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Abstract

The PCP theorem [3] 2] says that every language in NP has a witness format that can be checked
probabilistically by reading only a constant number of bits from the proof. The celebrated equiva-
lence of this theorem and inapproximability of certain optimization problems, duelto [12], has placed
the PCP theorem at the heart of the area of inapproximability.

In this work we present a new proof of the PCP theorem that draws on this equivalence. We
give a combinatorial proof for the NP-hardness of approximating a certain constraint satisfaction
problem, which can then be reinterpreted to yield the PCP theorem.

Our approach is to consider toaesat valueof a constraint system, which is the smallest fraction
of unsatisfied constraints, ranging over all possible assignments for the underlying variables. We de-
scribe a new combinatorial amplification transformation that doubles the unsat-value of a constraint-
system, with only a linear blowup in the size of the system. The amplification step causes an increase
in alphabet-size that is corrected by a (standard) PCP composition step. Iterative application of these
two steps yields a proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to sys-
tems of binary constraints. This powering amplifies the unsat-value of a constraint system provided
that the underlying graph structure is an expander.

We also extend our amplification lemma towards construction of assignment testers (alterna-
tively, PCPs of Proximity) which are slightly stronger objects than PCPs. We then construct PCPs
and locally-testable codes whose length is linear up polglog factor, and whose correctness can
be probabilistically verified by making eonstantnumber of queries. Namely, we pro$AT €
PCPy ,[logy(n - polylogn), O(1)].

1 Introduction

A languageL is in the class NP if there is a deterministic polynomial-time algorithm calledrdier
that, in addition to the input, has access to a ‘proof’ such that the following holdsz If. then there is
a proof causing the verifier to accept, and i L the verifier will reject regardless of the proof.

The PCP theorem is a strong characterization of the class NP. The notion of Probabilistically Check-
able Proofs (PCPs) extends the power of the verifier by allowing it some randomness (and oracle access
to the proof), and simultaneously restricts the verifier to read only a small number of symbols from the
proof. More formally, the clas®C P|[r, ¢ is defined to contain all languagésfor which there is a
verifier VV that use€)(r) random bits, read®(q) bits from the proof, and guarantees the following:

e If z € L then there is a proof such thatPr[V™(x) accepts = 1. (Here and elsewhergé™ (x)
denotes the output df on inputx and proofr.)
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e If z ¢ L then for any proofr, Pr[V™(z) accepts< 1.

The PCP theorem says that every language in NP has a verifier that uses &!(ingst) random
bits and reads onl®(1) bits from the proof. In other words,

Theorem 1.1 (PCP Theorem,[[B, 2])NP C PCPllogn, 1].

This theorem was a great surprise, as it completely revises our concept of a proof. Rather than the
classical notion of a proof as a sequential object that if erroneous in even one place can easily prove
a false statement. The PCP theorem provides a new proof notion that is more robust, and must be
erroneous in many places when attempting to prove a falsity.

Historically, the classPC P[r, q] stemmed out of the celebrated notion of interactive praofs([20, 4]
and the class IP. The original motivation for defining IP was cryptographic, but it soon lead to a list
of remarkable complexity-theoretic results, including for example IP=PSPACEL(see [24, 32]). We will
not give a detailed historic account which can be found in, §ay, [1]. Let us just mention that an excit-
ing sequence of papers (séel[6] 14, 5]) lead to the following theorem: the class of all languages with
exponential-sized proofs is equal to the class of all languages that can be verified by a (randomized)
polynomial-time verifier. At this point attempts were made to “scale down” this result so as to char-
acterize the class NP in similar terms, through suitable restriction of the verifier. This was especially
motivated by the discovery of [12] that connected such a scale-down to an inapproximability result for
the clique number (see below). This scale-down was achieved patrtially in [3] and completed in [2] and
came to be known as the PCP theorem.

The techniques that lead to the proof were mainly algebraic, including low-degree extension over
finite fields, low-degree test, parallelization through curves, a sum-check protocol, and the Hadamard
and quadratic functions encodings.

1.1 PCP and Inapproximability

As mentioned above, the discovery of the PCP theorem came hand in hand with the beautiful and surpris-
ing connection, discovered by Feige et. al.l[12], between PCP characterizations of NP and the hardness
of approximating the clique number in a graph. Predating these developments the situation regarding
approximation problems was unclear. There was no clue why different approximation problems seem to
exhibit different approximation behavior. The PCP theorem implied, for the first time, that numerous
problems (including, for example, max-3-SAT) are hard to approximate. This has had a tremendous
impact on the study of combinatorial optimization problems, and today the PCP theorem stands at the
heart of nearly all hardness-of-approximation results.

The connection to inapproximability is best described throcgstraint satisfactioproblems. Let
us begin by defining aonstraint

Definition 1.1 LetV = {vy,...,v,} be a set of variables, and |8t be a finite alphabet. A-ary con-
straint (C, i1, . .., iq) consists of a-tuple of indices, ..., i, € [n] and a subse€ C X7 of “accept-
able” values. A constraint isatisfiedoy a given assignment: V' — Xiff (a(v;, ), a(vi,), . .., a(v;,)) €
C.

The constraint satisfaction problem (CSP) is the problem of, given a system of consfraiats
{c1,...,¢cn} over a set of variable¥, deciding whether there is an assignment for the variables that
satisfies every constraint. This problem is clearly NP-complete as it generalizes many well known NP-
complete problems such as 3-SAT and 3-colorability. For example, in the equivalent of the 3-colorability
problem, the alphabet i& = {1,2,3} and the binary constraints are of the foff,i;,i2) where



C =1{(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)} consists of6 out of the possibl® values that exclude

equality.
An optimization version of this problem, called max-CSP, is to find an assignment that satisfies a
maximunrmumber of constraints. L&t = {ci, ..., c,} be a set of constraints over a set of variabifes

in this paper we consider thensat-valueof C, denoteduNsAT(C), defined to be the smallest fraction
of unsatisfied constraints, over all possible assignment$ foClearly C is satisfiable if and only if
UNSAT(C) = 0. In this notation, the following theorem is a typical inapproximability result.

Theorem 1.2 (Inapproximability version of PCP Theorem) There are integerg > 1 and|X| > 1
such that, given as input a collectighof g-ary constraints over an alphabét, it is NP-hard to decide
whetherunsAT(C) = 0 or UNSAT(C) > 1.

Such a theorem is proven by showing a polynomial-time reduction from an NP-complete ladguage
reducing an instance to a constraint systeid},, such that the following gap property holds:zife L,
thenuNSAT(C,) = 0 and ifz ¢ L thenUNSAT(C,) > 3.

The point is that the above Theorém|1.2guivalento the PCP theorem (Theorgm]1.1).

Lemma 1.3 Theorenj 1]l and Theorém 1.2 are equivalent.

Proof: Let us briefly explain this equivalence.

e (=) According to Theorem 1]1 every NP language (and let us fix some langliageN P)
has a verification proceduréer that reads:logn random bits, accesses= O(1) bits from
the proof and decides whether to accept or reject (wheard ¢ are constants. For each fixed
random bit pattern € {0,1}°°¢™, Ver (deterministically) reads a fixed set gfits from the
proof: ig’"), . ,i((f). Denote byC(") C {0,1}9 the possible contents of the accessed proof bits
that would caus& er to accept.

We present a reduction from to gap constraint satisfaction. Leté L be the input, and denote
n = |z|. Let¥ = {0, 1} and put a Boolean variable for each proof location accessédebyon
inputz (So there are at mogR°'°e” = ¢gn° Boolean variables). Next, construct a system of con-
straintsC, = {¢;},¢ (g.1y¢10s SUCh that the constrain} is defined by, = ©® {7 s,

It remains to observe that the rejection probability/@f- is exactly equalNSAT(C,) so it is zero

if z € L,and atleast if z ¢ L.

e (<) For the converse, assume there is a reduction taking instances of any NP-language into con-
straint systems such that the gap property holds. Here is how to construct a verifier. The verifier
will first (deterministically) compute the constraint system output by the reduction guaranteed
above. It will expect the proof to consist of an assignment for the variables of the constraint sys-
tem. Next, the verifier will use its random string to select a constraint uniformly at random, and
check that the assignment satisfies it, by querying the proof at the appropriate locations.

The (=) direction of the equivalence has so far been the more useful one, as it enables us to derive
inapproximability results from the PCP theorem. In this work, we rely on the conyetsalirection,
to give a new “inapproximability-based” proof for the PCP theorem. We find it especially pleasing that
our proof has a similar flavor to the area in which the theorem has been most applicable.



1.2 Constraint Graphs and Operations on them

Our approach for proving the PCP Theorem (as stated in Thelordm 1.2) is based on an iterative gap
amplification step. For this, we restrict attention to systems of binary (two-variable) constraints, such as
3-colorability constraints. Any binary constraint system naturally defines an underlying graph, in which
the variables are vertices, and two variables are adjacent iff there is a constraint over them. We call this
aconstraint graph

Definition 1.2 (Constraint Graph) G = ((V, E), ¥, C) is called a constraint graph, if
1. (V, E) is an undirected graph, called the underlying graphcof
2. The setl/ is also viewed as a set of variables assuming values over alphabet

3. Each edge: € FE, carries a constraint(e) C ¥ x ¥, andC = {c(e)} .. A constraintc(e) is
said to be satisfied b, b) iff (a,b) € c(e).

We sometimes use the same lefteo denote the constraint graph and the underlying graphZ).

An assignment is a mapping: V' — X that gives each vertex v a value from>. For any assignment
o, define

UNSAT,(G) = ( P)reE [(0(u),o(v)) & c(e)] and UNSAT(G) = mgin UNSAT,(G) .

We calluNSAT(G) theunsat-valueof G, or just the unsat of7 for short. We define

size(Q) 2 VI +|E|.

Implicit throughout this paper is the notion that we are working with infinite families of constraint
graphs. In our context the size of the alphabetvill remain fixed independently of the size of the
underlying graph structure, so inde€de(G) measures the size of the descriptiorGbéip to a constant
multiplicative factor that depends only ¢8|.

Proposition 1.4 Given a constraint grapli = ((V, E), X, C) with || = 3, it is NP-hard to decide if
UNSAT(G) = 0.

Proof: We reduce from grapB-colorability. Given a graplt, let the alphabet b& = {1, 2,3} for
the three colors, and equip the edges with inequality constraints. Cl€aidys-colorable if and only if
UNSAT(G) = 0. |

Observe that in caseNsAT(G) > 0 it must be thaUNSAT(G) > 1/|G|. Therefore, it is actually
NP-hard to distinguish between the case)fisAT(G) = 0 and (ii) UNSAT(G) > 1/|G|. Our main
theorem is the aforementioned ‘gap amplification step’, where a graiglconverted into a new graph
G’ whose unsat value is doubled.

Theorem 1.5 (Main) There exists, such that the following holds. For any finite alphab&there
existC' > 0 and0 < « < 1 such that, given a constraint gragh = ((V, £), £, C), one can construct,
in polynomial time, a constraint grap¥’ = ((V', E’), ¥y, C’) such that

e size(G') < C - size(Q).

e (Completeness:) INSAT(G) = 0 thenuNsAT(G’) = 0.



e (Soundness:YNSAT(G') > min(2 - UNSAT(G), «).

After applying this step logarithmically many times, the final outcag,,; is a constraint graph
for which in case (i) stilluNSAT(G finq) = 0, and in case (i) we haveNSAT(G finq) > o for some
constanty > 0. Ignoring the fact that instead (%fwe gota > 0 (and this can be easily corrected by
repetition), this proves the PCP Theorem (as stated in Thgorgém 1.2). The formal proof of this is given in
Sectior{ B.

Let us describe the ideas which come in to the proof of the main theorem. How do we make the unsat
value double? this is done through three operations on constraint graphs, which we describe next.

Graph Powering

In order to amplify the unsat value of a constraint graph we simply raise it to the pgoviearsome
constant value of. This operation is a new operation on constraint systems defined as follows. Let
G = ((V, E),%,C) be ad-regular constraint graph, and ket N. A sequencéuy,...,u;) is called a
t-step walk inG if for all 0 < i < ¢, (uj, ui41) € E. We defineG? = <(V, E),Ed“m,ct> to be the
following constraint graph:

e The vertices of>! are the same as the vertices(af

e Edges:u andv are connected by parallel edges i if the number oft-step walks fromu to v
in G is exactlyk.

e Alphabet: The alphabet @ is 24?1 The meaning of each value is as follows. L&) =

{W €V |(u=muo,ui,...,upm =) isawalkinG}. Clearly|T'(u)| < d*/?! and by choos-

ing some canonical ordering, a values 54" can be interpreted as an assignment’(u) —
>.. One may think of this value as describing opinion of its neighbors’ values.

e Constraints: The constraint associated with an edge(u, v) € E is satisfied by a pair of values

a,b € 24" iff the following holds. There is an assignment I'(u) U I'(v) — X that satisfies
every constraint(e) wheree € ENT'(u) x I'(v), and such that

vu' € T'(u),v" € T'(v), o(u') = ay ando(v') = by
wherea,, is the valuex assigns/’ € I'(u), andb,, the valueb assigns’ € I'(v).

If UNSAT(G) = 0 then clearlyuNsAT(G?) = 0. More interestingly, our main technical lemma asserts
that the unsat value is multiplied by a factor of rougkdy. This holds as long as the initial underlying
graphG is sufficiently well-structured, i.e., the graph is expanding (captured by boundiry defined

in Sectior 2.]1) and-regular for constan, and has self-loops.

