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Abstract

Let G = (V,E) be a simple undirected graph. Define Gn, the n-th power of G, as the graph
on the vertex set V n in which two vertices (u1, . . . , un) and (v1, . . . , vn) are adjacent if and only
if ui is adjacent to vi in G for every i. We give a characterization of all independent sets in such
graphs whenever G is connected and non-bipartite.

Consider the stationary measure of the simple random walk on Gn. We show that every in-
dependent set is almost contained with respect to this measure in a junta, a cylinder of constant
co-dimension. Moreover we show that the projection of that junta defines a nearly independent
set, i.e., it spans few edges (this also guarantees that it is not trivially the entire vertex-set).

Our approach is based on an analog of Fourier analysis for product spaces combined with
spectral techniques and on a powerful invariance principle presented in [18]. This principle
has already been shown in [11] to imply that independent sets in such graph products have an
influential coordinate. In this work we prove that in fact there is a set of few coordinates and a
junta on them that capture the independent set almost completely.

1 Introduction

The n-th power of an undirected graph G = (V,E), denoted by Gn, is defined as follows: the
vertex set is V n and two vertices (u1, . . . , un) and (v1, . . . , vn) are adjacent in Gn if and only if ui is
adjacent to vi in G for every i. This is, in graph-theoretic terms, the n-fold weak product of G with
itself. An alternative description, which is helpful for the spectral approach we wish to adopt,
is that the adjacency matrix of Gn is the n-fold tensor product of the adjacency matrix of G with
itself.

In this paper we study independent sets in Gn where G remains fixed while n tends to infinity.
In classical graph theory one studies the size of the maximal independent set in a graph or, adopt-
ing analytical language, its measure according to the uniform measure on the set of vertices. In the
case of Gn this is also the product measure defined by the uniform measure on G. It turns out that

AMS 2000 subject classification: 05d05
Key words and phrases: Independent sets, Intersecting families, Product graphs, Discrete Fourier analysis.

∗Incumbant of the Harry and Abe Sherman lectureship chair, School of Computer Science and Engineering, Hebrew
University, Jerusalem, Israel. email: dinuri at cs.huji.ac.il. Research upported by the Israel Science Foundation and by
the Binational Science Foundation.

†Institute of Mathematics, Hebrew University, Jerusalem, Israel. email: ehudf at math.huji.ac.il. Research supported
in part by the Israel Science Foundation, grant no. 0329745.

‡Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Supported by an Alon Fellowship,
by the Binational Science Foundation, by the Israel Science Foundation, and by the European Commission under the
Integrated Project QAP funded by the IST directorate as Contract Number 015848.

1



there is an alternative measure on G such that the corresponding product measure on Gn is very
well suited to studying independent sets. This is the stationary measure of the simple random
walk on G, whence the product measure on Gn is the stationary measure of the simple random
walk on Gn.

A junta is a set J ⊆ V n that is described by a constant (independent of n) number of coordi-
nates, i.e., a cylinder of constant co-dimension. For example let I ⊆ V be an independent set in G.
The set I × V n−1 of all vertices whose first coordinate belongs to I is a junta. This set is also an
independent set in the graph Gn. Another example of a relatively large independent set in Gn is
the set of all vectors that have at least two of their first three coordinates in I :

S = {(v1, v2, . . . , vn) ∈ V n : at least two of v1, v2, v3 belong to I} .

If µ is any probability measure on G and µ(I) = α then it is easy to see that S is an independent
set in Gn, whose measure is 3α2 − 2α3 according to the product measure.

Seeing these two examples might lead one to conjecture that the only reasonably large inde-
pendent sets are juntas. A moment of reflection shows that this conjecture is too naive for several
reasons. The first is that, as usual in these settings, one should modify the statement to say that
all large independent sets are approximable by juntas - one can add small perturbations to indepen-
dent sets to achieve other examples. The second difficulty, that makes the proof of the statement
much trickier, is that any subset of an independent set is also independent. So, for example, a ran-
dom subset of our previous examples evades complete description by a small set of coordinates.
However this example is still contained in a junta. A modified conjecture would be, then, that
every independent set can be approximated by an independent set that is contained in a junta.
Of course for the theorem to be meaningful we need the junta to be non-trivial (i.e., not all of V n

which, trivially, “depends on few coordinates”). We will ensure this by showing that the junta
itself, which depends on j coordinates, is close to being an independent set in the corresponding
graph on V j .

Still, as alluded to above, for certain graphs G this principle is not true if the underlying mea-
sure according to which we measure our approximation is the uniform measure. Let us study an
example of this. Let G be K4 minus an edge, a graph on vertex set {a, b, c, d} where all pairs of
vertices except {b, c} are edges. Consider the following independent set in Gn:

I = {v ∈ {a, b, c, d}n : more than half the coordinates of v are in {b, c}}.

Obviously I is an independent set, for any two vertices in it must share a coordinate where their
entries do not span an edge in G. The number of vertices in I is close to half of 4n (depending
on the parity of n), i.e., it captures asymptotically half of the vertices in Gn. Also, clearly, I is not
close in the uniform measure to any junta. The “reason” that I evades the principle we are aiming
to prove is that the average degree of the vertices in I is much lower than that of Gn, hence it is
“easy” for I to be independent. (The average degree of the vertices in I is less than (

√
6)n whereas

the average degree in Gn is (5
2)n.) Hence a reasonable measure to consider, which might imply

more structure on independent sets, is one where the measure of vertices is proportional to their
degree - this is, of course, a measure that arises naturally: it is the stationary measure of the simple
random walk on Gn. This, finally, turns out to be the correct setting for our main theorem.

