
Locally Testable Codes and Expanders

Irit Dinur∗ Tali Kaufman†

April 19, 2012

Abstract

A locally testable code is a code defined by a robust set of local constraints. Namely, the
distance of a vector from the code is well approximated by the fraction of local constraints that it
violates. A constraint graph of an LTC is a graph whose vertices are labeled by the coordinates
of the code, and vertex i is adjacent to j whenever they occur together in a constraint. We
study the relation between the topology of this graph and the structure of the code.

We show that every constraint graph of an LTC must be a small set expander, in which all
sets up to some linear size expand. Moreover, a constraint graph of an LTC can be decomposed
into constantly many expander graphs on which the induced codes are approximately LTCs.

Our work suggests a subtle relation between LTCs and expanders. It is known [BSHR05] that
codes defined by strongly expanding (e.g. random) sets of constraints are not locally testable.
In contrast, we show that every constraint graph of an LTC must be weakly expanding (i.e.,
small set expanders). Our result provides a necessary condition for LTCs that can be applied
toward proving that certain codes are not LTCs.

On the way to our result we prove that every small-set expander (i.e., a graph where small
sets up to some linear size are guaranteed to expand) can be decomposed into a constant number
of “standard” expanders.

1 Introduction

A constraint satisfaction problem is given by a set of variables, and a set of local constraints on
them. It is conveniently viewed as a hypergraph G whose vertices are the variables, and where
for each constraint we place a hyperedge labeled by the constraint function. We will also consider
the constraint graph in which vertices i and j are connected by an edge if they occur together in a
constraint. This graph is the so-called “skeleton” of the constraint hypergraph, and we will denote
it by G′. The set sat(G) ⊂ {0, 1}n is a set of assignments that satisfy all of the constraints in a
given constraint hypergraph G. Any set C ⊂ {0, 1}n that is defined as C = sat(G) and that obeys
the following two properties is also known as a locally testable code, or LTC [GS06].

• (G is robust:) For any x ∈ {0, 1}n, the fraction of constraints that are unsatisfied by x is a
good approximation of the Hamming distance of x from the set sat(G).

• (sat(G) has distance:) The set sat(G) has constant relative distance, i.e. x ̸= y ∈ sat(G)
implies that x, y differ on a constant fraction of their coordinates.

∗Weizmann Institute of Science and Microsoft New England. Email: irit.dinur@weizmann.ac.il. Research
supported in part by the Israel Science Foundation and by the Binational Science Foundation and by an ERC grant.

†Bar-Ilan University, ISRAEL. Email: kaufmant@mit.edu. Supported by an Alon fellowship.

We defer the formal definition of LTCs to Section 2.
LTCs were first developed in the context of PCPs [?, GS06], and known constructions of LTCs

are often based on previously studied PCPs. Several constructions of LTCs are known, see for
example a survey by [?]. A major question is to find the best possible parameters of LTCs, most
importantly the rate. The currently best known rate for an LTC [?, ?, ?] is significantly worse
than the best possible rate of a general error correcting code. Local testability seems to be in
tension with having large distance, and it is interesting to study what properties enable the two to
coincide. One research direction explores the role of symmetry in locally testable codes. So far we
know that certain types of symmetry imply testability while others do not [?, ?]. In this work we
explore another aspect of this interesting class of objects, namely the expansion properties of the
constraints.

We show that if C = sat(G) is a locally testable code then the structures of G′ and sat(G) are
nicely coupled together.

Our Results

A naive conjecture regarding the structure of LTCs might be that the associated graph must be an
expander (i.e., every set of vertices should have many outgoing edges). The intuition is that in an
LTC a typical constraint looking at only a constant number of bits ‘approximately knows’ whether
the global string is a valid codeword. How can a local view relate to the global picture unless the
graph is sufficiently "mixing"?

We prove that this intuition is indeed correct in that the constraint graph must be a small set
expander, in which all sets up to some linear size expand. However, the conjecture, as stated, is
clearly false: if C1, C2 are two LTCs, then the code C = C1 × C2 defined by putting them side by
side is also an LTC, yet its graph is not even connected. We prove that this is essentially the only
obstacle to expansion.

Namely, we prove that either the code is “irreducible” and then the graph must be an expander;
or else both the graph and the code decompose according to the same partition of V .

Theorem 1.1 (Main Theorem - Informal). The constraint graph of every (strong) locally testable
code C ⊂ {0, 1}n is a small-set expander (i.e. all sets up to some linear size expand) . Its vertices
can be decomposed into a constant number of parts [n] = S1 ∪ · · · ∪ St, such that

• Graph: The graph induced on each Si is an expander, and there are relatively few edges between
every Si and Sj.

• Code: The original code is approximately the cartesian product of the codes on each Si,

C ≈ CS1 × · · · × CSt

where CSi is the projection of codewords of C to the coordinates in Si. CSi is itself approxi-
mately a locally testable code with parameters similar to those of C.

