhdan criterion for ”multiplicity free” property of geometric representations.

Theorem 2.4.1. Let H be an l-group. Let X and Y be H-spaces and F and G be H-equivariant sheaves
on X and Y respectively. Let τ : X → Y be a homeomorphism (not necessarily H-invariant). Suppose
that we are given an isomorphism τ∗F ≃ G. Define T : X × Y → X × Y by T (x, y) := (τ−1(y), τ(x)). It
gives an involution T on the space S∗(X × Y,F � G).

Suppose that any ξ ∈ S∗(X × Y,F � G) which is invariant with respect to the diagonal action of H is
invariant with respect to T . Then for any irreducible admissible representation π ∈ M(H) we have

dimHom(S(X,F), π) · dimHom(S(Y,G)), π̃) ≤ 1.

In the case when X and Y are transitive and correspond to each other in a certain way, this theorem
is a classical theorem by Gelfand and Kazhdan (see [GK71]). For the general case the proof is the same
and we repeat it in Appendix B. In fact, in this paper we could use the classical formulation of this
theorem, but we believe that this theorem is useful in the general formulation.

Definition 2.4.2. Let H be an l-group. Let θ : H → H be an involution. Let X be an H-space.
(i) Denote by θ(X) the H-space which coincides with X as an l-space but with the action of H twisted
by θ.
(ii) Similarly, for a representation π of H we denote by θ(π) the representation π ◦ θ.
(iii) Let F be an H-equivariant sheaf on X. Let us define an equivariant sheaf θ(F) on θ(X). As a sheaf,
θ(F) coincides with F and the equivariant structure is defined in the following way. Let a : H ×X → X
denote the action map and p2 : H × X → X denote the projection. Let α : a∗(F) → p∗2(F) denote the
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equivariant structure of F . We have to define an equivariant structure θ(α) : (θ(a))∗(θ(F)) → p∗2(θ(F)),
where θ(a) : H × θ(X) → θ(X) is the action map. Note that (θ(a))∗(θ(F)) ∼= (θ × Id)∗(a∗(F)). Since
θ × Id is an involution, it is enough to define a map between a∗(F) and (θ × Id)∗(p∗2(F)). Let β denote
the canonical isomorphism between (θ × Id)∗(p∗2(F)) and (p2 ◦ (θ × Id))∗(F) = p∗2(F). Now, the desired
map is given by β−1 ◦ α.

Remark 2.4.3. Clearly, S(θ(X), θ(F)) ∼= θ(S(X,F)).

Notation 2.4.4. Let H := GLn1 ×...×GLnk
. We denote by κ the Cartan involution κ(g) := (gt)−1.

Theorem 2.4.5 ([GK71]). Let H := GLn1 ×... × GLnk
. Let π be an irreducible smooth representation

of H(F ). Then π̃ ≃ κ(π).

Corollary 2.4.6. Let H := GLn1 ×...×GLnk
. Let X be an H(F )-space. Let F be an H(F )-equivariant

sheaf on X. Suppose that any ξ ∈ S(X ×κ(X),F �κ(F)) which is invariant with respect to the diagonal
action of H(F ) is invariant with respect to swap of the coordinates. Then the representation S(X,F) is
multiplicity free.

2.5. Bernstein-Gelfand-Kazhdan-Zelevinski criterion for vanishing of invariant distributions.

Theorem 2.5.1 (Bernstein-Gelfand-Kazhdan-Zelevinsky). Let an algebraic group H act on an algebraic
variety X, both defined over F . Let H ′ be an open subgroup of H(F ). Let F be a sheaf over X(F ).
Suppose that for any x ∈ X(F ) we have

(Fx ⊗∆H′ |H′
x
⊗∆−1

H′
x
)H

′
x = 0,

where ∆H′ and ∆H′
x
denote the modular functions of the groups H ′ and H ′

x. Then S∗(X(F ),F)H
′
= 0.

This theorem follows from [BZ76, §6] and [Ber83, §§1.5].

Corollary 2.5.2. Let an algebraic group H act on an algebraic variety X, both defined over F . Let
σ : X → X be an involution defined over F . Suppose that σ normalizes the action of H. Then each
H(F )-invariant distribution on X(F ) is invariant under σ.