Let G = (V,E) be a simple, undirected, connected, non-bipartite graph. Throughout this paper
µ(·) will always denote the unique stationary measure of the simple random walk on G:

µ(u) =
deg(u)
2|E|

.
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By abuse of notation we will often use µ to also denote the product measure on Gn (which is also
the stationary measure on Gn.) The following is our main theorem. We remark that although the
theorem is given in its most general form, the special case where G is a regular graph is already
interesting. For this special case µ is simply the uniform measure.

Theorem 1.1. Let G = (V,E) be a simple, undirected, connected, non-bipartite graph. Then there exists
a function j = j(ε) such that if I ⊆ V n is an independent set in Gn then for every ε > 0 there exists a
set J ⊆ V n depending on at most j coordinates such that µ(I \ J) ≤ ε and such that J spans less than
ε|E(Gj)| edges in the graph Gj .

Remarks:

• If G is either bipartite or not connected, then there is no unique stationary measure, and it is
not hard to see that the assertion of the theorem is false for the uniform measure.

• Our proof shows that the theorem also holds for the case that I is a sparse set rather than
an independent set. More precisely, there is a function ζ(ε) > 0, such that for all ε > 0, if
I ⊆ V n is a set spanning less than ζ(ε)|E(Gn)| edges in Gn then there exists a set J ⊆ V n as
in Theorem 1.1.

• We wonder whether it is possible to strengthen our theorem and prove the existence of such
a set J which is a bona fide independent set (rather than a sparse set) or whether this setback
reflects a necessary caveat.

• The theorem and its proof can be easily extended to multigraphs (graphs G with multiple
edges and self-loops) or, more generally, to graphs with weighted edges. Equivalently, we
can think of G as a reversible (finite, aperiodic, irreducible) Markov chain. So in Theorem 1.1
the measure µ becomes the stationary measure of the random walk on the weighted graph,
and the number of edges spanned by J is now replaced with the weight of edges spanned by
J . For more details, see [9] where this extension is applied to deduce a theorem concerning
the structure of intersecting families of sets.

• For which connected, non-bipartite graphs does the assertion of the theorem hold under the
uniform measure? Here we note that these are exactly the regularizable graphs. A graph is
called regularizable if a regular graph can be obtained from it by replacing each edge by
some positive number of edges. By the previous remark, it follows that for any connected,
non-bipartite, regularizable graph, the assertion of the theorem holds under the uniform
measure. For the converse, we use a characterization of Berge [5], which says that a con-
nected, non-bipartite graph is regularizable if and only if every non-empty independent set
S ⊆ V has more neighbors than elements, i.e., |N(S)| > |S|. Now note that if there exists
a non-empty independent set S such that |N(S)| ≤ |S|, then the assertion of the theorem
is false under the uniform measure since we can consider the independent set in Gn given
by all vertices in which more than n|S|/|V | coordinates are from S and less than n|S|/|V |
coordinates are from N(S).

The natural emergence of cylinders in graph powers appears already in [13] where it was
proven that for a certain class of base graphs G the only optimal colorings are those induced by a
coloring of the base graph. This was reproved in [1] via an analytical approach, which also gave
the following robustness theorem: for a wide family of regular base graphs G any independent
set in Gn whose measure is 1 − ε times the maximum value, is O(ε) near to a cylinder over an
independent set in the base graph. Furthermore, [1] conjectured that for regular base graphs every
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independent set whose size is α|V |n, for any constant α < 1, is contained (up to a negligible error)
in a junta. This is essentially a special case of what we prove in this paper.

Our main new tool here that was absent in [1] is a corollary of the powerful new invariance
principle of Mossel, O’Donnell and Oleszkiewicz as presented in [18]. Their approach gives the
basic leverage needed for our proof: the fact that when two sets of vertices have few edges between
them then they can be described by functions which depend jointly, in a non-negligible manner, on
a certain coordinate. This idea was previously exploited in [11], a forerunner of this paper, where
it was used to derive certain inapproximability results for coloring problems. (This was one of
the original motivations for studying these questions in the first place.) Some other tools that
arise in the proof are a hypercontractive inequality due to Miclo [17], and the notion of fractional
expansion in a graph, first described in [2].

2 Background: The Spectral Basis, Influences, Noise and Hypercon-
tractivity

2.1 An Analog of Fourier Expansion

Let G = (V,E) be a simple, undirected, connected and non-bipartite graph. We write u ∼ v to
mean that the vertices u, v ∈ V are adjacent in G. Let V = {0, 1, . . . , |V | − 1}.

We will consider independent sets in Gn as functions f : V n → {0, 1}. We will also represent
these functions as column vectors and let matrices representing linear operators operate on them
from the left. In the spirit of [1], we will consider the following analog of the Fourier expansion.
Just as the Fourier-Walsh basis for the space of functions on {0, 1}n is an n-fold tensor product of
a two-dimensional basis, we will define a similar basis for functions f : V n → R. This basis will
enjoy many of the nice properties of the Fourier-Walsh basis.

We begin by defining a basis for the space of functions from V to R. Let A be the transition
matrix of the simple random walk on G (when acting from the right on row vectors), henceforth the
transition matrix of G:

Au,v =


1/deg(u) u ∼ v

0 otherwise .

Let µ be the unique stationary measure of this walk on V , henceforth the stationary measure,

µ(u) =
deg(u)
2|E|

.

