
The PCP Theorem by Gap Amplification

Irit Dinur∗

February 13, 2007

Abstract

The PCP theorem [3, 2] says that every language in NP has a witness format that can be checked
probabilistically by reading only a constant number of bits from the proof. The celebrated equiva-
lence of this theorem and inapproximability of certain optimization problems, due to [12], has placed
the PCP theorem at the heart of the area of inapproximability.

In this work we present a new proof of the PCP theorem that draws on this equivalence. We
give a combinatorial proof for the NP-hardness of approximating a certain constraint satisfaction
problem, which can then be reinterpreted to yield the PCP theorem.

Our approach is to consider theunsat valueof a constraint system, which is the smallest fraction
of unsatisfied constraints, ranging over all possible assignments for the underlying variables. We de-
scribe a new combinatorial amplification transformation that doubles the unsat-value of a constraint-
system, with only a linear blowup in the size of the system. The amplification step causes an increase
in alphabet-size that is corrected by a (standard) PCP composition step. Iterative application of these
two steps yields a proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to sys-
tems of binary constraints. This powering amplifies the unsat-value of a constraint system provided
that the underlying graph structure is an expander.

We also extend our amplification lemma towards construction of assignment testers (alterna-
tively, PCPs of Proximity) which are slightly stronger objects than PCPs. We then construct PCPs
and locally-testable codes whose length is linear up to apolylog factor, and whose correctness can
be probabilistically verified by making aconstantnumber of queries. Namely, we proveSAT ∈
PCP 1

2 ,1[log2(n · poly log n), O(1)].

1 Introduction

A languageL is in the class NP if there is a deterministic polynomial-time algorithm called averifier
that, in addition to the input, has access to a ‘proof’ such that the following holds: Ifx ∈ L then there is
a proof causing the verifier to accept, and ifx 6∈ L the verifier will reject regardless of the proof.

The PCP theorem is a strong characterization of the class NP. The notion of Probabilistically Check-
able Proofs (PCPs) extends the power of the verifier by allowing it some randomness (and oracle access
to the proof), and simultaneously restricts the verifier to read only a small number of symbols from the
proof. More formally, the classPCP [r, q] is defined to contain all languagesL for which there is a
verifierV that usesO(r) random bits, readsO(q) bits from the proof, and guarantees the following:

• If x ∈ L then there is a proofπ such thatPr[V π(x) accepts] = 1. (Here and elsewhereV π(x)
denotes the output ofV on inputx and proofπ.)

∗Hebrew University. Email:dinuri@cs.huji.ac.il . Supported by the Israel Science Foundation.

1

• If x 6∈ L then for any proofπ, Pr[V π(x) accepts] ≤ 1
2 .

The PCP theorem says that every language in NP has a verifier that uses at mostO(log n) random
bits and reads onlyO(1) bits from the proof. In other words,

Theorem 1.1 (PCP Theorem, [3, 2])NP ⊆ PCP[log n, 1].

This theorem was a great surprise, as it completely revises our concept of a proof. Rather than the
classical notion of a proof as a sequential object that if erroneous in even one place can easily prove
a false statement. The PCP theorem provides a new proof notion that is more robust, and must be
erroneous in many places when attempting to prove a falsity.

Historically, the classPCP [r, q] stemmed out of the celebrated notion of interactive proofs [20, 4]
and the class IP. The original motivation for defining IP was cryptographic, but it soon lead to a list
of remarkable complexity-theoretic results, including for example IP=PSPACE (see [24, 32]). We will
not give a detailed historic account which can be found in, say, [1]. Let us just mention that an excit-
ing sequence of papers (see [6, 14, 5]) lead to the following theorem: the class of all languages with
exponential-sized proofs is equal to the class of all languages that can be verified by a (randomized)
polynomial-time verifier. At this point attempts were made to “scale down” this result so as to char-
acterize the class NP in similar terms, through suitable restriction of the verifier. This was especially
motivated by the discovery of [12] that connected such a scale-down to an inapproximability result for
the clique number (see below). This scale-down was achieved partially in [3] and completed in [2] and
came to be known as the PCP theorem.

The techniques that lead to the proof were mainly algebraic, including low-degree extension over
finite fields, low-degree test, parallelization through curves, a sum-check protocol, and the Hadamard
and quadratic functions encodings.

1.1 PCP and Inapproximability

As mentioned above, the discovery of the PCP theorem came hand in hand with the beautiful and surpris-
ing connection, discovered by Feige et. al. [12], between PCP characterizations of NP and the hardness
of approximating the clique number in a graph. Predating these developments the situation regarding
approximation problems was unclear. There was no clue why different approximation problems seem to
exhibit different approximation behavior. The PCP theorem implied, for the first time, that numerous
problems (including, for example, max-3-SAT) are hard to approximate. This has had a tremendous
impact on the study of combinatorial optimization problems, and today the PCP theorem stands at the
heart of nearly all hardness-of-approximation results.

The connection to inapproximability is best described throughconstraint satisfactionproblems. Let
us begin by defining aconstraint,

Definition 1.1 LetV = {v1, . . . , vn} be a set of variables, and letΣ be a finite alphabet. Aq-ary con-
straint (C, i1, . . . , iq) consists of aq-tuple of indicesi1, . . . , iq ∈ [n] and a subsetC ⊆ Σq of “accept-
able” values. A constraint issatisfiedby a given assignmenta : V → Σ iff (a(vi1), a(vi2), . . . , a(viq)) ∈
C.

The constraint satisfaction problem (CSP) is the problem of, given a system of constraintsC =
{c1, . . . , cn} over a set of variablesV , deciding whether there is an assignment for the variables that
satisfies every constraint. This problem is clearly NP-complete as it generalizes many well known NP-
complete problems such as 3-SAT and 3-colorability. For example, in the equivalent of the 3-colorability
problem, the alphabet isΣ = {1, 2, 3} and the binary constraints are of the form(C, i1, i2) where

2

C = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} consists of6 out of the possible9 values that exclude
equality.

An optimization version of this problem, called max-CSP, is to find an assignment that satisfies a
maximumnumber of constraints. LetC = {c1, . . . , cn} be a set of constraints over a set of variablesV ,
in this paper we consider theunsat-valueof C, denotedUNSAT(C), defined to be the smallest fraction
of unsatisfied constraints, over all possible assignments forV . ClearlyC is satisfiable if and only if
UNSAT(C) = 0. In this notation, the following theorem is a typical inapproximability result.

Theorem 1.2 (Inapproximability version of PCP Theorem) There are integersq > 1 and |Σ| > 1
such that, given as input a collectionC of q-ary constraints over an alphabetΣ, it is NP-hard to decide
whetherUNSAT(C) = 0 or UNSAT(C) ≥ 1

2 .

Such a theorem is proven by showing a polynomial-time reduction from an NP-complete languageL,
reducing an instancex to a constraint systemCx, such that the following gap property holds: ifx ∈ L,
thenUNSAT(Cx) = 0 and ifx 6∈ L thenUNSAT(Cx) ≥ 1

2 .
The point is that the above Theorem 1.2 isequivalentto the PCP theorem (Theorem 1.1).

Lemma 1.3 Theorem 1.1 and Theorem 1.2 are equivalent.

Proof: Let us briefly explain this equivalence.

• (⇒) According to Theorem 1.1 every NP language (and let us fix some languageL ∈ NP)
has a verification procedureV er that readsc log n random bits, accessesq = O(1) bits from
the proof and decides whether to accept or reject (whereq andc are constants. For each fixed
random bit patternr ∈ {0, 1}c logn, V er (deterministically) reads a fixed set ofq bits from the

proof: i(r)1 , . . . , i
(r)
q . Denote byC(r) ⊆ {0, 1}q the possible contents of the accessed proof bits

that would causeV er to accept.

We present a reduction fromL to gap constraint satisfaction. Letx
?
∈ L be the input, and denote

n = |x|. Let Σ = {0, 1} and put a Boolean variable for each proof location accessed byV er on
inputx (so there are at mostq2c logn = qnc Boolean variables). Next, construct a system of con-
straintsCx = {cr}r∈{0,1}c log n such that the constraintcr is defined bycr = (C(r), i

(r)
1 , . . . , i

(r)
q).

It remains to observe that the rejection probability ofV er is exactly equalUNSAT(Cx) so it is zero
if x ∈ L, and at least12 if x 6∈ L.

• (⇐) For the converse, assume there is a reduction taking instances of any NP-language into con-
straint systems such that the gap property holds. Here is how to construct a verifier. The verifier
will first (deterministically) compute the constraint system output by the reduction guaranteed
above. It will expect the proof to consist of an assignment for the variables of the constraint sys-
tem. Next, the verifier will use its random string to select a constraint uniformly at random, and
check that the assignment satisfies it, by querying the proof at the appropriate locations.

The (⇒) direction of the equivalence has so far been the more useful one, as it enables us to derive
inapproximability results from the PCP theorem. In this work, we rely on the converse(⇐) direction,
to give a new “inapproximability-based” proof for the PCP theorem. We find it especially pleasing that
our proof has a similar flavor to the area in which the theorem has been most applicable.

3

1.2 Constraint Graphs and Operations on them

Our approach for proving the PCP Theorem (as stated in Theorem 1.2) is based on an iterative gap
amplification step. For this, we restrict attention to systems of binary (two-variable) constraints, such as
3-colorability constraints. Any binary constraint system naturally defines an underlying graph, in which
the variables are vertices, and two variables are adjacent iff there is a constraint over them. We call this
aconstraint graph.

Definition 1.2 (Constraint Graph) G = 〈(V,E),Σ, C〉 is called a constraint graph, if

1. (V,E) is an undirected graph, called the underlying graph ofG.

2. The setV is also viewed as a set of variables assuming values over alphabetΣ.

3. Each edgee ∈ E, carries a constraintc(e) ⊆ Σ × Σ, andC = {c(e)}e∈E . A constraintc(e) is
said to be satisfied by(a, b) iff (a, b) ∈ c(e).

We sometimes use the same letterG to denote the constraint graph and the underlying graph(V,E).

An assignment is a mappingσ : V → Σ that gives each vertex inV a value fromΣ. For any assignment
σ, define

UNSATσ(G) = Pr
(u,v)∈E

[(σ(u), σ(v)) 6∈ c(e)] and UNSAT(G) = min
σ

UNSATσ(G) .

We callUNSAT(G) theunsat-valueof G, or just the unsat ofG for short. We define

size(G)
4
= |V |+ |E| .

