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The category M(P,) of smooth P, representations is
equivalent to the category of G,_1 equivariant sheaves on

Fn_1 =. Vn

M(Pn) = M(H(Pn)) = M(H(Gp—1 x Vi) =
= M(H(Gn-1) @ H(Vn)) = M(H(Gn-1) @ S(Vhn))
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We have a short exact sequence

0 — M(Pp_1) = M(P,) = M(Gp_1) — 0
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Corollary

We have a short exact sequence

0 — M(Pp_1) = M(P,) = M(Gp_1) — 0

v

@ ¢: M(Py) - M(Pp_4) — the restriction
O(7) = 7y, = 7/{Y(a)w —m(a)w : ac Vp}
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The p-adic case

Corollary

We have a short exact sequence

0 — M(Pp_1) = M(P,) = M(Gp_1) — 0

v

@ ¢: M(Py) - M(Pp_4) — the restriction
O(7) = 7y, = 7/{Y(a)w —m(a)w : ac Vp}
o V: M(Py) — M(Gp_1) —the fiber
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The p-adic case
Corollary

We have a short exact sequence

0 — M(Pp_1) = M(P,) = M(Gp_1) — 0

v

@ ¢: M(Py) - M(Pp_4) — the restriction
O(7) = 7y, = 7/{Y(a)w —m(a)w : ac Vp}

o V: M(Py) — M(Gp_1) —the fiber
V(r)=my, =n/{v—n(a)v: ac Vp}
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The p-adic case
Corollary

We have a short exact sequence

0 — M(Pp_1) = M(P,) = M(Gp_1) — 0

v

@ ¢: M(Py) - M(Pp_4) — the restriction
O(7) = 7y, = 7/{Y(a)w —m(a)w : ac Vp}

o V: M(Py) — M(Gp_1) —the fiber
V(r)=my, =n/{v—n(a)v: ac Vp}

@ DF = Vo kT

D. Gourevitch Derivatives for representations of GL(n, R) and GL(n, C)



The Harish-Chandra category




The Harish-Chandra category

Let G be a real reductive group



The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra



The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.



The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module 7 with a locally finite action of K
such the two actions are compatible.




The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.




The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let 7 be a finitely generated (g, K)-module. Then the following
properties of = are equivalent.




The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let 7 be a finitely generated (g, K)-module. Then the following
properties of = are equivalent.

@ 7 is admissible.




The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let 7 be a finitely generated (g, K)-module. Then the following
properties of = are equivalent.

@ 7 is admissible.
@ 1w has finite length.




The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let 7 be a finitely generated (g, K)-module. Then the following
properties of = are equivalent.

@ 7 is admissible.
@ 1w has finite length.

@ wis Zg(U(g))-finite.




The Harish-Chandra category

Let G be a real reductive group, g be its complexified Lie
algebra and K be its maximal compact subgroup.

Definition

A (g, K)-module is a g-module = with a locally finite action of K
such the two actions are compatible.

A finitely generated (g, K)-module is called admissible if any
representation of K appears in it with finite multiplicity.

Theorem (Harish-Chandra, Osborne, Stafford, Wallach)

Let 7 be a finitely generated (g, K)-module. Then the following
properties of = are equivalent.

@ 7 is admissible.
@ 1w has finite length.

@ wis Zg(U(g))-finite.
@ 7 is finitely generated over n.
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Definition

Denote by M. (G) the category of smooth admissible Fréchet
representations of G of moderate growth and by M y¢(G) the
category of admissible Harish-Chandra modules.
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The category of smooth admissible representations

Definition

Denote by M. (G) the category of smooth admissible Fréchet
representations of G of moderate growth and by M y¢(G) the
category of admissible Harish-Chandra modules.

We denote by HC : M(G) — Myc(G) the functor of K-finite
vectors.
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The category of smooth admissible representations

Definition

Denote by M. (G) the category of smooth admissible Fréchet
representations of G of moderate growth and by M y¢(G) the
category of admissible Harish-Chandra modules.

We denote by HC : M(G) — Myc(G) the functor of K-finite
vectors.

Theorem (Casselman-Wallach)

The functor HC : M(G) — Muc(G) is an equivalence of
categories.
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Definition

Define a functor ¢ : M(p,) — M(pnr_1) by
O(7) = mp, 4 @ |det| 7172,
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Definitions

Define a functor ¢ : M(p,) — M(pnr_1) by
O(7) = mp, 4 @ |det| 7172,

V.

For a p,-module = we have 3 notions of derivative:
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Definitions

Define a functor ® : M(pp) — M(pnp—1) by
O(7) = mp, 4 @ |det| 7172, ]
For a p,-module = we have 3 notions of derivative:
@ EX(n) := ok (n) @ |det| =12 =7y, _, y,_, ® |det|7*/2,
Clearly it has a structure of a p,_x.1 - representation.
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Definitions

Define a functor ¢ : M(p,) — M(pnr_1) by
O(7) = mp, 4 @ |det| 7172,

V.

