EXERCISE 2 IN INTRODUCTION TO REPRESENTATION THEORY

DMITRY GOUREVITCH

- (1) Let $\pi, \tau \in Rep(G)$ and let $\phi : \pi \to \tau$ be a morphism of representations which is an isomorphism of linear spaces. Show that ϕ is an isomorphism of representations. In other words, show that the linear inverse ϕ^{-1} is also a morphism of representations.
- (2) (P) Show that a finite-dimensional representation π of a group G is a direct sum of irreducible representations if and only if for any subrepresentation $\tau \subset \pi$ there exists another subrepresentation $\tau' \subset \pi$ such that $\pi = \tau \oplus \tau'$.
- (3) (P) Let G be an infinite group and H < G a subgroup of finite index. Let (π, G, V) be a complex representation of G and $L \subset V$ a G-invariant subspace. Suppose we know that the subspace L has an H-invariant complement. Show that then it has a G-invariant complement.
- (4) Let $\pi \in Rep(G)$ and $\tau \in Rep(H)$. Let π^G denote the space of G-invariant vectors, $\pi^G = \{v \in \pi : \pi(g)v = v \,\forall g \in G\}$. Show that $(\pi \otimes \tau)^{G \times H} = \pi^G \otimes \tau^H$.
- (5) Show that every complex matrix A with $A^n = Id$ is diagonalizable.
- (6) (P) Let $\chi: G \to \mathbb{F}^{\times} = \mathrm{GL}_1(F)$ be a non-trivial one-dimensional representation of G. Show that $\sum_{g \in G} \chi(g) = 0$.
- (7) (P) Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the group of basic quaternions. The product is given by $i^2 = j^2 = k^2 = ijk = -1$.
 - (a) Show that $\pi: Q \to GL_2(\mathbb{C})$ defined by

$$\pi(\pm 1) = \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pi(\pm i) = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ \pi(\pm j) = \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \pi(\pm k) = \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

is an irreducible representation of Q.

- (b) Find four inequivalent one-dimensional representations of Q.
- (8) (*) Let G, H be finite groups. Show that any irrep of $G \times H$ is of the form $\sigma \otimes \rho$, where $\sigma \in Irr(G)$, $\rho \in Irr(H)$.
- (9) (*) We showed that $\langle \pi, \tau \rangle = \langle \tau, \pi \rangle$. Is that still true over
 - (a) $F = \mathbb{R}$?
 - (b) $F = \mathbb{F}_p$?

URL: http://www.wisdom.weizmann.ac.il/~dimagur/IntRepTheo5.html