Lemma 1.6 (Amplification Lemma) Let0 < A < d, and|X| be constants. There exists a constant
B2 = P2(\,d,|X]) > 0, such that for every € N and for everyd-regular constraint graphG =
((V, E),x,C) with a self-loop on each vertex aidG) < A,
1
UNSAT(G?) > Bov/t - min (UNSAT(G), t) :

The advantage of the powering operation is that it amplifiesth@AT value by factor/t and only
incurs alinear blowup in the size of the graph (the number of edges is multiplied b).
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Preprocessing

It is quite easy to turn any constraint graph into a ‘well-structured’ one, as required by the amplification
step. This can be done with only a linear blow-up in size, and a constant factor decrease in the unsat
value. For example, here is a simple way of turning any constant-degree constraint graph into an ex-
panding one. Simply take the union of the edges of the given graph with edges of any constant-degree
expander graph on the same set of vertices. Putting null constraints on the expander edges guarantees
that the unsat value only drops by a constant factor.

The following lemma summarizes the preprocessing step:

Lemma 1.7 (Preprocessing Lemma)There exist constant$ < A < d and 3; > 0 such that any
constraint graph? can be transformed into a constraint graphi, denoted=’ = prep(G), such that

e (G'isd-regular with self-loops, and(G’) < X < d.
e (' has the same alphabet &5 andsize(G') = O(size(Q)).

e (31 - UNSAT(G) < UNSAT(G') < UNSAT(G).

Alphabet Reduction by Composition

The graph powering operation described above has one drawback: it incurs an increase in the alphabet
size. In order to repeat the amplification step many times, the alphabet size must be reduced.

Fortunately, this can be achieved through composition. Composition is an essential component in all
PCP constructions, starting withl [3]. It is most natural in the proof-verification setting (rather than as
a gap constraint satisfaction reduction). Recall that a systegrao§ constraints over an alphabét
corresponds to a probabilistic verifier that regds/mbols from a proof, where the symbols are taken
from X..

The basic idea of proof composition is that the verifier, instead of reading siimbols fromX (of
which we think as a ‘large’ alphabet) and based on them verifying correctness, can delegate this task to
another “inner” verifier. This inner verifier can rely on an additional proof for the factttimtengthg
input would have caused the original verifier to accephus the verification task can potentially rely
on reading even fewer bits than before. Note that there will end up being many additional proofs, one
per random string of the original verifier. Consistency between these proofs must be ensured, and this
well-studied issue will be discussed in Secfion 5.

Going back to the language of constraint systems, the “inner verifier” is simply a reduction transform-
ing a single constraint over large-alphabet variables into a system of constraints over new small-alphabet
variables. This reduction is applied on every constraint in parallel and is done in a consis@nt way
ensuring that th&NSAT value of the new system doesn’t drop by more than a constant factor. We call
such a reduction an “assignment tester” and refer the reader to §glction 5 and Dgfinjtion 5.1 for a formal
definition of the composition operation.

Lemma 1.8 (Composition Lemma - Informal statement) Assume the existence of an assignment tester
P, with constant rejection probability > 0, and alphabet, |Xy| = O(1). There existgs; > 0 that
depends only o, such that given any constraint gragh= ((V, E), X, C), one can compute, in linear
time, the constraint grapti’ = G o P, such thatsize(G') = ¢(P, |X|) - size(G), and

B3 - UNSAT(G) < UNSAT(G') < UNSAT(G).

For the sake of self-containedness, we include a construction of an assignmerf tiesBerctior] J.

1This has to do with the consistency issue mentioned earlier, and will be clarified in S@ction 5.
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1.3 The Combined Amplification Step

Assuming we have Lemnja 1.7, Lemina]1.6, and Lernmp 1.8, the proof of the gap amplification step
(Theoren] 1.b) is syntactic and is given in Secfipn 3. Altogether, our proof of the PCP theorem takes
the following form: LetG be an instance of constraint graph satisfiability (proven NP-hard in Proposi-
tion[1.4). Fixt = O(1), setGy = G, and repeat the following amplification stk |G| times:

1. Preprocesss;
2. Raise the result to thieth power
3. Compose the result with an assignment tester redution

In short,
Gi+1 = (prep(G;))' o P

It is not hard to see that takinG s, = G; for i = ©(logn) gives the necessary reduction. Formal
details are given in Secti¢n 3.

1.4 Related Work

This work follows [17,[11] in the attempt to find an alternative proof for the PCP Theorem that is
combinatorial and/or simpler. 1h [11], a quasi-polynomial PCP Theorem was proven combinatorially.
While our proof is different, we do rely on the modular notion of composition duéltd [7, 11], and

in particular on composition with a bounded-input assignment-tester, which has already served as an
ingredient in the constructions of [11].

This construction is inspired by the zig-zag construction of expander graphs dué to [31] and by Rein-
gold’s beautiful proof forSL = L [30]. Although there is no direct technical connection between these
works and our construction, our proof has the same overall structure, consisting of a logarithmic number
of iterations, where each iteration makes a small improvement in the interesting parameter (be it the
UNSAT value in our case, or the spectral gap in Reingold’s case).

The steady increase of thensAT value is inherently different from the original proof of the PCP
Theorem. There, a constanSAT value (using our terminology) is generated by one powerful trans-
formation, and then a host of additional transformations are incorporated into the final result to take care
of other parameters. Composition is essential in both proofs.

1.5 Further Results
Short PCPs and Locally Testable Codes

The goal of achieving extremely-short Probabilistically Checkable Proofs and Locally-Testable Codes
(LTCs) has been the focus of several works [27,[21] 18] 9| 7, 8]. The goal is to convert a standard NP
proof into a “robust” PCP proof, with the minimal amount of increase in the proof length. Discussion of
Locally Testable Codes is deferred to Secfipn 8.

The shortest PCPs/LTCs are due'to [7] and [8], each best in a different parameter setting. For the case
where the number of queries is constant, the shortest construction is due to [7], and the proof-length is
n - 208" The construction of [8] has shorter proof-length,poly log n, but the number of queries it
requires ispoly log n. Our result combines the best parameters from both of these works. Our starting
point is the construction [8]. We first transform this construction into a two-query constraint system



C whose size is - poly logn, such that if the input was a ‘no’ instance, thensaT(C) > m,

and otherwise&JNSAT(C) = 0. Then, by applying our amplification st&€p(loglogn) times, we raise

the unsat value to a constant, while increasing the size of the system by only another polylogarithmic
factor. Using standard notation (which is defined in Seon 8), we shovwsthat PCP%J[logQ(n :

polylogn), O(1)].

Assignment Testers

We further extend our main amplification step (Theofen 1.5) to work for assignment-tester reductions
(alternatively called PCPs of Proximity), defined(in[[7, 11]. This carries over to extend our combinatorial
construction of PCPs to that of assignment-testers / PCPs of Proximity. Without getting into the full
definition (which can be found in Sectiph 9) we note that this object is syntactically stronger than a PCP
reduction. It is known to imply the PCP theorem, but the converse is not known.

We obtain the aforementioned short locally-testable codes by first obtaining short assignment-testers
(with comparable parameters to those of the short PCPs described above), and then applying a simple
generic construction from[7].

1.6 Organization

Sectior] 2 contains some preliminary facts about expander graphs and probability. In [Section 3 we prove
the main theorem, relying on Lemmas|1.6, 1.7, 1.8 stated above, and deduce the PCP Theorem as
well. The next three sections (sectigri§ #, 5, @hd 6) are devoted to the proof of Lémias|1.7, 1.8 and
[1.6, dealing with the three operations on constraint graphs. In S¢dtion 7 we describe a concrete (and
inefficient) construction of an assignment-tegfeso as to make our proof self-contained.

Sectionsg B anfd]9 contain the results on short PCPs and LTCs. In Sgction 8 we construct PCPs and
locally-testable codes whose length is linear up to a poly-logarithmic factor. In Sg¢tion 9 we describe
how to extend our main amplification step (Theoten] 1.5) for assignment-testers. We include a short
discussion about our amplification and parallel-repetition in Seftipn 10.

2 Preliminaries

2.1 Expander Graphs

Expander graphs play an important role in a wide variety of results in theoretical computer science. In
this section we will state some well-known properties of expander graphs. For an excellent exposition
to this subject, we refer the reader[tol[23].

Definition 2.1 LetG = (V, E) be ad-regular graph. LetE(S, S) = |(S x 5) N E| equal the number
of edges from a subsétC V to its complement. Thedge expansiorof G is defined as

E(S,S)

h(G)= min
@ s:sl<ivi/z S|

Lemma 2.1 (Expanders) There existly € N and hg > 0, such that there is a polynomial-time con-
structible family{ X, }, . of do-regular graphsX,, onn vertices withh(X,,) > hg. (Such graphs are
called expanders).

Proof: It is well known that a random constant-degree graph-amrtices is an expander. For a deter-
ministic construction, one can get expander2bwertices for anyk from the construction of [31]. For
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n =2F —n/ (0 < 2¥-1) one can, for example, mergé pairs of non-neighboring vertices. To make
this graph regular one can add arbitrary edges to the non-merged vertices. Clearly, the edge expansion
is maintained up to a constant factor. ]

The adjacency matrix of a gragh= (V, E) is a|V| x |V| matrix A such that4,;; = 1iff (i,j) € E
andA;; = 0 otherwise. The second eigenvalue of a graplienoted\(G), is the second largest eigen-
value of its adjacency matrix in absolute value. The Rayleigh quotient gives a convenient expression for
this value.

Lemma 2.2 LetG be a graph A its adjacency matrix, and let(G) denote the second largest eigenvalue
in absolute value. Thek(G) = max, 5, 1 [(z,Az)| .

(z,x) *

The following important relation between the edge expansion and the second eigenvalue is well-
known, see, e.g [23],

Theorem 2.3 Let G be ad-regular graph with eigenvalueg = \o > A\; > ... > \,_1, and leth(G)
denote the edge expansion(f Then

h(G)?

M <d-—
1= 2d

As a corollary of Lemmg 2|1 and the above theorem we obtain

Corollary 2.4 There existly’ € Nand0 < \y < dy’, such that there is a polynomial-time constructible
family { X, },,ciy Of do’-regular graphsX,, onn vertices with\(X,,) < Ao.

Proof: For anyn € N let X,, be thedy-regular graph guaranteed by Lemma 2.1. By addingelf-
loops to each vertex iX,, we obtain ady’ = 2dy-regular graphX/,, with the same edge-expansion
ho. However, it is easy to see that now all eigenvalueX ffare non-negative, and in particul&afX/,)
equals the second-largest eigenvalueXgf Taking\o = dy’ — % < dy/, Theore gives the
result.

Finally, we prove the following (standard) estimate on the random-like behavior of a random-walk on
an expander.

Proposition 2.5 Let G = (V, E) be ad-regular graph withA(G) = . Let I C E be a set of edges
without self loops, and lek be the distribution on vertices induced by selecting a random edgg in
and then a random endpoint.

The probabilityp that a random walk that starts with distributiali takes the + 1st step inF, is

upper bounded b% + (%')Z.

Proof: Let B C V be the support of{. Letn = |V/| and letA be the normalized x n adjacency
matrix of G, i.e., A;; equalsk/d wherek is the number of edges between verticesidj. The first and
second largest eigenvalues (in absolute value) afel and\ = A/d respectively.

Let = be the vector corresponding to the distributigni.e. x, = Prx [v] equals the fraction of edges
touchingv that are inF', divided by2. Since the graph ig-regular, Prx[v] < ﬁ. Let y, be the

probability that a random step fromis in F', soy = @x. The probabilityp equals the probability of

landing in B afteri steps, and then taking a step inside

p=">"pu(Al), = 3 yu(Alz), = (y, A'z) .

vEB veV
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Let 1 be the alll vector. Writez = 2+ + z/l wherez!l 2 11, is an eigenvector aft with eigenvalue

1,andz* 2 z—zll. The vector:* is orthogonal tar!! sincel -z = 3, Pryfv] — 32, I-1-1=0.

Denotel|z|| = /> _, z2. Clearly,
A%< AP llat || < (APl

Observe that|z||? < (3, |@y]) - (max, |zy]) < 1 (max, |z,|) < ﬁ. By the Cauchy-Schwarz
inequality,
i i 2|F 31 Xt
(v.242*) <l 4% < 2 a3 ) < 15
Combining the above we get the claim,

i\ — o Al i N 20 s EL (ALY

2.2 Probability

The following easy fact is a Chebychev-style inequality. It is useful for showing that for a non-negative
random variableX, Pr[X > 0] ~ E[X] whenevefE[X] ~ E[X?].

Fact 2.6 For any non-negative random variablé # 0, Pr[X > 0] > E)[()g}

Proof: We repeat a proof from [25, Lecture 5].

E[X]=E[X - 1xs0] < VE[X?VE[(1x>0)?] = VE[X?]y/Pr[X > 0].

where we have used the Cauchy-Schwarz inequality. Squaring and rearranging completes thaproof.

2.3 Error Correcting Codes

An error-correcting codas a collection of string€’ C X", whereX is some finite alphabet: is called
the block-length of the codéog;s; |C is the dimension of the code, a%dogm |C| is the rate of the
code. The distance of the codenisn, < dist(x, y) wheredist(-, -) refers to Hamming distance. We
also writerdist(z, y) = Ldist(x, y) for relative distance.