For a p,-module = we have 3 notions of derivative:
@ EX(r) = ok (n) @ |det|~1/2 = my,_, u,_, © |det|7K/2.
Clearly it has a structure of a p,_x.1 - representation.
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of pp_k4+1 @nd -geny, ., denotes the generalized
co-invariants.

D. Gourevitch Derivatives for representations of GL(n, R) and GL(n, C)



Definitions

Define a functor ¢ : M(p,) — M(pnr_1) by
O(7) = mp, 4 @ |det| 7172,

V.

For a p,-module = we have 3 notions of derivative:
@ EX(r) = ok (n) @ |det|~1/2 = my,_, u,_, © |det|7K/2.
Clearly it has a structure of a p,_x.1 - representation.
® D(r) :== (E¥(7))gen.v, x,- Here vp_k 1 is the nil-radical
of pp_k4+1 @nd -geny, ., denotes the generalized
co-invariants.

® BX(m) = (E"(m))on_ss1-
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Definitions

Define a functor ¢ : M(p,) — M(pnr_1) by
O(7) = mp, 4 @ |det| 7172,

For a p,-module = we have 3 notions of derivative:

@ EX(n) := ok (n) @ |det| =12 =7y, _, y,_, ® |det|7*/2,
Clearly it has a structure of a p,_x.1 - representation.

® D(r) :== (E¥(7))gen.v, x,- Here vp_k 1 is the nil-radical
of pp_k4+1 @nd -geny, ., denotes the generalized
co-invariants.

@ BX(r) i= (EK(m))oypos-

@ depth(w) —the largest part in the associated partition of =
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Associated partition

U(gn) has a filtration by the order of the tensor.
Gr(U(gn)) = Sym(gn) = Pol(gp,).

V(7) := Zeroes(Gr(Ann()))

It is known to be a union of nilpotent coadjoint orbits.
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Associated partition

U(gn) has a filtration by the order of the tensor.
Gr(U(gn)) = Sym(gn) = Pol(gp,).

V() := Zeroes(Gr(Ann()))
It is known to be a union of nilpotent coadjoint orbits.

Theorem (Joseph)
If 7 is irreducible then V() is the closure of a single orbit.

By Jordan’s theorem this orbit is described by a partition of n,
that we call associated partition of .
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o E (m) =7lG,_,»

depth(n) =1 <= misf.d. <= D¥(x) =0forany k > 1.
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o E (m) =7lG,_,»

depth(n) =1 <= misf.d. <= D¥(x) =0forany k > 1.

@ E"=D"= B" = (¢)"" is the Whittaker functor.

depth(m) = n<= D"(w) # 0
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Whittaker spaces

Let N, < G, denote the subgroup of unipotent upper-triangular
matrices, and define a character ¢ of N, to be the sum of
superdiagonal elements. The Whittaker space is the space of
co-equivariants

Wh(?T) = FNn,exp(iw)
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Whittaker spaces

Let N, < G, denote the subgroup of unipotent upper-triangular
matrices, and define a character ¢ of N, to be the sum of
superdiagonal elements. The Whittaker space is the space of
co-equivariants

Wh(?T) = FNn,exp(iw)
For a partition A = (ny, ..., ng) of n we define 1, to be the sum
of all superdiagonal elements except the ones in rows
n—m,nNn—n —no, ..., Ng.

Why(7) := TN, exp(ivsy)
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Whittaker spaces

Let N, < G, denote the subgroup of unipotent upper-triangular
matrices, and define a character ¢ of N, to be the sum of
superdiagonal elements. The Whittaker space is the space of
co-equivariants

Wh(?T) = WNn,exp(iw)

For a partition A = (ny, ..., ng) of n we define 1, to be the sum
of all superdiagonal elements except the ones in rows
n—m,nNn—n —no, ..., Ng.

Why(7) := TN, exp(ivsy)

Then
Why () = B™(B™(...(B™(r))))
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Theorem (Aizenbud - G. - Sahi)

Let M9 (Gp,) denote the subcategory of representations of
depth < d. Then

DY defines a functor M2 (Gp) — Meo(Gn_q)-
The functor D? : M2 (Gp) — Muo(Gh_q) is exact.
For any m € M2 (Gp), DY) = E9(n).

D¥| jd (G,) = O forany k > d.