Implicit throughout this paper is the notion that we are working with infinite families of constraint
graphs. In our context the size of the alphabetΣ will remain fixed independently of the size of the
underlying graph structure, so indeedsize(G) measures the size of the description ofG up to a constant
multiplicative factor that depends only on|Σ|.

Proposition 1.4 Given a constraint graphG = 〈(V,E),Σ, C〉 with |Σ| = 3, it is NP-hard to decide if
UNSAT(G) = 0.

Proof: We reduce from graph3-colorability. Given a graphG, let the alphabet beΣ = {1, 2, 3} for
the three colors, and equip the edges with inequality constraints. Clearly,G is 3-colorable if and only if
UNSAT(G) = 0.

Observe that in caseUNSAT(G) > 0 it must be thatUNSAT(G) ≥ 1/ |G|. Therefore, it is actually
NP-hard to distinguish between the cases (i)UNSAT(G) = 0 and (ii) UNSAT(G) ≥ 1/ |G|. Our main
theorem is the aforementioned ‘gap amplification step’, where a graphG is converted into a new graph
G′ whose unsat value is doubled.

Theorem 1.5 (Main) There existsΣ0 such that the following holds. For any finite alphabetΣ there
existC > 0 and0 < α < 1 such that, given a constraint graphG = 〈(V,E),Σ, C〉, one can construct,
in polynomial time, a constraint graphG′ = 〈(V ′, E′),Σ0, C′〉 such that

• size(G′) ≤ C · size(G).

• (Completeness:) IfUNSAT(G) = 0 thenUNSAT(G′) = 0.

4

• (Soundness:)UNSAT(G′) ≥ min(2 · UNSAT(G), α).

After applying this step logarithmically many times, the final outcomeGfinal is a constraint graph
for which in case (i) stillUNSAT(Gfinal) = 0, and in case (ii) we haveUNSAT(Gfinal) ≥ α for some
constantα > 0. Ignoring the fact that instead of12 we gotα > 0 (and this can be easily corrected by
repetition), this proves the PCP Theorem (as stated in Theorem 1.2). The formal proof of this is given in
Section 3.

Let us describe the ideas which come in to the proof of the main theorem. How do we make the unsat
value double? this is done through three operations on constraint graphs, which we describe next.

Graph Powering

In order to amplify the unsat value of a constraint graph we simply raise it to the powert, for some
constant value oft. This operation is a new operation on constraint systems defined as follows. Let
G = 〈(V,E),Σ, C〉 be ad-regular constraint graph, and lett ∈ N. A sequence(u0, . . . , ut) is called a

t-step walk inG if for all 0 ≤ i < t, (ui, ui+1) ∈ E. We defineGt =
〈
(V,E),Σddt/2e

, Ct
〉

to be the

following constraint graph:

• The vertices ofGt are the same as the vertices ofG.

• Edges:u andv are connected byk parallel edges inE if the number oft-step walks fromu to v
in G is exactlyk.

• Alphabet: The alphabet ofGt is Σddt/2e
. The meaning of each value is as follows. LetΓ(u) ={

u′ ∈ V | (u = u0, u1, . . . , udt/2e = u′) is a walk inG
}

. Clearly |Γ(u)| ≤ ddt/2e and by choos-

ing some canonical ordering, a valuea ∈ Σddt/2e
can be interpreted as an assignmenta : Γ(u) →

Σ. One may think of this value as describingu’s opinion of its neighbors’ values.

• Constraints: The constraint associated with an edgee = (u, v) ∈ E is satisfied by a pair of values
a, b ∈ Σddt/2e

iff the following holds. There is an assignmentσ : Γ(u) ∪ Γ(v) → Σ that satisfies
every constraintc(e) wheree ∈ E ∩ Γ(u)× Γ(v), and such that

∀u′ ∈ Γ(u), v′ ∈ Γ(v), σ(u′) = au′ andσ(v′) = bv′

whereau′ is the valuea assignsu′ ∈ Γ(u), andbv′ the valueb assignsv′ ∈ Γ(v).

If UNSAT(G) = 0 then clearlyUNSAT(Gt) = 0. More interestingly, our main technical lemma asserts
that the unsat value is multiplied by a factor of roughly

√
t. This holds as long as the initial underlying

graphG is sufficiently well-structured, i.e., the graph is expanding (captured by boundingλ(G), defined
in Section 2.1) andd-regular for constantd, and has self-loops.

Lemma 1.6 (Amplification Lemma) Let 0 < λ < d, and |Σ| be constants. There exists a constant
β2 = β2(λ, d, |Σ|) > 0, such that for everyt ∈ N and for everyd-regular constraint graphG =
〈(V,E),Σ, C〉 with a self-loop on each vertex andλ(G) ≤ λ,

UNSAT(Gt) ≥ β2

√
t ·min

(
UNSAT(G) ,

1
t

)
.

The advantage of the powering operation is that it amplifies theUNSAT value by factor
√
t and only

incurs alinear blowup in the size of the graph (the number of edges is multiplied bydt−1).

5

Preprocessing

It is quite easy to turn any constraint graph into a ‘well-structured’ one, as required by the amplification
step. This can be done with only a linear blow-up in size, and a constant factor decrease in the unsat
value. For example, here is a simple way of turning any constant-degree constraint graph into an ex-
panding one. Simply take the union of the edges of the given graph with edges of any constant-degree
expander graph on the same set of vertices. Putting null constraints on the expander edges guarantees
that the unsat value only drops by a constant factor.

The following lemma summarizes the preprocessing step:

Lemma 1.7 (Preprocessing Lemma)There exist constants0 < λ < d and β1 > 0 such that any
constraint graphG can be transformed into a constraint graphG′, denotedG′ = prep(G), such that

• G′ is d-regular with self-loops, andλ(G′) ≤ λ < d.

• G′ has the same alphabet asG, andsize(G′) = O(size(G)).

• β1 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

Alphabet Reduction by Composition

The graph powering operation described above has one drawback: it incurs an increase in the alphabet
size. In order to repeat the amplification step many times, the alphabet size must be reduced.

Fortunately, this can be achieved through composition. Composition is an essential component in all
PCP constructions, starting with [3]. It is most natural in the proof-verification setting (rather than as
a gap constraint satisfaction reduction). Recall that a system ofq-ary constraints over an alphabetΣ
corresponds to a probabilistic verifier that readsq symbols from a proof, where the symbols are taken
from Σ.

The basic idea of proof composition is that the verifier, instead of reading theq symbols fromΣ (of
which we think as a ‘large’ alphabet) and based on them verifying correctness, can delegate this task to
another “inner” verifier. This inner verifier can rely on an additional proof for the fact thatthis length-q
input would have caused the original verifier to accept. Thus the verification task can potentially rely
on reading even fewer bits than before. Note that there will end up being many additional proofs, one
per random string of the original verifier. Consistency between these proofs must be ensured, and this
well-studied issue will be discussed in Section 5.

Going back to the language of constraint systems, the “inner verifier” is simply a reduction transform-
ing a single constraint over large-alphabet variables into a system of constraints over new small-alphabet
variables. This reduction is applied on every constraint in parallel and is done in a consistent way1,
ensuring that theUNSAT value of the new system doesn’t drop by more than a constant factor. We call
such a reduction an “assignment tester” and refer the reader to Section 5 and Definition 5.1 for a formal
definition of the composition operation.

Lemma 1.8 (Composition Lemma - Informal statement)Assume the existence of an assignment tester
P, with constant rejection probabilityε > 0, and alphabetΣ0, |Σ0| = O(1). There existsβ3 > 0 that
depends only onP, such that given any constraint graphG = 〈(V,E),Σ, C〉, one can compute, in linear
time, the constraint graphG′ = G ◦ P, such thatsize(G′) = c(P, |Σ|) · size(G), and

β3 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

For the sake of self-containedness, we include a construction of an assignment testerP in Section 7.
1This has to do with the consistency issue mentioned earlier, and will be clarified in Section 5.

6

1.3 The Combined Amplification Step

Assuming we have Lemma 1.7, Lemma 1.6, and Lemma 1.8, the proof of the gap amplification step
(Theorem 1.5) is syntactic and is given in Section 3. Altogether, our proof of the PCP theorem takes
the following form: LetG be an instance of constraint graph satisfiability (proven NP-hard in Proposi-
tion 1.4). Fixt = O(1), setG0 = G, and repeat the following amplification steplog |G| times:

1. PreprocessGi

2. Raise the result to thet-th power

3. Compose the result with an assignment tester reductionP.

In short,
Gi+1 = (prep(Gi))t ◦ P

It is not hard to see that takingGfinal = Gi for i = Θ(log n) gives the necessary reduction. Formal
details are given in Section 3.

1.4 Related Work

This work follows [17, 11] in the attempt to find an alternative proof for the PCP Theorem that is
combinatorial and/or simpler. In [11], a quasi-polynomial PCP Theorem was proven combinatorially.
While our proof is different, we do rely on the modular notion of composition due to [7, 11], and
in particular on composition with a bounded-input assignment-tester, which has already served as an
ingredient in the constructions of [11].

This construction is inspired by the zig-zag construction of expander graphs due to [31] and by Rein-
gold’s beautiful proof forSL = L [30]. Although there is no direct technical connection between these
works and our construction, our proof has the same overall structure, consisting of a logarithmic number
of iterations, where each iteration makes a small improvement in the interesting parameter (be it the
UNSAT value in our case, or the spectral gap in Reingold’s case).

The steady increase of theUNSAT value is inherently different from the original proof of the PCP
Theorem. There, a constantUNSAT value (using our terminology) is generated by one powerful trans-
formation, and then a host of additional transformations are incorporated into the final result to take care
of other parameters. Composition is essential in both proofs.

1.5 Further Results

Short PCPs and Locally Testable Codes

The goal of achieving extremely-short Probabilistically Checkable Proofs and Locally-Testable Codes
(LTCs) has been the focus of several works [27, 21, 18, 9, 7, 8]. The goal is to convert a standard NP
proof into a “robust” PCP proof, with the minimal amount of increase in the proof length. Discussion of
Locally Testable Codes is deferred to Section 8.

