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Abstract. Given a function f : X → Σ, its ℓ-wise direct product is the
function F = f ℓ : Xℓ → Σℓ defined by F (x1, . . . , xℓ) = (f(x1), . . . , f(xℓ)).
A two prover game G is a game that involves 3 participants: V,A, and B.
V picks a random pair (x, y) and sends x to A, and y to B. A responds
with f(x), B with g(y). A,B win if V (x, y, f(x), g(y)) = 1. The repeated
game Gℓ is the game where A,B get ℓ questions in a single round and
each of them responds with an ℓ symbol string (this is also called the
parallel repetition of the game). A,B win if they win each of the ques-
tions.
In this work we analyze the structure of the provers that win the repeated
game with non negligible probability. We would like to deduce that in
such a case A,B must have a global structure, and in particular they are
close to some direct product encoding.
A similar question was studied by the authors and by Impagliazzo et.
al. in the context of testing Direct Product. Their result can be be in-
terpreted as follows: For a specific game G, if A,B win Gℓ with non
negligible probability, then A,B must be close to be a direct product en-
coding. We would like to generalize these results for any 2-prover game.
In this work we prove two main results: In the first part of the work
we show that for a certain type of games, there exist A,B that win the
repeated game with non negligible probability yet are still very far from
any Direct Product encoding. In contrast, in the second part of the work
we show that for a certain type of games, called “miss match” games,
we have the following behavior. Whenever A,B win non negligibly then
they are both close to a Direct Product strategy.

⋆ Work supported by ISF grant 1179/09, BSF grant 2008293, and ERC starting grant
239985.
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1 Introduction

Given a function f : S → Σ its ℓ-wise direct product is the function f ℓ : Sℓ →
Σℓ defined by: f ℓ(s1, . . . , sℓ) = (f(s1), . . . , f(sℓ)). The Direct Product Testing
Theorem by [DG08] and [IKW09] asserts that there exists a two query test T such
that, whenever a function F : Sℓ → Σℓ passes T with non negligible probability,
then F is somewhat close to an ℓ-wise direct product for some global function
f : S → Σ.

Let us describe the 2-query direct product test T . The test picks a random
tuple x ∈ Sℓ and then picks another tuple x′ as follows: For each such coordinate
i with probability α x′

i = xi, otherwise, x
′
i is drawn uniformly at random from S.

The test queries F (x), F (x′) and accepts if and only if F (x), F (x′) are consistent
among the common values of x and x′.

The test can be viewed as a repeated 2-prover equality game in the following
way: The original game, EQ, is the game in which with probability α A,B
get the same question x and with probability 1 − α they get two independent
questions x and x′. A responds with a ∈ Σ and B with b ∈ Σ. If A,B get
the same question the verifier checks that a = b otherwise it always accepts.
The repeated game EQℓ- the game where the verifier picks ℓ independent pairs
of questions and sends them in a single round- is exactly the test T described
above. The Direct Product Testing Theorem asserts that for this specific game:
Whenever the provers win with non negligible probability, then the provers’
strategy has a global structure: They have a global agreement with some direct
product function.

The Parallel Repetition Theorem by [Raz98] asserts that, for any 2-prover
game, the value of the repeated game decreases exponentially with the number of
repetitions. Thus, if the provers win the repeated game with probability above
1%, then the value of the original game is almost 1. The Parallel Repetition
Theorem concludes nothing about the structure of the provers’ strategy assuming
they win with probability above 1%. Furthermore, it is easy to see that the value
of the EQ game is 1. Therefore, the Parallel Repetition Theorem, unlike the
Direct Product Testing Theorem, tells us nothing about EQℓ.

This work is a bridge between the Parallel Repetition Theorem and the Di-
rect Product Testing Theorem showing that for every 2-prover game, if A,B win
with non negligible probability, then A,B have global structure, namely A,B are
close to a direct product encoding.

Let us introduce some of our notations: A two-prover game G is defined
by a distribution D on questions (X,Y ) and a verifier V . The verifier V picks
a questions pair (x, y) ∈ (X,Y ) according to D. Then, the verifier sends the
question x to prover A and the question y to prover B. The provers A,B are not
allowed to communicate with each other during the game, and A responds with
f(x), while B responds with g(y). The players win if V (x, y, f(x), g(y)) = 1. The
value of the game G, denoted val(G) is the maximum success probability of the
players.
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For functions f : X → ΣA and g : Y → ΣB we denote by val(G, f, g)
the value of the game if A plays according to f and B according to g, i.e.
val(G, f, g) = E(x,y)∼DV (x, y, f(x), g(y)). We call the pair (f, g) a perfect strat-
egy if val(G, f, g) = 1.