Proof. Let H ′ denote the group of homeomorphisms of X(F ) generated by the actions of H(F ) and σ
and H ′′ denote the subgroup generated by the action of H(F ). Define a character χ of H ′ by χ(H ′′) = 1,

χ(H ′ −H ′′) = −1. By the previous theorem, S∗(X,χ)H
′
= 0. On the other hand, every H(F )-invariant

distribution on X(F ) is a sum of a σ-invariant distribution and an (H ′, χ)-equivariant distribution. �

2.6. Deligne filtration.

Theorem 2.6.1 (Deligne). Let A be a nilpotent operator on a vector space V . Then there exists and
unique a finite decreasing filtration V ≥i s.t.
(i) A is of degree 2 w.r.t. this filtration.
(ii) Al gives an isomorphism V ≥l/V ≥l+1 ≃ V ≥−l/V ≥−l+1.

For proof see [Del80, Proposition I.6.I]

Definition 2.6.2. We will denote this filtration by D≥i
A (V ) and call it the Deligne filtration.

Remark 2.6.3. In the case charF = 0 this filtration coincides with the weight filtration defined by
extending A to an sl2-triple using the Jacobson-Morosov theorem.

Notation 2.6.4. The filtration D≥i
A (V ) induces filtrations on KerA and CokerA in the following way

D≥i
A,+(KerA) := D≥i

A (V ) ∩KerA and D≤i
A,−(CokerA) := D≤−i

A (V )/(ImA ∩ D≤−i
A (V )).

Denote by µA : GriA,−(CokerA) → GriA,+(KerA) the isomorphism between the associated graded parts

given by Ai.
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3. Implications between the main results

In this section we prove that Theorems A,B and C are equivalent and imply Theorem D.

Proof that Theorem A ⇔ Theorem B. Note that JGM (H(G)) ∼= H(U\G) where the action of M is from
the left and the action of G is from the right. Clearly this representation of G×M is isomorphic to the
representation H(G/U) that was described in Theorem B. The equivalence follows now from Theorem
2.3.4. �

Proof that Theorem B ⇔ Theorem C. Note that (G×M)/P = G/U . Hence H(G/U) = H((G×M)/P ).
Now

HomG×M (H(G/U), π) = HomG×M (H((G×M)/P ), π) = HomG×M (π̃, C∞((G×M)/P )) =

= HomG×M (π̃, IndG×M
P (C)) = HomP (π̃,C).

�

Proof that Theorem A implies Theorem D. Note that the center Z(G) of G lies in M , and that M ∼=
Z(G)×H. Now, let π be an irreducible representation of G. Then Z(G) acts on it by a character χ. Let
ρ be an irreducible representation of H. Extend it to a representation of M by letting Z(G) act by χ.
Then HomH(J(π), ρ) = HomM (J(π), ρ), which is at most one dimensional by Theorem A. �

4. Reduction to the geometric statement

Definition 4.0.1. Let X := Xn,k := {A,B ∈ Matn+k(F )|AB = BA = 0, rank(A) = n, rank(B) = k}.
Let G act on Xn,k by conjugations. We define the transposition map θ := θn,k : Xn,k → Xn,k by
θ(A,B) := (At, Bt).

In this section we deduce Theorem B from the following geometric statement.

Proposition 4.0.2 (geometric statement). Any G-orbit in Xn,k is θ-invariant.

Definition 4.0.3.
(i) We denote by En,k the l-space of exact sequences of the form

0 → Fn
ϕ→ Fn+k

ψ→ F k → 0.

We consider the natural action of G×M on En,k given by

(g, (h1, h2))(ϕ, ψ) := (gϕh−1
1 , h2ψg

−1).

(ii) We denote by τ : En,k → Ek,n the map given by τ(ϕ, ψ) := (ψt, ϕt).
(iii) We denote by T : En,k × Ek,n → En,k × Ek,n the map given by T (e1, e2) := (τ(e2), τ(e1)).

The following lemma is straightforward.

Lemma 4.0.4.
(i) G/U ∼= En,k as a G×M - space.
(ii) The transposition map τ defines an isomorphism of G×M - spaces τ : En,k → κ(Ek,n).

Notation 4.0.5. Denote by Cn,k : En,k × Ek,n → Xn,k the composition map given by

Cn,k((ϕ1, ψ1), (ϕ2, ψ2)) := (ψ2 ◦ ϕ1, ψ1 ◦ ϕ2).

The following lemma is straightforward.

Lemma 4.0.6.
(i) Cn,k defines a bijection between G×M -orbits on En,k × Ek,n and G-orbits on Xn,k.
(ii) Cn,k ◦ T = θ ◦ Cn,k .