Our result suggests a subtle relationship between LTCs and expanders. On the one hand, it
follows from the analysis of [BSHR05] that an LDPC code whose parity check matrix describes an
odd-neighbor expander cannot be an LTC. Recall that an LDPC code is a code defined by local
linear constraints, and the parity check matrix gives exactly the constraint hypergraph. On the other
hand, we show here that the constraint graph of strong LTCs must have non-trivial expansion, i.e.,
every small set of vertices must have a constant fraction of its edges going out. We conclude that the

1

constraint graphs of LTCs must have some non-trivial expansion, yet their constraint hypergraphs
cannot have too much expansion1.

A variant of Theorem 1.1 holds also for weak LTCs (see Theorem 3.2 for exact formulation).
For weak LTCs we can not claim that the constraint graph is a small set expander. However, the
graph can be decomposed into constant many parts such that each G(Si) is an expander in an
analogous ‘weak’ sense: only sets whose size is above γn are guaranteed to expand. Moreover, the
codes induced on these parts are again approximately LTCs.

Our result gives a necessary criterion for codes being locally testable. A code that is defined by
a local constraint hypergraph G cannot be an LTC unless the corresponding skeleton graph G′ is a
small set expander.

We mention that in [?] the second author and Sudan defined a notion of an LTC being “single-
orbit”, which essentially means that the code is defined by a single constraint and its permutations
under some group acting on the coordinates. They showed that if the group is affine then any
single-orbit code is locally testable (Theorem 89?? in [?]). They left open the question of whether
the same holds if the group is cyclic. Our theorem implies a negative answer to this question.
Indeed, any code defined by a single orbit under a cyclic group cannot be locally testable, since the
constraint graph cannot be an expander, being contained in a Cayley graph of an cyclic group with
a constant number of generators.

Finally, we remark that one very well-studied class of LTCs is that of polynomial codes or affine-
invariant codes [KS08]. In such locally testable codes the resulting constraint graph is nothing but
a clique. Nevertheless, our result is not vacuous even in this case, since one may still be interested
in the structure of sparse testers for this code (these are testers obtained by taking a subset of the
possible tests)2. Our result says that any sparse tester for these codes must have an associated
expanding constraint graph.

Our Techniques

The main idea that we use for proving our main result is that LTCs decompose on sparse cuts. We
then rely on the distance of the code to deduce that sparse cuts can occur only on large sets. We
also show that a small-set expander can be decomposed into constant many expanders.

LTC decomposes on sparse cuts. For an LTC, the constraint graph can have a sparse cut
(S, S̄) only if the LTC decomposes on this cut, i.e., if there are two codes C1, C2 such that every
word w ∈ C is very close in Hamming distance to a word w1(S)w2(S̄) where wi ∈ Ci and where
notation a(X)b(Y) means a string that equals a on coordinates in X and b on coordinates in Y .
The assertion is true essentially because if a “hybrid” w1(S)w2(S̄) were far from C, then it must
have been rejected with proportional probability. However, the only edges that can reject this word
must cross the sparse cut (S, S̄), and there are too few such edges. One then has to work some more
in order to prove that each Ci is approximately an LTC with the claimed parameters.

Decomposing a small-set expander into ‘standard’ expanders. A graph is a small-set
expander if every set S ⊂ V of size at most δn expands (i.e. has at least β · |S| outgoing edges).

1The constraint hypergraph can be described by a bipartite graph between vertices and constraints. The constraint
graph is simply the square of this bipartite graph.

2In fact, a random linear number of tests was proved to give a good tester by [GS06]

2

We prove that every small set expander G can be decomposed into at most 1/δ expanders. More
accurately, denoting E(S, T) the number of edges from S to T , we show

Theorem 1.2. Let R > 0 and let G = (V,E) be a graph in which for every set S ⊂ V of size at
most δn, E(S, S̄) ≥ R · |S|. Then for every τ ≤ R · (δ4)

1/δ/2 there is a partition V = V1 ∪ · · · ∪ Vt

into t ≤ 1/δ parts such that

1. (Each part is an expander:) The graph G(Vi) is a τ -expander for each i, (namely every set S
has at least τ |S| outgoing edges).

2. (Large parts:) |Vi| ≥ δn, where n = |V |.

3. (Few edges between parts:) E(Vi, V \ Vi) ≤ r′ · |Vi| for r′ = 2τ · (4δ)
1/δ.

Our theorem is proven by analyzing a (straightforward) recursive procedure that finds a sparsest
cut and decomposes according to it. Clearly this is not an efficient procedure, but we only care
about existence. Variants of this procedure have been analyzed previously (e.g., [KVV04, Tre05,
GMR+11]), but in a more algorithmic context. Our setting is slightly different in that it requires
decomposing a graph into expanders of linear size.