The repeated game Gℓ is the the game where V samples ℓ independent ques-
tions: (x1, y1), . . . , (xℓ, yℓ) each is distributed according to D. The verifier sends
x = (x1, . . . , xℓ) to A and y = (y1, . . . , yℓ) to B. Each prover responds with ℓ an-
swers. The provers win if they win each of the ℓ coordinates. A projection game is
a game in which the predicate V has a special structure- every pair (x, y) defines
a function Πx,y : ΣA → ΣB , and V (x, y, a, b) is satisfied iff Πx,y(f(x)) = g(y).

As mentioned earlier, the Parallel Repetition Theorem by [Raz98] bounds
the value of the repeated game. Roughly speaking, it says that for every game
G, if val(G) < 1− ε, then val(Gℓ) < (1− ε′)ℓ (where ε′ depends on ε and on the
length of the answer in G).

How would honest verifiers A,B play in order to win the repeated game?
They choose a pair of perfect strategies (f, g). A, upon receiving (x1, . . . , xℓ),
answers with (f(x1), . . . , f(xℓ)) while B answers with (g(y1), . . . , g(yℓ)).(Irit:
In fact, A,B can choose ℓ pairs of perfect strategies (f1, g1), . . . , (fℓ, gℓ) and A
answers with (f1(x1), . . . , fℓ(xℓ)) while B answers with (g1(y1), . . . , gℓ(yℓ)) and
still win with probability 1. We call such strategies A,B direct product strategies
and denote them by

∏
fi and

∏
gi. )

In this work, we consider the case where the provers win the repeated game
with non negligible probability. We would like to deduce a structure for the
provers’ strategies. Ideally, such strategies are approximately direct product
strategies, in other words, global structure. Let us call this the Global Struc-
ture Hypothesis.

(Elazar: Without loss of generality we focus only on non trivial games, i.e.
games in which for every questions pair (x, y) there exists a pair of answers (a, b)
such that V (x, y, a, b) = 0. Otherwise, if the verifier always accepts, then it is
trivial that we cannot expect of A,B being structured, since every A,B win with
probability 1. )

Results. Our first result is that the Global Structure Hypothesis does not hold
in general even for non trivial games. We show games, for which there exists a
strategy for A,B that is extremely far from any direct product strategy (i.e.
has no global structure) while attaining constant winning probability . We con-
clude, (perhaps surprisingly), that high success probability does not imply global
structure.

Our main negative result shows that the Global Structure Hypothesis fails
for any constant degree game 3 that has a large number of perfect strategies that
are pairwise far apart:

Theorem 1 (Anti Structural Theorem- Informal Statement). There ex-
ists a non-trivial constant degree game G, and constant α such that for every

3 the degree is the maximal number of neighbors of a certain question
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ℓ: There exist strategies A,B such that the maximal agreement between A and∏
fi for any

∏
fi is at most 2−ω(ℓ), and similarly for B. Yet, A,B win with

probability α.

We extend Theorem 1 for games with unbounded degree, and also for the
so-called “permuting” verifiers that permute the questions (these were called
“clever” in [FK95]). For details see Section 3.

In the second part of the work we show, as our second result, that in contrast
to Theorem 1 the Global Structure Hypothesis is true for a certain type of games
called “miss-match” games. These games were first studied in [FK94].

Given a 2-prover game G its repeated “miss-match” game, denoted by Gm,ℓ,
0 < m < ℓ, is as follows: The verifier chooses m coordinates, on each such
coordinate it samples a pair (x, y) according to the distribution of G, these are
called the match coordinates. As for the rest of the coordinates, the so called
miss coordinates, the verifier picks x ∈ X and y ∈ Y independently uniformly
at random. The provers answer with an ℓ symbols string and they win the game
if they win each of the match coordinates.4

(Irit: Let us make the following simplifying assumption regarding the strate-
gies. We assume that the answers of each player on a given tuple of questions
(x1, . . . , xℓ) depend on the set {x1, . . . , xℓ} of questions but not on their order.
This allows us to focus only on strategies f ℓ rather than

∏
fi and saves some

technical complications. We believe that our results can be directly extended to
the general (ordered) case as in say [DG08], although we have not fully checked
the details.)