Let M denote the diagonal |V | × |V | matrix with entries Mu,v = δu,vµ(u). We will consider the
inner product on RV defined by

〈f, g〉µ = Eµ[f(u)g(u)] =
∑
u∈V

f(u)g(u)µ(u) = f tMg.

Also, for any p ≥ 1, the p-th norm of f is defined as ‖f‖p = (Eµ|f |p)1/p. Notice that ‖f‖2
2 = 〈f, f〉µ.

The following lemma states some standard basic facts related to such a Markov chain, see, e.g.,
[16].

Lemma 2.1. There exists a basis {χ0, χ1, . . . χ|V |−1} for RV , which consists of (right) eigenvectors of A
corresponding to a set of real eigenvalues

1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λ|V |−1 > −1 (1)
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such that the basis is orthonormal with respect to the above inner product, i.e.,

〈χi, χj〉µ = δi,j .

Furthermore, χ0(u) = 1 for all u in V .

Proof: The statement concerning the range of A’s eigenvalues follows from the fact that A repre-
sents a reversible, irreducible, aperiodic Markov chain.

Let B =
√
MA

√
M−1. It is easy to see that B is symmetric and hence has a complete set of

eigenvectors {wi}i=0,...,|V |−1 which are orthonormal with respect to the standard Euclidean inner
product, i.e.,

wt
iwj = δi,j .

Since B is similar to A they have the same eigenvalues so we can assume Bwi = λiwi. Now define
χi =

√
M−1wi. This is the required basis. Indeed,

Aχi =
√
M−1B

√
M
√
M−1wi =

√
M−1λiwi = λiχi

and
〈χi, χj〉µ = χt

iMχj = wt
i

√
M−1M

√
M−1wj = δi,j .

In particular the fact that A is (right) stochastic implies that χ0 ≡ 1.

We now proceed to tensor the above basis. This yields a basis of eigenvectors of A⊗n given by all

χS =
n⊗

j=1

χSj (2)

as S ranges over all multi-indices S = (S1, . . . , Sn) ∈ V n. This basis is an orthonormal basis for
the space of real valued functions on V n with respect to the stationary measure µ⊗n, which will
also be denoted as µ. The corresponding eigenvalues are

λS =
n∏

j=1

λSj ,

and we also define
|S| = |{j : Sj 6= 0}|.

A crucial element in what follows is the spectral gap of G and Gn. Let

λ(A) = λ(G) = max {|λi| : i 6= 0} .

In the cases that we consider λ(A) will always be strictly less than 1. Note that for any n ≥ 1
λ(Gn) = λ(G).

Adopting the usual Fourier notation we write the expansion of f : V n → R according to the
tensor basis as

f =
∑

f̂(S)χS .

From the orthogonality of the basis vectors we have

〈f, g〉µ =
∑

f̂(S)ĝ(S)

and in particular ‖f‖2
2 =

∑
f̂(S)2.
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2.2 Influence

Since we are interested in proving that certain functions essentially depend on few coordinates
we need a way to measure this dependence. The greatly influential notion of the influence of a
variable on a function f whose domain is a product space was introduced by Ben-Or and Linial in
[4]. They measured the probability that when one chooses a point in the domain of f at random,
the value of the function changes if the ith variable changes its value. Let us make this precise in
our case. Let f be a real valued function on V n. Define a function fi : V n → R by

fi(x) = f(x)− Eµ,xi [f(x)] .

For example, in the case of the graph (K3)n, fi(x) = 2f(x)−f(x+ei)−f(x+2ei)
3 , where ei is the vector

(0, 0, . . . , 1, . . . , 0) with 1 in the ith coordinate, and addition is taken modulo 3.
Clearly fi measures the dependence of f on the ith variable. We will define the influence of

the ith variable on f by
Infi(f) = ‖fi‖2

2.

A nice aspect of this definition, as observed, e.g., in [15], is that it has a very simple expression in
terms of the Fourier expansion of f . It is not hard to see that

f̂i(S) =
{

f̂(S) Si 6= 0
0 Si = 0

.

Therefore
Infi(f) =

∑
S:Si 6=0

f̂(S)2.

As mentioned in the introduction, a crucial tool in this paper is a result stemming from the
work of Mossel, O’Donnell and Oleszkiewicz [18]. The importance of this tool is that it enables
us to find a variable that has large influence simultaneously on two (and ultimately on many)
different functions. This will be crucial when trying to identify variables participating in a junta.
The statement below is basically derived from [18] in [11, Theorem 3.1], where it is used for similar
purposes.1

Theorem 2.2 (Corollary of Invariance Principle). Let G be a connected, non-bipartite graph with
transition matrix A and let µ be its stationary measure. Then, there exist functions δ = δMOO(ε) > 0 and
τ = τMOO(ε) > 0 such that for any ε > 0, n ≥ 1, and functions g1, g2 : V n → [0, 1] with Eµ[g1] ≥ ε,
Eµ[g2] ≥ ε and 〈g1, Ag2〉µ < δ, there exists a coordinate i with influence τ on both functions, i.e.,

Infi(g1) > τ and Infi(g2) > τ.

2.3 The Noise Operator of the Graph G

A central tool in the application of discrete Fourier analysis on product spaces are noise operators
(see, e.g., [7, 10]) and these will play a crucial role in this paper too. By abuse of notation we
identify the linear operators with the matrices representing them.

Let G = (V,E) be a graph and A its transition matrix. Let 0 ≤ η < 1, and let

Aη = ηI + (1− η)A.