On the structure of general constraint satisfaction instances

Our work can be viewed within the context of a more general question of understanding the struc-
ture of CSPs, both through the structure of the constraint graph G and through the structure of
the set sat(G). One concrete question pertaining to the graph structure is the following:

For what graph structures is a CSP NP-hard to approximate?

Two ‘separate’ aspects of CSPs are their constraint type and their constraint graph. The type
is defined by which constraint functions we allow (i.e. whether it is a 3SAT instance or a 3LIN
instance, etc.). It is very well studied by now with dozens of papers on various types of constraints.
In fact, a long line of works culminating in e.g. [Rag08, AM08] yields a very nice classification of the
approximation behavior of different constraint types, under Khot’s unique games conjecture [Kho02].
In contrast, the relationship between the structure of CSP instances and their hardness is much less
studied.

Nevertheless, some works do exist. Arora et. al [AKK+08] prove that unique games are never
hard-to-approximate on expanders. This is certainly not the case for non-unique CSPs. In the
extreme, one can super-impose an expander with empty constraints on any constraint graph, thereby
transforming it into an expander, without changing the set of satisfying assignments. In fact our
intuition, which we prove for the case of LTCs, is that every NP-hard CSP has an underlying
expanding structure.

A related line of work studies the structure of the set sat(G) for random constraint graphs G.
This is a very active field, particularly for random k-sat. While random CSPs may not be NP-hard
to approximate, they are thought to be hard for example to refute. Feige [Fei02] proved interesting
hardness-of-approximation consequences based on a related hypothesis. In his work the expanding
structure of random instances plays an important role, and this demonstrates that understanding
the structure of NP-hard instances may lead to new hardness-of-approximation results.

3

2 Preliminaries

2.1 Expanders and Constraint (Hyper-)Graph

Let G = (V,E) be a graph. For a set S ⊂ V we denote its complement in the graph by S̄ = V \ S.
For vertex sets A,B ⊂ V we denote by E(A,B) the set of edges with one endpoint in A and the
other in B.

Definition 2.1 (Expander). A graph G = (V,E) is an expander with expansion parameter τ (or
τ -expander) if for every set S ⊂ V of at most half the vertices, E(S, S̄) ≥ τ |S|.

Definition 2.2 (Small-Set Expander). A graph G = (V,E) is a small-set expander with expansion
parameters τ, α (or (τ, α)-small-set expander) if for every set S ⊂ V , |S| ≤ α|V |, E(S, S̄) ≥ τ |S|.

Definition 2.3 (Large-Set Expander). A graph G = (V,E) is a large-set expander with expansion
parameters τ, γ (or (τ, γ)-large-set expander) if for every set S ⊂ V , γ|V | ≤ |S| ≤ 1

2 |V |, E(S, S̄) ≥
τ |S|.

Definition 2.4 (Constraint hyper-graph). A constraint hyper-graph is a hyper-graph G = (V,E)

where each hyper-edge e ∈ E is labeled by some function fe : {0, 1}|e| → {0, 1}, where fe depends on
all its coordinates and its image is not always 1 (i.e., fe does not represent a dummy constraint) . An
assignment to the constraint hyper-graph is a labeling of the vertices with 0/1 values, alternatively
viewed as a string of n bits. We define sat(G) to be the set of strings in {0, 1}|V | that, when viewed
as assignments, satisfy every constraint in G. We also define rej(w) to be the fraction of constraints
of G that reject an assignment w.

Definition 2.5 (Constraint Graph). Let G be some constraint hyper-graph. The constraint graph
of G, denoted G′, is the graph over the same vertex set of G, and such that u, v are connected by
an edge iff they are contained together in some hyper-edge of G.

We note that a constraint hypergraph can be described by a bipartite graph between vertices
and constraints. The constraint graph is simply the square of this bipartite graph, i.e. two vertices
are connected if there is a length two path between them in the bipartite graph.

2.2 Codes and Locally Testable Codes

A code is a set C ⊂ {0, 1}n. We define Hamming distance between x, y ∈ {0, 1}n to be the number
of coordinates on which they differ. The relative distance is the distance divided by n. The relative
distance of a set C ⊂ {0, 1}n is the smallest relative distance between a pair of distinct x, y ∈ C.
We say that x, y are δ-close if their relative distance is at most δ. Let w ∈ C ⊂ {0, 1}n and let
S ⊂ [n], then we denote by wS the restriction of w to the coordinates in S, and CS is the set of all
wS for all w ∈ C. For a partition of the coordinates [n] = S1 ∪ · · ·St we write CS1 × CS2 × · · ·CSt

to mean the set of all words w1(S1)w
2(S2) · · ·wt(St) where this notation denotes the string w that

equals wi on coordinates Si.