Corollary 4.0.7. The geometric statement implies that all G×M -orbits on En,k×Ek,n are T -invariant.

Corollary 4.0.8. The geometric statement implies Theorem B.
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Proof. Let G×M act on G/U×G/U by (g,m)·([x], [y]) := ([gxm−1], [g−tymt]). By the previous corollary
and Lemma 4.0.4, all G×M -orbits on G/U ×G/U are invariant with respect to the swap of coordinates.
By Corollary 2.5.2 this implies that every distribution on G/U ×G/U which is invariant with respect to
the action of G×M is invariant with respect to the swap of coordinates. Therefore, by Corollary 2.4.6,

dimHomG×M (H(G/U), π) ≤ 1.

�

5. Proof of the geometric statement (Proposition 4.0.2)

The proof is by induction on n. From now on we assume that the geometric statement holds for all
dimensions smaller than n.

Remark 5.0.1. The proof that will be given here is valid for any field F .

We will use the following lemma.

Lemma 5.0.2 (Key Lemma). Let G′ := GLk. Let P ′
+ be its parabolic subgroup. Let P ′

− be the opposite
parabolic. Let P ′′ be the subgroup of P ′

+ × P ′
− consisting of pairs with the same Levi part. Consider the

two sided action of P ′
+ × P ′

− on G′ (given by (p1, p2)g := p1gp
−1
2 ) and its restriction to P ′′.

Then any P ′′ orbit on G′ is transposition invariant.

Since k ≤ 2, this lemma is a straightforward computation.

Remark 5.0.3. The analogous statement for k ≥ 3 is not true, and therefore the analog of the geometric
statement for k ≥ 3 is also not true. In fact, this lemma is the only place where we use the assumption
k ≤ 2.

Notation 5.0.4. Denote X ′ := X ′
n,k := {(A,B) ∈ X |A is nilpotent}.

We will show that the geometric statement follows from the following proposition.

Proposition 5.0.5. Any G-orbit in X ′
n,k is θ-invariant.

Proof that Proposition 5.0.5 implies Proposition 4.0.2. Let (A,B) ∈ X−X ′.We have to show that there
exists g ∈ G such that gAg−1 = At and gBg−1 = Bt.

Decompose Fn+k := V ⊕W such that A = A′ ⊕ A′′ where A′ is a nilpotent operator on V and A′′

is an invertible operator on W . Note that dimV < n + k. Since AB = BA = 0, we have B = B′ ⊕ 0,
where B′ is an operator on V and 0 denotes the zero operator on W . Without loss of generality we may
assume that V and W are coordinate spaces.

By the induction assumption, there exists g1 ∈ GL(V ) such that g1A
′g−1

1 = A′t and g1B
′g−1

1 = B′t.
It is well known that there exists g2 ∈ GL(W ) such that g2A

′′g−1
2 = A′′t. Take g := g1 ⊕ g2. �

Notation 5.0.6. Let A be a nilpotent operator on a vector space V . Let νA : GL(V )A → GL(KerA)×
GL(CokerA) denote the map defined by νA(g) := (g|KerA, g|CokerA). Denote also

PA := {g, h ∈ GL(KerA)×GL(CokerA) | g preserves DA,+, h preserves DA,− and

GrDA,+
(g) corresponds to GrDA,−(h)under the identification µA}.

Here, GrDA,+(g) denotes the action of g on the associated graded space.

Lemma 5.0.7. Let A be a nilpotent operator on a vector space V . Then Im(νA) = PA.

Proof. Clearly Im(νA) ⊂ PA. Let p denote the Lie algebra of PA. It is enough to show that the map
dνA : gl(V )A → p is onto. Let V =

⊕
Vi be the decomposition of V to Jordan blocks w.r.t. the action
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of A. We have

gl(V )A = (V ∗ ⊗ V )A =
⊕
i,j

(V ∗
i ⊗ Vj)

A(1)

gl(KerA) = (V A)∗ ⊗ V A =
⊕
i,j

(V Ai )∗ ⊗ V Aj(2)

gl(CokerA) = (V/AV )∗ ⊗ (V/AV ) =
⊕
i,j

(Vi/AVi)
∗ ⊗ (Vj/AVj)(3)

The filtration DA,+ on KerA gives a natural filtration on gl(KerA). It is easy to see that the 1-
dimensional space (V Ai )∗ ⊗ V Aj is of degree dimVj − dimVi w.r.t. this filtration. Similarly (Vi/AVi)

∗ ⊗
(Vj/AVj) is of degree dimVi − dimVj .