We first show that for every projection game G, if the provers win Gm,ℓ with
non negligible probability ε, then B plays according to a direct product strategy:
We show that there exists a small (poly(1/ε)) list of functions g1, . . . , gt : Y →
ΣB such that B agrees non-negligibly with gℓi for each i. Furthermore, we show

that essentially the only way A,B win is whenever B(y)
g
≈

ℓ

i (y) where gi is some
function from the list.

Theorem 2 (Informal Statement). Let G be a projection game. Assume A,B
win Gm,ℓ with probability ε > ℓ−Ω(1), then there exists a small list of t functions
g1, . . . gt : Y → ΣA such that:

– For each i ∈ [t]: Pry[B(y) ≈ gℓi (y)] > ε′, where ε′ = poly(ε).
– Pr[∃i s.t. B(y) ≈ gℓi (y)|A,B win] ≥ 1− o(1).

The proof resembles [DG08] and [IKW09] and appears in Section 4.1.
Note that Theorem 2 only discusses B’s strategy. It turns out that deducing

a similar result for A is more subtle, and is only true if G is smooth enough.
This smoothness parameter, first defined by[HK04], is as follows:

4 Alternatively, we can define “miss-match” as follows: Given a game G, we define
mm−G as the game that with probability α = (m/ℓ) the verifier plays the original
game G, and with probability 1 − α it picks two independent questions and always
accept. The repeated game (mm−G)ℓ is very similar to Gm,ℓ.
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Definition 1. A projection game G is called α-smooth if for every x ∈ X and
distinct answers a, a′ ∈ ΣA, we have: Pry[Πx,y(a) = Πx,y(a

′)] < 1− α, where y
is a random neighbor of x.

Assuming the game is sufficiently smooth, we show an analog of Theorem 2,
namely: we show that whenever A,B win Gm,ℓ with non negligible probability,
then there exists a short list of functions pairs (f1, g1), . . . , (fs, gs) such that:
A,B agree with f ℓ

i , g
ℓ
i non-negligibly, and val(G, fi, gi) is close to 1. We also

prove that if B plays on y according to gℓi , and A does not play according to f ℓ
i ,

or vice versus, then with high probability A,B lose. Combining with Theorem 2
we get that there exists a small list of functions pairs (fi, gi), such that the only
way to win the repeated game is whenever A plays according to direct product
of f ℓ

i while B plays according to gℓi . Thus, we fully explain the high winning
probability of the provers through a direct product structure of their strategies.

Theorem 3 (Informal Statement). Let G be a an α smooth projection game
(where α is a constant). Assume A,B win Gm,ℓ with probability ε > ℓ−Ω(1), then
there exists a small list of s pairs of functions (f1, g1), . . . (fs, gs) such that:

– fi : X → ΣA, gi : Y → ΣB and: val(G, fi, gi) > 1− o(1).
– Let (A,B) be a random pair of questions, then:

Pr[∃i s.t. A(x) ≈ f ℓ
i (x) and B(y) ̸≈ gℓi (y)|A,B win ] > 1− o(1).

The smoothness property is essential for Theorem3. Theorem 4 shows a game
that is not smooth enough, for which there exist strategies A,B that win the
game with probability 1, yet A is unstructured.

Theorem 4 (Informal Statement).
There exists a projection game G, such that for every ℓ there exist strategies

A,B such that the maximal agreement between A and f ℓ for any f is at most
2−ω(ℓ). Yet, A,B win Gm,ℓ with probability 1.

Additional Motivation and Context. The study of structure of winning strate-
gies, aside from being an interesting generalization of the direct product testing
question, has also some additional motivation coming from PCP constructions.

In recent years, stronger variants of PCPs called PCPPs [BSGH+06] or as-
signment testers [DR06] and more recently dPCPs [DH09] have been introduced.
These are constructs that are similar to PCPs but are stronger, and much more
useful in composition. Without getting into the details, let us say that the main
difference between these objects and regular PCPs lies in the soundness criterion.
The difference is closely related to the difference between just knowing that the
soundness error of repeated games is small (this only gives a PCP), and between
being able to say that strategies that have non-negligible winning probability
must be structured as direct products (such a result will give you the stronger
object, i.e., a dPCP or a PCPP). Whereas the former is already given by the
parallel repetition theorem of [Raz98], the later is the content of this work.
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In fact, our structure result (Theorem 3) can be used in order to show that
a parallel repetition of a dPCP is a dPCP with amplified soundness. However,
since this has already been done (with better parameter setting) in [DM10], we
do not work out the details here.