A one-to-one mapping : D — 3" is also sometimes called an error-correcting code. Its dimension
and distance are defined to be the respective dimension and distance of it {fage

It is well known that there exist families of cod¢€’, C {0,1}"}, . for which both the distance

)
and the dimension ai®(n), and for which there is a polynomial-sized circuit that checks C,,, see
e.g. [33].

2.4 Assignment Tester

An assignment tester is a certain type of PCP transformation that is useful for composition. We describe
below a stripped-down version of the definition [of[11], that suffices for our purposes.

Basically, an assignment tester is an algorithm whose input is a Boolean dirand whose output
is a constraint grapty. This graphcontainsthe input variables ob as some of its vertices, and its unsat
value is related to the satisfiability @f as follows. Roughly speaking, the only way an assignment for
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the variables of7 can have a small unsat value is if its restriction to the variableB isf close to an
assignment that satisfids Here is the formal definition.

For a Boolean circuif overn variables, denote by SA®) C {0,1}" the set of assignments that
satisfyd.

Definition 2.2 (Assignment Tester) An Assignment Testewith alphabet®, and rejection probability
e > 0 is an algorithmP whose input is a circuitb over Boolean variables(, and whose output is
a constraint graphG = ((V, E), %, C) such thﬂ V' D X, and such that the following hold. Let
V=V \ X, andleta : X — {0, 1} be an assignment.

e (Completeness) i € SAT(®), there existd : V' — 3 such thatuNSAT,;,(G) = 0.
e (Soundness) i ¢ SAT(®) then forallb: V' — X, UNSAT,u(G) > € - rdist(a, SAT(D)).

Note that we make no requirement on the complexity of the algorfthm

3 Proofs of the Main Theorem and of the PCP Theorem

Based on the constraint graph operations described in Sgction 1.2, and on Lefnma 1.7 Lgmma 1.6, and
Lemmg 1.8 we can already prove our main theorem.
Proof of Theorem[1.5: We define

G' = (prep(G))' o P
for an assignment testg? whose existence is guaranteed by Theofer 5.1, and a vatu& to be
determined later. Let us elaborate on the constructiaf’ of

1. (Preprocessing step:) Lét; = prep(G) be the result of applying t6' the transformation guaran-
teed by Lemmp 1|7. There exist some global constartsi ands; > 0 such thatf; is d-regular,
has the same alphabet@s\(H;) < A\ < d, andf; - UNSAT(G) < UNSAT(H;) < UNSAT(G).

2. (Amplification step:) LetH, = (H;)?, for a large enough constant> 1 to be specified below.
According to Lemma 1]6, there exists some constanrt 5(), d, |X|) > 0 for whichuNsAT(Hs) >
B2/t - min(UNSAT(Hy), 1). However, the alphabet grows 1o

3. (Composition step:) Le&’’ = H, o P be the result of applying té, the transformation guar-
anteed by Lemmja 1.8. Here we rely on the existence of an assignmentResteguaranteed in
Theoreni5.11.

The alphabet of+’ is reduced t@ while still 55 - UNSAT(H2) < UNSAT(G’) < UNSAT(Hy), for
a constangis > 0.

We now verify the properties claimed above. Completeness is clearly maintained at each step, i.e.,
UNSAT(G) =0 = UNSAT(H;) =0 = UNSAT(H3) =0 = UNSAT(G') = 0.

For soundness, let us choose now

2
'= G

2In a constraint graph, the s&tplays a double role of both variables and vertices.JVBp X it is meant that some of the
vertices ofV” are identified with theX variables.

)*1, and «=B33/Vt.
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Altogether,

UNSAT(G’) > 33 - UNSAT(H>) (step 3, Lemmpa 1]8)
> (B3 - B2/t - min(UNSAT(Hj ), %) (step 2, Lemmp1]6)
> (3 - B2/t - min(B1 UNSAT(G), %) (step 1, LemmpT]7)

> min(2 - UNSAT(G), )

Finally, let us verify that each of the three steps incurs a blowup that is linear in the sizdmo&tep
1 this is immediate from Lemnia 1.7. In step 2, sineg(H;) = d andt are independent of the size
of G, the number of edges i, = (H;)! is equal to the number of edgesih timesd! ! (this factor
depends o> but that is fine). In step 3, the total size grows by a factibrat depends on the alphabet
size of Hz, which equalﬁzd“m |, and onP. Again, both are independent of the sizetaf Altogether,
it is safe to writesize(G’) < C - size(G) where the factor”' ultimately depends only ofE| and on
some global constants. ]

As a corollary of the main theorem we can immediately prove the PCP theorem,

Theorem (Inapproximability version of PCP Theorem)There are constantg > 1 and |X| > 1
such that given a collectiofi of g-ary constraints over an alphabeét, it is NP-hard to decide whether
UNSAT(C) = 0 or UNSAT(C) > 1.

Proof: We reduce from constraint graph satisfiability. According to Propositign 1.4 it is NP-hard to
decide if for a given constraint graggh with || = 3, UNSAT(G) = 0 or not. So letG be an instance
of constraint-graph satisfiability witfE| = 3, and denote: = size(G). The basic idea is to repeatedly
apply the main theorem until the unsat-value becomes a constant fraction.

Let Gy = G and fori > 1 let G; be the result of applying t6/;_; the transformation guaranteed
by Theorenj 1)5. Then far> 1 G; is a constraint graph with alphabgp. Let £, be the edge-set of
Go, and letk = log |Ey| = O(logn). Observe that the size @f; for i < k£ = O(logn) is at most
C* - size(Go) = poly(n).

Completeness is easy: UINSAT(Gp) = 0 thenuNsAT(G;) = 0 for all 5. For soundness, assume
UNSAT(Go) > 0. If for somei* < k, UNSAT(G;=) > «/2 then the main theorem implies that for alll
i > i* UNSAT(G;) > «. For all other: it follows by induction that

UNSAT(G;) > min(2° UNSAT(G)), a) .

If UNSAT(Gy) > 0 thenuNsAT(Gp) > |E—10| so surely2UNSAT(Gg) > a. ThUSUNSAT(G}) > a.

This proves that gap constraint satisfaction is NP-hard, for two-variable constraints and alphabet size
Zol.

To get to a gap betweenNSAT(C) = 0 and UNSAT(C) > % one can apply simple (sequential)
repetitionu = 1/log(:2-) = O(1) times. l.e., create a new constraint systéronsisting of ANDs
of all possibleu-tuples of the constraints i¥;.. This creates a system ®fi-ary constraints that has the
desired gap.

|
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4 Preprocessing

In this section we describe how to (rather easily) turn any constraint graph into a ‘nicely-structured’ one.
We define a transformation on constraint graphs, takirtg prep(G) that consists of two simple steps

G — prep; (G) — prepy(prep; (G)).

These transformation are described in Definition$ 4.17and 4.2 below. The first transformation converts
the graph into a constant degree (regular) graph. The second transformation converts it into an expander.
The properties of each transformation are stated and proved in Lgmrhas 4.1 and[Lemma 4.2 respectively,
which together give an immediate proof for Lemma 1.7.

Definition 4.1 Let G = ((V, E),%,C) be a constraint graph. The constraint graphep,(G) =
(V' E"),X,C') is defined as follows.

e \ertices: For eachy € V let[v] = {(v,e) | e € F isincident orw}, and setl’”’ = U,e,[v].

e Edges: For each € V let X, be ad-regular graph on vertex sét| and edge expansion at least
ho (as guaranteed by Lemrha R.1). Lgt = U,cv E(X,) and set

Ey = {{(ve),(v,e)} |e={v,0'} € E}.
Finally let £/ = E; U Es.
e Constraints: The constraints a® = {c(¢’)} ... Wherec(e') is defined as follows:
— If ¢ € E; thenc(¢') is an equality constraintz(e¢’) = { (a,a) |a € 3}.
—If e ={(v,e), (v e)} € Eythenc(e') = c(e) € C.
In words, the constraint grapbrep, (G) is obtained fromG by blowing up each vertex into a cloud
of as many vertices as its degree. Two clouds are connected by one edge if the original vertices were

adjacent, and the vertices within a cloud are connected by expander edges. The constraints on external
edges (between clouds) remain the same, and ‘internal’ constraints (within a cloud) enforce equality.

Lemma4.1 LetG = ((V, E),X,C) be a constraint graph. Thef¥’ = prep,(G) is a(dy + 1)-regular
constraint graphG’ = ((V', E’), £,C’) such thafV’| < 2|E| and

¢ - UNSAT(G) < UNSAT(G") < UNSAT(G) (1)

for some global constantg), ¢ > 0.
Moreover, for any assignmeat : V' — Y leto : V — X be defined according to the plurality value,

A
Yv eV, o(v)=argmax Pr [o'(v,e :a}. 2
(1) £ argmay {W)Em[ (v,¢) = a] @)
Thenc - UNSAT,(G) < UNSAT,/(G').

This lemma relies on a well-known ‘expander-replacement’ transformation duelto [26], and we include
a proof for the sake of completeness.

Proof: It is immediate to see th&t’ is d = dy + 1 regular. Every non self-loop edge ingives rise
to two endpoints, so clearly’’| < 2|E|. We proceed to prove|(1).
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The (completeness) upper boundsAT(G’) < UNSAT(G) is easy: An assignment: V' — X can
be extended to an assignment V' — X by

V(v,e) e V', o'(v,e) 2 o(v).

Clearlys’ does not violate the constraints corresponding to edggs,iand it violates exactlyNSAT(G) | E;|
constraints corresponding f6,. Thus

UNSAT(G) | E|

UNSAT(G') <
(&) < |E1| + | E2]

< UNSAT(G).

The (soundness) lower bound UNSAT(G) < UNSAT(G’) in (1)) follows from the second part of the
lemma, which we prove next. The intuitive idea is that the expander edges “penalize” assigaments
that do not assign the same value to all copies;dbrcing o’ to behave essentially like an assignment
o for G.

Let us first observe that

|E'| <d|E|
where the inequality would have been equality were there no self-loggs in

Fix an assignment’ : V/ — X, and lets : V' — ¥ be defined according tE](Z). In other word&)

is the most popular value among the values occurringsicloud. LetF' C E be the edges aif whose

constraints reject, and letF” C E’ be the edges af’ whose constraints rejeet. Let S C V' be the
set of vertices of7’ whose value disagrees with the plurality,

S=J {(v,e) €] |o'(v,e) #(v)} .

veV

Supposee = {v,v'} € F. Then the edgq(v,e), (v/,e)} either belongs td?”, or has at least one

endpoint inS. Hence, fora 2 % = UNSAT, (G),

|F| +15| > |F| = a- |B]. &)
There are two cases,
o If [F'| > § |E| we are done sinc§ |E| > 55 |E'| and SOUNSAT,/(G’) > UNSAT,(G)/2d.

e Otherwise,|F'| < § |E|, so by @),]S| > § |E|. Focus on one, and letS” = [v] N S. We
can write S as a disjoint union of setS? = {(v,e) € SV | ¢/(v,e) = a}. SinceS is the set of
vertices disagreeing with the plurality value, we h&9g| < |[v]| /2, so by the edge expansion
of the appropriate expandéf,, , E(Sy, [v] \ S5) > ho - |Sy|. All of the edges leaving, carry
equality constraints that rejeet. So there are atlead >~ |S N [v]| = & |S| > i |E| edges
that rejecty’. Since|E| > |E'| /d, we getUNSAT,(G’) > 20 uNsAT, (G).

We have completed the proof, with= min(5, 22). m
We now turn to the second transformation, converting a constraint graph into an expander with self-

loops.

Definiton 4.2 Let G = ((V, E),%,C) be a constraint graph. The constraint grapliep,(G) =
((V,E"),%,C") is defined as follows.

e \ertices: The vertices remain the same.

14



e Edges: LetX be ady’-regular graph on vertex sét and edge sek;, with A\(X) < \g < dy’ (as
guaranteed by Corollary 24). Let, = {{v,v} |v € V'}. Finally, let E’ = E U E; U E; (where
E'’ is a multiset allowing parallel edges).

e Constraints: The constraints a® = {c(e)} ... Wherec(e') is defined as follows. # € E
thenc(¢’) is just like before. Otherwise(e’) is the null constraint (always satisfied).

Lemma 4.2 There are global constant’ > )y > 0 such that for anyi-regular constraint graphG,
the constraint graplt’ = prep,(G) has the following properties.
e G'is(d+ dy' + 1)-regular, has a self-loop on every vertex, ah@d’) < d + Ao + 1 < deg(G’),
e size(G') = O(size(G)),

e Foreverys:V — %, W‘é/ﬂ - UNSAT,(G) < UNSAT,(G") < UNSAT,(G).

Proof: Clearly,G" is d + dy’ + 1-regular and each vertex has a self-loop. To bof@') we rely on the
Rayleigh quotient (see Lemrha R.2),
AMG) = max [(z,Agx)|,
[|z]|=1,zL1
where A is the adjacency matrix aff. Clearly, if we denote adjacency matrix &f, G’ by Ax, Aq
respectively, theml = Ag + I + Ax, wherel is the identity matrix. Therefore,

MG) = max |[{z, Agz)| < max [(z,Agz)|+ max |[(z,Iz)|+ max |(z,Axx)|

|lz]|=1,zLT |lz||=1,2LT |lz||=1,zLT |lz||=1,2LT
— AG) + AI) FAX) <d+ 14 X

Finally, fix o : V' — X. Since the new edges are always satisfied and since we increased the total
number of edges by at most a factbe= %3“, the fraction of unsatisfied constraints cannot increase,

and drops by at most. [ |
Proof: (of Lemm) Let?’ = prepy(prep;(G)). The lemma is proven witl$; = ¢ - W‘é,H by
quoting Lemmap 4[1 and 4.2. n

We conclude with a stronger corollary of Lemnpag 4.1[an{l 4.2 that will be useful in SgEtion 8.