Hence p =
⊕

pij , where

pij =


(V Ai )∗ ⊗ V Aj dimVj > dimVi
(Vi/AVi)

∗ ⊗ (Vj/AVj) dimVj < dimVi
{(X,Y ) ∈ (V Ai )∗ ⊗ V Aj ⊕ (Vi/AVi)

∗ ⊗ (Vj/AVj) |X corresponds to Y
under the identification given by AdimVi−1} dimVj = dimVi

This decomposition gives a decomposition dνA =
⊕
νij , where νij : (V ∗

i ⊗ Vj)
A → pij . It is enough to

show that νij is surjective for any i and j. Choose a gradation on Vi which is compatible with the Deligne
filtration. Let Lij ⊂ (V ∗

i ⊗Vj)A be the 1-dimensional subspace of vectors of weight dimVj −dimVi w.r.t.
this gradation. It is easy to see that νij |Lij is surjective. �

The following lemma is a reformulation of the Key Lemma.

Lemma 5.0.8. Let V andW be linear spaces of dimension k. Suppose that we are given a non-degenerate
pairing between V and W . Let F be a descending filtration on V and G be the dual, ascending, filtration
on W . Suppose that we are given an isomorphism of graded linear spaces µ : GrF (V ) → GrG(W ). Let

P := {g, h ∈ GL(V )×GL(W ) | g preserves F , h preserves G and

GrF (g) corresponds to GrG(h)under the identification µ}.

Let P act on Hom(V,W ) by (g, h)(ϕ) := h ◦ ϕ ◦ g−1. Note that the pairing between V and W defines a
notion of transposition on Hom(V,W ).

Then any P-orbit on Hom(V,W ) is invariant under transposition.

Proof of Proposition 5.0.5. Let (A,B) ∈ X ′. We have to show that there exists g ∈ G such that gAg−1 =
At and gBg−1 = Bt. Fix a bilinear form Q on Fn+k such that AtQ = A, where AtQ denotes transpose

with respect to the form Q. Such Q exists since A is conjugate to At. It is enough to show that
there exists g ∈ GA such that gBg−1 = BtQ. Note that KerA = ImB and KerB = ImA. Denote by

B′ : CokerA→ KerA the map induced by B. Consider the natural action of GL(CokerA)×GL(KerA)
on Hom(CokerA,KerA). Note that KerBtQ = ImA and KerA = ImBtQ and hence BtQ also induces a

map CokerA → KerA. Denote this map by B′′. Note that B′′ is the transposition of the map B′ with
respect to the non-degenerate pairing between CokerA and KerA given by Q. The assertion follows now
from Lemma 5.0.7 and Lemma 5.0.8.

�

6. Discussion of the higher rank cases

In this section we discuss whether an analog of Theorem A holds whenM is an arbitrary Levi subgroup.
If F is a finite field, a negative answer to this question can be obtained from a negative answer to an
analogous question for permutation groups. We discuss permutation groups in §§6.1 and the connection
between the two questions in §§6.2. The answer we obtain is that such analog of Theorem A holds only
in the cases at hand.

We discuss the case when F is a local field in §§6.3, but we do not reach a conclusion.



10 AVRAHAM AIZENBUD AND DMITRY GOUREVITCH

Since the results here are negative and mostly known, the discussion is rather informal and some details
are omitted.

6.1. The analogous problems for the permutation groups.
Let M ′ = Sn1 × ... × Snl

and G′ := Sn1+...+nl
. One can ask when (G′,M ′) is a strong Gelfand pair,

i.e. when the restriction functor from G′ to M ′ is multiplicity free. The answer is: (G′,M ′) is a strong
Gelfand pair if and only if l ≤ 2 and min(n1, n2) ≤ 2. This is well known, but let us indicate the proof.

The fact that the pairs (Sn+1, Sn) and (Sn+2, Sn × S2) are strong Gelfand pairs follows by Theorems
2.3.4 and 2.4.1 from the fact that every permutation from G′ is conjugate by M ′ to its inverse.

In order to show that other pairs mentioned above are not strong Gelfand pairs, we have to show that
the algebra of Ad(M ′)-invariant functions on G′ with respect to convolution is not commutative unless
l ≤ 2 and min(n1, n2) ≤ 2.