The shortest PCPs/LTCs are due to [7] and [8], each best in a different parameter setting. For the case
where the number of queries is constant, the shortest construction is due to [7], and the proof-length is
n · 2(logn)ε

. The construction of [8] has shorter proof-length,n · poly log n, but the number of queries it
requires ispoly log n. Our result combines the best parameters from both of these works. Our starting
point is the construction [8]. We first transform this construction into a two-query constraint system

7

C whose size isn · poly log n, such that if the input was a ‘no’ instance, thenUNSAT(C) ≥ 1
poly logn ,

and otherwiseUNSAT(C) = 0. Then, by applying our amplification stepO(log log n) times, we raise
the unsat value to a constant, while increasing the size of the system by only another polylogarithmic
factor. Using standard notation (which is defined in Section 8), we show thatSAT ∈ PCP 1

2
,1[log2(n ·

poly log n), O(1)].

Assignment Testers

We further extend our main amplification step (Theorem 1.5) to work for assignment-tester reductions
(alternatively called PCPs of Proximity), defined in [7, 11]. This carries over to extend our combinatorial
construction of PCPs to that of assignment-testers / PCPs of Proximity. Without getting into the full
definition (which can be found in Section 9) we note that this object is syntactically stronger than a PCP
reduction. It is known to imply the PCP theorem, but the converse is not known.

We obtain the aforementioned short locally-testable codes by first obtaining short assignment-testers
(with comparable parameters to those of the short PCPs described above), and then applying a simple
generic construction from [7].

1.6 Organization

Section 2 contains some preliminary facts about expander graphs and probability. In Section 3 we prove
the main theorem, relying on Lemmas 1.6, 1.7, and 1.8 stated above, and deduce the PCP Theorem as
well. The next three sections (sections 4, 5, and 6) are devoted to the proof of Lemmas 1.7, 1.8 and
1.6, dealing with the three operations on constraint graphs. In Section 7 we describe a concrete (and
inefficient) construction of an assignment-testerP so as to make our proof self-contained.

Sections 8 and 9 contain the results on short PCPs and LTCs. In Section 8 we construct PCPs and
locally-testable codes whose length is linear up to a poly-logarithmic factor. In Section 9 we describe
how to extend our main amplification step (Theorem 1.5) for assignment-testers. We include a short
discussion about our amplification and parallel-repetition in Section 10.

2 Preliminaries

2.1 Expander Graphs

Expander graphs play an important role in a wide variety of results in theoretical computer science. In
this section we will state some well-known properties of expander graphs. For an excellent exposition
to this subject, we refer the reader to [23].

Definition 2.1 LetG = (V,E) be ad-regular graph. LetE(S, S̄) =
∣∣(S × S̄) ∩ E

∣∣ equal the number
of edges from a subsetS ⊆ V to its complement. Theedge expansionofG is defined as

h(G) = min
S: |S|≤|V |/2

E(S, S̄)
|S|

.

Lemma 2.1 (Expanders)There existd0 ∈ N andh0 > 0, such that there is a polynomial-time con-
structible family{Xn}n∈N of d0-regular graphsXn onn vertices withh(Xn) ≥ h0. (Such graphs are
called expanders).

Proof: It is well known that a random constant-degree graph onn-vertices is an expander. For a deter-
ministic construction, one can get expanders on2k vertices for anyk from the construction of [31]. For

8

n = 2k − n′ (n′ < 2k−1) one can, for example, mergen′ pairs of non-neighboring vertices. To make
this graph regular one can add arbitrary edges to the non-merged vertices. Clearly, the edge expansion
is maintained up to a constant factor.

The adjacency matrix of a graphG = (V,E) is a|V | × |V | matrixA such thatAij = 1 iff (i, j) ∈ E
andAij = 0 otherwise. The second eigenvalue of a graphG, denotedλ(G), is the second largest eigen-
value of its adjacency matrix in absolute value. The Rayleigh quotient gives a convenient expression for
this value.

Lemma 2.2 LetG be a graph,A its adjacency matrix, and letλ(G) denote the second largest eigenvalue

in absolute value. Thenλ(G) = maxx 6=~0,x⊥~1
|〈x,Ax〉|
〈x,x〉 .

The following important relation between the edge expansion and the second eigenvalue is well-
known, see, e.g., [23],

Theorem 2.3 LetG be ad-regular graph with eigenvaluesd = λ0 ≥ λ1 ≥ . . . ≥ λn−1, and leth(G)
denote the edge expansion ofG. Then

λ1 ≤ d− h(G)2

2d
.

As a corollary of Lemma 2.1 and the above theorem we obtain

Corollary 2.4 There existd0
′ ∈ N and0 < λ0 < d0

′, such that there is a polynomial-time constructible
family{Xn}n∈N of d0

′-regular graphsXn onn vertices withλ(Xn) ≤ λ0.

Proof: For anyn ∈ N let Xn be thed0-regular graph guaranteed by Lemma 2.1. By addingd0 self-
loops to each vertex inXn we obtain ad0

′ = 2d0-regular graphX ′
n, with the same edge-expansion

h0. However, it is easy to see that now all eigenvalues ofX ′
n are non-negative, and in particularλ(X ′

n)
equals the second-largest eigenvalue ofX ′

n. Takingλ0 = d0
′ − (h0)2

2d0
′ < d0

′, Theorem 2.3 gives the
result.

Finally, we prove the following (standard) estimate on the random-like behavior of a random-walk on
an expander.

Proposition 2.5 LetG = (V,E) be ad-regular graph withλ(G) = λ. LetF ⊆ E be a set of edges
without self loops, and letK be the distribution on vertices induced by selecting a random edge inF ,
and then a random endpoint.

The probabilityp that a random walk that starts with distributionK takes thei + 1st step inF , is

upper bounded by|F ||E| +
(
|λ|
d

)i
.

Proof: Let B ⊆ V be the support ofK. Let n = |V | and letA be the normalizedn × n adjacency
matrix ofG, i.e.,Aij equalsk/d wherek is the number of edges between verticesi andj. The first and
second largest eigenvalues (in absolute value) ofA are1 andλ̃ = λ/d respectively.

Let x be the vector corresponding to the distributionK, i.e.xv = PrK [v] equals the fraction of edges
touchingv that are inF , divided by2. Since the graph isd-regular,PrK [v] ≤ d

2|F | . Let yv be the

probability that a random step fromv is in F , soy = 2|F |
d x. The probabilityp equals the probability of

landing inB afteri steps, and then taking a step insideF ,

p =
∑
v∈B

yv(Aix)v =
∑
v∈V

yv(Aix)v =
〈
y,Aix

〉
.

9

Let 1 be the all1 vector. Writex = x⊥ + x|| wherex||
4
= 1

n1, is an eigenvector ofA with eigenvalue

1, andx⊥
4
= x−x||. The vectorx⊥ is orthogonal tox|| since1 ·x⊥ =

∑
v PrK [v]−

∑
v

1
n = 1−1 = 0.

Denote‖x‖ =
√∑

v x
2
v. Clearly,

‖Aix⊥‖ ≤ |λ̃|i‖x⊥‖ ≤ |λ̃|i‖x‖ .

Observe that‖x‖2 ≤ (
∑

v |xv|) · (maxv |xv|) ≤ 1 · (maxv |xv|) ≤ d
2|F | . By the Cauchy-Schwarz

inequality, 〈
y,Aix⊥

〉
≤ ‖y‖ · ‖Aix⊥‖ ≤ 2 |F |

d
‖x‖ · |λ̃|i‖x‖ ≤ |λ̃|i .

Combining the above we get the claim,

〈
y,Aix

〉
=

〈
y,Aix||

〉
+

〈
y,Aix⊥

〉
≤ 2 |F |

dn
+ |λ̃|i =

|F |
|E|

+
(
|λ|
d

)i

2.2 Probability

The following easy fact is a Chebychev-style inequality. It is useful for showing that for a non-negative
random variableX, Pr[X > 0] ≈ E[X] wheneverE[X] ≈ E[X2].

Fact 2.6 For any non-negative random variableX 6≡ 0, Pr[X > 0] ≥ E2[X]
E[X2]

.

Proof: We repeat a proof from [25, Lecture 5].

E [X] = E [X · 1X>0] ≤
√

E [X2]
√

E [(1X>0)2] =
√

E [X2]
√

Pr[X > 0].

where we have used the Cauchy-Schwarz inequality. Squaring and rearranging completes the proof.

2.3 Error Correcting Codes

An error-correcting codeis a collection of stringsC ⊆ Σn, whereΣ is some finite alphabet.n is called
the block-length of the code,log|Σ| |C| is the dimension of the code, and1n log|Σ| |C| is the rate of the
code. The distance of the code isminx 6=y∈C dist(x, y) wheredist(·, ·) refers to Hamming distance. We
also writerdist(x, y) = 1

ndist(x, y) for relative distance.
A one-to-one mappinge : D → Σn is also sometimes called an error-correcting code. Its dimension

and distance are defined to be the respective dimension and distance of its imagee(D).
It is well known that there exist families of codes{Cn ⊂ {0, 1}n}n∈N for which both the distance

and the dimension areΘ(n), and for which there is a polynomial-sized circuit that checksx
?
∈ Cn, see

e.g. [33].

2.4 Assignment Tester

An assignment tester is a certain type of PCP transformation that is useful for composition. We describe
below a stripped-down version of the definition of [11], that suffices for our purposes.

Basically, an assignment tester is an algorithm whose input is a Boolean circuitΦ and whose output
is a constraint graphG. This graphcontainsthe input variables ofΦ as some of its vertices, and its unsat
value is related to the satisfiability ofΦ as follows. Roughly speaking, the only way an assignment for

10

the variables ofG can have a small unsat value is if its restriction to the variables ofΦ is close to an
assignment that satisfiesΦ. Here is the formal definition.

For a Boolean circuitΦ overn variables, denote by SAT(Φ) ⊆ {0, 1}n the set of assignments that
satisfyΦ.

Definition 2.2 (Assignment Tester)An Assignment Testerwith alphabetΣ0 and rejection probability
ε > 0 is an algorithmP whose input is a circuitΦ over Boolean variablesX, and whose output is
a constraint graphG = 〈(V,E),Σ0, C〉 such that2 V ⊃ X, and such that the following hold. Let
V ′ = V \X, and leta : X → {0, 1} be an assignment.

• (Completeness) Ifa ∈ SAT(Φ), there existsb : V ′ → Σ0 such thatUNSATa∪b(G) = 0.

• (Soundness) Ifa 6∈ SAT(Φ) then for allb : V ′ → Σ0, UNSATa∪b(G) ≥ ε · rdist(a,SAT(Φ)).

