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Abstract. NP is the complexity class of problems for which it is easy to check that
a solution is correct. In contrast, finding solutions to certain NP problems is widely
believed to be hard. The canonical example is the sat problem: given a Boolean for-
mula, it is notoriously difficult to come up with a satisfying assignment, whereas given a
proposed assignment it is trivial to plug in the values and verify its correctness. Such an
assignment is an “NP-proof” for the satisfiability of the formula.

Although the verification is simple, it is not local, i.e., a verifier must typically read
(almost) the entire proof in order to reach the right decision. In contrast, the landmark
PCP theorem [4, 3] says that proofs can be encoded into a special “PCP” format, that
allows speedy verification. In the new format it is guaranteed that a PCP proof of a false
statement will have many many errors. Thus such proofs can be verified by a randomized
procedure that is local: it reads only a constant (!) number of bits from the proof and
with high probability detects an error if one exists.

How are these PCP encodings constructed? First, we describe the related and pos-
sibly cleaner problem of constructing locally testable codes. These are essentially error
correcting codes that are testable by a randomized local algorithm. We point out some
connections between local testing and questions about stability of various mathematical
systems. We then sketch two known ways of constructing PCPs.
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1. Introduction

In this paper we discuss the computational complexity class NP and a robust
characterization of this class through Probabilistically Checkable Proofs (PCPs).
We describe the

NP is the complexity class of problems for which it is easy to check that a so-
lution is correct. In contrast, finding solutions to NP problems is widely believed
to be hard. Consider for example the problem 3-sat1. Given a 3-CNF Boolean
formula, it is notoriously difficult to come up with a satisfying assignment, whereas
given a proposed assignment it is trivial to plug in the values and verify its correct-
ness. Such an assignment is an “NP-proof” for the satisfiability of the formula.
Indeed, an alternative way to define NP is as the class of all sets L ⊂ {0, 1}∗ that
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have efficient proof systems: proof systems in which there is a polynomial-time
algorithm that verifies correctness of the statement x ∈ L with assistance of a
proof. This significantly generalizes systems such as Frege’s propositional calculus
in which a proof system is defined by a set of axioms and inference rules, and a
valid proof consists of a sequence of steps that are either axioms or inferred from
previous steps through an inference rule.

Intuitively, a proof is very sensitive to error. A false theorem can be “proven”
by a proof that consists of only one erroneous step. Similarly, a 3-sat formula
ϕ can be unsatisfiable, yet have an assignment that satisfies all clauses save one.
In these cases, the verifier must check every single proof step / clause in order to
make sure that the proof is correct.

Probabilistically Checkable Proofs. In contrast, the PCP theorem gives each
set in NP an alternative proof system, in which proofs are robust. In this system a
proof for a false statement is guaranteed to have so many errors that a verifier can
randomly read only a few bits from the proof and decide, with high probability of
success, whether the proof is valid or not.

More formally, a PCP verifier for a set L ∈ NP is an extension of the standard

NP verifier. Whereas the standard verifier is given an input x
?
∈ L and access to

a proof π and is required to accept or reject, the PCP verifier is also allowed to
read some r random bits. However, it is restricted to read only at most q bits
from the proof. The class PCP [r, q] is defined to contain all languages L for which
there is a verifier V that uses O(r) random bits, reads O(q) bits from the proof,
and guarantees the following. Let V π(x, ρ) denote the output of V on input x,
randomness ρ, and proof π.

• (Completeness:) If x ∈ L then there is a proof π such that

Pr
ρ

[V π(x, ρ) accepts] = 1.

• (Soundness:) If x 6∈ L then for any proof π,

Pr
ρ

[V π(x, ρ) accepts] ≤ 1
2
.

The PCP theorem says that every L ∈ NP has a verifier that uses at most
O(log n) random bits and reads only O(1) bits from the proof. In other words,

Theorem 1.1 (PCP Theorem, [4, 3]). NP ⊆ PCP[log n, 1].

Consider, as an example, the PCP verifier for 3-sat. Given an instance, i.e.
a 3-CNF Boolean formula ϕ, the PCP verifier reads ϕ, but is only allowed access
to a constant q number of bits from a proof string π. What should be written in
these bits? This clearly cannot be the “obvious” proof which is just an assignment
to the variables of ϕ. Such a proof will miserably fail the soundness condition: un-
satisfiable formulae that can be almost satisfied will fool the verifier into accepting
with too high a probability.
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Locally Testable Codes. The fact that in a PCP proof system, a proof for
a false statement is guaranteed to have many errors begs the analogy to error
correcting codes. An error correcting code is a mapping C : {0, 1}k → {0, 1}n

in which even a tiny distance between two message strings x 6= y ∈ {0, 1}k is
guaranteed to become huge: the encoded strings C(x), C(y) will differ on at least
(say) 20% of their bits. In this analogy, it is the number of erroneous steps in a
proof that needs to be greatly amplified.