Definition 2.6 (Codes approximating each other). A code C is η-approximated by a code C ′ if for
every w ∈ C there is some w′ ∈ C that is η close to it. If C η-approximates C ′ and C ′ η-approximates
C then we denote C ′ ≈η C.

(In this case the code C can be seen as contained in a collection of η-balls around codewords of
C ′: C ⊂ ∪w′∈C′Bη(w

′).)

4

Definition 2.7 (Locally testable code (strong definition)). A code C ⊂ {0, 1}n together with a
constraint hyper-graph G = ([n], E) is a ρ-strong-LTC if C = sat(G) and if for every w ∈ {0, 1}n,

rej(w) ≥ ρ · dist(w,C).

Definition 2.8 (Locally testable code (weak definition)). A code C ⊂ {0, 1}n together with a
constraint hyper-graph G = ([n], E) is a (γ, ε)-LTC if C = sat(G) and if for every w ∈ {0, 1}n

dist(w,C) > γ =⇒ rej(w) > ε.

Definition 2.9 (Approximately locally testable code). If codes C,C ′ are such that C ′ ≈η C, and
C ′ is a strong/weak-LTC, then C is approximately-strong/weak-LTC.

For the rest of the paper, if C is an LTC with some constraint graph G, then G is the constraint
graph “associated” with C.

Definition 2.10 (Non-degenerate Code). Let C ⊂ {0, 1}n be a code. A set A ⊂ [n] of coordinates
is degenerate for the code, if every pair of words x, y ∈ CA have distance at most |A| /3. A code is
non-degenerate if it has no non-empty degenerate set of coordinates.

Intuitively, on any subset of the coordinates of a code, one can find codewords that differ in
many locations. For example, in a linear code (a code whose elements are a linear subspace of
{0, 1}n) we have,

Claim 2.11. If C is a linear code with no coordinate which is identically zero, and A is a degenerate
subset of coordinates, then for every w ∈ C, wA = 0. (proof omitted). �

In this extended abstract version we only deal with non-degenerate codes. (The more general
structure statements also split off the degenerate part of the code).

3 Proof of the Main Theorem

3.1 Decomposition Lemma

The following lemma is a key to our proof. Essentially it says that for each cut (S1, S2), either many
edges cross the cut, or else the LTC splits into two LTCs according to the cut.

Lemma 3.1 (Decomposition Lemma). Let C be a (γ, ε)-LTC with relative distance ∆. Let G =

(V,E) be the associated constraint graph, and denote by d = |E|
|V | the average degree of G. If for some

cut (S1, S2) with α := |S1|
|V | ≥ 3γ we have E(S1, S2) <

τd
α · |S1| for some τ ≤ ε, then

C ≈γ CS1 × CS2

and there are (2γ/α, ε− τ)-LTCs C ′
i ⊂ CSi, such that C ′

i ≈γ CSi, and the relative distance of C ′
i is

at least ∆−γ
α , and α ≥ ∆− γ. In particular, C ≈2γ C ′

1 × C ′
2.

One way to interpret the lemma is that if the LTC does not decompose on a cut (S, S̄), and if
|S| ≥ γn then the number of edges exiting S is at least ε |E| = εd

γ · |S| where d is the average degree.

Proof. We divide the proof into a few steps.

5

1. We first prove that
C ≈γ CS1 × CS2 .

Clearly C ⊆ CS1 × CS2 , so it remains to prove that for any (w1, w2) ∈ CS1 × CS2 there is a
nearby word in C. By definition, there are words w1, w2 ∈ C such that (wi)Si = wi. Since
no test rejects on w1 or w2, the only tests that can reject (w1, w2) are those crossing the cut
(S1, S2). By assumption there are fewer than τd

α |S1| = τ |E| ≤ ε |E| such edges. Since the
code is an (γ, ε)-LTC, the distance of (w1, w2) from C must be at most γ times n.

2. Let C ′
i be constructed from CSi greedily by repeating the following process: add a word

x ∈ CSi into C ′
i and remove from CSi the entire ball around x of radius up to γn. Denoting

ni = |Si|, and letting α = n1/n it is easy to see that C ′
i γ/α-approximates CSi , and that every

distinct pair of words in C ′
i are at least γ/α · n1 bits apart.

It follows from the previous argument that every word in C ′
1 × C ′

2 is γ-close to a word in C.
To see that every word in w ∈ C is approximated by some w1w2 just note that each wSi is at
most γn away from some word in C ′

i so we get a 2γn approximation,

C ≈2γ C ′
1 × C ′

2.