Note that we make no requirement on the complexity of the algorithmP.

3 Proofs of the Main Theorem and of the PCP Theorem

Based on the constraint graph operations described in Section 1.2, and on Lemma 1.7, Lemma 1.6, and
Lemma 1.8 we can already prove our main theorem.
Proof of Theorem 1.5: We define

G′ = (prep(G))t ◦ P

for an assignment testerP whose existence is guaranteed by Theorem 5.1, and a valuet ∈ N to be
determined later. Let us elaborate on the construction ofG′:

1. (Preprocessing step:) LetH1 = prep(G) be the result of applying toG the transformation guaran-
teed by Lemma 1.7. There exist some global constantsλ < d andβ1 > 0 such thatH1 isd-regular,
has the same alphabet asG, λ(H1) ≤ λ < d, andβ1 · UNSAT(G) ≤ UNSAT(H1) ≤ UNSAT(G).

2. (Amplification step:) LetH2 = (H1)t, for a large enough constantt > 1 to be specified below.

According to Lemma 1.6, there exists some constantβ2 = β(λ, d, |Σ|) > 0 for whichUNSAT(H2) ≥
β2

√
t ·min(UNSAT(H1), 1

t). However, the alphabet grows toΣddt/2e
.

3. (Composition step:) LetG′ = H2 ◦ P be the result of applying toH2 the transformation guar-
anteed by Lemma 1.8. Here we rely on the existence of an assignment testerP, as guaranteed in
Theorem 5.1.

The alphabet ofG′ is reduced toΣ0 while still β3 · UNSAT(H2) ≤ UNSAT(G′) ≤ UNSAT(H2), for
a constantβ3 > 0.

We now verify the properties claimed above. Completeness is clearly maintained at each step, i.e.,

UNSAT(G) = 0 ⇒ UNSAT(H1) = 0 ⇒ UNSAT(H2) = 0 ⇒ UNSAT(G′) = 0.

For soundness, let us choose now

t = d(2
β1β2β3

)2e, and α = β3β2/
√
t.

2In a constraint graph, the setV plays a double role of both variables and vertices. ByV ⊃ X it is meant that some of the
vertices ofV are identified with theX variables.

11

Altogether,

UNSAT(G′) ≥ β3 · UNSAT(H2) (step 3, Lemma 1.8)

≥ β3 · β2

√
t ·min(UNSAT(H1),

1
t
) (step 2, Lemma 1.6)

≥ β3 · β2

√
t ·min(β1UNSAT(G),

1
t
) (step 1, Lemma 1.7)

≥ min(2 · UNSAT(G), α)

Finally, let us verify that each of the three steps incurs a blowup that is linear in the size ofG. In step
1 this is immediate from Lemma 1.7. In step 2, sincedeg(H1) = d andt are independent of the size
of G, the number of edges inH2 = (H1)t is equal to the number of edges inH1 timesdt−1 (this factor
depends on|Σ| but that is fine). In step 3, the total size grows by a factorc that depends on the alphabet
size ofH2, which equals|Σddt/2e |, and onP. Again, both are independent of the size ofG. Altogether,
it is safe to writesize(G′) ≤ C · size(G) where the factorC ultimately depends only on|Σ| and on
some global constants.

As a corollary of the main theorem we can immediately prove the PCP theorem,

Theorem 1.2 (Inapproximability version of PCP Theorem)There are constantsq > 1 and |Σ| > 1
such that given a collectionC of q-ary constraints over an alphabetΣ, it is NP-hard to decide whether
UNSAT(C) = 0 or UNSAT(C) ≥ 1

2 .

Proof: We reduce from constraint graph satisfiability. According to Proposition 1.4 it is NP-hard to
decide if for a given constraint graphG with |Σ| = 3, UNSAT(G) = 0 or not. So letG be an instance
of constraint-graph satisfiability with|Σ| = 3, and denoten = size(G). The basic idea is to repeatedly
apply the main theorem until the unsat-value becomes a constant fraction.

Let G0 = G and fori ≥ 1 let Gi be the result of applying toGi−1 the transformation guaranteed
by Theorem 1.5. Then fori ≥ 1 Gi is a constraint graph with alphabetΣ0. LetE0 be the edge-set of
G0, and letk = log |E0| = O(log n). Observe that the size ofGi for i ≤ k = O(log n) is at most
Ci · size(G0) = poly(n).

Completeness is easy: ifUNSAT(G0) = 0 then UNSAT(Gi) = 0 for all i. For soundness, assume
UNSAT(G0) > 0. If for somei∗ < k, UNSAT(Gi∗) ≥ α/2 then the main theorem implies that for all
i > i∗ UNSAT(Gi) ≥ α. For all otheri it follows by induction that

UNSAT(Gi) ≥ min(2i UNSAT(G0), α) .

If UNSAT(G0) > 0 thenUNSAT(G0) ≥ 1
|E0| , so surely2kUNSAT(G0) > α. ThusUNSAT(Gk) ≥ α.

This proves that gap constraint satisfaction is NP-hard, for two-variable constraints and alphabet size
|Σ0|.

To get to a gap betweenUNSAT(C) = 0 and UNSAT(C) ≥ 1
2 , one can apply simple (sequential)

repetitionu = 1/ log(1
1−α) = O(1) times. I.e., create a new constraint systemC consisting of ANDs

of all possibleu-tuples of the constraints inGk. This creates a system of2u-ary constraints that has the
desired gap.

12

4 Preprocessing

In this section we describe how to (rather easily) turn any constraint graph into a ‘nicely-structured’ one.
We define a transformation on constraint graphs, takingG to prep(G) that consists of two simple steps

G→ prep1(G) → prep2(prep1(G)).

These transformation are described in Definitions 4.1 and 4.2 below. The first transformation converts
the graph into a constant degree (regular) graph. The second transformation converts it into an expander.
The properties of each transformation are stated and proved in Lemmas 4.1 and Lemma 4.2 respectively,
which together give an immediate proof for Lemma 1.7.

Definition 4.1 Let G = 〈(V,E),Σ, C〉 be a constraint graph. The constraint graphprep1(G) =
〈(V ′, E′),Σ, C′〉 is defined as follows.

• Vertices: For eachv ∈ V let [v] = {(v, e) | e ∈ E is incident onv}, and setV ′ = ∪v∈v[v].

• Edges: For eachv ∈ V letXv be ad-regular graph on vertex set[v] and edge expansion at least
h0 (as guaranteed by Lemma 2.1). LetE1 = ∪v∈VE(Xv) and set

E2 =
{{

(v, e), (v′, e)
} ∣∣ e =

{
v, v′

}
∈ E

}
.

Finally letE′ = E1 ∪ E2.

• Constraints: The constraints areC′ = {c(e′)}e′∈E′ wherec(e′) is defined as follows:

– If e′ ∈ E1 thenc(e′) is an equality constraint:c(e′) = {(a, a) | a ∈ Σ}.
– If e′ = {(v, e), (v′, e)} ∈ E2 thenc(e′) = c(e) ∈ C.

In words, the constraint graphprep1(G) is obtained fromG by blowing up each vertex into a cloud
of as many vertices as its degree. Two clouds are connected by one edge if the original vertices were
adjacent, and the vertices within a cloud are connected by expander edges. The constraints on external
edges (between clouds) remain the same, and ‘internal’ constraints (within a cloud) enforce equality.

Lemma 4.1 LetG = 〈(V,E),Σ, C〉 be a constraint graph. ThenG′ = prep1(G) is a (d0 + 1)-regular
constraint graphG′ = 〈(V ′, E′),Σ, C′〉 such that|V ′| ≤ 2 |E| and

c · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G) (1)

for some global constantsd0, c > 0.
Moreover, for any assignmentσ′ : V ′ → Σ letσ : V → Σ be defined according to the plurality value,

∀v ∈ V, σ(v)
4
= arg max

a∈Σ

{
Pr

(v,e)∈[v]

[
σ′(v, e) = a

]}
. (2)

Thenc · UNSATσ(G) ≤ UNSATσ′(G′).

This lemma relies on a well-known ‘expander-replacement’ transformation due to [26], and we include
a proof for the sake of completeness.

Proof: It is immediate to see thatG′ is d = d0 + 1 regular. Every non self-loop edge inE gives rise
to two endpoints, so clearly|V ′| ≤ 2 |E|. We proceed to prove (1).

13

The (completeness) upper boundUNSAT(G′) ≤ UNSAT(G) is easy: An assignmentσ : V → Σ can
be extended to an assignmentσ′ : V ′ → Σ by

∀(v, e) ∈ V ′, σ′(v, e)
4
= σ(v).

Clearlyσ′ does not violate the constraints corresponding to edges inE1, and it violates exactlyUNSAT(G) |E2|
constraints corresponding toE2. Thus

UNSAT(G′) ≤ UNSAT(G) |E2|
|E1|+ |E2|

≤ UNSAT(G).

The (soundness) lower boundc · UNSAT(G) ≤ UNSAT(G′) in (1) follows from the second part of the
lemma, which we prove next. The intuitive idea is that the expander edges “penalize” assignmentsσ′

that do not assign the same value to all copies ofv; forcingσ′ to behave essentially like an assignment
σ for G.

Let us first observe that ∣∣E′∣∣ ≤ d |E|

where the inequality would have been equality were there no self-loops inG.
Fix an assignmentσ′ : V ′ → Σ, and letσ : V → Σ be defined according to (2). In other wordsσ(v)

is the most popular value among the values occurring inv’s cloud. LetF ⊆ E be the edges ofG whose
constraints rejectσ, and letF ′ ⊆ E′ be the edges ofG′ whose constraints rejectσ′. LetS ⊆ V ′ be the
set of vertices ofG′ whose value disagrees with the plurality,

S =
⋃
v∈V

{
(v, e) ∈ [v] |σ′(v, e) 6= σ(v)

}
.

Supposee = {v, v′} ∈ F . Then the edge{(v, e), (v′, e)} either belongs toF ′, or has at least one

endpoint inS. Hence, forα
4
= |F |

|E| = UNSATσ(G),∣∣F ′∣∣ + |S| ≥ |F | = α · |E| . (3)

There are two cases,

• If |F ′| ≥ α
2 |E| we are done sinceα2 |E| ≥

α
2d |E

′| and soUNSATσ′(G′) ≥ UNSATσ(G)/2d.