Can a PCP proof be constructed simply by encoding the standard NP proof?
This seems like a promising path to follow since error correcting codes are easy to
come by. In fact, the answer is yes, but with a caveat. A simple error correcting
code will certainly not do the trick . The encoding must be much more subtle, and
the main additional ingredient that is needed is local testability. Local testability
is the ability to decide if a string is a valid codeword by looking at a (randomly
selected) small part of it. This leads us to the definition of locally testable codes
(LTCs) whose construction is the combinatorial heart of constructing PCPs. LTCs
are a clean mathematical analog of PCPs whose definition is direct and requires
no mention of computation. We will discuss testability and LTCs in Section 4.

Stability. Local testability is related to the notion of stability of mathematical
systems. Generally speaking, a system of constraints (e.g. equations) is considered
stable if small perturbations of the system result in small perturbations of the
solution set. In such systems the only way to approximately satisfy the system is
by taking a valid solution and perturbing it. In other words, approximate solutions
are always perturbations of exact solutions.

In the discrete setting, when the constraints are, for example, Boolean, a system
of constraints is stable if any approximate solution, i.e. one that satisfies many of
the constraints, must be close to a perfect solution, i.e. one that satisfies the entire
system. This notion naturally appears in various other mathematical contexts, and
there are interesting connections between results on PCPs and stability results
in areas such as discrete Fourier analysis, geometry, probability, and arithmetic
combinatorics.

Stability and hardness of approximation. The PCP machinery allows one
to transform any system (that belongs to NP) into a stable system. The transfor-
mation can be done efficiently, even if solving the system is infeasible. For example,
the following is equivalent to the PCP theorem:

Theorem 1.2 (Informal Statement). There is an efficiently computable trans-
formation rpcp that on input a 3-CNF formula ϕ generates a 3-CNF formula
ϕ′ = rpcp(ϕ) such that the set s(ϕ′) = {x |x satisfies ϕ′ } is stable (i.e., when-
ever x′ satisfies many of the clauses of ϕ′ it must be close to some x ∈ s(ϕ′)).

Feige et. al. [16] were the first to discover the equivalence of this theorem
and Theorem 1.1, and this has had far reaching implications for the complexity of
approximation problems. We will discuss this further in Section 3.2.
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Let us point out that Theorem 1.2 implies that if P 6= NP there is no algorithm
that inputs a 3-CNF formula and approximates the maximal number of satisfiable
clauses to within increasingly better precision. The reason is that by applying such
an algorithm on rpcp(ϕ) one can determine if ϕ is satisfiable or not, thus solving
an NP-complete problem.

In other words, we have just established the hardness of finding, even approxi-
mately, the maximal number of satisfiable clauses in a 3-sat formula.

Gap amplification. The key to constructing PCPs is a transformation that am-
plifies errors in a proof, had there been any in the first place. The original proof
and formulation of the PCP theorem stemmed out of research on proof verifica-
tion. The techniques used in the proof are largely based on algebraic encodings
and testing results that are generally called “low degree tests”. More recently, a
combinatorial proof was given by the author [13]. This proof is described more
naturally as a hardness of approximation result, and it relies on rapid mixing of
random walks on expanding graphs. In Section 5 we sketch these two approaches.

Organization. We begin in Section 2 with basic definitions, as well as an in-
troduction of the class NP aimed at the non-experts. In Section 3 we formally
state the PCP theorem, and connect it to hardness of approximation problems.
In Section 4 we discuss stability and local testable codes, and give a concrete ex-
ample of a locally testable code. This is intended to provide some intuition as to
how PCPs work. Finally, in Section 5 we sketch the algebraic and combinatorial
constructions of PCPs.

2. Preliminaries

2.1. Computational Problems. A computational (search) problem is
formally described by a relation S ⊂ {0, 1}∗ × {0, 1}∗. We interpret the pair
(x, y) ∈ S to mean that y is a valid solution for problem instance x. Some exam-
ples are

• satisfy = {(ϕ, a)} where ϕ describes a Boolean logic formula; and a de-
scribes a satisfying assignment to the variables (i.e., an assignment under
which the formula evaluates to true).

• clique = {(G,K)} where G describes a graph, and K describes a clique in
the graph, i.e. a set of vertices every pair of which are connected by an edge.

• proofs = {(T, π)} where T describes a theorem in some fixed logic proof
system, and π describes a proof for T in that proof system.

An optimization problem is a search problem S together with a valuation func-
tion v : {0, 1}∗ → R+ that assigns a value to each solution. For example the
maximum clique problem is the search problem clique together with a valuation
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function that counts the number of vertices in a given solution. The goal is to find
a clique of largest size.

An algorithm is called efficient if its running time is bounded by a polynomial
function in the length of the input. Whenever we consider an algorithm it is implic-
itly assumed to be efficient. An algorithm solves an optimization (maximization
or minimization) problem if for every instance x ∈ {0, 1}∗ it finds a y ∈ {0, 1}∗
such that (x, y) ∈ S (if one exists) and v(y) is optimal (maximal or minimal).

An r-approximation algorithm for a given combinatorial optimization problem
is an algorithm that always finds a solution whose value is within multiplicative
factor r of the optimal value.

It is often simpler to work with decision problems. A decision problem, or
a language, is a set L ⊂ {0, 1}∗. For a search problem S, denote by S(x) =
{y |(x, y) ∈ S }. A set L is a called a decision version of a search problem S if

L = {x ∈ {0, 1}∗ |S(x) 6= φ}

2.2. The class NP. It is natural to restrict attention to search problems
in which a correct solution can be efficiently recognized, regardless of how it is
reached.

