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How easy is it to check a proof?
A motivating story

Common wisdom: to check a proof you need to read it
Why bother? instead-

Ask for the proof to be supplied in PCP format
Check randomly by reading only 3 bits.
Probability of error, i.e. of accepting a bad proof, is at most 1/2.
(For error probability 2−k , read 3k bits).

“The PCP Theorem”
There is such a format.

caveat: applies only for Mathematical Proofs
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Theorems and Proofs, Problems and Solutions

What is a mathematical proof?
– Anything that can be verified by a rigorous procedure, i.e., an

algorithm

More generally,
a theorem = a problem,
a proof = a solution

The difference between a theorem and its proof, is how long it
takes to verify it’s correctness
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Computational problems - examples
Linear Equations LINEQ

Linear Equations
Input: A system of linear equations (over a finite field) :

x1 + x2 + x3 = 0,
x1 + x6 − x2 + x90 = 1

...

Algorithmic goal: Decide if there is a solution to all of the equations
Complexity: easy, by Gaussian elimination

But, “overdetermined” version is hard...

Note:
Algorithm’s efficiency is measured as a function of the input
length. Polynomial = good, Exponential = bad.
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Computational problems - examples
Graph 3 Colorability (3COL)

3-Coloring a graph

Input: A graph G = (V ,E)
Algorithmic goal: Decide if there is a 3-coloring, i.e., a mapping

c : V → {1,2,3} such that every edge has differently colored
endpoints

Complexity: hard to solve, but easy to check proof
Proof: A 3-coloring.

Definition (Computational Problem)
We identify a computational problem with the set of all ‘yes’ inputs.
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P, NP, and all that

P = (polynomial time)
P is the class of efficiently decidable problems
e.g. linear equations
NP = (non-deterministically polynomial time)
NP is the class of problems with efficiently checkable solutions
e.g. 3-coloring, max-clique, ...
P 6= NP: $1 Million Question: is discovering a proof as easy as
checking it ?
3-coloring is “the hardest problem in NP” (aka NP-hard)

Theorem
If 3-coloring is in P then P = NP.

To understand NP, enough to study the 3-coloring problem.
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Part II - The PCP Theorem

Arora-Safra,

Arora-Lund-Motwani-Sudan-Szegedy

1991



The PCP Theorem

The NP verifier (Definition)
Every problem A ∈ NP has an efficient verifier V , that reads

the input string τ and some randomness
a constant number of bits from the proof string π

and then accepts or rejects, such that
Completeness: If τ ∈ A then there is a proof that V accepts with
probability 1.
Soundness: If τ 6∈ A then for every π V rejects.

The “error probability” can be reduced to (1
2)

k by k repetitions.
Striking!
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The PCP Theorem for 3-Coloring

The “natural” 3-Coloring verifier reads
the coloring

c(v1) = 1, c(v2) = 2, . . .

and then checks edge-by-edge that
endpoints have different colors.

What will the PCP verifier look like?
Naive attempt: Choose a random edge, read the colors of its
endpoints, and accept if true
Fails! – a non 3-colorable graph may have a 3 coloring with as few
as only one monochromatic edge.
Instead: encode the “standard” proof into a “PCP” proof,
spreading out the bugs.
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The PCP Theorem - blind-folded jam spreading
[B. Chazelle]
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The PCP Theorem & Inapproximability

What is this good for? refereeing?

[Feige-Goldwasser-Lovász-Safra-Szegedy, 1990]
“The PCP theorem stands at the heart of virtually all
approximation lower bounds”

Beautiful connections to robustness questions and inverse
theorems in Combinatorics, Algebra, Analysis, ...
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Approximation Problems

Throughout 70’s-80’s: many problems discovered to be NP-hard
Natural to seek approximate solutions. (Almost no known lower
bounds)

Optimization
1 Max-LIN: satisfy the largest

number of equations.
2 Max-3COL: color the

vertices with 3 colors,
maximizing number of
two-colored edges.

Both these problems are
NP-hard (yes, even Max-LIN!)

Approximation
1 satisfy at least
≥ α ·OPT equations

2 satisfy at least
≥ α ·OPT edge
contraints

Complexity: depends on the
problem, and on α
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Hardness of Approximation

Claim:
If there is an efficient algorithm that maps a graph G to a graph G′

such that:
Yes: If OPT (G) = 1, then OPT (G′) = 1
No: If OPT (G) < 1, then OPT (G′) < 0.99

Then, Max-3COL is NP-hard to 0.99-approximate.

This is a “gap amplifying reduction”:
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PCP & Inapproximability

The PCP Theorem (1) – original formulation
There is an efficient verifier for 3-coloring that reads: the input G,
randomness r , and then a constant number of bits from the proof, such that

Yes: If G is 3-colorable, then Prr [V accepts] = 1
No: If G is not 3-colorable, then Prr [V accepts] ≤ 1

2 .

The PCP Theorem (2) – second formulation
There is an efficient algorithm that maps graphs G to graphs G′ such that:

Yes: If OPT (G) = 1, then OPT (G′) = 1
No: If OPT (G) < 1, then OPT (G′) ≤ 0.99

To prove (2) =⇒ (1) we present a PCP verifier for 3-coloring:
1 Read the input G, compute G′.
2 “proof” = coloring of G′’s vertices. Check on 20 random edges.