• Otherwise,|F ′| < α
2 |E|, so by (3),|S| ≥ α

2 |E|. Focus on onev, and letSv = [v] ∩ S. We
can writeSv as a disjoint union of setsSva = {(v, e) ∈ Sv |σ′(v, e) = a}. SinceS is the set of
vertices disagreeing with the plurality value, we have|Sva | ≤ |[v]| /2, so by the edge expansion
of the appropriate expanderXdv , E(Sva , [v] \ Sva) ≥ h0 · |Sva |. All of the edges leavingSva carry
equality constraints that rejectσ′. So there are at leasth0

2

∑
v |S ∩ [v]| = h0

2 |S| ≥ αh0
4 |E| edges

that rejectσ′. Since|E| ≥ |E′| /d, we getUNSATσ′(G′) ≥ h0
4dUNSATσ(G).

We have completed the proof, withc = min(1
2d ,

h0
4d).

We now turn to the second transformation, converting a constraint graph into an expander with self-
loops.

Definition 4.2 Let G = 〈(V,E),Σ, C〉 be a constraint graph. The constraint graphprep2(G) =
〈(V,E′),Σ, C′〉 is defined as follows.

• Vertices: The vertices remain the same.

14

• Edges: LetX be ad0
′-regular graph on vertex setV and edge setE1, withλ(X) < λ0 < d0

′ (as
guaranteed by Corollary 2.4). LetE2 = {{v, v} | v ∈ V }. Finally, letE′ = E ∪E1 ∪E2 (where
E′ is a multiset allowing parallel edges).

• Constraints: The constraints areC′ = {c(e′)}e′∈E′ wherec(e′) is defined as follows. Ife′ ∈ E
thenc(e′) is just like before. Otherwise,c(e′) is the null constraint (always satisfied).

Lemma 4.2 There are global constantsd0
′ > λ0 > 0 such that for anyd-regular constraint graphG,

the constraint graphG′ = prep2(G) has the following properties.

• G′ is (d+ d0
′ + 1)-regular, has a self-loop on every vertex, andλ(G′) ≤ d+ λ0 + 1 < deg(G′),

• size(G′) = O(size(G)),

• For everyσ : V → Σ, d
d+d0

′+1
· UNSATσ(G) ≤ UNSATσ(G′) ≤ UNSATσ(G).

Proof: Clearly,G′ is d+ d0
′ +1-regular and each vertex has a self-loop. To boundλ(G′) we rely on the

Rayleigh quotient (see Lemma 2.2),

λ(G) = max
‖x‖=1,x⊥~1

|〈x,AGx〉| ,

whereAG is the adjacency matrix ofG. Clearly, if we denote adjacency matrix ofX,G′ by AX , AG′

respectively, thenAG′ = AG + I +AX , whereI is the identity matrix. Therefore,

λ(G′) = max
‖x‖=1,x⊥~1

|〈x,AG′x〉| ≤ max
‖x‖=1,x⊥~1

|〈x,AGx〉|+ max
‖x‖=1,x⊥~1

|〈x, Ix〉|+ max
‖x‖=1,x⊥~1

|〈x,AXx〉|

= λ(G) + λ(I) + λ(X) ≤ d+ 1 + λ0.

Finally, fix σ : V → Σ. Since the new edges are always satisfied and since we increased the total
number of edges by at most a factorc′ = d+d0

′+1
d , the fraction of unsatisfied constraints cannot increase,

and drops by at mostc′.

Proof:(of Lemma 1.7) LetG′ = prep2(prep1(G)). The lemma is proven withβ1 = c · d
d+d0

′+1
by

quoting Lemmas 4.1 and 4.2.

We conclude with a stronger corollary of Lemmas 4.1 and 4.2 that will be useful in Section 8.

Corollary 4.3 Let β1 > 0 be the constant from Lemma 1.7. Fix a constraint graphG, and letG′ =
prep(G). LetV be the vertices ofG and letV ′ be the vertices ofG′. For any assignmentσ′ : V ′ → Σ,
let σ : V → Σ be defined according to Equation (2). Then,UNSATσ′(G′) ≥ β1 · UNSATσ(G).

Proof: LetG1 = prep1(G) andG2 = prep2(G1). By Lemma 4.2, for every assignmentσ′ : V ′ → Σ

d

d+ d0
′ + 1

· UNSATσ′(G1) ≤ UNSATσ′(G2).

Moreover, by the second part of Lemma 4.1, we see that if we defineσ : V → Σ according to Equation
(2) then

c · UNSATσ(G) ≤ UNSATσ′(G1).

Combining the two inequalities,

c · d

d+ d0
′ + 1

· UNSATσ(G) ≤ d

d+ d0
′ + 1

· UNSATσ′(G1) ≤ UNSATσ′(G2).

Noting thatG′ = G2, and thatβ1 = c · d
d+d0

′+1
completes the proof.

15

5 Alphabet Reduction by Composition

In this section we describe a transformation on constraint graphs that reduces the alphabet size, while
roughly maintaining the unsat-value. We rely oncompositionwhich is an essential component in the
construction of PCPs. To understand composition let us ignore the underlying graph structure of a
constraint graphG, and view it simply as a system of constraintsC = {c1, . . . , cm} over a set of
variablesX.

Let us step back for a moment and recall our overall goal of proving the PCP Theorem. What we seek
is a reduction from any NP languageL to gap constraint satisfaction. Such a reduction is a polynomial-
time algorithm that inputs an instancex, and generates a system of constraintsC with the following
gap property: an inputx ∈ L translates to a systemC for which UNSAT(C) = 0, and an inputx 6∈ L
translates to a systemC for which UNSAT(C) > α, for someα > 0.

Suppose we have such a “PCP” reductionP that is not necessarily efficient: the number of constraints
P generates may be super-polynomial in its input size. Nevertheless, suppose the constraints generated
by P are always over a small alphabetΣ0, with (say)|Σ0| = 8. How would such a “PCP”-reductionP
be used for alphabet reduction?

LetG be a constraint graph with constraintsc1, . . . , cm over alphabetΣ. First, we cast the satisfiability
of eachci as an NP statement, and then we feed it toP. The output ofP is a constraint graphGi with
alphabet size8. It has the property that ifci is satisfiable then so isGi, and otherwiseUNSAT(Gi) ≥ α.
The final constraint graph denotedG ◦ P would be some form of union of theseGi’s that guarantees a
good relation between the unsat value ofG and that of the new graphG◦P. In particular, we would like
to have the following properties:

• (Perfect Completeness:) IfUNSAT(G) = 0 thenUNSAT(G ◦ P) = 0

• (Soundness:) There is some constantε such thatUNSAT(G ◦ P) ≥ ε · UNSAT(G).

There is a subtle issue of consistency which will be discussed shortly below. Before that, let us convince
ourselves that the transformation makes sense in terms of efficiency. Surely, our goal of reducing the
size of the alphabet from|Σ| to |Σ0| = 8 has been achieved. What is the size ofG◦P? Note that the size
of eachci that is fed toP can be bounded by some function that depends on|Σ|. Thus, the size of each
Gi can be bounded by another function of|Σ| andP, denotedc(P, |Σ|), that depends on the efficiency
of P. In our context|Σ| remains bounded as the size ofG grows, so asymptotically the output of this
procedure is only larger than the input by a constant factor (withc(P, |Σ|) factoring into the constant).

Consistency. The soundness property defined above will not be satisfied if we runP on each constraint
ci and take the (disjoint) union of the constraint graphsGi. It is possible that the system of constraints
{c1, . . . , cm} has a non-zero unsat value which will not carry over to∪Gi if, say, each constraintci is
satisfiable on its own. The problem stems from the fact that we are not interested in the satisfiability
of eachci but rather in their satisfiabilitysimultaneously by the same assignment. Therefore, when we
run P on eachci we need a mechanism that causes the assignments for the various graphsGi to be
“consistent” with each other, i.e., to refer tothe sameassignment for the original variables.

This issue has been handled before in a modular fashion by making stronger requirements on the
reductionP. Such more-restricted reductions are called PCPs of Proximity in [7] or Assignment Testers
in [11]. Below we repeat Definition 2.2 of an assignment tester. Essentially, using an assignment-tester
reductionP will force the different constant-size constraint graphs to have common vertices, and that
will ensure consistency. For an exposition as to why assignment-testers are well-suited for composition,
as well as a proof of a generic composition theorem, please see [7, 11].

16

Definition 2.2 (Assignment Tester)An Assignment Testerwith alphabetΣ0 and rejection probability
ε > 0 is an algorithmP whose input is a circuitΦ over Boolean variablesX, and whose output is
a constraint graphG = 〈(V,E),Σ0, C〉 such that3 V ⊃ X, and such that the following hold. Let
V ′ = V \X, and leta : X → {0, 1} be an assignment.

• (Completeness) Ifa ∈ SAT(Φ), there existsb : V ′ → Σ0 such thatUNSATa∪b(G) = 0.

• (Soundness) Ifa 6∈ SAT(Φ) then for allb : V ′ → Σ0, UNSATa∪b(G) ≥ ε · rdist(a,SAT(Φ)).

We remark that our definition of the rejection probability is stronger than the standard definition in
the literature. Here it is really the ratio between the the probability of rejection and the distance of the
given assignment from a satisfying one.

We prove in Section 7 that such an object exists:

Theorem 5.1 There is someε > 0 and an explicit construction of an assignment testerP with alphabet
Σ0 = {0, 1}3 and rejection probabilityε.

Notice that no statement was made on the running time ofP, and none will be necessary.
Let us now define the composition between a constraint graphG and an assignment testerP. The

definition requires an auxiliary error correcting codee : Σ → {0, 1}`. We recall the following standard
definitions. An error correcting code is said to have linear dimension if there is some constantc > 0
such that̀ ≤ c · log2 Σ. It is said to have relative distanceρ > 0 if for every a1 6= a2 ∈ Σ, the strings
e(a1) ande(a2) differ on at leastρ` bits, namelyrdist(e(a1), e(a2)) ≥ ρ. Two `-bit stringss1, s2 are
said to beδ-far (resp.δ-close) ifrdist(s1, s2) ≥ δ (resp. ifrdist(s1, s2) ≤ δ).

Definition 5.1 (Composition) LetG = 〈(V,E),Σ, C〉 be a constraint graph and letP
be an assignment tester. Lete : Σ → {0, 1}` be an arbitrary encoding with linear dimension and

relative distanceρ > 0. The constraint graphG ◦ P = 〈(V ′, E′),Σ0, C′〉 is defined in two steps.