Definition 1. An NP search problem is a search problem S for which there is an
efficient algorithm that inputs an instance x and a purported solution for it y such
that |y| ≤ |x|O(1) and outputs ‘yes’ if and only if (x, y) ∈ S.

Definition 2 (The Class NP). The class NP is the set of languages L ⊆ {0, 1}∗
that are decision versions of NP search problems.

A canonical example of a language in NP is Satisfiability (sat). It consists of
all satisfiable formulae ϕ. The corresponding search problem, described earlier as
satisfy, consists of all pairs (ϕ, a) where ϕ describes a logical Boolean formula,
and a describes an assignment to the variables that satisfies the formula. Clearly,
one can efficiently verify that a is a valid solution simply by plugging in the values
and simplifying. Intuitively, this seems much easier to do than to actually find a
from scratch. Indeed, an equivalent way to state the famous P 6= NP conjecture
is to say that there is no efficient way to always find a given ϕ.

We next describe an optimization problem called max-csp, which is NP-
complete. First, let us define a constraint.

Definition 3 (Constraint). Let V = {v1, . . . , vn} be a set of variables that take
values in some finite alphabet Σ. A q-ary constraint C = (ψ, i1, . . . , iq) consists of
a q-tuple of indices i1, . . . , iq ∈ [n] and a predicate ψ : Σq → {0, 1}. A constraint
is satisfied by a given assignment a : V → Σ iff ψ(a(vi1), a(vi2), . . . , a(viq

)) = 1.

The csp problem with parameters q and |Σ| is defined as follows. The problem
instance is a set V of variables, an alphabet Σ, and a set of constraints C1, . . . , Cm.
The goal is to find an assignment to the variables that satisfies all of the constraints.
Several well-known problems in NP are special cases of csp. For example,
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• 3-sat is the problem when Σ = {0, 1}, all constraints have q = 3 and a
predicate that can be written as a disjunction of three literals, e.g. ψ(a, b, c) =
a ∨ ¬b ∨ c.

• 3-col is usually defined as a problem on graphs: given a graph, find a 3
coloring of the vertices χ : V → {1, 2, 3} such that no two adjacent vertices
are colored by the same color. Clearly, this is a special case of csp if we take
variable for each vertex, q = 2, Σ = {1, 2, 3}, and let each edge represent a
constraint whose predicate is the unequal predicate ψ(a, b) = 1 iff a 6= b.

• 3-lin is the csp problem when Σ = {0, 1}, all constraints have q = 3 and all
predicates are affine equations over the field GF (2).

The related optimization problem max-csp is the problem of finding an assignment
that maximizes the number of satisfied constraints.

2.3. NP and Efficient Proof Systems. An equivalent definition of the
class NP, is as a class of efficient proof systems. Roughly speaking, a logic proof
system consists of a set of axioms and inference rules, such that any of its theorems
can be obtained through a sequence of steps each of which is either an axiom, or is
inferred from previous steps through application of one of the inference rules. As
an example, one should keep in mind Frege’s propositional calculus (see [11]) which
consists of six axioms and one inference rule. A proof system has two important
properties called completeness and soundness. Completeness means that every
provable statement is true, and soundness means that every true statement has a
proof.

One can generalize this notion of a proof system as follows. First, observe that
one can fully describe the proof system through its verification process, which we
will call its verifier from now on. The verifier is nothing but an algorithm that
checks that each step is either an axiom or a result of applying a derivation rule
on some previous steps. Now, since the verifier fully defines the proof system, we
generalize by allowing a wider class of verifiers. Indeed, we allow the verifier to
be any efficient algorithm. We insist on the efficiency of the verifier to maintain
the intuitive notion that checking a proof should be an easy and technical matter,
unlike, perhaps, coming up with one.

More formally,

Definition 4. A language L ⊂ {0, 1}∗, has an efficient proof system if there is an
efficient algorithm, called a verifier, that inputs a string x and also a purported
proof string y. The verifier and runs in time polynomial in |x| and either accepts
or rejects, and

• (Completeness:) If x ∈ L then there is some y such that the verifier accepts.
(In other words for every x ∈ L there is an acceptable proof y).

• (Soundness:) If x 6∈ L then for every y the verifier rejects. (In other words,
no proof y will be able to prove a false statement).
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In this proof system the set L is interpreted to be the set of all ‘theorems’, or
‘true’ statements.

Definition 5 (The class NP, second definition). The class NP is the set of all
languages L that have efficient proof systems.

For example, the set sat of all logical Boolean formulae that are satisfiable has
an efficient proof system. The verifier is a simple algorithm that expects, as proof,
a string y that represents a satisfying assignment, and then plugs it in the formula
and simplifies. From this example it becomes clear that NP provides a rich variety
of proof systems, quite different from the sequential ones with which we began our
discussion.

Reductions and NP completeness One can move quite freely between differ-
ent NP languages through reductions. A reduction from L1 to L2 is a mapping
r : {0, 1}∗ → {0, 1}∗ that has two properties. First, it is computable in polyno-
mial time, and second, it guarantees that x ∈ L1 if and only if r(x) ∈ L2. There
are languages in NP, called NP-complete, that are “hardest” in the sense that
any other NP language can be reduced to them. sat is a canonical example for
an NP-complete set, and there are many others. The NP-completeness of sat
implies that for every L ∈ NP there is a reduction r mapping it to sat.