1There are two small technical differences. First, [11] only considers the special case where µ is uniform, but their
proof easily generalizes to our case. Second, the conclusion of [11, Theorem 3.1] regards the k-degree influence (see
ibid.) as opposed to the influence. Since the former is a lower bound on the latter, our statement follows.
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When operating from the right, Aη represents the “lazy” random walk on G where each step stays
at the current vertex with probability η. As an operator acting from the left it is an averaging
operator, or noise operator, on the space of functions on V . Specifically, for x ∈ V let Nηx be a
random element of V which is equal to x with probability η and with probability 1 − η is equal
to a uniformly random neighbor of x in G. Let f : V → R. Then the noise operator averages the
value of f with the weighting corresponding to the random noise:

(Aηf)(x) = E[f(Nηx)]

where the expectation is over the random value of Nηx. Clearly, by definition, Aη=0 is precisely
the transition matrix of G. By abuse of notation, we sometimes write Aη to denote (Aη)⊗n or
(Aη)⊗(n−j) etc., and similarly for A.

The eigenvalues and eigenvectors of Aη have a particularly simple description in terms of
those of A and likewise for (Aη)⊗n in terms of the tensor basis defined in (2). Indeed, clearly

(ηI + (1− η)A)χi = ηχi + (1− η)λiχi

so the vectors {χi}i are eigenvectors of Aη with eigenvalues λ′i = η + (1 − η)λi. Similarly, the
vectors χS = ⊗n

j=1χSj are eigenvectors of (Aη)⊗n with eigenvalues λ′S =
∏n

j=1 λ′Sj
.

Recall that when G is a connected non-bipartite graph, A has eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥
· · · ≥ λ|V |−1 > −1 and λ = λ(G) = λ(A) was defined to be max{|λi| : i 6= 0}. Define

ρ = ρ(G) = λ(Aη) ≤ η + (1− η)λ(A).

Note that since both η and λ(A) are strictly less than 1 we have ρ < 1. Moreover, for all S ∈ V n,

∣∣λ′S∣∣ =

∣∣∣∣∣∣
∏
j

(η + (1− η)λSj )

∣∣∣∣∣∣ ≤ ρ|S|. (3)

This decay of the “higher frequencies” helps to explain why the noise operator has a smoothing
effect on functions. This effect is described rigorously in Theorem 2.6 (see also [21]).

The following lemma summarizes some properties of the noise operator.

Lemma 2.3. Let f : V n → R. Then,

1. Noise preserves mass. If f ≥ 0 then ‖f‖1 = ‖Aηf‖1.

2. Noise preserves monotonicity. If f ≥ f∗ pointwise then Aηf ≥ Aηf
∗ pointwise.

3. Noise decreases the range. If f(x) ∈ [a, b] for all x ∈ V n then also Aηf(x) ∈ [a, b] for all x ∈ V n.

4. Noise commutes with averaging. Let j ≥ 0 and for v ∈ V n write v = (a, x) with a ∈ V j and
x ∈ V n−j . Then,

Eµ,x[(Aη)⊗nf(a, x)] = ((Aη)⊗j ⊗ I⊗n−j)Eµ,x[f(a, x)].

5. Noise decreases influences. Infi(Aηf) ≤ Infi(f) for all i ∈ {1, . . . , n}.

6. The sum of influences of a noisy version of a bounded function is bounded. If |f(x)| ≤ 1
for all x ∈ V n then, for ρ = λ(Aη),

n∑
i=1

Infi(Aηf) ≤ (1− ρ2)−2.

In particular, the number of variables in Aηf that have influence larger than τ is at most (1−ρ2)−2

τ .
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Proof: Items 1, 2 and 3 follow from the fact that Aη is an averaging operator. For Item 4 note that
since Eµ,x[f(a, x)] does not depend on x it follows that (A⊗j

η ⊗I⊗n−j)Eµ,x[f(a, x)] = A⊗n
η Eµ,x[f(a, x)].

Furthermore, the basis {χS}S consists of eigenvectors both of A⊗n
η and of the operator Eµ,x hence

these operators, which are simultaneously diagonalizable, commute. Item 5 follows directly from
the formula Infi(f) =

∑
S:Si 6=0 f̂2(S), and because for all S

|Âηf(S)| = |λ′S f̂(S)| ≤ |f̂(S)|.

For Item 6, notice that |f | ≤ 1 implies that
∑

f̂(S)2 = ‖f‖2
2 ≤ 1. So, recalling Equation (3),

n∑
i=1

Infi(Aηf) =
n∑

i=1

∑
S:Si 6=0

(Âηf(S))2 ≤
∑
S

|S|ρ2|S|(f̂(S))2 <

∞∑
k=1

kρ2k ≤ (1− ρ2)−2.

2.4 The Transition Matrix of Gn

We now turn to the case η = 0 and consider A = A0. We first notice, following [1], that this matrix
is useful for identifying independent sets in V (Gn).

Observation 2.4. Let J ⊆ V n. The expression 〈1J , A1J〉µ is equal to the fraction of the edges of Gn that
are spanned by J . Consequently, J is an independent set in Gn if and only if 〈1J , A1J〉µ = 0.

Proof:

〈1J , A1J〉µ =
∑

u

µ(u)1J(u)A1J(u) =
∑

u

deg(u)
2|E|

1J(u)
∑

v: v∼u

1J(v)/deg(u) =
1
|E|

∑
u∼v

1J(u)1J(v) .

Next, we observe that the expression 〈1J , A1J〉µ does not change much if we replace 1J with
an η-noisy version of it when η is close to 1.