1. (Robustization:) First, we convert each constraintc(e) ∈ C to a circuit c̃(e) as follows. For each
variable v ∈ V , let [v] be a fresh set of̀ Boolean variables. For each edgee = (v, w) ∈ E,
c̃(e) will be a circuit on2` Boolean input variables[v] ∪ [w]. The circuitc̃(e) will output1 iff the
assignment for[v] ∪ [w] is the legal encoding viae of an assignment forv andw that would have
satisfiedc.

2. (Composition:) Run the assignment testerP on each̃c(e). LetGe = 〈(Ve, Ee),Σ0, Ce〉 denote the
resulting constraint graph, and recall that[v] ∪ [w] ⊂ Ve. Assume, wlog, thatEe has the same
cardinality for eache. Finally, define the new constraint graphG ◦ P = 〈(V ′, E′),Σ0, C′〉, by

V ′ =
⋃
e∈E

Ve, E′ =
⋃
e∈E

Ee, C′ =
⋃
e∈E

Ce .

Our main lemma in this section is the following,

Lemma 1.8 (Composition) Assume the existence of an assignment testerP, with constant rejection
probability ε > 0, and alphabetΣ0, |Σ0| = O(1). There exist a constantβ3 > 0 that depends only on
P, and a constantc(P, |Σ|) that depends only onP and |Σ|, such that the following holds. Given any

3In a constraint graph, the setV plays a double role of both variables and vertices. ByV ⊃ X it is meant that some of the
vertices ofV are identified with theX variables.

17

constraint graphG = 〈(V,E),Σ, C〉, one can compute, in time that is linear insize(G), the constraint
graphG′ = G ◦ P, such thatsize(G′) = c(P, |Σ|) · size(G), and

β3 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

Proof: First, let us verify thatG′ = G ◦ P can be computed in time linear insize(G). The first step
(robustization) consists of|E| steps of convertingc(e) to a circuitc̃(e). This circuit computes a Boolean
function on2` Boolean variables. Thus, each conversion can clearly be done in time2O(`), which is a
factor that depends ultimately only on|Σ| and not onsize(G). In the second step, we feed eachc̃(e) to
P, obtaining the constraint graphGe. Even if the running time ofP is huge compared to its input length,
this makes no difference. The reason is that the size of the input toP is bounded by some absolute
constant, again depending on|Σ|, and therefore the size of the output is bounded by some other absolute
constant (which equals the maximal output length ranging over all of the finitely many different inputs).
Since the blowup factor depends only on|Σ| and onP we can write

size(G′) = c(P, |Σ|) · size(G).

It remains to be seen thatβ3 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G). The proof is straightforward
and follows exactly the proof of the composition theorem in [11].

Let us start with the easy part of provingUNSAT(G′) ≤ UNSAT(G). Letσ : V → Σ be an assignment
for G such thatUNSAT(G) = UNSATσ(G). We construct an assignmentσ′ : V ′ → Σ0 by following
the two steps in Definition 5.1. Recall that each vertexv was replaced by a set of vertices[v]. For each
v ∈ V , we set

σ′([v]) = e(σ(v)) ∈ {0, 1}`

whereσ′([v]) means the concatenation ofσ′(y) for all y ∈ [v]. It remains to define values forσ′ on⋃
e=(u,v)∈E

(Ve \ ([u] ∪ [v]).

If e = (u, v) ∈ E is such thatc(e) is satisfied byσ, then by definition the circuit̃c(e) is satisfied
by σ′ restricted to[u] ∪ [v]. Then, according to the completeness property ofP, there is an extension
assignment forVe \ ([u] ∪ [v]) that satisfies all constraints inGe. In other words, if we leta denote the
restriction ofσ′ to [u] ∪ [v], then there is someb : Ve \ ([u] ∪ [v]) → Σ0 such thatUNSATa∪b(Ge) = 0.
Defineσ′ to coincide withb onVe \ ([u] ∪ [v]).

For the remaining vertices (belonging to graphsGe whose constraintc(e) is unsatisfied byσ) define
σ′ arbitrarily. Since eachEe has the same cardinality, it is easy to see thatUNSATσ′(G′) ≤ UNSATσ(G).
Therefore,

UNSAT(G′) ≤ UNSATσ′(G′) ≤ UNSATσ(G) = UNSAT(G).

We now move to the left inequality:β3 · UNSAT(G) ≤ UNSAT(G′). We need to prove that every
assignment forG′ violates at leastβ3 · UNSAT(G) fraction ofG′’s constraints. So letσ′ : V ′ → Σ0

be a best assignment forG′, i.e., such thatUNSATσ′(G′) = UNSAT(G′). We first extract from it an
assignmentσ : V → Σ for G by letting, for eachv ∈ V , σ(v) be a value whose encoding viae is
closest toσ′([v]). Let F ⊆ E be the edges ofG whose constraints are falsified byσ. By definition,
|F |
|E| = UNSATσ(G) ≥ UNSAT(G). Now lete = (u, v) ∈ F . We will show that at least aβ3 fraction of

18

the constraints of the graphGe are falsified byσ′. Recall that the constraint graphGe is the output ofP
on inputc̃(e). Thus, we must analyze the distance of the assignment for[u]∪ [v] from the set SAT(c̃(e))
of assignments that satisfỹc(e). The main observation is that the restriction ofσ′ to [u] ∪ [v], is at least
ρ/4-far from SAT(c̃(e)) (whereρ denotes the relative distance ofe). The reason is the definition of
σ(u) (resp.σ(v)) as the value whose encoding is closest toσ′([u]) (resp.σ′([v])). This means that at
least aρ/2 fraction of the bits in either[u] or [v] (or both) must be changed in order to changeσ′ into an
assignment that satisfiesc̃(e). So

rdist(σ′|[u]∪[v],SAT(c̃(e))) ≥ ρ/4.

By the soundness property ofP, at leastε · ρ/4 = Ω(1) fraction of the constraints inGe are unsatisfied,
and we setβ3 = ερ/4 > 0. Altogether,

UNSAT(G′) = UNSATσ′(G′)

=
1
|E|

∑
e∈E

UNSATσ′|Ve
(Ge)

≥ 1
|E|

∑
e∈F

UNSATσ′|Ve
(Ge)

≥ β3
|F |
|E|

= β3UNSATσ(G) ≥ β3UNSAT(G)

where the second equality follows since|Ee| is the same for alle ∈ E.

6 Amplification Lemma

In this section we prove the amplification lemma. In fact, we prove the following slightly stronger lemma
from which Lemma 1.6 follows as an immediate corollary.

Lemma 6.1 Letλ < d, and|Σ| be arbitrary constants. There exists a constantβ2 = β2(λ, d, |Σ|) > 0,
such that for everyt ∈ N and for everyd-regular constraint graphG = 〈(V,E),Σ, C〉 with self-loops
andλ(G) ≤ λ the following holds. For every~σ : V → Σddt/2e

let σ : V → Σ be defined according to
“popular opinion” by setting, for eachv ∈ V ,

σ(v)
4
= max arga∈Σ {Pr[A randomdt/2e-step walk fromv reaches a vertexw for which~σ(w)v = a]} .

(4)
where~σ(w)v ∈ Σ denotes the restriction of~σ(w) to v. Then,

UNSAT~σ(Gt) ≥ β2

√
t ·min

(
UNSATσ(G) ,

1
t

)
.

Throughout this section all constants, including those implicitly referred to byO(·) andΩ(·) notation,
are independent oft but may depend ond, λ and|Σ|. Also, let us assume for notational clarity thatt is
even.

Before we move to the proof of Lemma 6.1 let us see how it yields Lemma 1.6.

Proof of Lemma 1.6: Let ~σ an assignment forGt with minimum unsat value. Then, forσ defined
according to (4),

UNSAT(Gt) = UNSAT~σ(Gt) ≥ β2

√
t ·min

(
UNSATσ(G) ,

1
t

)
≥ β2

√
t ·min

(
UNSAT(G) ,

1
t

)
19

where the first inequality is due to Lemma 6.1.

Let us provide some intuition for why Lemma 6.1 holds. Let us begin by a simple mental experiment.
Fix an assignmentσ : V → Σ forG, and consider the probability of choosingt edges inG independently
at random and checking whetherσ falsifies at least one of these edges. This probability is roughlyt times
larger thanUNSATσ(G). Moreover, sinceG is an expander graph, the probability remains (roughly) the
same even if thet edges are chosen by taking a random length-t walk inG.

The graphGt is constructed to simulate this behavior. It is not hard to see that if~σ : V → Σdt/2

were “faithful” to some underlying assignmentσ : V → Σ (i.e. ~σ(v)w = σ(w) for eachw reachable
from v by t/2 steps) thenUNSAT~σ(Gt) is lower-bounded by the result of the mental experiment. The
proof of Lemma 6.1 is more tricky since we must consider assignments~σ that are not “faithful” to any
underlying assignment.

The idea of the proof is as follows. Let us refer to the edges ofGt aswalks, since they come fromt-
step walks inG, and let us refer to the edges ofG as edges. Given an assignment forGt, ~σ : V → Σdt/2

,
we extract from it a new assignmentσ : V → Σ by assigning each vertexv the most popular value
among the “opinions” (under~σ) of v’s neighbors. We then relate the fraction of edges falsified by this
“popular-opinion” assignmentσ to the fraction of walks falsified by~σ. The probability that a random
edge rejects this new assignment is, by definition, at leastUNSAT(G). The idea is that a random walk
passes throughat least onerejecting edge with even higher probability. Moreover, we will show that if
a walk does pass through a rejecting edge, it itself rejects with constant probability.

Proof of Lemma 6.1: Let ~σ : V → Σdt/2
be any assignment forGt. For eachv, ~σ(v) assigns a vector

of dt/2 values inΣ, interpreted as values for every vertexw within distancet/2 of v. This can be thought
of as the opinion ofv aboutw. Define the assignmentσ : V → Σ according to (4). LetXv be a random
variable that assumes a valuea with probability that at/2-step random walk fromv ends at a vertexw
for which~σ(w)v = a. Thenσ(v) = a for a valuea which maximizesPr[Xv = a], and in particular

Pr[Xv = σ(v)] ≥ 1
|Σ|

. (5)

As mentioned above, the assignmentσ can be interpreted as being the “popular opinion” aboutv among
v’s neighbors.