Through the notion of reductions we can see that one set can have many differ-
ent NP verifiers (or proof systems). For example, let L denote the set of all graphs
containing a clique of size at least k, for some k. Since L ∈ NP and since sat is
NP-complete, there is a reduction from L to sat. This gives rise to the following

(not so natural) verifier for L: Given an instance G
?
∈ L, the verifier will first run

the reduction to compute the formula r(G), and then check that the proof is a
satisfying assignment for this formula.

This example demonstrates that one NP set can have many proof systems,
quite different from one another. We will see in Section 3 that some of these proof
systems turn out to have quite remarkable properties.

2.4. Error Correcting Codes. The Hamming distance of a pair of strings
x, y ∈ {0, 1}n is denoted Dist(x, y) and is the number of bits on which they differ.
The relative Hamming distance is denoted by dist(x, y) and is equal to Dist(x, y)/n.

We define an error correcting code with relative distance δ to be a mapping
C : {0, 1}k → {0, 1}n for which the following holds:

∀x 6= y ∈ {0, 1}k, dist(C(x), C(y)) ≥ δ.

We usually think of an error correcting code as part of an asymptotic family of
codes Ck one for each message length k, but this will be suppressed from the
following discussion.

Let us remark that error correcting codes with constant relative distance are
not hard to come by. A GF (2)-linear mapping C : {0, 1}k → {0, 1}n with n = Θ(k)
that is defined by an n×k matrix with 0/1 entries selected independently at random
will have constant relative distance with overwhelming probability.
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3. The PCP Theorem

Probabilistically Checkable Proofs (PCPs) have evolved from the celebrated notion
of interactive proofs [23, 5] and the complexity class IP. This line of research was
originally motivated by cryptography and the study of what it means for two
entities to prove something to one another. Soon it lead to a list of remarkable
complexity-theoretic results (e.g., see [30, 40, 9, 17, 7]), which seemed to suggest
existence of a PCP verifier for every language in NP. At the same time, a surprising
connection was discovered by [16], showing that existence of such a PCP verifier
would imply that it is NP-hard to determine the size of the maximum clique in a
graph, even approximately. With this additional motivation, the proof was soon
found, first partially in [4] and then fully in [3], and came to be known as the PCP
theorem (Theorem 1.1).

In this section we present the PCP theorem in two guises. First we follow the
standard presentation, as done in the introduction, but in more formal details.
Next, we present the PCP theorem as an NP-hardness result about approximating
constraint satisfaction problems.

3.1. The PCP theorem - formal statement. The PCP theorem [4, 3]
describes, for every language L ∈ NP, a proof system in which the verifier is both
enhanced with additional randomness and restricted in its access to the proof.

Notation For any n ∈ N we denote by [n] the set of n elements {1, . . . , n}. For
a string s ∈ {0, 1}n and a set of indices I = {i1 < · · · < it} ⊂ [n], we denote by s|I
the t-bit string si1si2 · · · sit

obtained by restricting s to I.

We now define formally the class PCP [r, q] through the notion of an (r, q)-
verifier.

Definition 6. An (r, q)-verifier for a language L ∈ NP is given an input x ∈
{0, 1}n and is also allowed to read r random bits. It then computes a set of q
indices I = {i1, . . . , iq} and a Boolean predicate ψ : {0, 1}q → {0, 1} and accepts
if and only if ψ(π|I) = 1.

Definition 7. The class PCPc,s[r, q] contains all languages L for which there is
an (O(r), O(q))-verifier V such that

• (Completeness:) If x ∈ L then there is a proof π such that

Pr[ψ(π|I) = 1] ≥ c,

• (Soundness:) If x 6∈ L then for any proof π,

Pr[ψ(π|I) = 1] ≤ s.

where the probability is over the r bits of randomness of the verifier that are used
to compute ψ, I.
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The PCP theorem says that every language in NP has a verifier that uses at
most O(log n) random bits and reads only O(1) bits from the proof. Here n denotes
the input length and the O(·) notation refers to asymptotic growth of n→∞. In
other words,

Theorem 3.1 (PCP Theorem, [4, 3]). NP ⊆ PCP1, 1
2
[O(log n), O(1)].

3.2. The PCP theorem – a hardness of approximation result.
The beautiful connection discovered by Feige et. al. [16] shed new light on the
hardness of approximating combinatorial optimization problems. (A formal def-
inition of approximation and optimization problems can be found in Section 2).
This entire field was soon completely transformed, when many known algorithms
found nearly matching lower bounds via the PCP theorem.

Approximation algorithms are a natural way to cope with NP-hard problems.
By the late 1980’s approximation algorithms have been developed for a variety
of NP-hard problems. Different problems were found to have approximation al-
gorithms with vastly differing values of the approximation ratio r. Predating the
discovery of the PCP theorem and the connection of [16], there were no lower
bounds on approximation: it seemed possible that approximation is never NP-
hard when r > 1, and even that every NP-problem can be approximated up to
any precision, in polynomial time.