3. We proceed to argue about the distance of C ′
i. Since C is non-degenerate3, C ′

1 must have
at least two distinct words a, a′ ∈ C ′

1 (since n1 := |S1| ≥ 3γn there must be two words a, a′

that differ on more than n1/3 coordinates). Let b be such that w = ab ∈ C (such b exists by
construction of C ′

1). Let w′ be the closest word in C to a′b. We claim that w ̸= w′. Otherwise,
dist(a′b, C) = dist(a′b, w) = dist(a′, a) ≥ γn but then the LTC condition implies that at least
ε |E| edges should reject a′b. These can only be edges crossing the (S1, S2)-but there are too
few of those. Using w ̸= w′ and the triangle inequality we deduce

dist(a, a′) = dist(ab, a′b) ≥ dist(w,w′)− γn ≥ (∆− γ)n =
∆− γ

α
n1

which means that the relative distance of the code C ′
1 is at least ∆−γ

α . It also means that
n1 ≥ (∆− γ)n.

4. Next, we prove that C ′
i is an (2γ/α, ε − τ)-LTC. Let w be a word whose distance from C ′

i

is at least 2γ/α · n1 = 2γn bits. Then by construction its distance from CSi is at least γn
bits. Thus, the best possible continuation w̃ of w to a codeword in C is still at least γn away,
and must be rejected by at least ε |E| edges. All of these edges must touch the set Si, but
some can go from Si out of Si. Since there are relatively few cut edges, this leaves at least
(ε− τ) |E| edges that must reject w.

�

3.2 Proof of the Main Theorem for strong LTCs

In this section we state and prove the main theorem, Theorem 1.1, that applies for strong LTCs.

Theorem 1.1 (Main Theorem). Let C ⊂ {0, 1}n be an ρ-strong LTC with relative distance ∆.
Let G = (V,E) be the constraint graph of C whose average degree is d = |E|/|V |. Then G is
a (dρ3 ,

3∆
4)-small-set expander, i.e., all sets S ⊂ V , |S| ≤ 3∆n

4 have E(S, S̄) ≥ dρ
3 |S|. V can be

decomposed into t ≤ 2
∆ parts V = S1 ∪ · · · ∪ St, where each |Si| ≥ 3∆n

4 such that for any γ < ∆/8

and β < dργ
3∆ · (3∆/16)4/3∆:

3See Definition 2.10 and recall that in this preliminary version we assume all codes are non-degenerate.

6

• Graph: The graph induced on each Si is a β-expander, and E(Si, V/Si) ≤ 2β(16/3∆)4/3∆|Si|.

• Code: C ≈tγ C ′
1 × · · · × C ′

t, where C ′
i ⊂ CSi has distance ∆ − γ, C ′

i ≈γ CSi, and C ′
i is a

(8γ
3∆ , ργ2)-LTC.

Proof. The proof has three steps.

1. We first prove that G must be a small set expander: Every set S of size up to 3∆n
4 has at least

R · |S| outgoing edges (where d = |E|
|V | is the average degree), for R = dρ

3 .

Any ρ-strong LTC is also a (γ, ργ)-LTC for every γ > 0. Let (S, S̄) be a cut and let 3γ =
|S| / |V | ≤ 1/2. We will prove that if E(S, S̄) < dρ

3 |S|, then γ ≥ ∆
4 . The fraction of edges

leaving S out of the total number |E| of edges is less than ρd|S|
3|E| = ργ. We can invoke Lemma 3.1

and get 3γ = |S|
|V | ≥ ∆− γ. In other words γ ≥ ∆

4 as claimed, and thus |S| ≥ 3∆n
4 .

2. We invoke the small set expander decomposition, Theorem 1.2, with parameter δ = 3∆
4 and

β < R · (δ/4)1/δ/2 = dρ
3 · (δ/4)1/δ/2 to be chosen below, to get a partition of the vertices into

S1 ∪ · · · ∪ St such that t ≤ 4
3∆ , and

(a) G(Si) is a β-expander for each i.

(b) E(Si, V \ Si) ≤ 2β(4/δ)1/δ · |Si| for each i.

(c) |Si| ≥ 3∆
4 |V |.

3. We can now view C as a (γ, ργ)-LTC with distance ∆, for some γ ≤ ∆/8. We want to apply
Lemma 3.1 on the cut (Si, V \ Si) in the associated structure graph. This cut has at most
r′ = 2β(4/δ)1/δ times |Si| edges. Set τ arbitrarily to ργ/2, and observe that as long as r′ is
smaller than ργ/2 · d/α ≤ 2ργd

3∆ , we get that CSi is γ-approximated by C ′
i and that C ′

i is an
(2γ/α, ργ/2)-LTC (i.e., (8γ

3∆ , ργ2)-LTC) with distance ∆− γ. The choice of γ is still somewhat
flexible as long as γ < ∆/8. The smaller we make γ, the smaller must β be, which is a weaker
expansion guarantee on each G(Si).

�

It would be nice to improve this theorem so as to get sub-codes in the decomposition that are
strong rather than weak LTCs.