Let F be a subset of edges that rejectσ so that ifUNSATσ(G) < 1/t then |F |
|E| = UNSATσ(G), and

otherwise we takeF to be an arbitrary subset of these edges, such that|F | = b |E|t c. We have

|F |
|E|

≤ min(UNSATσ(G), 1/t) (6)

where equality holds if we ignore the rounding error. From now on~σ, σ, F will be fixed for the rest of
the proof.

LetE = E(Gt) be the edge set ofGt. There is a one-to-one correspondence between edgese ∈ E and
walks of lengtht in G. With some abuse of notation we writee = (v0, v1, . . . , vt) where(vi−1, vi) ∈ E
for all 1 ≤ i ≤ t.

Definition 6.1 A walke = (v0, . . . , vt) ∈ E is hit by itsi-th edge if

1. (vi−1, vi) ∈ F , and

2. Both~σ(v0)vi−1 = σ(vi−1) and~σ(vt)vi = σ(vi).

20

Let I =
{
t
2 −

√
t
2 < i ≤ t

2 +
√

t
2

}
⊂ N be the set of “middle” indices. For each walke, we define

N(e) to be the number of timese is hit in its middle portion:

N(e) = |{ i ∈ I | e is hit by itsi-th edge}| .

N(e) is an integer between0 and
√

2t. Clearly,N(e) > 0 implies thate rejects under~σ (because having
e hit by thei-th edge means(vi−1, vi) ∈ F and soσ(vi−1) is inconsistent withσ(vi) which carries over
to the constraint on~σ(v0) and~σ(vt)). Thus,

Pr
e

[N(e) > 0] ≤ Pr
e

[e rejects~σ] = UNSAT~σ(Gt) .

We will prove

Ω(
√
t) · |F |

|E|
≤ Pr

e
[N(e) > 0] . (7)

Combining the above with (6) we get

Ω(
√
t) ·min(UNSATσ(G),

1
t
) ≤ Ω(

√
t) · |F |

|E|
≤ Pr

e
[N(e) > 0] ≤ UNSAT~σ(Gt)

which gives the lemma.
We will prove (7) by estimating the first and second moments of the random variableN ,

Lemma 6.2

Ee[N(e)] ≥ Ω(
√
t) · |F |

|E|

Lemma 6.3

Ee[(N(e))2] ≤ O(
√
t) · |F |

|E|

Equation (7) follows by Fact 2.6,

Pr[N(e) > 0] ≥ E2[N(e)]/E[(N(e))2] = Ω(
√
t) · |F |

|E|
.

6.1 Proof of Lemma 6.2

Define an indicator variableNi by settingNi(e) = 1 iff the walk e is hit by its i-th edge, as in defini-

tion 6.1. RecallI =
{
t
2 −

√
t
2 < j ≤ t

2 +
√

t
2

}
. Clearly,N =

∑
i∈I Ni. In order to estimateE[N] we

will estimateE[Ni], and use linearity of expectation.
Fix i ∈ I. In order to estimateE[Ni] we choosee ∈ E according to the following distribution:

1. Choosee = (u, v) ∈ E uniformly at random.

2. Choose a random walk of lengthi− 1 starting fromu, denote it by(u = vi−1, vi−2, . . . , v1, v0).

3. Choose a random walk of lengtht− i starting fromv, denote it by(v = vi, vi+1, . . . , vt).

4. Output the walke = (v0, . . . , vt)

21

SinceG is d-regular this is no other than the uniform distribution onE. According to Definition 6.1,e
is hit by itsi-th edge iff(u, v) ∈ F and~σ(v0)u = σ(u) and~σ(vt)v = σ(v).

Clearly, the probability that step1 results in an edge(u, v) ∈ F equals exactly|F ||E| . Observe also that
the choice ofv0 in step2 only depends onu, and the choice ofvt in step3 only depends onv. Therefore

Pr[Ni > 0] =
|F |
|E|

· pu · pv (8)

wherepu = Prv0 [~σ(v0)u = σ(u)] andpv = Prvt [~σ(vt)v = σ(v)]. It remains to analyzepu andpv. Let
us focus onpu as the case ofpv is symmetric.

Define a random variableXu,` as follows.Xu,` takes a valuea ∈ Σ with probability that a random
`-step walk fromu ends in a vertexw for which~σ(w)u = a. In these termspu = Pr[Xu,i−1 = σ(u)],
(andpv = Pr[Xv,t−i = σ(v)]). Recall that by definitionσ(u) equals a valuea ∈ Σ that maximizes
Pr[Xu,t/2 = a]. In particular,Pr[Xu,t/2 = σ(u)] ≥ 1

|Σ| . For i − 1 = t/2 it follows immediately that
pu ≥ 1/ |Σ|.

We will prove that for all̀

If |`− t/2| ≤
√
t/2 then Pr[Xu,` = a] >

τ

2
· Pr[Xu,t/2 = a] (9)

for some absolute constantτ > 0 to be determined. The intuition for (9) is that the self-loops ofGmake
the distribution of vertices reached by a randomt/2-step walk fromu roughly the same as distribution
on vertices reached by an`-step walk fromu, for any` ∈ I.

Fix ` ∈ I. Mark one self-loop on each vertex, and observe that any length-` walk from u in G can
be equivalently described by (i) specifying in which steps the marked edges were traversed, and then (ii)
specifying the remaining steps conditioned on choosing only non-marked edges. LetX ′

u,k be a random
variable that assumes a valuea with probability that ak-step random walkconditioned on walking only
on non-marked edgesreaches a vertexw for which~σ(w)u = a. In other words, for a binomial variable
B`,p with Pr[B`,p = k] =

(
`
k

)
pk(1− p)`−k andp = 1− 1/d,

Pr[Xu,` = a] =
∑̀
k=0

Pr[B`,p = k] Pr[X ′
u,k = a] . (10)

The point is that if|`1 − `2| is small, then the distributionsB`1,p andB`2,p are similar, as formalized in
the following lemma:

Lemma 6.4 For everyp ∈ (0, 1) and c > 0 there exists somè0 > 0 and 0 < τ < 1 such that if
`0 < `1 −

√
`1 ≤ `2 < `1 +

√
`1, then

∀k, |k − p`1| ≤ c
√
`1, τ ≤

Pr[B`1,p = k]
Pr[B`2,p = k]

≤ 1
τ

The proof is a straightforward computation that follows from concentration properties of the binomial
distribution, and can be found in Appendix A. We choosec > 0 so that

K =
{
k ∈ N

∣∣∣ |k − pt/2| ≤ c
√
t/2

}
is large:Prk∼Bt/2,p

[k 6∈ K] < 1
2|Σ| . Then we apply Lemma 6.4 with the constantc > 0, p = 1 − 1

d ,
`1 = t/2, and`2 = ` and deduce for allk ∈ K,

Pr[B`,p = k] ≥ τ · Pr[B t
2
,p = k]

22

where0 < τ < 1 is the appropriate constant from the lemma.
We now have for anỳ ∈ I,

Pr[Xu,` = a] ≥
∑
k∈K

Pr[B`,p = k] Pr[X ′
u,k = a]

≥ τ ·
∑
k∈K

Pr[Bt/2,p = k] Pr[X ′
u,k = a]

≥ τ ·
(

Pr[Xu,t/2 = a]− 1
2 |Σ|

)
≥ τ

2
· Pr[Xu,t/2 = a]

where the last inequality holds because of (5). This establishes (9), and sopu, pv >
τ

2|Σ| because both

i− 1, t− i are at most
√
t/2 away fromt/2. Plugging this into Equation (8), we getE[Ni] ≥ |F |

|E| ·Ω(1),
and this completes the proof of Lemma 6.2.

6.2 Proof of Lemma 6.3

For a walke, let ei denote itsi-th edge. In order to upper boundEe[N(e)2] (all expectations are taken
over uniform choice ofe) we define a random variableZ(e) = |{ i ∈ I | ei ∈ F}| that counts how

many timese intersectsF in the middle portion (recallI =
{
t
2 −

√
t
2 < j ≤ t

2 +
√

t
2

}
). Clearly,

0 ≤ N(e) ≤ Z(e) for all e, so we will boundE[N(e)2] usingE[N(e)2] ≤ E[Z(e)2].
LetZi = Zi(e) be an indicator random variable that is1 iff ei ∈ F . SoZ(e) =

∑
i∈I Zi(e), and by

linearity of expectation,

Ee[Z(e)2] =
∑
i,j∈I

Ee[Zi(e)Zj(e)] =
∑
i∈I

E[Zi] + 2
∑
i < j

i, j ∈ I

E[ZiZj] = |I| |F |
|E|

+ 2
∑
i < j

i, j ∈ I

E[ZiZj]

(11)
As it turns out,E[Z2] is not much larger than|I||F ||E| ≈

√
t |F ||E| . The intuitive reason is that since the graph

G is an expander, correlations between thei-th and thej-th steps of a random walk cannot last long, so∑
E[ZiZj] is small.

Proposition 6.5 Fix i, j ∈ I, i < j, andF ⊆ E. Then,

E[ZiZj] ≤
|F |
|E|

(
|F |
|E|

+ |λ|j−i−1

)
.

Let us first see that combining the proposition with (11) completes the lemma. Indeed, since|I| =
√

2t
and since|F ||E| ≤

1
t ,

∑
i < j

i, j ∈ I

E[ZiZj] ≤
|F |
|E|

∑
i < j

i, j ∈ I

(
|F |
|E|

+ |λ|j−i
)
< |I|2

(
|F |
|E|

)2

+ |I| |F |
|E|

√
2t∑

i=1

|λ|i = O(
√
t) · |F |

|E|

where the ‘O’ notation is hiding a constant that depends only on|λ|. Let us now prove the proposition.
Proof: Observe thatZiZj ∈ {0, 1}, andPr[Zj = 1] = |F |

|E| . Thus,

E[ZiZj] = Pr[ZiZj = 1] = Pr[Zi = 1]Pr[Zj = 1 |Zi = 1] =
|F |
|E|

· Pr[Zj = 1 |Zi = 1] .

23

Assume firsti = 1 andj > i. By Proposition 2.5,

Pr
e

[Zj(e) = 1 |Z1(e) = 1] ≤ |F |
|E|

+ |λ|j−2

whereλ < 1 is the normalized second eigenvalue of the graphG. Indeed, lete = (v0, . . . , vt), condi-
tioned onZ1(e) = 1 the distribution ofv1 is exactly the distributionK defined in Proposition 2.5, so the

probability that thej-th edge in this walk is inF is at most|F ||E| +
(
|λ|
d

)j−2
.