Corollary 4.3 Let 3; > 0 be the constant from Lemrha [L.7. Fix a constraint graphand letG’ =
prep(G). LetV be the vertices off and letV’ be the vertices of?’. For any assignment’ : V/ — %,
leto : V — ¥ be defined according to Equatidn (2). ThemsAT,, (G') > 31 - UNSAT,(G).

Proof: Let G; = prep,(G) andG = prep,(G1). By Lemmd 4., for every assignmertt: V' — %
o
d+do +1

Moreover, by the second part of Lemfnal4.1, we see that if we defirlé — X according to Equation

(@) then

- UNSAT,/(G1) < UNSAT, (G2).

¢ - UNSAT,(G) < UNSAT, (Gh).
Combining the two inequalities,

- UNSAT,(G) - UNSAT,/(G1) < UNSAT,/ (G2).

ce —mM8M P —
d+dy +1 “d+dy +1

Noting thatG’ = G5, and that3; = ¢ - completes the proof. ]

__d_
d+d0/+1
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5 Alphabet Reduction by Composition

In this section we describe a transformation on constraint graphs that reduces the alphabet size, while
roughly maintaining the unsat-value. We rely compositionwhich is an essential component in the
construction of PCPs. To understand composition let us ignore the underlying graph structure of a
constraint graphG, and view it simply as a system of constraidts= {ci,...,c,} over a set of
variablesX.

Let us step back for a moment and recall our overall goal of proving the PCP Theorem. What we seek
is a reduction from any NP languageto gap constraint satisfaction. Such a reduction is a polynomial-
time algorithm that inputs an instanag and generates a system of constrathtsith the following
gap property: an input € L translates to a systethfor which UNSAT(C) = 0, and an input: ¢ L
translates to a syste¢éhfor which UNSAT(C) > «, for somea > 0.

Suppose we have such a “PCP” reductfothat is not necessarily efficient: the number of constraints
‘P generates may be super-polynomial in its input size. Nevertheless, suppose the constraints generated
by P are always over a small alphal¥ég, with (say)|>y| = 8. How would such a “PCP”-reductioR
be used for alphabet reduction?

Let G be a constraint graph with constraints. . ., ¢, over alphabek. First, we cast the satisfiability
of eachc; as an NP statement, and then we feed iPtoThe output ofP is a constraint graphy; with
alphabet siz8. It has the property that if; is satisfiable then so i§;, and otherwis@&/NSAT(G;) > a.

The final constraint graph denotéto P would be some form of union of thege¢’s that guarantees a
good relation between the unsat valugbénd that of the new graph o P. In particular, we would like
to have the following properties:

o (Perfect Completeness:) UNSAT(G) = 0 thenuUNSAT(G o P) =0
e (Soundness:) There is some constasiich thaUNSAT(G o P) > € - UNSAT(G).

There is a subtle issue of consistency which will be discussed shortly below. Before that, let us convince
ourselves that the transformation makes sense in terms of efficiency. Surely, our goal of reducing the
size of the alphabet frofX| to |¥y| = 8 has been achieved. What is the siz&afP? Note that the size

of eache; that is fed toP can be bounded by some function that dependsXdnThus, the size of each

G, can be bounded by another function|Bf andP, denoted:(P, |X|), that depends on the efficiency

of P. In our contextX| remains bounded as the size@fgrows, so asymptotically the output of this
procedure is only larger than the input by a constant factor ith |X|) factoring into the constant).

Consistency. The soundness property defined above will not be satisfied if w@mmeach constraint

¢; and take the (disjoint) union of the constraint graghs It is possible that the system of constraints
{c1,...,cm} has a non-zero unsat value which will not carry oveuts; if, say, each constraint; is
satisfiable on its own. The problem stems from the fact that we are not interested in the satisfiability
of eache; but rather in their satisfiabilitgimultaneously by the same assignmditterefore, when we

run P on eache; we need a mechanism that causes the assignments for the various @taphse
“consistent” with each other, i.e., to referttte sameassignment for the original variables.

This issue has been handled before in a modular fashion by making stronger requirements on the
reductionP. Such more-restricted reductions are called PCPs of Proximity in [7] or Assignment Testers
in [11]. Below we repeat Definition 2.2 of an assignment tester. Essentially, using an assignment-tester
reduction” will force the different constant-size constraint graphs to have common vertices, and that
will ensure consistency. For an exposition as to why assignment-testers are well-suited for compaosition,
as well as a proof of a generic composition theorem, pleasé Se€ [7, 11].
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Definition 2.7 (Assignment Tester)An Assignment Testewith alphabet:, and rejection probability
e > 0is an algorithmP whose input is a circuitb over Boolean variables<, and whose output is
a constraint graphG = ((V, E), ¥o,C) such théﬂ V' D X, and such that the following hold. Let
V=V \ X, and leta : X — {0, 1} be an assignment.

e (Completeness) i € SAT(®), there exist : V' — 3 such thatuNSAT,;,(G) = 0.
e (Soundness) i ¢ SAT(®) then forallb : V' — X, UNSAT,4(G) > € - rdist(a, SAT(P)).

We remark that our definition of the rejection probability is stronger than the standard definition in
the literature. Here it is really the ratio between the the probability of rejection and the distance of the
given assignment from a satisfying one.

We prove in Sectiop|7 that such an object exists:

Theorem 5.1 There is some > 0 and an explicit construction of an assignment tefawith alphabet
%o = {0,1}* and rejection probability.

Notice that no statement was made on the running tinf@,@nd none will be necessary.

Let us now define the composition between a constraint géapimd an assignment tester The
definition requires an auxiliary error correcting cade¥ — {0, 1}5. We recall the following standard
definitions. An error correcting code is said to have linear dimension if there is some canstait
such that < c-log, X. Itis said to have relative distange> 0 if for every a; # as € ¥, the strings
e(a1) ande(aq) differ on at leasp/ bits, namelyrdist(e(ay),e(az)) > p. Two ¢-bit stringssy, s, are
said to be)-far (resp.d-close) ifrdist(s1, s2) > d (resp. ifrdist(sy, s2) < 9).

Definition 5.1 (Composition) LetG = ((V, E), X, C) be a constraint graph and l&?
be an assignment tester. Let ¥ — {0, 1}5 be an arbitrary encoding with linear dimension and
relative distance > 0. The constraint grapliz o P = ((V', E'), ¥y, (') is defined in two steps.

1. (Robustization:) First, we convert each constraittt) € C to a circuité(e) as follows. For each
variablev € V, let [v] be a fresh set of Boolean variables. For each edge= (v,w) € E,
¢(e) will be a circuit on2¢ Boolean input variableg] U [w]. The circuité(e) will output 1 iff the
assignment fofv] U [w] is the legal encoding via of an assignment far andw that would have
satisfiedc.

2. (Composition:) Run the assignment teskeon eaclé(e). LetG. = ((Ve, E.), X0, C.) denote the
resulting constraint graph, and recall thét] U [w] C V.. Assume, wlog, thak. has the same
cardinality for eache. Finally, define the new constraint gragho P = ((V', E’),3,C’), by

V=]V, E' = | J E., ¢=Jc.

ecE eelk eelR

Our main lemma in this section is the following,

Lemma [1.§ (Composition) Assume the existence of an assignment téBtewith constant rejection
probability e > 0, and alphabety, |Xy| = O(1). There exist a constai; > 0 that depends only on
P, and a constant(P, |X|) that depends only o® and |X|, such that the following holds. Given any

%In a constraint graph, the sktplays a double role of both variables and vertices.JByp X it is meant that some of the
vertices ofl” are identified with theX variables.
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constraint graphG = ((V, E), ¥, C), one can compute, in time that is lineardize(G), the constraint
graphG’ = G o P, such thatsize(G’) = ¢(P, |X]) - size(G), and

B3 - UNSAT(G) < UNSAT(G’) < UNSAT(G).

Proof: First, let us verify that?’ = G o P can be computed in time linear ize(G). The first step
(robustization) consists ¢f/| steps of converting(e) to a circuité(e). This circuit computes a Boolean
function on2/¢ Boolean variables. Thus, each conversion can clearly be done iretiffle which is a
factor that depends ultimately only ¢8| and not onsize(G). In the second step, we feed eatth) to
‘P, obtaining the constraint gragk.. Even if the running time dP is huge compared to its input length,
this makes no difference. The reason is that the size of the inpBtisobounded by some absolute
constant, again depending %), and therefore the size of the output is bounded by some other absolute
constant (which equals the maximal output length ranging over all of the finitely many different inputs).
Since the blowup factor depends only|at} and onP we can write

size(G') = ¢(P, |2]) - size(G).

It remains to be seen that - UNSAT(G) < UNSAT(G’) < UNSAT(G). The proof is straightforward
and follows exactly the proof of the composition theoremni in [11].

Let us start with the easy part of proviogiSAT(G’) < UNSAT(G). Leto : V — X be an assignment
for G such thatUNSAT(G) = UNSAT,(G). We construct an assignment : V' — 3, by following
the two steps in Definitioh 5. 1. Recall that each vertexas replaced by a set of verticks. For each
v eV, we set

o' ([v]) = e(a(v)) € {0, 1}

whereo’([v]) means the concatenationdf(y) for all y € [v]. It remains to define values fer on

U e\ (Ul

e=(u,v)EE

If e = (u,v) € E is such thate(e) is satisfied byo, then by definition the circuié(e) is satisfied
by o’ restricted tou] U [v]. Then, according to the completeness propertPpthere is an extension
assignment fol. \ ([u] U [v]) that satisfies all constraints .. In other words, if we let: denote the
restriction ofc’ to [u] U [v], then there is some: V. \ ([u] U [v]) — X such thaUNSAT,,(Ge) = 0.
Defineco’ to coincide withb on V. \ ([u] U [v]).

For the remaining vertices (belonging to grajghswhose constraint(e) is unsatisfied by) define
o’ arbitrarily. Since eacl, has the same cardinality, it is easy to see thasAT,/(G’) < UNSAT,(G).
Therefore,

UNSAT(G’) < UNSAT,/(G’) < UNSAT,(G) = UNSAT(G).

We now move to the left inequalityds - UNSAT(G) < UNSAT(G’). We need to prove that every
assignment fo’ violates at leasps - UNSAT(G) fraction of G”’s constraints. So let’ : V' — ¥
be a best assignment f6¥, i.e., such thauNsSAT,, (G’) = UNSAT(G’). We first extract from it an
assignment : V. — ¥ for G by letting, for eactw € V, o(v) be a value whose encoding was
closest too’([v]). Let I C FE be the edges off whose constraints are falsified by By definition,

{% = UNSAT,(G) > UNSAT(G). Now lete = (u,v) € F. We will show that at least & fraction of
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the constraints of the graph, are falsified by’. Recall that the constraint gragh. is the output ofP
on inputé(e). Thus, we must analyze the distance of the assignmentjfor[v] from the set SATé(e))
of assignments that satisffe). The main observation is that the restrictiorvoto [u] U [v], is at least
p/4-far from SAT(¢(e)) (wherep denotes the relative distance §f The reason is the definition of
o(u) (resp.o(v)) as the value whose encoding is closesttdu|) (resp.o’([v])). This means that at
least gp/2 fraction of the bits in eithefu| or [v] (or both) must be changed in order to chaagto an
assignment that satisfiége). So

rdist( o' |jup), SAT(E(e)) ) > p/4.

By the soundness property Bf at least - p/4 = (1) fraction of the constraints i/, are unsatisfied,
and we sefl; = ep/4 > 0. Altogether,

UNSAT(G') = UNSAT,(G")

1
= & Z UNSAT,|,. (Ge)
eckE

1
> & > UNSAT,, (Ge)

ecF
2 ﬁslg = (3UNSAT,(G) > B3UNSAT(G)
where the second equality follows sinde.| is the same for akt € E. |

6 Amplification Lemma

In this section we prove the amplification lemma. In fact, we prove the following slightly stronger lemma
from which Lemma 16 follows as an immediate corollary.

Lemma 6.1 Let A < d, and|X| be arbitrary constants. There exists a constant= [52(\, d, |X|) > 0,
such that for every € N and for everyd-regular constraint graptG = ((V, E), £, C) with self-loops
and \(G) < A the following holds. For every : V — 24" leto : V — ¥ be defined according to
“popular opinion” by setting, for eachy € V,

o(v) 2 max arg,cx, { Pr[A random(t/2]-step walk fromv reaches a vertew for whichs(w), = a]}.

(4)

whered(w), € ¥ denotes the restriction @f(w) to v. Then,
1
UNSAT#(G?) > 2/t - min (UNSATJ(G), t) :

Throughout this section all constants, including those implicitly referred @ (byand<(-) notation,
are independent afbut may depend od, A and|X|. Also, let us assume for notational clarity thas
even.

Before we move to the proof of Lemrha B.1 let us see how it yields Lemma 1.6.