3.3 Proof of a variation to the Main Theorem for weak LTCs

In this section we show that Theorem 1.1 holds with some variations also for weak LTCs. See
Theorem 3.2 below for exact formulation. For weak LTCs we can not claim that the constraint
graph is a small set expander. However, the graph can be decomposed into constant many parts
such that each G(Si) is an expander in an analogous ‘weak’ sense: only sets whose size is above
γn are guaranteed to expand. Moreover, the codes induced on these parts are again approximately
LTCs.

Theorem 3.2. Let C ⊂ {0, 1}n be an (γ, ε)-LTC with relative distance ∆. Let G = (V,E) be the
constraint graph of C whose average degree is d = |E|/|V |. Then V can be decomposed into t ≤ 2

∆

parts V = S1 ∪ · · · ∪ St, where each |Si| ≥ ∆n
2 such that for any γ < ∆2

8 · 2−2/∆ and 0 < τ < ϵ∆/2:

7

• Graph: The graph induced on each Si is a large-set-expander, i.e., every S ⊂ Si, 3γ′|Si| ≤
|S| ≤ 1

2 |Si| has E(S, Si \ S) ≥ τdi/3γ
′|S|, where γ′ = 2·22/∆γ

∆ and di is the average degree of
G(Si). Moreover, for every i, E(Si, V \ Si) ≤ tτ |E|.

• Code: C ≈tγ C ′
1 × · · · × C ′

t, where C ′
i ⊂ CSi has distance at least ∆/2, C ′

i ≈γ CSi, and C ′
i is

a (2γ22/∆/∆, ϵ− tτ)-LTC.

Proof. We repeatedly apply the main lemma to C. In the first step, either the graph has no large
‘sparse’ cut (S1, S2), which means that it is a (τd/3γ, 3γ)-large set expander: every set S1 of size
at least 3γn must have at least (τd/3γ) · |S1| outgoing edges. Else, the graph has a cut (S1, S2)
on which it decomposes, and we consider separately the LTCs C ′

1 and C ′
2 and their associated

graphs G(S1) and G(S2), and try to find large sparse cuts on which to decompose, or else we
declare that they are large-set expanders. Let Tj be a set that resulted from j decomposing steps,
Tj ⊂ Tj−1 ⊂ · · · ⊂ T1 ⊂ T0 = V . Let us compute, by induction, the parameters of the graph G(Tj)
and the code C ′

j associated with this graph. Denoting by αj = |Tj | / |Tj−1|,

1. C ′
j is a (γj , ε− jτ)-LTC where γj ≤ 2j

α1·α2···αj
γ = 2j |T0|

|Tj | ≤ 2·22/∆
∆ γ (since j ≤ 2

∆ and |Tj |
|T0| ≤

∆
2).

In addition, C ′
j ≈γj CTj .

2. The distance of C ′
j is at least (∆−(γ1+γ2+ · · ·+γj)) ·n ≥ (∆−2γj)n ≥ (∆−22·22/∆

∆ γ)n ≥ ∆n
2

(since γ < ∆2

8 · 2−2/∆).

3. Either in G(Tj) every set of size at least 3γj |Tj | expands by τdj/3γj or else we will split Tj

in a future step.

4. E(Tj , V \ Tj) ≤ jτ |E|.

5. |Tj | ≥ (∆− (γ1 + γ2 + · · ·+ γj)) · n ≥ ∆n
2 .

Clearly for j = 1 the parameters above simply follow from the main lemma. Assuming correctness
for j − 1, it remains to plug in one more invocation of the main lemma, to obtain these values. It
remains to see that if γ is such that γ < ∆2

8 ·2−2/∆, then the number t of distinct sets Si is t ≤ 2/∆.
This holds since after 2/∆ steps, there are at least 2/∆ sets Si’s each (by the selection of γ) is of
size at least ∆n/2, so there cannot be any more steps. �

4 Decomposing Small Set Expanders

In this section we prove that if a graph is a small set expander, i.e., every set of size at most δn
expands, then there is a way to decompose the graph by partitioning the vertices into at most 1/δ
sets, such that there are few edges between the parts, and each part is an expander in the usual
sense.

We remark that similar decompositions have been analyzed previously (e.g., [KVV04, Tre05,
GMR+11]), but we require a decomposition that is guaranteed to have a constant number of parts.

Theorem 1.2. Let R > 0 and let G = (V,E) be a graph in which for every set S ⊂ V of size at
most δn, E(S, S̄) ≥ R · |S|. Then for every τ ≤ R · (δ4)

1/δ/2 there is a partition V = V1 ∪ · · · ∪ Vt

into t ≤ 1/δ parts such that

1. (Each part is an expander:) The graph G(Vi) is a τ -expander for each i, (namely every set S
has at least τ |S| outgoing edges).