Letn= ny + ...+ ng and let x; be characters of Gp,. Let
T=xX1X ... X xa € M%L(Gp) denote the corresponding
degenerate principal series representation. Then
depth(w) = d and

Ed(m) = D(m) = BY(m) = (x1)lGp, 1 X - X (Xa)lGy,_4




Theorem (Aizenbud - G. - Sahi)

Let M9 (Gp,) denote the subcategory of representations of
depth < d. Then

e DY defines a functor M2 (Gp) — Meo(Gn_q)-

@ The functor D : M2 (Gp) — M (Gn_q) is exact.
@ Foranyr € M%(Gy), DY(r) = E9(x).

® DK a (g, =0 forany k > d.

Letn= ny + ...+ ng and let x; be characters of Gp,. Let
T=xX1X ... X xa € M%L(Gp) denote the corresponding
degenerate principal series representation. Then
depth(w) = d and

Ed(m) = D(m) = BY(m) = (x1)lGp, 1 X - X (Xa)lGy,_4

@ for a unitarizable representation

E9(r) = Dx) = BY(n) = A(n)
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Steps in the proof

@ We prove admissibility of £9(x) in the HC-category —
Mc.a(G)
e We deduce Dd|MHc,d(G) = Ed|Md(Gn)-
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Steps in the proof

@ We prove admissibility of £9(x) in the HC-category —

Mc,d(G)

@ We deduce Dd|MHC,d(G) = E9 vi,(Gr)-

© We deduce
Ek|MHc,d(Gn) = Dk’MHc,d(Gn) = Bk‘MHQd(G,,) = 0 for any
k>d.
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Mc,d(G)

@ We deduce Dd|MHC,d(G) = E9 vi,(Gr)-

© We deduce
Ek|MHc,d(Gn) = Dk’MHc,d(Gn) = Bk‘MHQd(G,,) = 0 for any
k>d.

© We prove exactness of E' and Hausdorffness of E/(r) in
the smooth category
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Steps in the proof

@ We prove admissibility of £9(x) in the HC-category —

Mc,d(G)

@ We deduce Dd|MHC,d(G) = E9 vi,(Gr)-

© We deduce
Ek|MHc,d(Gn) = Dk’MHc,d(Gn) = Bk‘MHQd(G,,) = 0 for any
k>d.

© We prove exactness of E' and Hausdorffness of E/(r) in
the smooth category

@ Using the Hausdorffness we deduce 1-3 in the smooth
category
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Steps in the proof

@ We prove admissibility of £9(x) in the HC-category —

Mc,d(G)

@ We deduce Dd|MHC,d(G) = E9 vi,(Gr)-

© We deduce
Ek|MHc,d(Gn) = Dk’MHc,d(Gn) = Bk‘MHQd(G,,) = 0 for any
k>d.

© We prove exactness of E' and Hausdorffness of E/(r) in
the smooth category

@ Using the Hausdorffness we deduce 1-3 in the smooth
category

© Using the exactness we prove the product formula in the
smooth category
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Steps in the proof

@ We prove admissibility of £9(x) in the HC-category —

Mc,d(G)

@ We deduce DY) 1, 4(6) = E%ry(Gn)-

© We deduce
Ek|MHc,d(Gn) = Dk’MHc,d(Gn) = Bk‘MHQd(G,,) = 0 for any
k>d.

© We prove exactness of E' and Hausdorffness of E/(r) in
the smooth category

@ Using the Hausdorffness we deduce 1-3 in the smooth
category

© Using the exactness we prove the product formula in the
smooth category

@ We deduce from the product formula that for a unitarizable
representation ™

E%x) = DY(n) = BY(xn) = A(x)
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Adduced representation

From Mackey theory, since P, = G,_1 X Vj:

Vr € Py, either
Q@ 3 ePyst T~ /”dgn"_mvn(T/ ® ) or

e T‘Gn,1 € Gn—1
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From Mackey theory, since P, = G,_1 X Vj:

Vr € Py, either
Q@ 3 ePyst T~ /”dgn"_mvn(T/ ® ) or

e T‘Gn,1 € Gn—1

In case 1 we can use the theorem again and again, until we
drop to case 2 and obtain some Ar € G,_g.
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Adduced representation

From Mackey theory, since P, = G,_1 X Vj:

Vr € Py, either
Q@ 3 ePyst T~ /”dgn"_mvn(T/ ® ) or

e T‘Gn,1 € Gn—1

In case 1 we can use the theorem again and again, until we
drop to case 2 and obtain some Ar € G,_g.

Theorem (Baruch, Bernstein, Sahi)

V’/TG Gn, 7T’Pn EPn

We define Ar .= A(n|p,)-
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@ Uniqueness of degenerate Whittaker functionals for unitary
representations.