Lemma 2.5. Let λ = λ(G) = λ(A). Let 1− λ < η < 1 be sufficiently close to 1 so that

2(1− η) logλ(1− η) ≤
√

1− η. (4)

Let g = Aηf . If |f(x)| ≤ 1 for all x, then∣∣∣〈f,Af〉µ − 〈g,Ag〉µ
∣∣∣ ≤ √

1− η.

Proof: Let 1 = λ0 > λ1 ≥ · · · ≥ λ|V |−1 be the eigenvalues of A. Let λ′i = η + (1 − η)λi be the
eigenvalues of Aη and let λ′S =

∏n
i=1 λ′Si

. We have for all S, ĝ(S) = f̂(S)λ′S . Next consider the
difference∣∣∣〈g,Ag〉µ − 〈f,Af〉µ

∣∣∣ =

∣∣∣∣∣∑
S

(
ĝ(S)2 − f̂(S)2) · λS

∣∣∣∣∣ ≤ ∑
S

f̂(S)2(1− (λ′S)2) · |λS |.

Since
∑

S f̂(S)2 = ‖f‖2
2 ≤ 1 our result will follow if we show that for all S

(1− (λ′S)2) · |λS | ≤
√

1− η.
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Let r = 1
2 logλ(1− η). Then for |S| ≤ r, using λ′i ≥ 2η − 1, we have

1− (λ′S)2 ≤ 1− (2η − 1)2|S| ≤ 4|S|(1− η) ≤ 4r(1− η)

which, by our choice of r and by (4) is at most
√

1− η. For |S| > r we have by the definition of r
and of λ

|λS | ≤ λ|S| ≤
√

1− η.

2.5 Hypercontractivity and Expansion

A key feature of the graph Gn that we use is its strong expansion properties. As we will show
below, these properties follow from the fact that A⊗n, the normalized adjacency matrix of Gn,
satisfies what is known as a hypercontractive inequality. Such an inequality bounds some high
norm of A⊗nf by some low norm of f , for any f : V n → R and n ≥ 1 (see Theorem 2.6).

The intuitive connection between hypercontractive inequalities and expansion is clear: A⊗n

replaces f(x) with the average of f over the neighbors of x. If the graph has a strong expansion,
one can expect this to “smooth” the function f , thereby decreasing the larger norms. We will
actually prove the reverse implication and deduce expansion properties from hypercontractivity.

2.5.1 Hypercontractivity

Hypercontractive inequalities for functions on discrete product spaces have been proven inde-
pendently by several different people: Bonami [6], Gross [14], Beckner [3], and possibly others.
These inequalities have become an indispensable tool in the study of Boolean functions, see, e.g.,
[15, 12, 1, 18, 19]. It is also of interest to find the optimal constants in such inequalities, see, e.g.,
[20] and [22].

It is a well known fact that there is a connection between the log-Sobolev constant of a Markov
chain and the hypercontractivity of the associated continuous semi-group see, e.g., [8]. However,
we need the hypercontractivity of the transition matrix A of the discrete (finite) Markov chain.
Precisely such a result is given in [17] by Miclo, who uses the the log-Sobolev constant of A itself
to derive its hypercontractivity. 2

Theorem 2.6 (Hypercontractive Inequality, [17]). Let G be a connected, non-bipartite graph with tran-
sition matrix A. Then there is a constant p = p(G) > 2 which does not depend on n, such that for all
functions f : V n → R

‖Af‖p ≤ ‖f‖2,

where the norms are with respect to the stationary measure of the random walk on Gn.

As usual in proving hypercontractive inequalities concerning operators on product spaces, it
suffices to treat the one dimensional case due to the submultiplicativity of the operator norms (see,
e.g., [6, 3]). Hence the fact that A is hypercontractive implies that A⊗n too is hypercontractive with
the same constants.

In a recent preprint [22] Wolff finds the optimal constants for hypercontractivity of such oper-
ators. For the sake of self containedness we present in the appendix a loose adaptation of certain
portions of his proof with no attempt to compute any constants, making do with proving the
existential statement of Theorem 2.6.

2In fact, Miclo’s result is far more general, and applies to arbitrary Markov chains under some mild conditions. It
also allows arbitrary norms on the right hand side of the inequality.
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2.5.2 Expansion and Fractional Expansion

The usual notion of expansion for a graph G means that for any set X of vertices in G, the size
of N(X), its neighbor set, is of the same order of magnitude as the size of X . Equivalently, if for
each x ∈ X we let Nx be the set of neighbors of x, then expansion implies that for N = N(X) :=
∪x∈XNx we have |N | ≈ |X|. Using the hypercontractivity of A, we will see in Lemma 2.7 below
that Gn satisfies an expansion property which, for small sets X , is much stronger, namely, that
µ(N) ≥ µ(X)2/p where p > 2 is the constant from Theorem 2.6.

In fact, for our application we need to prove an even stronger property known as fractional
expansion, a notion which first appeared in [2]. Let 0 < β ≤ 1 be a constant, and let Bx be an
arbitrary subset of Nx, containing at least a β > 0 fraction of x’s neighbors. Fractional expansion
says that for any such setting, the set B = ∪x∈XBx is still much larger than the set X . In our
lemma below we actually prove a slightly stronger statement by only requiring that the average
fractional size of Bx is at least β. This lemma and its proof are adapted from the similar statement
and proof of Theorem 6 in [2].