Proof of Lemma[1.6: Let & an assignment fo&! with minimum unsat value. Then, fer defined
according to[(}),

UNSAT(G?) = UNSATz(G?) > (vt - min (UNSATG(G), 1) > 9/t - min (UNSAT(G), 1)
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where the first inequality is due to Leminal6.1. n

Let us provide some intuition for why Lemrpa p.1 holds. Let us begin by a simple mental experiment.
Fix an assignment : V' — X for G, and consider the probability of choosihgdges irGG independently
at random and checking whethefalsifies at least one of these edges. This probability is rougiyes
larger tharuNsAT,(G). Moreover, sincé is an expander graph, the probability remains (roughly) the
same even if the edges are chosen by taking a random lengiialk in G.

The graphG! is constructed to simulate this behavior. It is not hard to see that i’ — yd"/?
were “faithful” to some underlying assignmemt: V' — X (i.e. 5(v),, = o(w) for eachw reachable
from v by ¢/2 steps) theruNsATz(G?) is lower-bounded by the result of the mental experiment. The
proof of Lemmd 6.]L is more tricky since we must consider assignnagtitat are not “faithful” to any
underlying assignment.

The idea of the proof is as follows. Let us refer to the edgeS‘adiswalks since they come from
step walks inZ, and let us refer to the edges@fas edges. Given an assignment@y s : V — Edt/z’,
we extract from it a new assignmemt: V' — X by assigning each vertexthe most popular value
among the “opinions” (undef) of v's neighbors. We then relate the fraction of edges falsified by this
“popular-opinion” assignment to the fraction of walks falsified by. The probability that a random
edge rejects this new assignment is, by definition, at leststatT(G). The idea is that a random walk
passes througat least onaejecting edge with even higher probability. Moreover, we will show that if
a walk does pass through a rejecting edge, it itself rejects with constant probability.

Proof of Lemma: Lets: V — x4 be any assignment fd@&*. For eachy, &(v) assigns a vector
of d*/? values in%, interpreted as values for every vertexvithin distancet /2 of v. This can be thought
of as the opinion of aboutw. Define the assignment: V' — ¥ according to[(#). LeX, be a random
variable that assumes a valuavith probability that & /2-step random walk from» ends at a vertex
for which &(w), = a. Theno(v) = a for a valuea which maximizesPr[X,, = a], and in particular

1

Pr[X, =c(v)] > —. (5)
As mentioned above, the assignmertan be interpreted as being the “popular opinion” ahcainong
v's neighbors.

|l _

Let F' be a subset of edges that rejecso that ifUNSAT,(G) < 1/t thenm = UNSAT,(G), and

otherwise we také" to be an arbitrary subset of these edges, such Hjat Utﬂj. We have

’g: < min(UNSAT,(G), 1/t) (6)

where equality holds if we ignore the rounding error. From nows'om, F' will be fixed for the rest of
the proof.

LetE = F(G?) be the edge set ¢f’. There is a one-to-one correspondence between edgds and
walks of lengtht in G. With some abuse of notation we wrige= (vg, v1, ..., v:) where(v;_1,v;) € E
foralll <i<t.

Definition 6.1 A walke = (vy,...,v;) € E is hit by itsi-th edge if
1. (Ui_l,vi) e I, and

2. Bothd'(vg)y, , = o(vi—1) and&(vy)y, = o(v;).
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Let] = {% - \/g <i< i+ \/g} C N be the set of “middle” indices. For each walkwe define
N (e) to be the number of timesis hit in its middle portion:

N(e) =|{i €I |eis hitby itsi-th edgé]| .

N (e) is an integer betweehand+/2t. Clearly, N (e) > 0 implies thate rejects unde# (because having
e hit by thei-th edge mean&;_1,v;) € F and sar(v;_1) is inconsistent withr (v;) which carries over
to the constraint o (vg) and&(v¢)). Thus,

Pr[N(e) > 0] < Pr[e rejectss] = UNSAT(G?) .
e e

We will prove

Q(V1) - {g: < Pr[N(e) >0]. 7
Combining the above witlj [6) we get

) < QW) - 1] < Pr[N(e) > 0] < UNSATz(G")

[E| = e

Q(v/t) - min(UNSAT,(G),

| =

which gives the lemma.
We will prove [7) by estimating the first and second moments of the random vafigble

Lemma 6.2 F
Ee[N(e)] > Q(V1) - Bl
Lemma 6.3
Eo[(N(e)?] < O(V) - {2;

Equation [(}) follows by Fa¢t 2.6,

171

PriN(e) > 0] > E¥[N(e)}/EI(N(e))"] = (V) - 5

6.1 Proof of Lemmal6.2

Define an indicator variabl®/; by settingN;(e) = 1 iff the walk e is hit by itsi-th edge, as in defini-
tion. Recall = {g - \/g <j<i+ \/g} Clearly, N = Y., N;. In order to estimat&[N] we
will estimateE[N;], and use linearity of expectation.

Fix i € I. In order to estimat&[N;] we choose: € E according to the following distribution:

1. Choose: = (u,v) € E uniformly at random.
2. Choose a random walk of length- 1 starting fromu, denote it by(u = v;—1,v;—2, ..., v1,vp).
3. Choose a random walk of length- i starting fromwv, denote it by(v = v;, vit1, ..., ).

4. Output the walke = (vo, ..., v:)
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Sinced is d-regular this is no other than the uniform distribution®nAccording to Definition 6[le
is hit by itsi-th edge iff(u, v) € F and&(vg), = o(u) andd(ve), = o(v).

Clearly, the probability that stepresults in an edgéu, v) € F equals exactl g'. Observe also that
the choice oty in step2 only depends on, and the choice af; in step3 only depends on. Therefore

|F|

PI'[NZ >O] = @

Du - Pu (8)
wherep,, = Pry, [6(vo)y = o(u)] andp, = Pr,,[7(v), = o(v)]. It remains to analyzg, andp,. Let
us focus orp,, as the case qgf,, is symmetric.

Define a random variabl&’, , as follows. X, , takes a value € X with probability that a random
¢-step walk fromu ends in a vertexv for which &(w),, = a. In these termg,, = Pr[X, ;—1 = o(u)],
(andp, = Pr[X,;—; = o(v)]). Recall that by definitio(u) equals a value € X that maximizes
Pr[X, /2 = a]. In particular,Pr[X, ,/» = o(u)] > ‘%' Fori — 1 = t/2 it follows immediately that
pu > 1/13].

We will prove that for all¢

If [0—t/2)<\/t/2 then Pr[X., =ad]> % Pr[X,0 = d] 9)

for some absolute constant> 0 to be determined. The intuition fdr|(9) is that the self-loop&ahake
the distribution of vertices reached by a randof2-step walk fromu roughly the same as distribution
on vertices reached by d@rstep walk fromu, for any/ € 1.
Fix ¢ € I. Mark one self-loop on each vertex, and observe that any lehgiik from « in G can
be equivalently described by (i) specifying in which steps the marked edges were traversed, and then (ii)
specifying the remaining steps conditioned on choosing only non-marked edges;, L,dele a random
variable that assumes a valuevith probability that a-step random walkonditioned on walking only
on non-marked edgeeaches a vertew for which &(w),, = a. In other words, for a binomial variable
By With Pr[By, = k] = (£)p*(1 — p)*~* andp = 1 — 1/4,

1
Pr[X,¢=a] =Y Pr[By, =k Pr[X], =a. (10)
k=0

The point is that if¢; — ¢5| is small, then the distribution8,, ,, and By, ,, are similar, as formalized in
the following lemma:

Lemma 6.4 For everyp € (0,1) andc > 0 there exists som& > 0 and0 < 7 < 1 such that if
€0<£1—M§£2<€1+ﬂ,then

PI‘[thp = k} <

1
< —
T= Pr[By,, =k — 7

Vk7 |k - p€1| < C\/€>17

The proof is a straightforward computation that follows from concentration properties of the binomial
distribution, and can be found in Appendix A. We choese 0 so that

={ken ) k= pt/2 < ev/t/2}

is large: Pry.p,, [k ¢ K] < 55;. Then we apply Lemm@ 4 with the constant 0, p = 1 — &
¢y =t/2,andl, = ¢ and deduce for alt € K,

Pr[By, = k| > 7-Pr[B: , = k]

Ltp
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where0 < 7 < 1 is the appropriate constant from the lemma.
We now have for any € 1,

Pr(X,¢=a] > Y Pr[By,=kPr[X],; =ad

keK
> 7> Pr[Bys, = k| Pr[X}, =d
keK
> 7. (Pr[X t/Q_a,]—1> > L Pr[X, ., = q]
= u, 2’2‘ =9 u,t/2

where the last inequality holds because@f (5). This establiﬂwes (9), andso> 2|2\

i—1,t—qiare atmost/t/2 away fromt/2. Plugging this into EquatlorEkS) we gefnN;| >
and this completes the proof of Leminal6.2.

because both

R ).

6.2 Proof of Lemmal6.3

For a walke, let e; denote itsi-th edge. In order to upper bouiid [NV (e)?] (all expectations are taken
over uniform choice ok) we define a random variablé(e) = |{i € I |e; € F'}| that counts how

many timese intersectsF’ in the middle portion (recall = {% — \/g <3< %-i- \/g}) Clearly,
0 < N(e) < Z(e) for all e, so we will boundE[N (e)?] usingE[N (e)?] < E[Z(e)?].

Let Z; = Z;(e) be an indicator random variable thatligff e; € F'. SoZ(e) = > _,.; Zi(e), and by
linearity of expectation,

=Y Ee[Zi(e)Z;(e))=> E[Z]+2 > E[ZZ]=|I| :E"+2 Y E[ZiZ)]

i,j€1 i€l i< g i<y
i,7 €1 i, €1
(11)
As it turns outJE[Z?] is not much Iargertha% \/|F| The intuitive reason is that since the graph
G is an expander, correlations betweemthb and thej- th steps of a random walk cannot last long, so

> E[Z;Z;] is small.

Proposition 6.5 Fixi,j € I, i < j,andF C E. Then,

< Fl (IFI 1)
E[ZZ; =AY :
Let us first see that combining the proposition (11) completes the lemma. Indeed,/$ince/2t

i Fl -1
and smcq%| < =,
\F! |F| i |F| \FI F

i< g i< j
i, €1 i,5 €1
where the ‘O’ notation is hiding a constant that depends onlj\@riLet us now prove the proposition.

Proof: Observe tha?;Z; € {0,1}, andPr[Z; = 1] = }g; Thus,

_E
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Assume first = 1 andj > i. By Propositiofj 2.5,

IZr[Zj(e) =1[Zi(e) =1] < 1£] AP

~ B
where\ < 1 is the normalized second eigenvalue of the gréphindeed, lee = (v, ..., v:), condi-
tioned onZ, (e) = 1 the distribution ofv; is exactly the distributiods defined in Proposition 2.5, so the
j—2
probability that thej-th edge in this walk is irF’ is at most% + %' ’

If 5 >4 > 1, we don'’t care where the random walkvisited during its first — 1 steps, so we can
ignore those steps. In other words the tasti + 1 steps of a random walk of lengttare a random walk
of lengtht — i + 1. This is formalized by writing

ﬁ’{t[zj(e) =1[Zi(e)=1] = | /‘_€£,+1[Zj—i+1(e/) =1|2:(e) = 1].
Now by applying Propositiop 2.5 on walks of length- i + 1, the right hand side cannot exceed
|F| j—i—1
7+ A . ]

[E]

We conclude this section by commenting that there is a modification of our construction, due to
Jaikumar Radhakrishnan, that allows one to replki¢en Lemm byt. This is obviously tight
(up to the constant hidden in tli&notation). Amplification by facto®(¢) is achieved by the following
modified definition of5?: the vertices stay the same, and the aIphatE‘iWs2 as before. The edges 6f
are weighted, and described by the following random process: choose awettexndom and choose
a second vertex by taking a random walk fornthat stops after each step with probabilityt. The
constraints are defined as before. For details on how to analyze this construction the reader is referred to
[28].

7 An Explicit Assignment Tester

In this section we prove Theorgm b.1, i.e., we outline a construction of an assignmenftesry)
be a Boolean circuit over Boolean variables . . ., zs. We describe an algorithi® whose input is)
and whose output will be a constraint graph satisfying the requirements of Def[nition 2.2. We begin by
introducing the Long-Code. Let
L={f:{0,1}° - {0,1}}

be the set of all Boolean functions emits. Given a string = (ay, . ..,as) € {0,1}°, defined, : L —
{0,1} by

VieL Adf)=f(a). (12)
Each 4, itself can be viewed as a string of| bits, and the set of stringsA, |a € {0,1}"} is an
error-correcting code callgtie Long-CodeRecall that twd-bit stringssy, so are said to bé-far (resp.
d-close) from one another ifist(s1, s2) > ¢ (resp. ifdist(s1,s2) < 6¢). Itis not hard to see that if
a # a’ thenA, and A,/ are%-far from one another.

In fact we consider only so-called “folded” strings. A stridgis said to be folded over true if for
every f, A(—f) = —A(f). Astring A is said to be folded ovep : {0,1}* — {0, 1} if for every f,
A(f) = A(f N¢). Wheny is clear from the context we say that a strings “folded” if it is folded
both over true and ovep. Clearly, in order to specify a folded stringy: L — {0,1} it is enough to
specify it on the coordinatesip C L, defined as follows. For every paft1 — f € L, let L’ contain
exactly one of them, and set

v={fel|f=fnry}.