An extreme example is the difference between the approximation behavior of
minimum vertex cover2 and maximum independent set3. In any graph G = (V,E),
if S is an independent set then V \S is a vertex cover. Thus finding an exact solution
for one problem is the same as for the other. In contrast, the best approximation
for the maximum independent set is within a factor only slightly below the trivial
factor of n, whereas vertex cover can be 2-approximated quite easily.

The PCP theorem implied, for the first time, that numerous problems (in-
cluding, for example, the problems mentioned above) are hard to approximate to
within some constant factor. This has had a tremendous impact on the study of
combinatorial optimization problems, and today the PCP theorem stands at the
heart of nearly all hardness-of-approximation results.

The equivalence between the PCP theorem (as stated in Theorem 3.1) and
a hardness of approximation result is easily described in terms of the constraint
satisfaction problem csp (see definition in Section 2). First, let us state a typical
hardness of approximation result. We will then prove that it is equivalent to the
PCP theorem.

Theorem 3.2. For every L ∈ NP there is an absolute constant q ∈ N and a

reduction that maps x
?
∈ L to a csp instance with |Σ| = 2 and q-ary constraints

such that if x ∈ L then there is an assignment satisfying all constraints, and if
x 6∈ L then every assignment satisfies at most 1

2 of them.

2In the minimum vertex cover problem, one is given a graph and needs to find a smallest set
of vertices that touch all edges.

3In the maximum independent set problem, one is given a graph and needs to find a largest
set of vertices that spans no edges.
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Proposition 3.3 ([16]). Theorem 3.1 and Theorem 3.2 are equivalent.

Proof. (⇒): Let L ∈ NP and let V er be the (r, q)-verifier for L with r = O(log |x|)
and q = O(1). Recall that for each random string ρ, when V er is run on the input
x with randomness ρ, it computes a predicate and a set of indices, i.e., a q-ary
constraint. The reduction will simulate V er on every possible random string, thus
generating a list of 2O(log n) constraints over variables that represent the proof
bits. This is the output csp instance of the reduction. It is easy to see that the
completeness and soundness of V er translate to the desired behavior of the csp
instance.

(⇐): Let L ∈ NP, we design an (O(log n), O(1))-verifier for it. The verifier
will input x, run the reduction computing from x a csp instance, and then expect
the proof π to contain an assignment to the variables of the csp instance C =
{C1, . . . , Cm}. The verifier will use its randomness select a random constraint
Ci = (ψ, i1, . . . , iq) ∈ C, read the corresponding bits from the proof and accept iff
ψ(π|{i1,...,iq}) = 1.

We discuss the proof of this theorem in Section 5.

3.3. Further Results. One way to study the class NP is by examining its
limits, or “boundary”. The search for tightest parameters and parameter tradeoffs
of PCP verifiers that still capture NP has been the focus of research in the past
two decades. Some questions of particular interest are

• Suppose the verifier is restricted to make exactly q ≥ 2 queries. What is the
smallest possible probability of error ? (this refers to the probability that
the verifier accepts an x 6∈ L, or rejects an x ∈ L).

• Viewing a PCP as an encoding of an NP proof, what is the smallest possible
encoding length? For example, could there be a mapping that takes an n bit
NP proof into an O(n) bit PCP ? Currently, the shortest known PCPs take
n bit NP proofs to PCPs of length n · (log n)O(1).

In terms of inapproximability, similar efforts have been made. Here, one is
interested in finding, for each approximation problem, what is the largest r for
which it is still NP-hard4 to r-approximate the problem. In several cases this r
matches the best known approximation algorithm, and in other cases there is still
a huge gap.

The Unique Games Conjecture. One direction that has been very successful
in recent years stems from the unique games conjecture of Khot [25]. This conjec-
ture says that a certain restricted type of csp instance is NP-hard. This can be
viewed as a conjectured “strengthening” of the PCP theorem. There have been
many works [28, 27, 14, 29, 12, 39, 35] showing that if this conjecture were true,
then various approximation problems would be even harder to approximate, often
to within factors that match their best approximation algorithms. Very recently

4A problem is NP-hard if an algorithm for can be used to solve any other problem in NP.
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Arora et. al [2] found a slightly subexponential algorithms for unique games. This
can be taken as evidence that the unique games csp may not be NP hard, and in
the least, it seems easier than other csp’s such as 3-sat.

4. Local Testing and Stability

The idea that global phenomena can be determined based on local behavior is com-
monplace. Whether it is astronomers that study the universe through observing a
tiny fraction of it, or statisticians deducing about entire populations from polled
data. Even when local observations are somewhat noisy we still manage to deduce
global properties quite nicely, or at least so we think. In fact, what makes this
paradigm go through is the fact that these properties are stable.

Generally speaking, a system of constraints (e.g. equations) characterizes a set
in a stable manner if any approximate solution to the system is nothing but a
perturbation of some exact solution.

A system of constraints over Boolean variables is stable if any solution that
satisfies many of the constraints must be close to a solution that satisfies the
entire system.

In theoretical computer science the focus shifts to the solution set itself rather
than the constraints that characterize it. A set that can be characterized by a
stable set of local constraints (i.e., where each constraint looks at only at most q
bits of the proposed solution) is called locally testable.