D. Gourevitch Derivatives for representations of GL(n, R



Applications

@ Uniqueness of degenerate Whittaker functionals for unitary
representations. Let A = (h, ..., ) be the associated
partition of 7, and . = (my, ..., mg) = AL. Then 3 characters
xi of Gm, such that

T «= X1 X X Xd-
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Applications

@ Uniqueness of degenerate Whittaker functionals for unitary
representations. Let A = (h, ..., ) be the associated
partition of 7, and . = (my, ..., mg) = AL. Then 3 characters
xi of Gm, such that

T «= X1 X X Xd-
Thus
Whi....1)(T) = B¥(--- (B (7)) -+ ) «= E*(---(E"(7))---)
« R (E"Oir x -+ x xa)) )
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Applications

@ Uniqueness of degenerate Whittaker functionals for unitary
representations. Let A = (h, ..., ) be the associated
partition of 7, and . = (my, ..., mg) = AL. Then 3 characters
xi of Gm, such that

T «= X1 X X Xd-
Thus
Whi....1)(T) = B¥(--- (B (7)) -+ ) «= E*(---(E"(7))---)
« R (E"Oir x -+ x xa)) )

@ Computation of adduced representations of Speh
complementary series
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Applications

@ Uniqueness of degenerate Whittaker functionals for unitary
representations. Let A = (h, ..., ) be the associated
partition of 7, and . = (my, ..., mg) = AL. Then 3 characters
xi of Gm, such that

T «= X1 X X Xd-
Thus

Whi,..jo(7) = BR(- -+ (BN (7))« EX(- (E"(7)) )
 ER( (Bt X X xg)) )

@ Computation of adduced representations of Speh
complementary series

X1 X X2 X X3 X X4 = Dam
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Applications

@ Uniqueness of degenerate Whittaker functionals for unitary
representations. Let A = (h, ..., ) be the associated
partition of 7, and . = (my, ..., mg) = AL. Then 3 characters
xi of Gm, such that

T «= X1 X X Xd-
Thus

Whi,..jo(7) = BR(- -+ (BN (7))« EX(- (E"(7)) )
 ER( (Bt X X xg)) )

@ Computation of adduced representations of Speh
complementary series

X1 X X2 X X3 X X4 = Dam
Dam—a < X1lG,_, X X2lGn_s X X3lG,_4 X XalG,_ 1 =
= E*(x1 X x2 X X3 X X4) = E*(Dam) — A(Dam)
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Admissibility

We need — E9(r) is finitely generated over n,_g
We know — E9(r) is finitely generated over n,_g4.1
We use

@ Annihilator variety — V()

@ Associated variety — AV(7)

® AV(w) C V(n)
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Admissibility

We need — E9(r) is finitely generated over n,_g
We know — E9(r) is finitely generated over n,_g4.1
We use

@ Annihilator variety — V()

@ Associated variety — AV(7)

® AV(w) C V(n)

depth(m) = d = constrains on V,(7) =
= AV,

Mgyt (Ed(ﬁ)) Cnpg= Ed(W) is f.g. overn,_¢
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Exactness and Hausdorffness

@ Strategy 1 — @ is equivalent to a restriction functor = has
to be exact
Problem — we do not have the language

@ Strategy 2 — [CHM] method: reduction to acyclicity of
principal series and proof orbit by orbit.
Problems

@ Unlike [CHM] there are oo orbits
@ Unlike [CHM] there are bad orbits

Solution — to introduce a class of “good" p, representations
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® L'd(S(Pn/Q))=0fori>0
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Good p, representations

S(Pn/Q)

® L'd(S(Pn/Q))=0fori>0
® ®(S(Py/Q)) = 8(Z) for suitable Zy C Z := P,/(QV,)
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The BZ product formula:
(mxT) Z DI Dk ! (1)

D. Gourevitch Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z DI Dk ! (1)

Problems

D. Gourevitch Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z DI Dk ! (1)

Problems
@ Not true for EX, DX

D. Gourevitch Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z DI Dk ! (1)

Problems
@ Not true for EX, DX
@ might be true for BX but without exactness we can’t prove it.

D. Gourevitch Derivatives for representations of GL(n, R) and GL(n, C)



The product formula

The BZ product formula:
(mxT) Z DI Dk ! (1)

Problems
@ Not true for EX, Dk
@ might be true for BX but without exactness we can’t prove it.

@ we do not have appropriate language of oo dimensional
bundles.
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The product formula

The BZ product formula:
(mxT) Z DI Dk ! (1)

Problems
@ Not true for EX, DX
@ might be true for BX but without exactness we can’t prove it.
@ we do not have appropriate language of oo dimensional
bundles.

Compromise — prove it only for the highest derivatives and only
for characters.
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The product formula

The BZ product formula:
(mxT) Z DI Dk ! (1)

Problems
@ Not true for EX, DX
@ might be true for BX but without exactness we can’t prove it.

@ we do not have appropriate language of oo dimensional
bundles.

Compromise — prove it only for the highest derivatives and only
for characters.
Method — exactness, key lemma, induction
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