Future Work. In this work we deal with several types of games and repetitions.
We show that for part of them, such as Gm,ℓ the Global Structure Hypothesis
holds. Contrary, we show hat for other types of games, such as constant degree
games with many perfect strategies, the hypothesis fails. It would be interesting
to characterize the types of games and repetitions for which the hypothesis holds.

Organization of the Paper. Subsection 2.1 shows the Direct Product Lemma
which is the basis for our approach. In section 3 prove Theorem 1. Finally, in
Section 4 we prove Theorem 2 and Theorem 3.

2 Preliminaries

In this work we deal with several kinds of repetitions: Repetition where the
provers gets ordered tuples, sets and multisets.

When the provers get ordered tuples, then we see them as tuple oracles: A
gets a tuple x = (x1, . . . , xℓ) ∈ Xℓ and responds with A(x) ∈ Σℓ

A, and B gets
a tuple y = (y1, . . . , yℓ) ∈ Y ℓ and responds with B(y) ∈ Σℓ

B .(Elazar: Let us
define the product encoding of functions (f1, . . . , fℓ), fi : S → Σ, to be a tuple
oracle,

∏
fi, assigning for every tuple (s1, . . . , sℓ) the value (f1(s1), . . . , fℓ(sℓ)).

In the case where f1 = . . . = fℓ = f we denote
∏

fi by f ℓ. )
When the provers get multi-sets, then we see them as multi-set oracles:

A gets a multi-set A = {x1, . . . , xℓ} and responds with A(A)which is a function
A → ΣA. B gets a multi-set B = {y1, . . . , yℓ} and responds with B(B) which is
a function B → ΣB . Let us define the ℓ multi-set direct product encoding of a
function f : S → Σ to be a multi-set oracle, f ℓ, assigning for every T ⊂ S of
cardinality ℓ the restriction of f to T .

When the provers get sets, then see them as a sets oracles: The definitions
are identical to multi-sets oracles besides that in this case the provers gets sets
rather than multi-sets.

For a function f : S → Σ, and T ⊂ S we denote by fT the restriction of f
to T . The definition of the support of f is important in our discussion:

Definition 2. For two vectors v,w in some alphabet Σℓ we write v
ρ
≈ w to

denote Pri∈[ℓ][vi = wi] ≥ 1− ρ and v
ρ

̸≈ w to denote Pri∈[ℓ][vi ̸= wi] ≥ ρ.

For two function f, g : T → Σ we write: f
ρ
≈ g to denote Prt∈T [f(t) = g(t)] ≥

1− ρ and f
ρ

̸≈ g to denote Prt∈T [f(t) ̸= g(t)] ≥ ρ.
For a tuple oracle F and f : S → Σ the ρ−support denoted by suppFρ (f)

defined as follows: suppFρ (f) = {s ∈ Sℓ |F (s)
ρ
≈ f ℓ(s)}.
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For a multi-set oracle F and f : S → Σ the ρ−support denoted by suppFρ (f)

defined as follows: suppFρ (f) = {A ⊂ S | |A| = ℓ and F (A)
ρ
≈ f ℓ(A)}.

Now we would like to introduce “miss match” games in these settings:

Definition 3. “Miss-Match” Games: Let G be a game, let ℓ,m be integers
0 < m < ℓ, then we define the miss-match, Gm,ℓ, as follows:

1. The verifier picks m pairs (xi, yi) where each pair is selected independently
according to D. The verifier defines a multiset A′ = {x1, . . . xm} and B′ =
{y1, . . . , ym}. These are the match elements, each pair (xi, yi) is called a
match pair and A′, B′ are called the match questions.

2. The verifier picks ℓ − m additional pairs (xj , yj), where xj , yj are chosen
independently at random from X,Y (respectively). The verifier defines mul-
tisets A′′ = {xm+1, . . . , xℓ} and B′′ = {ym+1, . . . , yℓ}. These are the confuse
elements.

3. V sends A = A′ ∪A′′ to A, and B = B′ ∪B′′ to B.
4. A responds with A(A) : A → ΣA, and B responds with B(B) : B → ΣB

(A,B are multiset-oracles). The provers win Gℓ if they win each of the match
elements, i.e. for every match pair (x, y) we have:

V (x, y,A(A)x,B(B)y) = 1.