In what follows we will formally define local testability. Next, we will give
an example of a locally testable property. We will then define and discuss locally
testable codes, which are an important notion in the construction of PCPs. Finally,
we will discuss connections to other mathematical areas in which similar stability
phenomena are studied.

4.1. Local Testing. A property of binary strings is a subset L ⊂ {0, 1}∗,
alternatively described as a sequence (Ln)n∈N, where Ln ⊆ {0, 1}n. We next
define what a locally testable property is. First let us recall that a constraint over
a string x ∈ {0, 1}n is defined by a predicate ψ : {0, 1}q → {0, 1} and q indices
i1, . . . , iq ∈ [n] and is satisfied on string x ∈ {0, 1}n if ψ(xi1 , . . . , xiq ) = 1.

Definition 8 (Local testability). A property Ln ⊂ {0, 1}n is locally testable with
q queries and error ε if there is a set of q-ary constraints C1, . . . Cm over n bits
such that for every x ∈ {0, 1}n

• If x ∈ L then Prj∈[m][x satisfies Cj ] = 1

• If x 6∈ L then Prj∈[m][x satisfies Cj ] ≤ ε

A property (Ln)n∈N is locally testable if Ln is locally testable for every n ∈ N.

What is it that makes a property testable? Questions regarding what types of
properties are locally testable are the topic of a field called property testing. This
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field started out from works on testing low algebraic degree of functions [4, 3, 16,
37, 19, 6, 33] similar to the example below, and more recently has evolved into
property testing of graph properties [21], codes [37, 22], and various other types of
objects. For a survey, see [20, 36].

4.2. Example: low degree testing. In this section we describe a prop-
erty that is locally testable. The purpose is to give a sense of what it means to be
locally testable. As our example, we chose the linearity testing of [10] which also
plays a role in the actual construction of PCPs. We will return to this example
later when we describe the PCP construction.

Let our universe consist of all functions f : Fk
2 → F2, where F2 = {0, 1} is the

field with two elements, and k ∈ N. The property under consideration is the subset
of all linear functions:

lin =

{
f : Fk

2 → F2

∣∣∣∣∣∃a1, . . . , ak ∈ F2, s.t. ∀x f(x) =
k∑

i=1

aixi

}
.

Although we only defined local testability for properties of strings, Definition 8
easily extends to functions by identifying a function f : Fk

2 → F2 with the string
f ∈ {0, 1}2k

that describes its truth table.
In order to show that the property lin is testable, we must find a set of local

constraints that characterize the property in a stable way. This seems easy: for
each pair of points x, y ∈ Fk

2 think of the constraint that is satisfied if and only if

f(x) + f(y) = f(x+ y).

Denoting this constraint by Cx,y we define C = {Cx,y}x,y∈Fk
2

to be our system of
constraints. It remains to verify that the definition of testability holds.

For sanity check we observe that if f is linear then every constraint will be
satisfied. Moreover, if every constraint is satisfied then surely the function is
linear. What is less obvious is what happens when f satisfies almost all of the
constraints, but not quite all. Does it necessarily have to be close to some linear
function?. A priori, one could imagine a function g for which

Pr
x,y∈Fk

2

[g(x) + g(y) = g(x+ y)] > 0.99 (1)

and yet g is far from every linear function.
Nevertheless, the linearity testing theorem of [10] implies that any g for which

(1) holds must agree with some linear function on at least 99% of the domain.

Theorem 4.1 ([10, 8]). Let g : Fk
2 → F2 be a function for which dist(g, lin) ≤ 1

2 .
Then

Pr
x,y∈Fk

2

[g(x) + g(y) 6= g(x+ y)] ≥ dist(g, lin).

The proof of this theorem turns out to be a relatively simple exercise in discrete
Fourier analysis. However, even straightforward generalizations of it (for example,
for the property of functions having degree 2, 3, etc.) require significantly more
work [1, 38, 24, 42] and many open questions still remain.
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4.3. Locally testable codes. Let us return to the main topic of this paper,
Probabilistically Checkable Proofs. Recall our attempt to construct probabilisti-
cally checkable proofs by encoding the NP proof. This encoding should amplify
errors in the original proof had there been any. The PCP verifier must check that
the given proof string is valid, i.e., that it is a valid encoding of a valid NP proof.
Focusing on the first part of the requirement (i.e., that of being a valid encoding)
is the task of locally testing a code.

Definition 9 (Locally testable code). A locally testable code is an error correcting
code C : {0, 1}k → {0, 1}n whose image Im(C) =

{
C(x)

∣∣x ∈ {0, 1}k
}

is locally
testable.

One usually considers error correcting codes with large relative distance, δ =
Ω(1). In such cases, every bit in the encoding should depend, on average, on a
constant fraction of the message bits. In contrast, the fact that Im(C) is locally
testable means that there are very local correlations between the encoding bits.
These two requirements are in tension with one another, and this is partly what
makes the construction of locally testable codes more challenging.