If l ≥ 3 then consider the transpositions σ1 = (1, n1 + 1) and σ2 = (n1 + 1, n2 + 1). It is easy to see
that the characteristic functions of their M ′-conjugacy classes do not commute. If l = 2 and n1, n2 ≥ 3
then consider the cyclic permutations σ1 = (1, 2, 3, n1 + 1, n1 + 2, n1 + 3) and σ2 = (1, n1 + 1, n1 + 2). It
is easy to see that the characteristic functions of their M ′-conjugacy classes do not commute.

6.2. Connection with our problem for the finite fields. Suppose that F is a finite field. Let M =
GLn1(F )× ...×GLnl

(F ) and G := GLn1+...+nl
(F ). Then the multiplicities problem of Jacquet functor

between M(G) and M(M) can be considered as a generalization of a deformation of the multiplicities
problem of the restriction functor from M(G′) to M(M ′).

Indeed, the multiplicities problem of Jacquet functor is equivalent to multiplicities problem of the
parabolic induction from M(M) to M(G). Let Σ := iMTM

(C), where iMTM
denotes the parabolic induction

from the torus of M to M . Let Π := iGTG
(C). Let A be the subcategory of M(M) generated by Σ and B

be the subcategory of M(G) generated by Π. Then the multiplicities problem of the parabolic induction
from A to B is a special case of the multiplicities problem of the parabolic induction from M(M) to
M(G). Let A := EndM (Σ) and B := EndG(Π). Clearly, A is equivalent to the category of A-modules
and B is equivalent to the category of B-modules. It is well known that A and B are deformations of the
group algebras ofM ′ and G′ respectively. Therefore the multiplicities problem of the parabolic induction
from A to B is a deformation of the multiplicities problem of the induction from M ′ to G′, which in turn
is equivalent to he multiplicities problem of the restriction from G′ to M ′. In fact, one can show that
those deformations are trivializable since those algebras are semisimple.

One can use this argument in order to show that JGM is a multiplicity free functor only if l ≤ 2 and
min(n1, n2) ≤ 2.

6.3. Higher rank cases over local fields.
First note that the reduction of Theorem B to the Key Lemma works without change for arbitrary

k. This reduction connects between the Gelfand-Kazhdan criterion for the ”multiplicity free” property
of the Jacquet functor from GLn+k(F ) to GLn(F )×GLk(F ) and the Gelfand-Kazhdan criterion for the
”multiplicity free” property of the Jacquet functor from GLk(F ) to an arbitrary Levi subgroup. Therefore
we believe that the ”multiplicity free” properties themselves are connected and if one wants to consider
the case of arbitrary k, he will also have to consider arbitrary Levi subgroups. At the moment we do not
have an opinion when the Jacquet functor from GLn(F ) to an arbitrary Levi subgroup is multiplicity
free.

Appendix A. Multiplicity free functors

A.1. Proof of Theorem 2.3.3.

Proof of Theorem 2.3.3, (i). For any open compact subgroupK < H denote by ΣK ⊂ H(H) the subspace
of right K-invariant measures. Denote ΠK := F(ΣK). Since F commutes with direct limits, limK ΠK ∼=
Π. It is easy to see that K acts trivially on the image of ΠK in Π. Hence Π is a smooth representation
of H and hence it is a smooth representation of H ×H ′. �

For the proof of (ii) we will need several lemmas.
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Notation A.1.1. Denote by H(H)0 the subalgebra of H(H) consisting of functions with zero integral.

Lemma A.1.2. Let π be a smooth representation of H. Then πH = Coker(H(H)0 ⊗ π → π), where by
equality we mean equality of quotients of π.

Proof. Let V be any vector space. We can consider it as a representation of H with trivial action or as
a H(H)-module on which every measure acts by multiplication by its integral. Then

HomC(πH , V ) = HomH(π, V ) and HomC(Coker(H(H)0 ⊗ π → π), V ) = HomH(H)(π, V ).

By Theorem 2.2.4, HomH(π, V ) = HomH(H)(π, V ) and therefore

HomC(πH , V ) = HomC(Coker(H(H)0 ⊗ π → π), V )

for any vector space V . The lemma follows now from the Yoneda lemma. �

Lemma A.1.3. Let π be a smooth representation of H. Let H act on H(H) ⊗ π by g(µ ⊗ v) :=
(µ ∗ δg−1)⊗ gv.

Then (H(H)⊗ π)H = π, where by equality we mean equality of quotients of H(H)⊗ π.