Lemma 2.7. Let G = (V,E) be a connected non-bipartite graph and let p = p(G) the constant defined in
Theorem 2.6. Let j ≥ 1 and X ⊆ V j and let 0 < β < 1. For each x ∈ X let Bx be a set of neighbors of x
such that ∑

x∈X

|Bx| ≥ β
∑
x∈X

degGj (x).

Let B = ∪x∈XBx. Then
µ(B) ≥ µ(X)

2
p β2

where, as usual, µ denotes the stationary measure of the random walk on Gj .

Proof: Let 1B be the indicator function of B. Then our assumption implies that∑
x∈X

µ(x) · (A1B)(x) ≥ µ(X)β.

By convexity it follows that

‖A1B‖p
p ≥

∑
x∈X

µ(x) · ((A1B)(x))p ≥ µ(X)βp.

Hence, by the hypercontractive inequality of Theorem 2.6,

‖1B‖p
2 ≥ µ(X)βp.

But ‖1B‖p
2 = µ(B)

p
2 so we are done.

The following lemma is a consequence of the strong fractional expansion property of Gj . It
shows that if we assign to each vertex an arbitrary list of at most ` labels in such a way that
for at least ε of the edges of Gj the lists corresponding to their two endpoints have a nonempty
intersection, then there must exist a “popular” label contained in many of the lists. It can be
interpreted as saying that some weak local consistency implies certain global consistency.

Lemma 2.8. Let G and p = p(G) be as above. Let ε > 0, `, j ∈ N be parameters. For every vertex a ∈ V j

let L(a) ⊆ [n] be a set of labels with |L(a)| ≤ `. Assume also that for at least an ε fraction of the edges
{a, b} in Gj it holds that L(a) ∩ L(b) 6= ∅. Then there exists a label i ∈ [n] such that

µ({a : i ∈ L(a)}) ≥ (ε/`2)
2p

p−2 .

10



Proof: Consider the labelling of V j obtained by choosing for each vertex one random label from
its label set. Then, for each edge {a, b} satisfying L(a) ∩ L(b) 6= ∅, the probability that both its
endpoints obtain the same label is at least 1/`2. Hence, it follows that there exists a labelling such
that the set of edges H both of whose endpoints have the same label is of size at least ε

`2
|E(Gj)|.

Equivalently, we have that ∑
x∈V j

degH(x) ≥ ε

`2

∑
x∈V j

degGj (x).

By partitioning these sums according to the connected components of H , we obtain that there
exists a connected component X of H such that∑

x∈X

degH(x) ≥ ε

`2

∑
x∈X

degGj (x).

We can now apply Lemma 2.7 with the set X , each Bx chosen to be the neighbors of x in H , and
β = ε

`2
. By our choice of Bx, we see that B = X . Therefore,

µ(X) ≥ µ(X)
2
p β2

from which it follows that
µ(X) ≥ β

2p
p−2 = (ε/`2)

2p
p−2 .

It remains to notice that since X is a connected component, all vertices in X must have the same
label.

3 Proof of the Main Theorem

In this section we prove our main theorem:

Theorem 1.1. Let G = (V,E) be a simple, undirected, connected, non-bipartite graph. Then there exists
a function j = j(ε) such that if I ⊆ V n is an independent set in Gn then for every ε > 0 there exists a
set J ⊆ V n depending on at most j coordinates such that µ(I \ J) ≤ ε and such that J spans less than
ε|E(Gj)| edges in the graph Gj .

In order to better understand the proof strategy let us return to a problematic example of a
large independent set. Let I0 ⊆ V be some independent set in G, and let J = I0 × V n−1 be the
set of all vectors whose first coordinate is in I0. Now let K be a random subset of J where every
point is taken independently with probability 1

2 . If f is the characteristic function of K then with
high probability all variables have influence of order Θ(1) on f . However, suppose we introduce
a slight noise and consider g = A1−ζf for very small values of ζ. Recall that, by definition, g(x) is
the average of f over vectors y whose first coordinate is the same as x with probability ≥ 1 − ζ.
Therefore, for most points x ∈ J the value of g(x) will be very close to 1

2 , whereas for most points
x′ 6∈ J , g(x′) will be very close to 0. We have “recovered” J , a junta containing K. The only
variable that has non-negligible influence on g is the first one, and hence when we partition V n

according to it we discover J .
The plan of the proof is now clear. Given an independent set I ⊆ V n let f be its characteristic

function and take g = Aηf to be a slightly noisy version of f . There will be few variables that have
non-negligible influence on g, without loss of generality assume these are the variables indexed
1, . . . , j. Partition V n into |V |j subcubes according to these variables, let J ′ ⊆ V j be the set of
subcubes where g has non-negligible expectation, and let J = J ′ × V n−j . We will show that
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• J almost contains I , that is, the expectation of f outside of J is small.

• J is almost independent, i.e., 〈1J , A1J〉µ is small. In particular J is not trivially equal to V n.

3.1 The Proof

Let us begin by setting parameters. Let p = p(G) be the constant defined in Theorem 2.6 and fix
some ε > 0. Let τ and δ be defined by

τ = τMOO(ε), δ = δMOO(ε).

Let λ = λ(G). We choose η < 1 close enough to 1 so that η > max{1
2 , 1− λ},

√
1− η ≤ δε

2 , and (4)
holds. Moreover, we define

ρ = λ(Aη) ≤ η + (1− η)λ and ` =
(1− ρ2)−2

τ
.

Finally, choose γ > 0 small enough so that

γ < τ · (ε/2`2)
2p

p−2 .