We are now ready to state the Long-Code test theorem.
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Theorem 7.1 There exists d.ong-Code Testl’ which is a randomized algorithm that has input a
functiony : {0,1}* — {0,1}, and also oracle access to a folded string : L — {0,1}. T

reads the input) and tosses some random coins. Based on these it computes a three-bit predicate
w : {0,1}* — {true, false} and three locationsfi, f2, f3 € L in which it queries the stringd. It

then outputsv(A(f1), A(f2), A(f3)). Denote an execution @f with access to inpup and stringA by

T4(+)). Then the following hold,

e (Perfect completeness:)dfc {0, 1}° such that)(a) = 1, thenPr[T4«(¢)) = true] = 1.

o (Stron@ soundness:) For every e [0,1],if A: L — {0, 1} is folded and at leasi-far from A,
for all a for which(a) = 1, thenPr[T4(y) = false] > Q(9).

For the sake of self-containedness, we include a proof of this theorem in Appendix B. We now proceed
to construct a system of constraints based on thelte$his is done in two rather standard steps,

1. (Modified Test:) LetX = {z1,...,z,} be a set ofs Boolean variables. Also, let there be a
Boolean variable for eacfi € L;}. Since an assignment for these variables can be expanded into
a foldedassignment for., we pretend from now on that we have a Boolean variable for every
f € L. We allow the test to access any variable indexed.byVhen it accesses some variable
ferL\ L:,y the value of the variable is determined by accessing the appropriate varid:{Le in
For example, ifl — f € Lgp then to read the value gf we access the value of— f and negate
the assignment. To summarize, from now on we ignore this issue and simply pretend that we have
a variable for eaclf € L and that the assignment for these variables is guaranteed to be folded.

Define a modified tesT” as follows. Given input) and oracle access to a folded assignment
A: L — {0,1} and an assignment: X — {0,1}, run7 on andA with probability1/2, and
otherwise choose a random e X and arandonf € L, and test that (z;) = A(f) ® A(f +€;).

2. (Creating the Constraints:) Introduce a new variahl@er outcome- of the coin tosses of”.
These variables will take values {0, 1}3, supposedly specifying the correct values of all three
variables queried by’ on coin tosses.

We construct the following system of constraints: There will be a constraint for every possible
choice ofz,. € Z and a variable of the three accessed @y on coin toss (soy € X U L). This
constraint will check that the assignment fgrwould have satisfied”, and that it is consistent
with the assignment fay.

The algorithimP will output the constraint grapy whose vertices ar& U LU Z, and whose constraints
(and edges) are as specified above. The alphabé&t is {0, 1}3, where the Boolean variables U L
take values only if000,111} C X, identified with{0,1} (i.e., a constraint involvingg € X U L
immediately rejects if the value gfis not in{000, 111}).

Lemma 7.2 The reduction taking : {0,1}* — {0,1} to G is an assignment tester, witty = {0,1}*
and constant rejection probability > 0.

Proof: Let us identify the Boolean variables ¢fwith X, so the constraint grapgh has the correct form
according to Definitiop 2]2. We need to prove

e (Completeness) W € SAT(v), there exist$ : L U Z — ¥4 such thaUNSAT, ,(G) = 0.

“We refer to ‘strong’ soundness as opposed to regular soundness, due to the stronger property of having the rejection
probability proportional to the distance from a “good” string.
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e (Soundness) It ¢ SAT(y) thenforallb: LU Z — 3o, UNSAT,»(G) > € - rdist(a, SAT()).

The completeness part is easy. Let the assignment for the variablebend, (defined in Equation
(17)). Itis then easy to assign the variahles a consistent manner.

For soundness, assume that X — {0, 1} is an assignment such thatist(o, SAT(¢)) = 4, for
somed > 0. Fixanyb: LU Z — X, and denoted = b|;,. We claim

Proposition 7.3 Pr[T747 (1)) = false] = Q(6).

Proof: We observe tha# is folded (by the discussion in ite 1 above). Assume first thatl —
{0,1}isd/2farfrom A, foralla € SAT(¢) C {0,1}°. Then by Theorein 7|T rejects with probability
atleast2(d), soT” rejects with probability at least half of that, which is af3¢@)). Otherwise A is §/2-
close to the long-code encoding of somlec SAT(y)). We now compare’ ando which are both
assignments for the variables©f Sincea’ € SAT(v)),

f;r[a(xi) # d (z;)] = 1dist(o, a’) > rdist(o, SAT ()] = 6.

Now recall that with probabilityl /2, 7" chooses a randornand a randony and checks thatl(f) &
A(f + ;) = o(z;). SinceA is §-close toA,/, we have for alt:

Pr[AN) @ A(f +e)=d@)] = Pr[A(f)=f(@) and A(f+e)=(f&e)a)

> 1-2-6/2=1-6
The check fails whenever, f are such that/(z;) # o(x;) and yetA(f) & A(f + e;) = a'(x;).
Altogether this occurs with probability at least — §)d > §/2, andT” runs this test with probability
1/2, so it rejects again with probabilitp(d) as claimed. |
Consider the assignmebit;. For every random string that causgsto reject (on input, A), the
associated variable. is either assigned consistently with o which means that its value immediately
causes the associated constraint to reject; or it is inconsistentAyith Each inconsistency will be
detected with probability at leasf 3. Thus at Ieas{(@ = Q(¢) fraction of the constraints reject. Hence
UNSAT,us(G) = Q(5) = Q(rdist(o, SAT (¢))). |

8 Short PCPs and Locally Testable Codes

In this section we describe how to construct extremely-short Probabilistically Checkable Proofs and
Locally-Testable Codes (LTCs). Our starting point is the construction of Ben-Sasson and [Sudan [8].
The case of short PCPs follows rather directly from our main theorem (Thgorém 1.5) and is described
first, in Subsectiop 8]2. The case of short LTCs is analogous, and is obtained similarly from a variant of
the main theorem. This variant is an adaptation of our reduction between constraint graphs into a special
kind of reduction called an assignment tester or a PCP of Proximity. We feel that this adaptation may be
of independent interest, and it is described fully in Sedtion 9. Assuming this adaptation, we describe our
short LTCs in Subsectidn 8.3. Let us first begin with some definitions and notations.

8.1 Definitions and Notation

Given a system of constrainds we denote itsinsat-valudy UNSAT(®): the minimum over all possible
assignments fob’s variables, of the fraction of unsatisfied constraints. This is a natural extension of the
unsat-value of a constraint graph.
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Definition 8.1 (PCPs c[log £, q]) We define the class of languagls’ P .[log,(¢(n)), ¢(n)], with pa-
rameterss(n), c(n) and¢(n) andg(n) as follows. A languagé is in this class iff there is a reduction
taking an instance: to a system of constraint®(x) such that, fom = |z,

e |O(z)| < {(n); and each constrainp € ®(x) accesses at mog{n) variables.
e If z € Lthenl — UNSAT(®(x)) > ¢(n)
o If 2 ¢ L thenl — UNSAT(®(z)) < s(n)

Definition 8.2 (Locally Testable Codes)A codeC' C X" is (q, 6, )-locally testable if there is a ran-
domized algorithmA that is given oracle access to a string then (non-adaptively) reads at magt
symbols frome, and decides whether to accept or reject such that

e Foreveryz € C, Pr[A* accepts] = 1.
e For every stringy € X" such thatrdist(y, C') > 0, Pr[AY rejects] > e.

8.2 Short PCPs

Our main theorem in this section is,
Theorem 8.1 SAT € PC’P%’l[logz(n - poly logn), O(1)].
We prove this theorem by relying on a recent result of Ben-Sasson and Sudan,
Theorem 8.2 ([8, Theorem 2.2])For any proper complexity function: N — N,
NTIME(t(n)) C PCP%J[log(t(n)poly log t(n)), polylogt(n)].
From this result, we deriv6 AT € PCPlfpolyllogwl[logQ(n - poly logn), O(1)]. More precisely,

Lemma 8.3 There exist constants, co > 0 and a polynomial-time reduction that transforms any SAT
instancey of sizen into a constraint graphG = ((V, E), ¥, C) such that

e size(G) < n(logn) and|X| = O(1).

o If ¢ is satisfiable, thewNSAT(G) = 0.

e If o is not satisfiable, theaNSAT(G) > m

Before proving the lemma, let us see how it implies Thedrer 8.1,

Proof of Theorem[8.1: Given a SAT instance of size, we rely on Lemma 8|3 to reduce it to a
constraint graplG whose size we denote by, = n - (logn)“t. Then, we apply the main theorem
(Theorenj 1.p) iteratively = ¢ - loglog m < 2¢2 log log n times. This results in a constraint-gragh
for which UNSAT(G’) > min(2* - UNSAT(G), a) = «, and such thatize(G') = Cezloglosm .y <

n - (logn)t2e2108C — p . poly log n.
To get an error-probability o§ one can apply the expander-neighborhood sampler 6f [19] (see also
[16, Section C.4]) for efficient amplification. ]

Proof of Lemma(8.3: SinceSAT € NTIME(O(n)), Theorenj 8 yields some constaatsas > 0

and a reduction from SAT to a systewn of at mostm = n - (logn)® constraints, each over at
most(log n)*2 Boolean variables such that satisfiable inputs go to satisfiable systems, and unsatisfiable
inputs result in systems for which any assignment satisfies at gnofsthe constraints. Our goal is to
reduce the number of queries per constraint. Basically, this is done by introducing new variables over
a large alphabet, which enables few queries in a naive way (which causes the rejection probability to
deteriorate). Then, the alphabet size is reduced through composition.
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Two-variable Constraints For each constraint i/, let us introduce one new (big) variable. This
variable will take values over alphahgt= {0, 1}(1"g "* that supposedly represent values to all of the
original (small) variables queried in that constraint. The number of big variables=sn - (logn)®**.
Introduce(log n)?2 new constraints per big variable: Each constraint will query the big variable and
exactly one of the small variables queried by the corresponding constraint. The constraint will check
that the value for the big variable satisfies the original constraint, and that it is consistent with the second
(small) variable. Call this system and observe thd®| = n - (logn)?1+92,

What isuNsAT(¥)? Given an assignment for the original variables it must cause atie@sforig-
inal) constraints to reject. Each big variable that corresponds to a rejecting constraint must now partic-
ipate in at least one new rejecting constraint. Indeed, even if it is assigned a value that is accepting, it
must differ from this assignment, so it will be inconsistent with at least one original (small) variable.
Altogether, at Ieasrt%2 > (log n)_(“2+1) fraction of the constraints i must reject.

m-(logn)®

Composition We next apply composition to reduce the alphabet size fiam>| = poly logn to

O(1). This is exactly as done in Lemrha [L.8 except that we are somewhat more restricted in our choice
of the assignment tester algorittith (or equivalently: a PCP of Proximity), in that the output size of

P must be polynomial in the input size. Observe that we only require that the size of the output is
polynomial(and not quasi-linear) in the input size, so there is no circularity in our argument. Existence
of such an algorithn® is an implicit consequence of the proof of the PCP Theorer!ofl [3, 2], and was
explicitly described inl{i7, 11].

Here is a brief summary of the construction of Lemimg 1.8: We encode each variable via a linear
dimension, linear distance error-correcting-code, treating the ‘small’ variable in each constraint as if its
value lies in the large alphabet. We then faion each constraint and let the new syst&hie the union
of the output constraint systems.

Assuming that the rejection probability &fis ¢ = (1), the soundness analysis shows that

1
UNSAT(T') > UNSAT(D) - £ = Q((logn)~(@2t))y = — —
(W) 2 UNSAT(Y) - = ((logn)~**1) =
where the middle equality holds sineds a constant. Since the input size fBrwas the size of one
constraint in¥, i.e., poly logn, it follows that the size of the constraint system output/ys also
poly log n. This means thgW’| = || - poly logn = n - poly log n [ ]

8.3 Short Locally Testable Codes

A similar construction to that of Theorgm 8.1 can be used to obtain locally-testable codes with inverse
poly-logarithmic rate (i.e., mappingbits tok - poly log & bits), that are testable with a constant number
of queries.

The way we go about it is by relying on a variant of the main theorem (Thelorém 1.5). Recall that the
main theorem is a reduction froGito G’ = (prep(G)*) o P. We will need a stronger kind of reduction,
that is an assignment tester (also called a PCP of Proximity), as defined in Definition 2.2.

In the next section we will prove that the main amplification step (as in Theforgm 1.5) can also work
for assignment-testers. Formally,

Theorem[9.] There existg € N such that given an assignment-tester with constant-size alphiabet
and rejection probability, one can construct an assignment-tester with the same alphabet and rejection
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probability at leastmin(2¢, 1/t), such that the output size of the new reduction is bounded by at most a
constant factor times the output size of the given reduction.

Just as our main theorem (Theorgm| 1.5) could be combined with the construction of [8] yielding a
short PCP, Theorem 9.1 can be combined with the construction of [8] to yield short PCPs of Proximity /
assignment-tester reductions.

Corollary 8.4 There exists an assignment-tester with constant size alphabet, and constant rejection
probability e > 0, such that inputs of size are transformed to outputs of size at mastpoly log n.

Proof: As in the proof of Theorerp 8.1, we begin with a lemma that follows from the construction of

8,

Lemma 8.5 There exist a polynomial-time assignment-tester with constant alphabet size and rejection

probability e > %Om such that inputs of size are transformed to outputs of size at mast
poly log n.

(logn)

The difference between this lemma and Lenjmg 8.3 is that here we require the reduction to be an
assignment-tester. This can be derived from the construction of [8], in a similar way to the proof of
Lemmd8.8.

Let Ay be the assignment-tester from Lemmg 8.5. Mebe the result of applying the transformation
guaranteed in Theoremn 9.1 ofy_;. Fori = O(loglogn), the reductiond; will have the required
parameters. |

Finally, we claim that Corollary 8]4 directly implies the existence of locally testable codes of rate

1/poly logn.