(1) =⇒ (2) : exercise.
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Tightness of Inapproximability

For example, Max-3LIN:
1 NP-hard to 1-approximate, i.e. to solve exactly
2 Easy to 1

2 -approximate, e.g. by a random assignment
3 What about α-approximation for 1

2 ≤ α < 1 ?

Interesting to study boundary between hard and easy ends,
possibly pinpoint the point of transition?

Theorem (Håstad ’97)
Given a 3LIN instance that is 1− o(1) satisfiable, it is NP-hard to find
an assignment satisfying 1/2 + o(1) of the clauses.
“Can’t beat the random assignment”

Very active field, connections to robustness questions in various
math areas
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Robust Systems

A system is robust (or stable) if every approximate solution is close to
a perfect solution.

Example (System of Equations)

x3
1 x2 + 7x3 = 2,

x1x2x3 = 1
...

1 approximate solution: satisfies 1− ε
of the equations.

2 close to: agrees on 1− δ of the
coordinates

Two different measures: (1) equation-based, (2) solution-based.
Non-trivial: A small perturbation of a perfect solution is an
approximate solution. Here, every approximate solution is a
perturbation of a perfect solution.
Many other examples: clique, 3sat, cuts in graphs
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Robustness Questions and Inverse Theorems

Robustness is a “desirable” property of systems, and natural to study.

1 Additive combinatorics: approximate fields and groups
If a set is somewhat linear it must be close to a field / group
[Freiman, Erdös-Szemeredy,. . . ]

2 Discrete Fourier analysis & geometry: approximate dictatorships
If a function f : {0,1}n → R is somewhat noise-stable then it must
depend on few coordinates [Mossel-O’Donnell-Oleszkiewicz
extension of CLT]

3 Extremal set systems: approximate Erdös-Ko-Rado theorems;
approximate cliques in certain graphs
If a clique is somewhat large it must be close to a maximum clique

4 ...
5 The PCP Theorem If a PCP proof is somewhat correct it must

be close to perfectly correct proof
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Part III

(Flavors of)

the Proof of the PCP Theorem



Proving the PCP theorem

Goal: find an efficient algorithm that maps graphs G to graphs H
such that:

Yes: If OPT (G) = 1, then OPT (H) = 1
No: If OPT (G) < 1, then OPT (H) ≤ 0.99

(let jam(G) := 1−OPT (G))

There are two different approaches.
1 The original “algebraic” proof [Arora-Safra,

Arora-Lund-Motwani-Sudan-Szegedy, 1991]
Technique: H encodes G via low degree polynomials over finite
fields

2 The “combinatorial” proof [Dinur, 2006]
Technique: gradual gap amplification using graph structure
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Proof Idea

The idea is to proceed in many small steps:

G =⇒ G1 =⇒ G2 =⇒ · · · =⇒ Gk =: H

such that the “jam” value gets amplified, unless it was zero.
(pictorially, the “jam” is spread little by little)

The basic step
We show a mapping G =⇒ G′ for which

Yes: If jam(G) = 0, then jam(G′) = 0
No: If jam(G) > 0, then jam(G′) ≥ 2 · jam(G) (unless large

already)

Irit Dinur (Weizmann) PCPs September 14, 2010 21 / 25



Proof Idea

The idea is to proceed in many small steps:

G =⇒ G1 =⇒ G2 =⇒ · · · =⇒ Gk =: H

such that the “jam” value gets amplified, unless it was zero.
(pictorially, the “jam” is spread little by little)

The basic step
We show a mapping G =⇒ G′ for which

Yes: If jam(G) = 0, then jam(G′) = 0
No: If jam(G) > 0, then jam(G′) ≥ 2 · jam(G) (unless large

already)

Irit Dinur (Weizmann) PCPs September 14, 2010 21 / 25



Proof Idea

The idea is to proceed in many small steps:

G =⇒ G1 =⇒ G2 =⇒ · · · =⇒ Gk =: H

such that the “jam” value gets amplified, unless it was zero.
(pictorially, the “jam” is spread little by little)

The basic step
We show a mapping G =⇒ G′ for which

Yes: If jam(G) = 0, then jam(G′) = 0
No: If jam(G) > 0, then jam(G′) ≥ 2 · jam(G) (unless large

already)

Irit Dinur (Weizmann) PCPs September 14, 2010 21 / 25



The basic step G =⇒ G′

The mapping consists of two sub-steps G 1→ Ĝ 2→ G′:
1 Gather: Each vertex gathers the colors of its neighbors. Encoded

by new color of vertex. Ĝ-edges are length-3 paths in G, each
tests for inconsistencies.

2 Disperse: This step splits each vertex into several vertices, and
replaces the “tests” by regular edges, yielding a 3-coloring
instance. Robustly.
How? by recursion: using a weaker PCP theorem!
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Wrapping up the proof

A “gathering” step increases the jam value, but looses the
3-coloring structure.
A “dispersing” step regains the 3-coloring structure using a
“gadget” (i.e. local replacement)
Each pair of steps spreads the jam value a bit further (each vertex
v is aware of vertices at growing distances)
While each step is “local”, the in the final outcome every vertex
has been affected by the entire graph.
...and the bug, if existed, has been properly spread around.
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Summary

Proofs can come in a robust form, which allows randomized local
checking

Hardness of approximation

Robustness questions
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Thank You!
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