Let I ⊆ V n be an independent set, let f : V n → {0, 1} be its characteristic function, and define

g = Aηf.

By Item 3 of Lemma 2.3 we have g : V n → [0, 1]. Let j be the number of variables with influence
larger than γ on g, and assume without loss of generality that these are the variables {1, . . . , j}. By
Item 6 of Lemma 2.3 j is upper bounded by a constant independent of n, namely j ≤ (1−ρ2)−2

γ . We
will now think of V n as V j × V n−j . We will denote the elements of V j by the letters a and b, and
the elements of V n or V n−j by x and y. For every a ∈ V j define a function ga : V n−j → [0, 1] by

ga(x) = g(a, x).

Let
J ′ = {a : Eµ[ga] ≥ ε} ⊆ V j .

Define the set J = J ′ × V n−j ⊆ V n. We claim that J is the set guaranteed by Theorem 1.1. To
prove this we must prove the following two claims.

Claim 3.1. µ(I \ J) ≤ ε.

Claim 3.2. 〈1J ′ , A1J ′〉µ ≤ ε.

Proof of Claim 3.1: Define f̃(a) = Eµ,x[f(a, x)] and similarly g̃(a) = Eµ,x[g(a, x)] the functions on
V j obtained by averaging over the V n−j part. Since Aη commutes with averaging (see Item 4 of
Lemma 2.3), we have g̃ = Aηf̃ . With this notation we have J ′ = {a : g̃(a) ≥ ε} and we define
f∗ = f̃ ·1J ′ . Notice that µ(I \J) = Eµ[f∗] and hence our goal is to prove that Eµ[f∗] ≤ ε. By Item 2
of Lemma 2.3 the fact that f∗ ≤ f̃ pointwise implies that Aηf

∗ ≤ g̃ pointwise. Hence we see that

〈f∗, Aηf
∗〉µ ≤ 〈f∗, g̃〉µ ≤ ε · Eµ[f∗].

On the other hand λ′0 = 1 and all other eigenvalues are positive (since η > 1/2), so

〈f∗, Aηf
∗〉µ =

∑
S

f̂∗(S)2λ′S ≥ f̂∗(0)2 = (Eµ[f∗])2.

Combining these two yields the required result.
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Proof of Claim 3.2: Let us assume by contradiction that 〈1J ′ , A1J ′〉µ > ε, i.e., that the graph
spanned by J ′ in Gj spans more than ε|E(Gj)| edges. We will show that this implies that there
exists a variable i ∈ {j + 1, . . . , n} whose influence on g is greater than γ, in contradiction to our
definition of j. To this end, notice that the influences of g are related to those of ga by

∀i ∈ {j + 1, . . . , n}, Infi(g) =
∑
a∈V j

µ(a)Infi(ga).

Therefore, in order to reach a contradiction it suffices to find a variable i with Infi(ga) > τ for a set
of a’s of measure at least γ

τ .
For each a ∈ V j let L(a) be the set of variables whose influence on ga is greater than τ ,

L(a) = {j < i ≤ n : Infi(ga) > τ} .

Below we will show that

1. |L(a)| ≤ ` for all a ∈ V j , and that

2. for at least ε
2 |E(Gj)| edges {a, b} in Gj we have L(a) ∩ L(b) 6= ∅.

From Lemma 2.8 it will follow that there exists an i ∈ {j +1, . . . , n} for which µ({a : i ∈ L(a)}) ≥
(ε/2`2)

2p
p−2 . Recalling that we have chosen parameters so that (ε/2`2)

2p
p−2 > γ

τ we reach the contra-
diction Infi(g) > γ and our argument is complete. It remains to prove the two claims above.

Claim 3.3. For all a ∈ V j ,
∑

Infi(ga) ≤ (1 − ρ2)−2. In particular, there are at most ` = (1 − ρ2)−2/τ
variables whose influence on ga is at least τ .

Proof: Let h : V n → [0, 1] be the result of applying noise on the first j coordinates of f ,

h = (Aη)⊗j ⊗ I⊗n−jf .

For each a ∈ V j let ha : V n−j → [0, 1] be defined by ha(x) = h(a, x). The function ga can now be
written as ga = Aηha. By Item 6 of Lemma 2.3,

∑
Infi(ga) ≤ (1− ρ2)−2.

For the second claim, we say that an edge {a, b} in Gj is dense if 〈ga, Agb〉µ ≥ δ.

Claim 3.4. There are at most ε
2 |E(Gj)| dense edges in Gj .

Proof: First note that since 〈f,Af〉µ = 0, and since g = Aηf , Lemma 2.5 says that

〈g,Ag〉µ ≤
√

1− η.

Next, write
g =

∑
a

1{a} ⊗ ga,

and deduce that
〈g,Ag〉µ =

1
|E(Gj)|

∑
a∼b

〈ga, Agb〉µ.

If there were more than ε
2 |E(Gj)| dense edges they would contribute together more than δ ε

2 ≥√
1− η to 〈g,Ag〉µ.

Consider now all non-dense edges spanned by J ′. By our hypothesis and the claim above,
there are at least ε

2 |E(Gj)| such edges. Moreover, by definition each such edge {a, b} satisfies
〈ga, Agb〉µ < δ, Eµ[ga] ≥ ε, and Eµ[gb] ≥ ε. By Theorem 2.2 this means that there exists a variable in
{j+1, . . . , n}whose influence on both ga and gb is larger than τ , which implies that L(a)∩L(b) 6= ∅,
thereby completing the proof.
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A Proof of the Hypercontractive Inequality

In this appendix we provide a proof of the hypercontractive inequality of Theorem 2.6. As men-
tioned before, our proof is a loose adaptation of parts of the proof by P. Wolff appearing in [22].
Although Wolff actually finds the optimal constants in this inequality we make no attempt to
reproduce such a quantitative statement.