Corollary 8.6 For everys > 0 there exists am = Q(4) > 0, and an infinite family of codefCn }
with rate 1 /poly log N, such thatC'y is (2, 6, €)-locally-testable.

Proof: Assuming we have the assignment tester from Coroflary 8.4, we apply the construction of [7,
Construction 4.3]. We give a brief sketch of the construction. We congfiycas follows. Fixn € N

and letC], C X" be an error correcting code with rate and distaf¢e). Let ® be a circuit over
variablesX = {z1,...,z,} that accepts iff the assignment f&ris a codeword irC},. We can assume
that|®| = O(n) (using, e.g., expander codés|[33]). Run the reduction of Cordllajy 8%, amd letG

be the output constraint grapize(G) = n - poly logn. LetY = V' \ X be the new variables added

by the reduction, and denote = |Y'|, m < n - polylogn. Let/ = %—?} N = nf + m, and define a new
code

Cn = {afb e XMt g e O b e ©™ anduNsAT,(G) = 0 whereo|x = a andol|y = b} c N,

wherea’b denotes the concatenationfafopies ofa with b. Clearly, the rate of'y is 1/poly log N. We
claim thatC\y is (2, 6, ¢)-locally-testable. Here is the testing algorithm for a given word x"*™,
Denote the-th bit of w by w;.

1. Flip a random coin.
2. If heads, choose a randone [n| and arandomj € {1,2,...,¢ — 1}, and accept ifiv; = w; .,

3. If tails, choose a random constraint@h View w[l, ..., n] as an assignment foX andw[n¢ +
1,...,nf¢ + m| as an assignment faf. Accept iff the constraint is satisfied by this assignment.
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Clearly, everyw € Cy passes the test with probability If rdist(w’, Cy) > §, then for any codeword
o = a'b € Cy, sincem < nf - g the stringsw’ ando must differ ondnt/2 of their firstn/ bits. The
reader may verify that the test rejects with probability at 1€5s). ]

Remark 8.1 (Constant Relative Distance)The codes above also have a constant relative distance.
This follows almost immediately from the distance)f except for the following caveat. A problem
would arise if for some assignmemnfor X that satisfiesb there are two assignmenis, b, for Y such

that bothUNSAT, s, (G) = 0 and UNSAT,.,(G) = 0. This would imply that‘by, a’by € Cy, and
their distance can be quite small. However, this can be ruled out if every assiganhastonly one
assignment such thatuNsaAT, ,(G) = 0. This can be ensured here, and therefore we conclude that the
above does yield codes with constant relative distance.

9 Adapting the Main Theorem for Assignment-Testers

In this section we show how to adapt the main amplification step (Theorém 1.5), that was described as a
reduction between constraint graphs, to work within the more demanding framework of an assignment-
tester. This gives an extension of our main theorem (and Theorém 1.2), to assignment-testers / PCPs of
proximity.

Theorem 9.1 There exist$ € N and|%,| > 1 such that given an assignment-tester with constant-size
alphabetX and rejection probability, one can construct an assignment-tester with alphaheand
rejection probability at leastin(2¢, 1/t), such that the output size of the new reduction is bounded by
at mostC' times the output size of the given reduction, &hdepends only ofX|.

Suppose we have a reduction takibdo G. We construct fronG a new graphG’ and prove that the
reduction takingd to G and then ta=’ has the desired properties.

Let H = (prep(G))! be the result of running the preprocessing step (Le@a 1.7) and then raising
the resulting constraint graph to the poweWhat are the variables df ? Going fromG to prep(G)
each variabler € V is split into many copies, and we denote the set of copieshyf [v]. Next, going
from prep(G) to H = (prep(G))?, the variables off are identical to those afrep(G), but take values
from a larger alphabet. So denoting the variablegfdby V;;, we haveVy = U,cy [v]. Syntactically,
Vy is disjoint fromV/, although the values fdry are supposed to “encode” values #or Indeed, an
assignment : V. — X can be mapped to an assignment: Vg — »4"? that “encodes” it, by the
following two steps.

1. First define a mapping — o1, where the assignment : Vg — X for prep(G) is defined by
assigning all copies af the same value as(v):
YVoeVwe v, oi(w)=o(v). (13)
Let us name this mapping,. Observe also that given any assignmenpiep(G), o’ : Vi — X,
it can be “decoded” into an assignment f@raccording to “popularity” as follows. Simply set

o = m]'(¢') to be an assignment: V' — X for whichm; (o) is cIoseﬁin Hamming distance
too’.

SBreaking ties arbitrarily.
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2. Next, define a mapping; — o9, where the assignment, : Vg — 24" for H is defined by
assigning each vertax a vector consisting of the; -values of all vertices reachable framby a
t/2-step walk

Vw e Vi, oa(w), 2 o1(v) for all v reachable fromw by at/2-step walk inG . (14)

Let us name this mapping., and again, given any assignment: V; — x4 for (prep(G))*
it can be “decoded” into an assignment faep(G) as follows. Simply setr = m, (o) to be
the assignment defined by

o(v) 2 max arg,cy, { Pr{A random[t/2]-step walk fromv reaches a vertex for whicho’(w), = a]} .

This coincides with the “most popular opinion” assignment as defined in Equigkion (4) of Section 6.

Going back to our reduction, we recall that in order for our reduction to be an assignment-tester, our
output constraint graph must have the variabtesf ® contained in its set of variables. Then, we must
also verify that the completeness and soundness conditions (that réf¢hiald.

The Graph H” We next transforndf to H’ so as to include&X among the variables di’. The vertices
of H' will be Vi U X. The constraints off’ will include all of the constraints off, and also additional
constraints that will check that the assignmentif@r is a correct encoding, according to the mapping
meo o my Which mapss to o (via o1), of the assignment fok .

We describe the constraints betwe&nand V; by the following randomized procedure. Ldt:
Vi — 24" and leta : X — {0, 1}.

1. Selectx er X.
2. Selectz €, [z] (recall thatx] is the set of vertices iprep(G) that are copies aof).

3. Take at/2-step random walk iprep(G) starting fromz, and letw be the endpoint of the walk.
Accept if and only ifA(w), = a(x).

For every possible random choice of the test, we will place (an edge and) a constraint betaeen

x, that accepts iff the test accepts. We will reweigh the constraints (by duplication) so that the weight
of the comparison constraints defined by the random procedure is half of the total weight of the edges.
This completes the description éf’. Observe that the size df’ is at most a constant times the size

of G, becauseprep(G) is d-regular ford = O(1), so every vertexv € Vp participates in exactly

d'/? = O(1) new comparison constraints. The next lemma states that the reductioftorfil’ is an
assignment-tester with large alphabet, and rejection proba®ilityt) - .

Lemma 9.2 Assume < 1/t, and fixa : X — {0,1}.
o If a € SAT(®), there existd : Vi — »4"* such thatuNsAT, »(H') = 0.
e If § = rdist(a, SAT(®)) > 0, thenforevery : Vi — nd'? UNSATqup(H') > 6-min(5k, (B182Vt/2)e).

We prove this lemma shortly below. First, note that the constraint gi&pis almost what we need,
except that it is defined over the alphaﬁﬁf”, rather than oveE. Let us now proceed to construct the
final graphG’.
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The Graph G’ To reduce the alphabet @¢f’, we use composition. l.e., we assume that we have at
our disposal an assignment-testesuch that its rejection probability is some constant> 0, and its
alphabet i;. We make no requirements about the length of the outpf, dfecause we will only run
it on inputs of bounded size. For example, we can use the construction given in $éction 7.

Now, the Composition Theorem of assignment-testers, [11, Theorem 3.7], states that given any two
such reductions, their composition is well defined (it is essentially described in the proof of lemima 1.8
herein) and is itself an assignment-tester, with the following parameters:

e Thealphabet sizés that of the inner reductioR, thus the constraints i@’ are over alphabety,
as desired.

e Theoutput sizes the product of the output sizes of the two reductions. In our case, this means that
the output size of the reductioh = H’ is multiplied by aconstantfactor that is the maximum
size of the output o when run on a constraint df’.

e Therejection probabilityis the product of the rejection probabilities of the two reductions. Thus,
denoting the rejection probability & by ¢y, itis g times the rejection probability of the reduction
® = H'. Since this value wasin (s, (8132v//2)e), by choosing large enough, even after
multiplying by ¢ it is still larger thar2e for all small enougtz.

This completes the description of the transformation takirtg G’. It remains to prove Lemmja 9.2.
Proof: (of Lemmd9.2) In this proof, there are four constraint graphs that we keep in mind

G = vprep(G) = H=(prep(@)) = H.

Recall that we encode assignmentsovia m,, obtaining assignments fprep(G). These are encoded
via me, giving assignments fol. We can also go in the opposite direction where an assignme#i for
can be decoded into an assignmentforp(G) via mgl, and similarly an assignment fprep(G) can
be decoded vian; ! into as assignment fa.

e Suppose € SAT(®). Then, by assumption on the reduction frénto G, there is an assignment
b:V — X suchthatr = a U b satisfies all constraints i¥. The assignment is mapped, via
mq to an assignment; for prep(G), ando; in turn is mapped vians into an assignment fal :
o9 Vg — »d*/?, By the completeness of the preprocessing and the poweringijll satisfy
all constraints inH. It is easy to verify that, will also satisfy (together witla) all of the new
comparison constraints, SINSAT ., (H') =0

e Assume nowdist(a, SAT(®)) = § > 0. Fix some assignment: Vg — 24" We will show
that the assignmeimtU b violates many of the constraints. The idea is to first “decadgfirough
my ' and thenn; ') thereby getting an assignment: V' — ¥. Then, we show that eithéy is
close to the assignmeat in which case it is far from SA[®), so by amplificatiorb must violate
many of the constraints if/. Otherwise, ifby is far froma, then many (a constant fraction!) of
the comparison constraints will fail.

So letb; = m;*(b) be an assignment for the verticesobp(G), and letby = m; ' (b;) be an
assignment for the vertices 6f, where notationn; ', m,* was defined in steps and2 of the
construction. There are two cases.

— If rdist(bo|x,a) < 6/2 thenrdist(bg|x, SAT(®)) > /2 by the triangle inequality. Since
the reduction fromb to G is an assignment-tester with rejection probabitifythis means

32



that no matter whalip|(y\ x) iS, UNSAT, (G) > €/2. Now we claim thab; must also be
violating a similar fraction of the constraints pfep(G):

UNSAT, (prep(G)) > €6/2 - . (15)

Indeed, recall Corollary 4|3 that asserts that for ex@rgnd for every assignment for
prep(G), the fraction of constraints gfrep (&) violated bys’ is proportional to the fraction
of constraints o5 violated bym*(o’). Plugging inb; for o', and sinceby = m*(b1),
this implies [(1b).

Next, we claim thab must be violating an even larger fraction Bf = (prep(G))* than
UNSATy, (prep(G)):

UNSAT,((prep(G))") > B2/t - min(%, UNSAT, (prep(G))) . (16)

Indeed, this follows precisely from Lemra B.1 that states that for e¥eagd every assign-
menta for G?, the fraction of constraints af? violated by& is larger than the fraction of
constraints of7 violated by the “popular opinion” assignment, by facfafy/t). Observe
that indeedmZTl(E) is the “popular opinion” assignment. Pluggingtfor &, and since

b1 = my ' (b), this implies[(16). Combining (}5) and (16), and observing that by assumption
1/t is clearly larger tham > UNSAT;, (prep(G)),

UNSAT,(H) > 6/2 - 1 - Bo/t .

Since the constraints df are half of the constraints df’, we have
1
UNSATaU(H') > SUNSAT,(H) > £6/4 - B1 - oV,

— If rdist(bo|x,a) > 6/2, then we will show thab /8 fraction of the comparison constraints
reject. Indeed, with probability at lea&t2 the randomized test selects, in step 1, a variable
x € X for whichby(x) # a(x). Conditioned on that, consider the probability that in step
a variablez € [z] is selected such thai(z) # a(z). Sinceby(x) is, by definition, a most
popular value among values assignedbpyto the copies ofz, and since by conditioning
a(z) # bo(x), this probability is at least/2. Conditioned on both previous events occurring,
step3 selects a vertex for which b(w). # a(x), with probability at least /2 (for similar
reasoning). Altogether, with probability at Ie%st% -1 = §/8 the test rejects. This means

2
that at least /16 of the total number of tests reject, i.@NSAT,,(H') > 6/16.

We have proven that far = rdist(a, SAT(®)), and for every assignmeht the rejection proba-
bility UNSAT,,(H') is either at leasi - %6 or atleast - (B152v/1/2 - €).

This completes the proof. ]

Theoren] 9.11 also gives an immediate combinatorial construction of assignment-testers or PCPPs in
the same way that the main theorem (Thedrern 1.5) was used to derive the PCP Theorem (Thg¢orem 1.2).

Corollary 9.3 There is an assignment-tester, with constant alphabet, constant rejection probability, and
polynomial output length.
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Proof: Given a circuit® it is easy to construct a constraint gra@gh such that the reductior — Gy

is an assignment-tester with rejection probabilify{Gy|. Let us name this (trivial) assignment tester
Po. Let us denote the rejection probability of an assignment t@steyr <(P). We can now construd;
inductively for everyi > 1. Indeed for every > 0 let us construcP;; by applying the transformation
guaranteed in Theorem 9.1 ®). The theorem asserts that the assignment-t@star maps® to G4
such that

1. The alphabet of7;, 1 is Y.
2. e(Piy1) > min(3,2¢(P;)), wheret is a global constant.
3. The running time ofP;, 1 is at most a constardt times the running time dP;.