8

2. (Large parts:) |Vi| ≥ δn, where n = |V |.

3. (Few edges between parts:) E(Vi, V \ Vi) ≤ r′ · |Vi| for r′ = 2τ · (4δ)
1/δ.

Our approach is straightforward, we begin with G and iteratively partition it according to a
small cut. At every step we take a part that’s not yet an expander and split it again. However, to
make this work it seems much more convenient to split on the so-called ‘sparsest’ cut, motivating
the following definition.

Definition 4.1. A cut (A,B) in a graph G is a partition of the vertices into two sets A,B. The
cut has sparsity r if r(A,B) := |E(A,B)|

|A||B| ≤ r.

Note that the sparsity of the cut is roughly equal to n times the expansion of the cut (defined

as |E(S,S̄)|
min(|S|,|S̄|) , since, letting |S| ≤

∣∣S̄∣∣,
n

2
· r(S, S̄) ≤ E(S, S̄)

|S|
=

∣∣S̄∣∣ · r(S, S̄) ≤ n · r(S, S̄).

The non-trivial part in our proof is to show that the number of components in the decomposition
is bounded independently of n. We show that iterative process never splits a set into parts smaller
than δn, which means it ends after ≤ 1/δ steps. Suppose that at step i the process splits a subset
S into A and B = S \A. There is no a priori guarantee that |A| ≥ δn, since the cut between A and
V \A is not necessarily sparse. The next lemma allows us to prove inductively that this does hold.
It is probably known or folklore but we weren’t able to find a reference.

Lemma 4.2. Let G = (V,E) be a graph, let (S, S̄) be a sparsest cut of sparsity r = r(S, S̄), and
assume that δ ≤ |S|

|V | ≤ 1− δ. Consider G′ = G(S̄) and let A,B be a cut in G′, of sparsity r′. Then

rA :=
|E(A, V \A)|
|A| |V \A|

≤ 2(r + r′)/δ

We defer the proof of the lemma and proceed to prove the theorem.

Proof. (of Theorem 1.2) We perform an iterative process of refining partitions of the vertices. Let
τ∗ = τ · 2

n . At each step the process takes a set S from the current partition finds a τ∗-cut in G(S)
and splits S according to this cut. The process terminates when for every set in the partition G(Si)
has no τ∗-sparse cut. This implies that G(Si) is a τ -expander, since

∀T ⊂ Si, |T | ≤ |Si| /2, E(T, Si \ T) ≥ τ∗ |T | |Si \ T | ≥ τ∗
n

2
|T | = τ |T | .

This process has a tree-like structure, with the set V at the root, and where at each step a leaf
S is either already a τ -expander, or is split into A,B, which become its two offspring in the tree.
We prove by induction that each new set generated by the process has few edges going out of it to
the rest of the graph. More accurately,

Claim 4.3. Let V ′ be a set generated by the process at a certain step, such that its depth in
the tree is i, then i ≤ 1/δ and any partition (A,B) of V ′ such that r(A,B) ≤ r∗ implies that
r(A, V \A) ≤ (4/δ)i ·max(τ∗, r∗).

9

Proof. (of claim) Let V ′ = V1, V2, . . . , Vi+1 = root be the path from V ′ to the root. We prove this
claim by induction on the depth i. For i = 0 there is nothing to prove. Assume that the claim holds
for i− 1. We first prove that all sets S sitting in the tree at depth at most i have size at least δn.
Indeed we apply the inductive hypothesis on the parent of S (whose depth is i− 1) to deduce

r(S, V \ S) ≤ τ∗ · (4/δ)i−1 ≤ τ∗ · (4/δ)1/δ,

where τ∗ is a bound on the sparsity of the cut between S and P \ S where P is the parent of S.
This implies

E(S, V \ S) ≤ |S| |V \ S|
n

2τ(4/δ)1/δ ≤ min(|S| , |V \ S|) · 2τ(4/δ)1/δ ≤ R ·min(|S| , |V \ S|)

yet this contradicts the small set expansion property unless min(|S| , |V \ S|) ≥ δn.
We now invoke Lemma 4.2 on the graph G = G(V2), setting S̄ = V1, S = V2 \ V1, and A,B are

a partition of V1. Note that the cut between S, S̄ is indeed a sparsest cut, and that both |S| and∣∣S̄∣∣ have size at least δn. We deduce that

r(A, V2 \A) ≤
2

δ
·max(r∗, τ∗).

We now apply the inductive hypothesis with V ′ = V2, whose depth is i − 1, and on the partition
(A, V2 \A) to deduce that

r(A, V \A) ≤ (4/δ)i−1 ·max(τ∗, 4/δmax(τ∗, r∗)) ≤ (4/δ)imax(τ∗, r∗).