There are few known constructions of LTCs with reasonable parameters. A
first example is the Hadamard code

H : {0, 1}k → {0, 1}2
k

that encodes a message a = (a1, . . . , ak) ∈ {0, 1}k by a string H(a) ∈ {0, 1}2k

that
is the truth table of the linear function f defined by f(x) =

∑k
i=1 aixi. First, note

that if a 6= b ∈ {0, 1}k then dist(H(a),H(b)) = 1
2 , so this code has good relative

distance. Next, note that H is locally testable. This follows from the testability
of the property lin described in the previous section.

The main drawback of the Hadamard code as an LTC is its encoding length,
encoding k bits by 2k. There are much more efficient constructions, yet they are
much more complicated and less ‘explicit’. In general these come by stripping
down a construction of an equivalent PCP. It is a challenging question to find a
construction of an LTC that is as explicit as the Hadamard code, yet with better
parameters.

4.4. Connections with other fields. Questions about stability of sys-
tems appear in various other fields of mathematics. Below we describe a few
examples that have some direct connections with PCPs.

4.4.1. Approximate Polynomials. Polynomial functions obey local constraints
that come essentially from interpolation formulae. For example, a degree d uni-
variate polynomial obeys many constraints on d + 2 points: simply use the first
d + 1 points to compute the value on the remaining point, and test that this is
indeed the value. That these constraints are also stable is the topic of “low degree
tests” which play a key role in the proof of [4, 3] of the PCP theorem.

Similarly a multi-variate polynomial of degree d that must behave in a certain
way on subspaces of dimension d + 1 (again due to interpolation). The fraction
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of subspaces on which a function behaves like a polynomial is exactly captured by
the so-called Gowers d+ 1 uniformity norm.

A sequence of works [1, 38, 24, 42] has been focused on characterizing what
functions have Gowers uniformity norm that is strictly above the value the norm
of a random function. This is called the inverse conjecture for the Gowers unifor-
mity norm, see also [41]. These questions are related to questions in arithmetic
combinatorics which study the behavior of sets containing many arithmetic pro-
gressions. In PCPs, such results have been used for constructing PCPs with near
optimal tradeoff between the number of queries and the error probability [39].

4.4.2. Approximate Dictatorships. Dictatorships are functions f : {0, 1}n →
{0, 1} that depend on only one variable. There are n such basic functions, χi(x1, . . . , xn) =
xi for each i ∈ [n]. There are many different ways to characterize dictatorships in
the hypercube, and each way leads to a different, and often interesting, stability
question. Here are two examples.

• One can measure the average sensitivity of a function. This is the probability
that f(x) = f(x+ei) when x ∈ {0, 1}n and i ∈ [n] are chosen at random (and
ei is the unit vector with 1 in the i-th coordinate). For balanced functions
this value is minimized on dictators. A stability question is to characterize
all functions with average sensitivity that is within a constant factor of the
minimum. Friedgut [18] proved that such functions must be close to “juntas”
which are functions that depend on a constant number of their n variables.
Friedgut’s theorem has been used in results related to the hardness of ap-
proximating the minimum vertex cover in a graph [15, 28].

• The “majority is stablest” theorem is concerned with the noise sensitivity
of Boolean functions. This is the probability that f(x) = f(y) when y is a
“noisy” copy of x, i.e. when each coordinate of x is flipped with probability
ε. Dictatorships are the least sensitive to noise, and the conjecture above
says that every function that is “far” from being a dictatorship must have
sensitivity at least as much as the majority function does (the majority func-
tion evaluates to 1 on inputs x that have more 1’s than 0’s). The “majority
is stablest” theorem was conjectured in [27] as part of an inapproximability
result about max-cut. It was later proved in [32] and lead to the discovery
of a powerful ‘invariance principle’ [32, 31]. At the heart of these results
one needs a method to differentiate between dictatorships and between func-
tions that are “smooth” and have no variable that has large influence. The
‘invariance principle’ is a generalization of the central-limit-theorem show-
ing that smooth polynomials behave almost the same regardless of how each
individual variable is distributed.

Raghavendra [35] relied on the invariance principle to prove a very general
inapproximability result for csp’s.

We point the reader to Khot’s article [26] for more illuminating examples.
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5. Construction of Probabilistically Checkable Proofs

The original proof and formulation of the PCP theorem came from study of proof
verification. The techniques are largely based on algebraic encodings and testing
results that are generally called “low degree tests”. More recently, a combinatorial
proof was given by the author [13]. This proof is framed more naturally as a
hardness of approximation result, and it relies on rapid mixing of random walks
on expanding graphs. In this section we sketch these two approaches.

5.1. PCPs using algebra. The original proof of the PCP theorem, relies
on “algebraic” encodings of NP witnesses by low degree functions. This proof
proceeds by constructing a (O(log n), O(1))-verifier for every language in NP, thus
proving Theorem 3.1.

5.1.1. A verifier for linear CSPs. Before constructing a (log n, 1)-verifier for
every NP language, let us construct such a verifier for the csp language defined
by linear and affine predicates. In other words, the input is a set of linear or
affine constraints, say each over two variables, and the goal is to verify that a
given assignment a satisfies all constraints. This is really only a baby case since a
verifier can determine efficiently whether the system is satisfiable without looking
at a proof at all. Nevertheless, it gives some intuition for the actual proof.