(Irit: We note that in our definitions of “miss-match” games each prover
gets a multiset from the verifier, as opposed to an ℓ-tuple. Thus, the provers
are multiset oracles. Alternatively, one can define miss-match games such that
the verifier sends tuples, and performs a random shuffle on the coordinates. This
turns to be equivalent to the case of sets. A similar reduction was done in [DG08].
)

2.1 Testing Direct Product

We now turn to describe the Direct Product Testing Lemma as in [DG08] and
in [IKW09]. Let F be a ℓ set oracle that works over a set X. The goal is to test
whether F is close to a direct product encoding- i.e. whether there exists f such
that F is the direct product encoding of f . A two queries test that resemble the
“miss match” game is used. The test chooses a random subset A and a random
subset B as follows: A and B share m elements in common. As for the rest
elements of B the test picks ℓ − m random elements from X. Then the test
checks for consistency among F (A) and F (B) i.e. for each common element x it
verifies that F (A)x = F (B)x.

The following definition is quoted from [DG08].

Definition 4. Let B a ℓ set oracle that works over a set Y . Let B′ ⊂ Y of
cardinality m. We call B′ ε-alive if there exists b′ : B′ → ΣB such that:

Pr
B⊃B′

[B(B)B′ = b′] ≥ ε

Such an answer b′ is called a live answer for B′.
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Now we are ready to state Theorem 3.14 from [IKW09]. This is a local to
global Lemma that claims that as long as there exist many live sets (the local
property), then this implies an existence of a direct product function with a large
support (the global property).

Theorem 5 (Direct Product Testing:). There exists ℓ0 ∈ N and c > 0 such
that for every ℓ > ℓ0: Let B be a ℓ set-oracle such that

Pr
B′⊂Y ||B′|=

√
ℓ
[B′ is ε/2-alive] ≥ ε/2,

where ε ≥ 1/
√
ℓ. Then, there exists a function g : Y → ΣB such that B(B)

ρ
≈

gℓ(B) for at least Ω(ε6) of the B ∈
(
Y
ℓ

)
, where ρ ≤ ℓ−c.

3 Negative Results

In this section we prove Theorem 1 showing that, for any constant degree game
G with many perfect strategies, A,B can win Gℓ with constant probability and
still be very far from any (Elazar: generalized product) strategy. We extend
Theorem 1 for games of of non-constant degree in Theorem 6. Theorem 7 extends
Theorem 1 to handle “Permuting Verifiers”.

For a game G we define a bipartite weighted graph, where L = X, R = Y
and wx,y = PrD[y|x]. The game is called d regular if the degree of every left
node is d, the degree of every right node is d |X| / |Y |, and wx,y = 1/d for every
adjacent x and y. d is called the degree of the game. Another property that we
take into consideration is the the rate between the cardinalities X and Y . We
denote by r the ratio |X| / |Y |, and without loss of generality we assume r > 1.

3.1 Proof of Theorem 1

In this section we prove Theorem 1. We define PA = {
∏

fi|fi : X → ΣA}, and
PB = {

∏
gi|gi : Y → ΣB}. For two functions F,G : Sℓ → Σℓ we define their

relaxed Hamming distance with parameter γ as: distγ(F,G) = Prs∈Sℓ [F (s)
γ

̸≈
G(s)]. Let us first state Theorem 1 formally:
Theorem 1 (Formal Statement) For every constants d > 1 and 0 < γ < 1/20
there exists a non-trivial constant degree d game G, and tuples-oracles strategies
A,B such that distγ(A, PA) ≥ 1 − (1/ |Y | + 2−ω(ℓ)), and distγ(B, PB) ≥ 1 −
(1/ |Y |+ 2−ω(ℓ)). Yet, A,B win Gℓ with probability at least 1/d.

The theorem holds for any constant degree d game G, for which there exists
a large list of t = |Y | pairs of perfect strategies (f1, g1), . . . , (ft, gt) that satisfy:
For i ̸= j : dist(fi, fj), and dist(gi, gj) are both greater than 10γ.

The requirement for the distance between the pairs prevents the case where
all the perfect strategies have a small relative distance. In such a case all of the
above functions pairs (fi, gi) could be clustered into a single function pair (f, g)
for which: A(x) ≈ f ℓ and B(y) ≈ gℓ. Such a behavior can still be viewed as a
direct product structure for A,B.
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Proof. The strategies of A,B are based on the following combinatorial claim:

Claim. Let G = (V,E) be a bipartite (c, d) regular graph (the left degree is c,
and the right degree is d), and assume wlog c ≤ d. Then there exists a subgraph
G′ = (V,E′) such that G′ is (1, d/c) regular.

Due to space limitations the proof is omitted and can found in the full version
of the paper.