Proof. Let us deduce the statement from the Yoneda lemma. Let τ be a smooth representation of H.
Then

HomH((H(H)⊗ π)H , τ) = HomH×H(H(H)⊗ π, τ) = (HomC(H(H)⊗ π, τ))H×H =

= (HomC(H(H),HomC(π, τ)))
H×H = (HomH(H)(H(H),HomC(π, τ)))

H = (HomC(π, τ))
H = HomH(π, τ)

�

Corollary A.1.4. The following sequence is exact

H(H)0 ⊗H(H)⊗ π → H(H)⊗ π → π → 0.

Proof of Theorem 2.3.3, (ii). Let H act on H(H)0 ⊗ H(H) ⊗ π and H(H) ⊗ π by acting on the H(H)
component. Consider the exact sequence of H-representations

H(H)0 ⊗H(H)⊗ π → H(H)⊗ π → π → 0.

Since F is right exact, the sequence

F(H(H)0 ⊗H(H)⊗ π) → F(H(H)⊗ π) → F(π) → 0

is exact.
Since F commutes with direct sums, the later sequence is isomorphic to

H(H)0 ⊗Π⊗ π → Π⊗ π → F(π) → 0.

The theorem follows now from Lemma A.1.2. �

A.2. Proof of Theorem 2.3.4.
The following lemma is standard.

Lemma A.2.1. Let K be a compact l-group and L < K be an open subgroup. Then there is a finite
number of isomorphism classes of irreducible representations of K which have an L-invariant vector.

Corollary A.2.2. Let K be a compact l-group. Let π =
∏
πσ be a product of smooth isotypic components

of K. Then π∞ =
⊕
πσ.

Corollary A.2.3. Let H be an l-group. Let π and ρ be smooth admissible representations of H. Then

HomC(π, ρ)
∞ = π̃ ⊗ ρ.

Corollary A.2.4. Let H and H ′ be l-groups. Let F : M(H) → M(H ′) be a C-linear right exact functor.
Let Π := F(H(H)). Let π and ρ be smooth admissible representations of H and H ′ respectively. Then

HomH×H′(Π, π̃ ⊗ ρ) = HomH′(F(π), ρ).
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Proof.

HomH′(F(π), ρ) = HomH′((Π⊗ π)H , ρ) = HomC((Π⊗ π)H , ρ)
H′

= (HomC(Π⊗ π, ρ)H)H
′
=

= HomC(Π⊗ π, ρ)H×H′
= HomC(Π,HomC(π, ρ))

H×H′
= HomH×H′(Π,HomC(π, ρ)) =

= HomH×H′(Π,HomC(π, ρ)
∞) = HomH×H′(Π, π̃ ⊗ ρ)

�
Corollary A.2.5. Theorem 2.3.4 holds.

Appendix B. Proof of Theorem 2.4.1

We will use the following classical well-known lemma.

Lemma B.0.1. Let H be an l-group and π be an irreducible admissible representation of H.
(i) Let ρ ∈ M(H) and ϕ : ρ→ π. Then ϕ is an epimorphism.
(ii) Let v ∈ π. If ψ(v) = 0 for all ψ ∈ π̃ then v = 0.
(iii) dimHom(π, π) = 1.

Proof of Theorem 2.4.1. If Hom(S(X,F), π) = 0 we are done. Otherwise let ϕ ∈ Hom(S(X,F), π)−{0}.
Let ψ1, ψ2 ∈ Hom(S(Y,G), π̃). Let us show that they are dependent. If one of them is zero we are done,
so we assume the contrary.

Define bilinear forms ξi : S(X,F)⊗ S(Y,G) → C by

ξi(f ⊗ h) := ⟨ψi(h), ϕ(f)⟩.
Let Vi be left kernels of ξi, i.e.

Vi = {f ∈ S(X,F) | ∀h ∈ S(Y,G). ξi(f ⊗ h) = 0}.
By the previous lemma, Vi = Kerϕ and hence V1 = V2. Let Wi be the right kernels of ξi. Again, the
previous lemma implies that Wi = Kerψi. Now, consider ξi as elements of S∗(X × Y,F � G). Clearly
they are H-invariant. Hence, by the assumption of the theorem, ξi are invariant with respect to T . Hence
Wi = τ∗Vi. Hence W1 = W2 and by the previous lemma ψ1 is proportional to ψ2. This implies that
dimHom(S(Y,G)), π̃) ≤ 1. Similarly dimHom(S(X,F)), π̃) ≤ 1. �
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