We can encode the assignment a that satisfies all of these constraints using
the so-called Hadamard code, that was described in Section 4.3. The PCP verifier
would expect as proof the encoding H(a) of an assignment. Since the Hadamard
code is a locally testable code, the verifier can test that a purported proof w is a
valid encoding of some a. Moreover, it is not hard to see, that since this encoding
consists of all linear forms in the input message a, it is also easy to test whether a
satisfies some set of affine predicates.

5.1.2. The general case. Moving on to the general case, here are some of the
points that are resolved along the way.

• First, we need to be able to encode non-linear predicates. It turns out that
it suffices to consider degree 2 predicates since these are already expressive
enough to capture NP (in other words, the csp problem with degree 2 pred-
icates is NP-complete).

• Our second concern is the exponential length of the Hadamard encoding.
The PCP encoding should be efficient. In particular, we cannot afford to
encode n bits of message by 2n bits, as done by the Hadamard code. This
again is resolved by considering polynomials of higher degree, say d = log n,
over a larger field (of size say (log n)O(1)). In other words, the encoding of
an n-bit assignment would be the point evaluation of a polynomial function
p : Fm → F whose restriction to some predefined set of points S ⊂ Fm agrees
with the original assignment. This brings the length of the encoding down,
but causes a new problem. Although “low degree tests” for such functions
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have been proven, these tests necessarily use at least d queries to test whether
a function has degree d. This is no longer constant when d = log n.

• In order to reduce the number of queries from log n to O(1) one relies on
several steps and most importantly, on composition. We do not describe this
here.

• Finally, we neglected to describe how to check that the encoded proof encodes
a valid proof, i.e., one that satisfies the original constraints. This is done by
additional machinery and in particular using a so-called sum-check procedure.
For details see [4, 3].

5.2. PCPs using random walks on graphs. We now describe a com-
binatorial proof of the PCP theorem due to the author, see [13, 34]. This proof
is best described as an inapproximability result, i.e., as a proof for Theorem 3.2,
which we quote again for convenience:

Theorem 3.2. For every L ∈ NP there is a q ∈ N and a reduction that maps

x
?
∈ L to a csp instance with |Σ| = 2 and q-ary constraints such that if x ∈ L

then there is an assignment satisfying all constraints, and if x 6∈ L then every
assignment satisfies at most 1

2 of them.

It is enough to fix L to be one NP-complete language, say 3− col. Recall that
in this problem the input is a graph G = (V,E) and the goal is to decide whether
there is a coloring c : V → {1, 2, 3} such that for every (u, v) ∈ E, c(u) 6= c(v).

We construct an algorithm that inputs a graph G and outputs a new graph G′

such that

• If G is 3 colorable then so is G′.

• If G is not 3 colorable, then every coloring of the vertices of G′ must have at
least some ε > 0 fraction of unsatisfied (i.e., monochromatic) edges.

Let the unsat value of a graph G, denoted unsat(G), be the minimum fraction
of monochromatic edges, when going over all possible 3-colorings of G

unsat(G) = min
c:V →[3]

[
Pr

(u,v)∈E
[c(u) = c(v)]

]
.

Note that G is 3-colorable if and only if unsat(G) = 0. If G is not 3-colorable then
surely unsat(G) ≥ 1/ |E|.

Our algorithm proceeds by a sequence of encodings,

G→ G1 → G2 → · · · → G′

where the unsat value is amplified a little in each step.
The basic transformation Gi → Gi+1 will amplify this value by a constant

multiplicative factor. This will be done without harming the 3-colorability of G in
case it was 3-colorable. In other words, if Gi is 3-colorable, then so is Gi+1, but
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otherwise unsat(Gi+1) ≥ 2 · unsat(Gi) (unless unsat(Gi) exceeds some constant
threshold).

After repeating this basic step O(log n) times the unsat value will become some
absolute constant and we are done. The transformation taking Gi to Gi+1 only
causes a linear increase in the size of G, so repeating it this many times (O(log n))
will not cause the output to be too large.

5.2.1. Amplifying the unsat value. Let us sketch a description of the trans-
formation taking Gi to Gi+1. For notation convenience we denote the input and
output graphs of the transformation by G,H instead of Gi, Gi+1.

This transformation involves two main steps.

1. In the first step G is encoded by a graph G′ and a 3-coloring for G is encoded
by a k-coloring for G′, where k > 3 is some constant. The vertices of G′ are
the same as those of G, and the color of a vertex in G′ is supposed to encode
the colors of all of its neighbors in G. The constraints on the edges of G′ are
not “inequality” constraints as in a proper k-colorability problem, but rather
more general constraints that check that the local colorings are consistent
with each other. E.g., if two vertices assign a different color to a common
neighbor then this is an inconsistency.

Finally, we place an edge between two vertices in G′ if they are at distance
up to 100 from each other.

By construction, if G were 3-colorable, then there is a k-coloring that satisfies
all of the new constraints. The main thing to prove is the converse. Under
some (expansion) conditions on the structure of G, one can show that if the
unsat value of G was α, the fraction of unsatisfiable constraints on G′ is at
least 2α.

2. The second step involves an alphabet reduction, taking the k-colorability
instance G′ back into a 3-colorability instance H without harming the unsat
value too much. This step relies on composition similarly to the way it is
applied in the original proof of the PCP theorem, and is beyond our scope.
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