Let us present the strategies A,B: As a first step A,B match for every y ∈ Y
a pair (fi, gi) from the list, so we associate the strategies list with the set Y and
we write (fy, gy). Then they choose a subgraph G′ as in claim 3.1.

B decides according to value of the first coordinate y1- i.e. given y = (y1, . . . ,yℓ),
B(y) = gℓy1

(y).
A strategy is similar, it is also based just on the value of the first coordinate

x1: Given x = (x1, . . . ,xℓ), A(x) = f ℓ
N(x1)

(x) where N(x1) is the vertex y such

that (x1, y) ∈ E′.
We now turn to prove the success probability of the proves, and the distance

between A,B and any generalized product strategy.
Note that if y1 = N(x1), then A,B win the game, since they are playing

according to fy1
, gy1

, which is a perfect strategy.
What is the probability that indeed y1 = N(x1)? Note that we care only

about the values of the first coordinate. Once x1 is fixed, the probability that
y1 = N(x1) is exactly 1/d. Therefore, the winning probability is 1/d.

(Elazar: The analysis was changed) What is the distance between B and
any product

∏
gi?

Let
∏

gi be a product strategy, we divide the proof into cases: The case where
for every y ∈ Y it holds that dist(gi, gy) > 5γ for at least 1/4 fraction of the gi,
and the case where there exists y ∈ Y such that dist(gi, gy) ≤ 5γ for at least
3/4 fraction of the gi. Note, that since dist(gy, gy′) > 10γ for y ̸= y′ ∈ Y , then
every function g agrees with at most a single function gy on more than 1 − 5γ
fraction of the domain, and in particular for every i there can be only a single y
with dist(gi, gy) ≤ 5γ.

Assume we are in the first case:

Pr
y
[B(y)

γ
≈

∏
gi(y)] = Pr

y1

[ Pr
y2...,yℓ

[B(y)
γ
≈

∏
gi(y)]] = Pr

y1

[ Pr
y2...,yℓ

[gℓy1
(y)

γ
≈

∏
gi(y)]]

Now, we can use Chernoff inequality to deduce that Pry2...,yℓ
[gℓy1

(y)
γ
≈

∏
gi(y)] <

2−ω(ℓ) (the expected number of coordinates on which there is an inequality is at
least 5γ/4), so we get that in the first case: dist(B,

∏
gi) > 1− 2−ω(ℓ).

As for the second case, where we assume that
∏

gi is close for some function
gy, then:

Pr
y
[B(y)

γ
≈

∏
gi(y)] = Pr[y1 = y] Pr

y2...,yℓ

[gℓy(y)
γ
≈

∏
gi(y)] + Pr[y1 ̸= y] Pr

y2...,yℓ

[gℓy1
(y)

γ
≈

∏
gi(y)]

≤ 1/|Y |+ 2−ω(ℓ)
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We get that in this case distγ(B,
∏

gi) ≥ 1 − (1/ |Y | + 2ω(ℓ)), and we are
done. The analysis for A is similar.

One may think that Theorem 1 is true just for constant degree game. How-
ever, in Theorem 6 we extend Theorem 1 for a certain non-constant game:

Theorem 6. For every constant d > 1, 0 < γ < 1/8 there exists a non-
trivial non-constant degree d̃ game G̃, and tuple-oracles strategies A,B such that

distγ(A, PA) ≥ 1− ( d̃
d|Y | + 2−ω(ℓ)), and distγ(B, PB) ≥ 1− ( d̃

d|Y | + 2−ω(ℓ)). Yet,

A,B win G̃ℓ with probability 1/d.

The proof of Theorem 6 can be found in the full version of the paper.

Our next negative result is Theorem 7 that extends for “Permuting Verifiers”.
In this case we would like to view the provers as multi-sets oracles. [FK95] studied
this type of verifiers and called them “Clever Verifiers”. Let us first introduce
them:

Definition 5 (Permuting Verifiers:). The verifier selects ℓ pairs of questions
(x1, y1), . . . , (xℓ, yℓ) Each is pair is drawn independently according to the distri-
bution of G. V sends A = {x1, . . . , xℓ} to A (note that A is a multi-set), and
B = {y1, . . . , yℓ} to B. A answers with A(A), and B with B(B). The verifier
accepts if for every i: V (xi, yi,A(A)xi ,B(B)yi) = 1.