Proof: Let m ≥ 2 be an integer and consider Ω, an m point space endowed with a probability
measure µ, and the norms induced by µ on Lp(Ω) for all p ≥ 1. Let V1, . . . , Vm be an orthonormal
basis for L2(Ω) with the inner product induced by µ, and assume V1 = (1, 1, . . . , 1). Let

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm > −1

and define a linear operator A as follows. For 1 ≤ i ≤ m define AVi = λiVi and extend A
linearly to all f : {1, . . . ,m} → R. We want to prove the existence of p > 2 such that for all
(c1, c2, . . . , cm) ∈ Rm ∥∥∥∑

ciλiVi

∥∥∥
p
≤

∥∥∥∑
ciVi

∥∥∥
2
. (5)

First note that we may assume that 1 > λ2 = λ3 = · · · = λm = λ > 0. Indeed, for g in the range of
A write g =

∑
diVi (where di = 0 whenever λi = 0). Then (5) translates to∥∥∥∑

diVi

∥∥∥
p
≤

∥∥∥∑
diλ

−1
i Vi

∥∥∥
2

=
(∑

(diλ
−1
i )2

)1/2

and the right hand side is monotone decreasing in |λi|. So in the following we assume that A acts
by Af = λf + (1− λ)Eµ[f ].

Our goal is to show that for some p > 2, ‖Af‖p ≤ ‖f‖2 holds for all f : {1, . . . ,m} → R.
We first observe that it suffices to consider non-negative f . Indeed, replacing f by |f | does not
change ‖f‖2 and can only increase ‖Af‖p since A|f | ≥ |Af | (which follows from A|f | ≥ Af and
A|f | ≥ −Af ). Next, by homogeneity, it is enough to consider f such that ‖f‖2 = 1. Let

a := Eµ[f ] =
∑

µ(i)f(i)
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and notice that 0 < a ≤ 1.
So our goal now is to show that ‖Af‖p ≤ 1 holds for any function f of the form

f = (a + b1, a + b2, . . . , a + bm)

for some 0 < a ≤ 1, with ∑
µ(i)bi = 0, (6)

∑
µ(i)(a + bi)2 = 1, (7)

and
∀i, a + bi ≥ 0. (8)

To this end, define the function

φa,p(b1, . . . , bm) := ‖Af‖p
p =

∑
µ(i)(a + λbi)p

where the equality follows from

Af = λf + (1− λ)Eµ[f ] = (a + λb1, a + λb2, . . . , a + λbm).

In the following, we maximize φa,p(b1, . . . , bm) subject to the constraints (6), (7), and (8) for any
fixed a and p, and show that for sufficiently small p > 2 and all 0 < a ≤ 1 this maximum is 1.

We use the method of Lagrange multipliers. The gradient of φa,p is given by

∇φa,p(b1, . . . , bm) =
(
λp µ(i)(a + λbi)p−1

)m

i=1
. (9)

Since this is a strictly positive vector, we see that the maximum of φa,p is not constrained by (8).
Therefore, at any maximum of φa,p, the gradient in (9) should be in the span of the gradients of
the constraints (6) and (7). It follows that at any maximum point there exist constants t and s such
that for all i

(a + λbi)p−1 = t + sbi.

However, for any s, t and p > 2 this last equation in bi has at most two solutions. Therefore, by (6),
there is some Ω′ ⊆ Ω and b ≥ 0 such that bi = (1 − α)b for i ∈ Ω′ and bj = −αb for j 6∈ Ω′ where
α = µ(Ω′). If α = 0 or α = 1 then f is a constant function in which case ‖Af‖p = ‖f‖2 for all p and

we are done. Otherwise, using (7), we get b = b(a, α) =
√

1−a2

α(1−α) . For the function to satisfy (8),

we must have a− αb ≥ 0, which simplifies to a ≥
√

α. Define

Φα(a, p) := φa,p(b1, . . . , bm) = α

[
a + λ

√
(1− a2)(1− α)

α

]p

+ (1− α)

[
a− λ

√
(1− a2)α

1− α

]p

.

So our goal in the following is to show that there exists some p > 2 such that Φα(a, p) ≤ 1 holds
for all 0 < α < 1 and all

√
α ≤ a ≤ 1. In fact, notice that there are at most 2m − 2 possible values

for α, so it suffices to prove the inequality only for those values.
Fix some value of α ∈ (0, 1). Notice that Φα(a, 2) = a2 + λ2(1− a2) and hence

∂Φα(a, 2)
∂a

= 2a(1− λ2) (10)

which is strictly positive in the range a ≥
√

α > 0. Note also that for all p

Φα(1, p) = 1. (11)
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Fix a closed rectangle, say,
∆ =

{
(a, p) : a ∈ [

√
α, 1], p ∈ [2, 3]

}
and note that both Φα and its derivatives are uniformly continuous on ∆. Hence we may choose
p∗α > 2 such that for all (a, p) ∈ [

√
α, 1]× [2, p∗α] we have that (10) implies

∂Φα(a, p)
∂a

> 0

which together with (11) implies that Φα(a, p) ≤ 1. Hence the assertion of the theorem holds for
p = minα{p∗α} > 2 where the minimum is taken over all finitely many possible values of α.
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