We now prove that fok = log, n, wheren = size(Gp), Py is the desired assignment tester. Clearly the
alphabet ig. It is also easy to see by induction that the running tim@pfs at mostC* = poly(n)
times the running time oPy. SincePy runs in polynomial-time, altogethé?, is a polynomial-time
transformation.

It remains to show that(P) > 1/t. Indeed, if for some* < k, (Px) > 1/t then for everyi > i*
e(P;) > 1/t and in particular this holds foP;,. Otherwise, it follows by induction from itefr] 2 above
thate(Py) > 2Fe(Py) > 1/t. n

10 Graph Powering and Parallel-Repetition

The celebrated parallel repetition theorem of Raz [29] gives a different method of amplification. Given
a systemC of constraints, a new systed{ is constructed by taking new variables corresponding to
(-tuples of the old variables, and new constraints correspondiriguples of the old constraints (we
ignore the issue of bipartiteness in this discussion). The alphabet growsfriont!. The theorem
asserts that given a system of constraihtsith UNSAT(C) = a, the ¢-parallel-repetition systent’,

will have UNSAT(C!) > 1 — (1 — a)®®),

Our graph powering construction can be viewed as settingd’/? (where the graph underlying the
constraints igl-regular) and taking a small and carefully chosen subset d@kthples of variables and of
the /-tuples of constraints. Viewed this way, the graph powering construction is a ‘derandomization’ of
the parallel-repetition theorem. We recall that Feige and Kilian proved that no generic derandomization
of the parallel-repetition theorem is possillel[13]. Their result focuses on a range of parameters that does
not apply to our setting. This raises questions about the limits of such constructions in a wider range of
parameters.

Let us conclude by mentioning a specific setting of the parameters which is of particular interest.
When the unsat value of a constraint system is some fixed constant, then applying the parallel repetition
transformation results in a new system whose unsat value approbesésncreases. This feature is
very useful in inapproximability reductions. On the other hand, our amplification stops to make any
progress for constanmt > 0, as is demonstrated in the instructive example of Bogd&nadv [10].

Of course, the main advantage of our ‘derandomized’ construction is that the new system size is only
linear in the old system size. This feature is essential for our inductive proof of the PCP theorem.
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A A Lemma about similar binomial distributions

Forn € Nandp € (0,1) let B,, , denote a binomially distributed random variable, i&[B,, , = k] =
(Z)pk(l — p)"~*. The following lemma asserts thatif m are close, then the distributions Bf, ,, and
B, are close.
Lemma|6.4 For everyp € (0,1) andc > 0 there exists somé < 7 < 1 andn, such that ifny <
n—+/n <m <n+./n,then

Pr[B,,, = k|

1
Vk €N, [k —pn| < < PriBnp=k 1
€N | pn| < e/, = Pr[Bp,=k — 7

Proof: Assume first thatn < n. We writen = m + r for some0 < r < /n and use the identity
(") = e (0)

k T m+1-k\k
m+r m-+r—
Pr[B,, =k = ( X )p’“(l—p) ok
m+1 m+2 m-+r m k —k
- . R (1 — pY? R (1 — )T
m+l—k m+2—k m+r—k<k)p( P =)

= X-p*1-pm* <m

k> — X - Pr[Bpp = K]

_ o \yrom+l omH42  _mir _ _m+a
whereX = (1 — p) A mieoE ma—y Is bounded as follows. Lek, = 7r4-. For all

a <r < \/nwehaveX, = 1_% and clearly

m—+a

1 11
1-— 1- k=&

k
m m-+a

We will choosen, large enough to make all of the expressions below strictly positive. Since

pn — cy/n,

1 1 1 1
P S eIl g
1-— o p vn p + T-pvn
Now, X = (1 —p)" - [Timy Xa > (14 1% 5) 7 = 7.
Similarly, sincen — /n < m andpn — ¢y/n < k it follows that1 — % >1—p— iﬁi So
1 1 1 1
Xo < k < c+l ) c+1 ’
l-m 1-p=57 17P 1-aym
— +1 -r _. i
and we haveX = (1—p)"-T[/_; X, < (1— W) " =: 9. Clearly since- < /n both7; and

T9 can be bounded by constants (independenf) pand we take- = min(ry, 7'2_1).
Finally, if n < m, then since clearlyn — \/m < n < m we can deduce the result from applying the
lemma with the roles ofn andn reversed, the same and the constant = ¢ + 1. [ ]

B The Long Code Test

In this section we prove Theorgm J7.1. Let us idenfify 1}° with [n] (wheren = 2°) in an arbitrary
way. We consider Boolean functiogs: [n] — {1, —1} by identifying —1 with true (soa € [n] is said
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to satisfyy iff ¢(a) = —1). Recallthatl, = {f : [n] — {—1,1}} is the set of Boolean functions ¢n].

We restate Theorem 7.1 with this modified notation.

Theorem[7.1 There exists d.ong-Code Test’ which is a randomized algorithm that has input a
functiony : [n] — {1,—1}, and also oracle access to a folded string: L — {1,—-1}. T

reads the input) and tosses some random coins. Based on these it computes a three-bit predicate
w : {0, 1}3 — {true, false} and three locationg, f2, f3 € L in which it queries the stringl. It then
outputsw(A(f1), A(f2), A(f3)). Denote an execution @f with access to inpup and folded string4d

by T4 (). Then the following hold,

e (Perfect completeness:)dfc [n] such that)(a) = —1, thenPr[T4«(¢)) = true] = 1.

) (Stron@ soundness:) For everye [0,1],if A: L — {1, —1} is folded and at leasf-far from 4,
for all a for whiche(a) = —1, thenPr[T4(x)) = false] > Q(6).

Our proof is basically a reworking of a test ofistad[[22], into our easier setting:

Standard Definitions. We identify L = {f : [n] — {—1, 1}} with the Boolean hypercubgl, —1}",
and use letterg, g for points in the hypercube. We use lettetsB or x to denote functions whose
domain is the hypercuﬂeFora C [n], define

n A .
Yot {-L1" = {-11},  xa(H) =]] /0.
i€
The charactergxa},c, form an orthonormal basis for the space of functigus: {1, 1}" — R},
where inner product is defined by, B) = E; [A(f)B(f)] = 27" >_; A(f)B(f). It follows that any
function A : {~1,1}" — {—1,1} can be written asl = 3__ A, xa, WhereA, = (A, x,). We also
have Parseval’s identity,  |A,|? = (4, A) = 1.

The Test. Lety : [n] — {—1,1} be some predicate and fix= }5. Let A : {—1,1}" — {-1,1} be
a folded string, i.e., foralf € {—1,1}" A(—f) = —A(f) and alsoA(f) = A(f A ) wheref A1 is
defined by

-1 f(a) =—-1landy(a) = —1

Vaeln],  (fAY)(a)= {

1 otherwise
Afunction A : {1,—1}" — {1, —1} is the legal encoding of the valuee [n] iff A(f) = f(a) for all
f € L. The following procedure tests whethéris close to a legal encoding of some value [n] that
satisfies).

1. Selectf, g € L uniformly at random.

2. Seth = gu wherep € L is selected by doing the following independently for evgrg [n]. If
fly) = 1setu(y) = —1. If f(y) = —1set

{ 1 w.prob.1 -7

n(y) =
—1 w. prob.7

5We refer to ‘strong’ soundness as opposed to regular soundness, since due to the stronger property of having the rejection
probability proportional to the distance from a “good” string.

"We consider here functions whose domain is an arbitrary set ohsiaed wlog we take the sét]. In the application this
set is usually somg0, 1}° but we can safely ignore this structure, and forget that 2°.
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3. Acceptunlessi(g) = A(f) = A(h) = 1.

It is clear that the test behaves according to the description in Thegorem 7.1. It remains to prove
completeness and soundness.

Proposition B.1 (Completeness)f a € [n] such that)(a) = —1, thenPr[T4«(¢)) = true] = 1.

Proof: It is easy to check completeness: We fix samne [n] for which¢)(a) = —1 and assign for all
fy A(f) = f(a). Clearly A is folded. Also, ifA(f) = f(a) = —1 then the test accepts. Finally, if
A(f) = f(a) = 1thenA(h) = h(a) = —g(a) = —A(g) # A(g), and again the test accepts. ]

Proposition B.2 (Soundness)There exists a constant> 0 such that for every € [0,1],if A: L —
{1, -1} is folded and at leasi-far from A, for all a for whiche)(a) = —1, thenPr[T4(z)) = false] >
c- 0.

Proof: Let us fixé € (0,1] and assume that is §-far from everyA, for a € [n] that satisfies).
Denote the rejection probability of the test By[T(¢)) = false] = . The proof of soundness will be
based on the following proposition.

Proposition B.3 There exists a constant > 0 such that ifl" rejects with probabilitys then

> Jda| < c-

Ja|>1
We defer the proof of the proposition to later. We will need the following result,

Theorem B.4 ([15]) There is a global constarit’ > 0 (independent of) such that the following holds.
Letp > 0andletA: {1,—-1}" — {1,—1} be a Boolean function for whicpC, 1,1 |Aal? < p. Then

either|Ay[2 > 1 — C'p, or for somei € [n], |Agy]? > 1 — C'p.

Itis well-known that sincet is foldedA,, = 0 whenever (i)a/| is even, or (ii)3i € o for which(i) = 1
(recall thatl corresponds to false). The reason is that we can parfition1}" into pairsf, f’ such that

Ao =27 A Xal) =27 2 S ANl + AP xal ) =271 S0 =0.
f f

2
!
In(i)let f/ = —f,soxa(f) = xa(f') but A(f) = —A(f’). In (ii) let f" = f + e; wherei is an index
for which (i) = 1; soxa(f) = —xa(f’) but A(f) = A(f’). We can thus deduce from Theorgm|B.4
that there is somee [n] for which(i) = —1 and\/l{i}\? >1—-C'Ce.
This means that one of the following holds,

1. Ay >V1=CCe > 1-C'Ce, or
2. —Ay > V1-C'Ce > 1 - C'Ce.

Since by definitiond, = E; [A(f)xa(f)] = 1 — 2rdist(4, xa), it follows that rdist(A, X{i}y) =
#. If the first item holds, then clearlydist(A, xy;;) < CC’¢/2 and we are done by choosing
¢ < 2/CC'". Suppose the second item holds, we will show thatlarger than some apsolute constant,
and by choosing: smaller than that constant we will be done. Imagine first thAt{i} =1, ie,,

A = —xy;- Then the probability (over the choice ¢fg, andh) that f(i) = —1 andg(i) = —1 and
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h(i) = —1is at least} - (1 — 7), and in this case we haw(f) = A(g) = A(h) = 1 and the test
rejects (s& > (1 — 7)/4 > 1/8). This probability can go down by at mastdist(A, —x;;) (which is
an upper bound on the probability that at least ong,agf & is a point of disagreement betwednand
_X{i})- We get
€> o 3rdist(A, —xgn) > L 3CC's
=4 A g

rearranging we get > m
Choosinge = min (&, m), we have proven that is é-far from everyyy;, for a value ofi
that satisfieg), then the test rejects with probability at least ]

It remains to prove the proposition.

Proof of Proposition[B.3: Let us arithmetize the acceptance probability as follows

_ A+ AU+ Alg) (A + A(h))
8

and note that since the paifg, ¢g) and (f, h) are pairs of random independent functions, and since

E[A] = A, = 0 due toA being folded, this equals,
7T 1 1
= 5~ gEon [A@AM)] — SErn [AN AW AD).

Using the Fourier expansiafi(g) = 3., A.xa(g) the first expectation can be written as

[ £ b - s

1 —¢e = Pr[Testaccepts=E; ; |1

which is bounded by in absolute value, sincé¢ = 0. Recall that the entire expression is equal &
by assumption. This implies that the second expectation (whose value let ud¥ipmast be at most
—1+ 7+ 8. We write it as

14748 >W = E,;, l > AdAgAyxa(g)xslgm)xy(f) | =
a,8,7C[n]

a,vC[n]
= Y AR (14—,
yCaCln]

where the last equality holds because of the correlation ahd f. In particular, (i) ify € « then

Ef . [xa(1)x~(f)] = 0, and (ii) for everyi € [n], E[u(i)] = 7 andE[f (i)u(i)] = —1 + 7.
We now bound the absolute value of this sum, followingd [22]. First we claim that

Z((l — )byl < (1 — 7)led,
7Ca

The left hand side is the probability that tossihjgr| independent-biased coins results in a pattern
wherey € {0,1}%l. This probability is(72 + (1 — 7)2)l*l < (1 — 7)ol sincer < 1 — 7. By the
Cauchy-Schwarz inequality,

Z 1471(1 — r)Ml(r)levl < \/Z ‘AWP Z((l — D)hl(r)le\)2 < (1 — 7)lel/2

vCa 7Ca rCa
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so, splitting the sum inttv| = 1 and|a| > 1,

W< Y 1AAA—7)+ D AP (1 —m)ll2,

lal=1 la|>1
Letp = 3|4p51 [Aal®. We have V| < (1 — p)(1 —7) + p(1 — 7)%2, sinced, = 0 for |a| even. Thus

< 8¢
P20 -vi-n)

is fixed, we have = O(¢). |

I—7—8e< W[ <A-7)((1-p)+pV1-7) =

L

Sincer = 155
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