We define DPA = {f ℓ|f : X → ΣA}, and DPB = {gℓ|g : Y → ΣB}. Now let
us state Theorem 7 formally:

Theorem 7. For every constants d > 1 and 0 < γ < 1/8, there exists a non-
trivial constant degree d game G a constant c, and multiset-oracles strategies
A,B such that distγ(A, DPA) ≥ 1−O(ℓ/ |Y |+2−ω(ℓ)), and distγ(B, DPB) ≥ 1−
O(ℓ/ |Y |+2−ω(ℓ)) Yet, A,B win Gℓ against “Permuting Verifier” with probability
at least c/d.

The proof of Theorem 7 can be found in the full version of the paper.

Now we would like to extend Theorem 7 to ”miss-match“ games. The result
for “miss-match” game is weaker: A,B can be unstructured and win the the
game only with probability Ω(mdℓ ) (and not 1/d as before). We address here that
if A,B win the game with probability ≫ m/ℓ then we can prove that such a
behavior is impossible, see section 4 for details.

Claim. For every constants d > 1 and 0 < γ < 1/8, there exists a constant
degree d game G, a constant c, and multiset-oracle strategies A,B such that
distγ(A, DPA) ≥ 1 − O(ℓ/ |Y | + 2−ω(ℓ)), and distγ(B, DPB) ≥ 1 − O(ℓ/ |Y | +
2−ω(ℓ)). Yet, A,B win Gm,ℓ with probability at least cm

dℓ .

The proof of Claim 3.1 can be found in the full version of the paper.
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4 Positive Results: “Miss-Match” Games

In this section we show that, unlike general games, “miss match” games have
the following property: If A,B win “miss match” games with non negligible
probability, then there exists a small list of pairs (f1, g1), (f2, g2), . . . such that
V al(G, fi, gi) ≈ 1 and: If A,B win then A(A) ≈ f ℓ

i (A) and B(B) ≈ gℓi (B) for
some pair from the list, except with negligible probability.

We first prove Theorem 2. The theorem asserts the above only for B, namely:
if the provers win Gm,ℓ with non negligible probability ε, then B plays according
to a direct product strategy.

It turns out that deducing a similar result for A is more subtle, and de-
pends on the smoothness of the game (see Definition 1). Assuming the game
is sufficiently smooth, we obtain in Theorem 3 the desired result claimed above.

We also address the question of whether smoothness is essential for direct
product behavior. In subsection 4.3 we show that it is essential. In Theorem 4
we show a game that is not smooth such that Gm,ℓ can be won with probability
1 and still A is far from being a direct product strategy.

4.1 Direct Product structure for B

In this section we prove Theorem 2, let us state it formally:
Theorem 2 (Formal Statement) There exists ℓ0 ∈ N and c > 0 such that for
every ℓ > ℓ0 the following holds. Let G be a projection game, and let m =

√
ℓ,

ε0 = 2
√

m/ℓ and δ =
√
ε0.

Assume A,B win Gm,ℓ with probability ε >
√
ε0, then there exists a list of

t = O(1/(δ · ε)6) functions g1, . . . gt : Y → ΣA such that:

– For each i ∈ [t]: PrB [B(B)
ρ
≈ gℓi (B)] > Ω((δ · ε)6), where ρ = ℓ−c.

– Pr[∃i s.t. B(B)
ρ
≈ gℓi (B)|A,B win ] ≥ 1− δ

Before we proceed with the proof, let us make a few remarks:

– The theorem concludes that on many Bs, B(B)
ρ
≈ gℓ(B) rather than B(B) =

gℓ(B). This weaker conclusion is inherent as seen by the following example.
Take B = gℓ and then change each B(B) arbitrarily in fewer than ℓ/m
of the coordinates. With high probability the verifier would not notice the
difference between B and gℓ, yet B is only close to gℓ in the above sense.

– We would like to address the relation between m and ℓ and the value of ε in
Theorem 2. We have already proved Claim 3.1 that asserts that A,B can be
far away from direct product encoding and still win Gm,ℓ with probability
Ω(mdℓ ). This enforces two constraints regarding our choice of parameters:
First, we need that the winning probability ε would be greater than m/ℓ.
Indeed, we prove our theorem for values of ε that are bigger than 4

√
m/ℓ.

Second, we must choose m ≪ ℓ, and in this work we focus on m =
√
ℓ.

We leave the study of the entire range of m, ℓ for future work (We mention
that this is an open question even in the Direct Product Testing settings see
[GS00], [DR06], [DG08] and [IKW09]).
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– We work in the settings where ℓ ≪ |Y | and in particular ℓ < 6
√
|Y |. This

enables us an easy transition between sets and multi-sets.