�

This completes the entire proof since by applying the claim on each set S in the process (with
r∗ = τ∗) we have that the sparsity of the cut defined by this set is at most (4/δ)1/δ · τ∗ which means
that the number of edges going out of S is at most 2τ(4/δ)1/δ ·min(|S| , |V \ S|). �

We now turn to prove Lemma 4.2.

Proof. (of Lemma 4.2) The (natural) idea is to prove that if A has too many edges outgoing into
S then the cut (S ∪A,B) would be sparser than the cut (S,A ∪B), thereby contradicting it being
sparsest.

Note first that it is enough to bound r(A,S) appropriately since

rA =
|E(A,B)|+ |E(A,S)|

|A| |B ∪ S|
≤ |E(A,B)|

|A| |B|
+

|E(A,S)|
|A| |S|

= r′ + r(A,S).

We have S̄ = A ∪ B and so
∣∣E(S̄, S)

∣∣ = |E(A,S)| + |E(B,S)|. Dividing by |S| (|A| + |B|), it
follows that

r =
|A|

|A|+ |B|
· |E(A,S)|
|A| · |S|

+
|B|

|A|+ |B|
· |E(B,S)|
|B| · |S|

,

so r is the weighted average of the cuts between S and B and between S and A:

r =
|A|

|A|+ |B|
· r(A,S) + |B|

|A|+ |B|
· r(B,S). (1)

10

Since the case r(A,S) ≤ r is done above we can safely assume that r(A,S) > r which means,
because of (1), that r(B,S) < r.

Next, note that if |A| / |A ∪B| ≥ δ we are done, since

r(A,S) =
|E(A,S)|
|A| |S|

≤ |E(A,S)|+ |E(B,S)|
|A ∪B| |S|

· |A ∪B|
|A|

= r(A ∪B,S) · |A ∪B|
|A|

≤ r′/δ.

So from now on we assume that |A| / |A ∪B| < δ. Now, since the cut (S,A ∪ B) is a sparsest
cut, we have

|E(S,A ∪B)|
|S| (|A|+ |B|)

= r(S,A ∪B) ≤ r(S ∪A,B) =
|E(S ∪A,B)|
(|S|+ |A|) |B|

(2)

Let eAB denote the number of edges between A and B. Similarly define eAS , eBS . Multiplying the
above by |S| (|A|+ |B|) we get

eAS ≤ eAB · |S| (|A|+ |B|)
(|S|+ |A|) |B|

+ eBS · (|S| (|A|+ |B|)
(|S|+ |A|) |B|

− 1) (3)

To end the proof we will bound the factors multiplying eBS and eAB,

1. |S|(|A|+|B|)
(|S|+|A|)|B| − 1 = |A|(|S|−|B|)

|B|(|S|+|A|) ≤
|A|
|B|

2. |S|(|A|+|B|)
(|S|+|A|)|B| ≤

|S|
|B| ·

1
δ .

Finally, dividing both sides of (3) by |A| |S| we get the required bound on r(A,S):

r(A,S) ≤ 1

δ
· r(A,B) + r(B,S) ≤ r′/δ + r.

�

5 Acknowledgement

We thank Oded Goldreich for many things.

References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. In Proc. 51st IEEE Symp. on Foundations of Computer
Science, pages 563–572, 2010.

[AKK+08] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended
abstract. In Proc. 40th ACM Symp. on Theory of Computing, pages 21–28, 2008.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
intractability of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[AM08] P. Austrin and E. Mossel. Approximation resistant predicates from pairwise indepen-
dence. In 23rd Annual IEEE Conference on Computational Complexity, pages 249–258.
IEEE Computer Society, 2008.

11

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embed-
dings and graph partitioning. J. ACM, 56(2), 2009.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006. In special issue on Randomness and Computation.

[BSHR05] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties
are hard to test. SIAM J. Comput., 35(1):1–21, 2005.

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity.
In IEEE Conference on Computational Complexity, page 5, 2002.

[GKS09] Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Succinct representation of codes
with applications to testing. In RANDOM-APPROX, pages 534–547, 2009.

[GMR+11] Venkatesan Guruswami, Yury Makarychev, Prasad Raghavendra, David Steurer, and
Yuan Zhou. Finding almost-perfect graph bisections. In ICS, pages 321–337, 2011.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear
length. J. of the ACM, 53(4):558–655, 2006.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pages 767–775. ACM
Press, 2002.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In
Proc. 40th ACM Symp. on Theory of Computing, pages 403–412, 2008.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497–515, 2004.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp?
In Proc. 40th ACM Symp. on Theory of Computing, pages 245–254, 2008.

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the unique games con-
jecture. In Proc. 42nd ACM Symp. on Theory of Computing, 2010.

[Tre05] Luca Trevisan. Approximation algorithms for unique games. In Proc. 46th IEEE Symp.
on Foundations of Computer Science, pages 197–205, 2005.

12