In order to prove Theorem 2, we first show if A,B win then there exists at
least one function g : Y → ΣB such that B(B) ≈ gℓ(B) on a non negligible part
of the domain.

Lemma 1. There exist ℓ0 ∈ N, and c > 0 such that for every ℓ > ℓ0 the following
holds. Let G be a projection game, and let ε0 = 2

√
m
ℓ .

Assume A,B win Gm,ℓ where m =
√
ℓ, with probability ε > ε0, then there

exists a function g : Y → ΣB such that for at least Ω(ε6) of the ℓ multi-sets B,

we have B(B)
ρ
≈ gℓ(B), where ρ = ℓ−c.

The proof of Theorem 2 and Lemma 1 can be found in the full version of the
paper.

4.2 Direct Product Structure for A

In Section 4.1 we show that for every projection gameG, wheneverA,B winGm,ℓ

with non-negligible probability, then B’s strategy has a direct product structure.
However, we have not involved A strategy at all. In this section we deduce a
similar behavior for A for smooth games. Let us state Theorem 3 formally:
Theorem 3 (Formal Statement) There exist ℓ0 ∈ N, 0 < α < 1 and c > 0
such that for every ℓ > ℓ0 the following holds. Let G be an α-smooth projection
game, and let ρ = ℓ−c, ε0 = 2

√
m
ℓ and δ =

√
ε0.

Assume A,B win Gm,ℓ, with m =
√
ℓ, with probability ε >

√
ε0, then there

exists a list of s = O(1/(δε)6) pairs of functions (f1, g1), . . . (fs, gs) such that:

– fi : X → ΣA, gi : Y → ΣB and: val(G, fi, gi) > 1− 10ρ/α.
– Let (A,B) be a random pair of questions. Define the following events:

• B1 := B /∈ ∪i∈[s]suppρ(gi)
• B2 := ∃i ∈ [s] s.t. B ∈ suppρ(gi) while A /∈ supp6ρ/α(fi)).
• B3 := ∃i ∈ [s] s.t. A ∈ supp6ρ/α(fi)) while B /∈ supp40ρ/α(gi).

Then:
Pr[A,B win |B1 or B2 or B3] < δ +O(exp−Ω(ρ2m)).

In order to prove Theorem 3 we use the following three lemmas:

Lemma 2. There exist ℓ0 ∈ N, 0 < α < 1 and c > 0 such that for every ℓ > ℓ0
the following holds. Let G be an α-smooth projection game, g : Y → ΣB and
ρ = ℓ−c. Let f : X → ΣA be a function that maximizes val(G, f, g), then: If
B ∈ suppρ(g) while A /∈ supp6ρ/α(f). Then A,B win with probability at most

3 exp−Ω(ρ2m).

Lemma 3. There exist ℓ0 ∈ N, 0 < α < 1 and c > 0 such that for every ℓ > ℓ0
the following holds. Let G be an α-smooth projection game, f : X → ΣA and
ρ = ℓ−c. Let g : Y → ΣB be a function such that val(G, f, g) > 1− 10ρ/α, then:
If A ∈ supp6ρ/α(f) while B /∈ supp40ρ/α(g). Then A,B win with probability at

most 4 exp−Ω(ρ2m).
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Lemma 4. There exist ℓ0 ∈ N, 0 < α < 1 and c > 0 such that for every ℓ > ℓ0
the following holds. Let G be an α-smooth projection game, g : Y → ΣB and
ρ = ℓ−c. Let f : X → ΣA be a function that maximizes val(G, f, g), then: If
val(G, f, g) < 1−10ρ/α, and assuming B ∈ suppρ(g) and A ∈ supp6ρ/α(f) then

A,B win with probability at most 3 exp−Ω(ρ2m).

The proofs of Theorem 3, Lemma 2, Lemma 3 and Lemma 4 can be found
in the full version of the paper.

4.3 The Smoothness is Essential

In this section we show that the smoothness property is crucial. We show the
existence of a game G that is not smooth, such that Gm,ℓ has perfect strategies
A,B and A is far from being a direct product strategy. Let us state Theorem 4
formally:
Theorem 4 (Formal Statement) There exists a projection game G, such that
for every ℓ and 0 < m < ℓ: There exist multiset oracles A,B such that for every
f : X → ΣA: dist1/2(A, f

ℓ) > 1 − 2−ω(ℓ) . Yet, A,B win Gm,ℓ with probability
1.

The proof of Theorem 4 can be found in the full version of the paper.
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