If j > i > 1, we don’t care where the random walke visited during its firsti − 1 steps, so we can
ignore those steps. In other words the lastt− i+1 steps of a random walk of lengtht are a random walk
of lengtht− i+ 1. This is formalized by writing

Pr
|e|=t

[Zj(e) = 1 |Zi(e) = 1] = Pr
|e′|=t−i+1

[Zj−i+1(e′) = 1 |Z1(e′) = 1] .

Now by applying Proposition 2.5 on walks of lengtht − i + 1, the right hand side cannot exceed
|F |
|E| + |λ|j−i−1.

We conclude this section by commenting that there is a modification of our construction, due to
Jaikumar Radhakrishnan, that allows one to replace

√
t in Lemma 1.6 byt. This is obviously tight

(up to the constant hidden in theO notation). Amplification by factorΘ(t) is achieved by the following
modified definition ofGt: the vertices stay the same, and the alphabet isΣdt/2

as before. The edges ofGt

are weighted, and described by the following random process: choose a vertexv at random and choose
a second vertex by taking a random walk formv that stops after each step with probability1/t. The
constraints are defined as before. For details on how to analyze this construction the reader is referred to
[28].

7 An Explicit Assignment Tester

In this section we prove Theorem 5.1, i.e., we outline a construction of an assignment testerP. Let ψ
be a Boolean circuit over Boolean variablesx1, . . . , xs. We describe an algorithmP whose input isψ
and whose output will be a constraint graph satisfying the requirements of Definition 2.2. We begin by
introducing the Long-Code. Let

L = {f : {0, 1}s → {0, 1}}
be the set of all Boolean functions ons bits. Given a stringa = (a1, . . . , as) ∈ {0, 1}s, defineAa : L→
{0, 1} by

∀f ∈ L Aa(f) = f(a) . (12)

EachAa itself can be viewed as a string of|L| bits, and the set of strings{Aa | a ∈ {0, 1}s} is an
error-correcting code calledthe Long-Code. Recall that twò -bit stringss1, s2 are said to beδ-far (resp.
δ-close) from one another ifdist(s1, s2) ≥ δ` (resp. ifdist(s1, s2) ≤ δ`). It is not hard to see that if
a 6= a′ thenAa andAa′ are 1

2 -far from one another.
In fact we consider only so-called “folded” strings. A stringA is said to be folded over true if for

everyf , A(−f) = −A(f). A stringA is said to be folded overψ : {0, 1}s → {0, 1} if for every f ,
A(f) = A(f ∧ ψ). Whenψ is clear from the context we say that a stringA is “folded” if it is folded
both over true and overψ. Clearly, in order to specify a folded stringA : L → {0, 1} it is enough to
specify it on the coordinatesL′ψ ⊂ L, defined as follows. For every pairf, 1 − f ∈ L, let L′ contain
exactly one of them, and set

L′ψ =
{
f ∈ L′

∣∣ f = f ∧ ψ
}
.

We are now ready to state the Long-Code test theorem.

24

Theorem 7.1 There exists aLong-Code TestT which is a randomized algorithm that has input a
function ψ : {0, 1}s → {0, 1}, and also oracle access to a folded stringA : L → {0, 1}. T
reads the inputψ and tosses some random coins. Based on these it computes a three-bit predicate
w : {0, 1}3 → {true, false} and three locationsf1, f2, f3 ∈ L in which it queries the stringA. It
then outputsw(A(f1), A(f2), A(f3)). Denote an execution ofT with access to inputψ and stringA by
TA(ψ). Then the following hold,

• (Perfect completeness:) Ifa ∈ {0, 1}s such thatψ(a) = 1, thenPr[TAa(ψ) = true] = 1.

• (Strong4 soundness:) For everyδ ∈ [0, 1], if A : L → {0, 1} is folded and at leastδ-far fromAa
for all a for whichψ(a) = 1, thenPr[TA(ψ) = false] ≥ Ω(δ).

For the sake of self-containedness, we include a proof of this theorem in Appendix B. We now proceed
to construct a system of constraints based on the testT . This is done in two rather standard steps,

1. (Modified Test:) LetX = {x1, . . . , xs} be a set ofs Boolean variables. Also, let there be a
Boolean variable for eachf ∈ L′ψ. Since an assignment for these variables can be expanded into
a foldedassignment forL, we pretend from now on that we have a Boolean variable for every
f ∈ L. We allow the test to access any variable indexed byL. When it accesses some variable
f ∈ L \ L′ψ the value of the variable is determined by accessing the appropriate variable inL′ψ.
For example, if1 − f ∈ L′ψ then to read the value off we access the value of1 − f and negate
the assignment. To summarize, from now on we ignore this issue and simply pretend that we have
a variable for eachf ∈ L and that the assignment for these variables is guaranteed to be folded.

Define a modified testT ′ as follows. Given inputψ and oracle access to a folded assignment
A : L → {0, 1} and an assignmentσ : X → {0, 1}, runT onψ andA with probability1/2, and
otherwise choose a randomxi ∈ X and a randomf ∈ L, and test thatσ(xi) = A(f)⊕A(f +ei).

2. (Creating the Constraints:) Introduce a new variablezr per outcomer of the coin tosses ofT ′.
These variables will take values in{0, 1}3, supposedly specifying the correct values of all three
variables queried byT ′ on coin tossesr.

We construct the following system of constraints: There will be a constraint for every possible
choice ofzr ∈ Z and a variabley of the three accessed byT ′ on coin tossr (soy ∈ X ∪L). This
constraint will check that the assignment forzr would have satisfiedT ′, and that it is consistent
with the assignment fory.

The algorithmP will output the constraint graphG whose vertices areX∪L∪Z, and whose constraints
(and edges) are as specified above. The alphabet isΣ0 = {0, 1}3, where the Boolean variablesX ∪ L
take values only in{000, 111} ⊂ Σ0, identified with{0, 1} (i.e., a constraint involvingy ∈ X ∪ L
immediately rejects if the value ofy is not in{000, 111}).

Lemma 7.2 The reduction takingψ : {0, 1}s → {0, 1} toG is an assignment tester, withΣ0 = {0, 1}3

and constant rejection probabilityε > 0.

Proof: Let us identify the Boolean variables ofψ withX, so the constraint graphG has the correct form
according to Definition 2.2. We need to prove

• (Completeness) Ifa ∈ SAT(ψ), there existsb : L ∪ Z → Σ0 such thatUNSATa∪b(G) = 0.

4We refer to ‘strong’ soundness as opposed to regular soundness, due to the stronger property of having the rejection
probability proportional to the distance from a “good” string.

25

• (Soundness) Ifa 6∈ SAT(ψ) then for allb : L ∪ Z → Σ0, UNSATa∪b(G) ≥ ε · rdist(a,SAT(ψ)).

The completeness part is easy. Let the assignment for the variables inL beAa (defined in Equation
(12)). It is then easy to assign the variablesZ in a consistent manner.

For soundness, assume thatσ : X → {0, 1} is an assignment such thatrdist(σ,SAT(ψ)) = δ, for
someδ > 0. Fix anyb : L ∪ Z → Σ0, and denoteA = b|L. We claim

Proposition 7.3 Pr[T ′A,σ(ψ) = false] = Ω(δ).

Proof: We observe thatA is folded (by the discussion in item 1 above). Assume first thatA : L →
{0, 1} is δ/2 far fromAa for all a ∈ SAT (ψ) ⊂ {0, 1}s. Then by Theorem 7.1T rejects with probability
at leastΩ(δ), soT ′ rejects with probability at least half of that, which is alsoΩ(δ). Otherwise,A is δ/2-
close to the long-code encoding of somea′ ∈ SAT (ψ). We now comparea′ andσ which are both
assignments for the variables ofψ. Sincea′ ∈ SAT (ψ),

Pr
i

[σ(xi) 6= a′(xi)] = rdist(σ, a′) ≥ rdist(σ, SAT (ψ)] = δ.

Now recall that with probability1/2, T ′ chooses a randomi and a randomf and checks thatA(f) ⊕
A(f + ei) = σ(xi). SinceA is δ

2 -close toAa′ , we have for alli:

Pr
f∈L

[
A(f)⊕A(f + ei) = a′(xi)

]
≥ Pr

f∈L

[
A(f) = f(a′) and A(f + ei) = (f ⊕ ei)(a′)

]
≥ 1− 2 · δ/2 = 1− δ

The check fails wheneveri, f are such thata′(xi) 6= σ(xi) and yetA(f) ⊕ A(f + ei) = a′(xi).
Altogether this occurs with probability at least(1 − δ)δ ≥ δ/2, andT ′ runs this test with probability
1/2, so it rejects again with probabilityΩ(δ) as claimed.

Consider the assignmentb|Z . For every random string that causesT ′ to reject (on inputσ,A), the
associated variablezr is either assigned consistently withA, σ which means that its value immediately
causes the associated constraint to reject; or it is inconsistent withA, σ. Each inconsistency will be
detected with probability at least1/3. Thus at leastΩ(δ)

3 = Ω(δ) fraction of the constraints reject. Hence
UNSATa∪b(G) = Ω(δ) = Ω(rdist(σ, SAT (ψ))).

8 Short PCPs and Locally Testable Codes

In this section we describe how to construct extremely-short Probabilistically Checkable Proofs and
Locally-Testable Codes (LTCs). Our starting point is the construction of Ben-Sasson and Sudan [8].
The case of short PCPs follows rather directly from our main theorem (Theorem 1.5) and is described
first, in Subsection 8.2. The case of short LTCs is analogous, and is obtained similarly from a variant of
the main theorem. This variant is an adaptation of our reduction between constraint graphs into a special
kind of reduction called an assignment tester or a PCP of Proximity. We feel that this adaptation may be
of independent interest, and it is described fully in Section 9. Assuming this adaptation, we describe our
short LTCs in Subsection 8.3. Let us first begin with some definitions and notations.

8.1 Definitions and Notation

Given a system of constraintsΦ, we denote itsunsat-valueby UNSAT(Φ): the minimum over all possible
assignments forΦ’s variables, of the fraction of unsatisfied constraints. This is a natural extension of the
unsat-value of a constraint graph.

26

Definition 8.1 (PCPs,c[log `, q]) We define the class of languagesPCPs,c[log2(`(n)), q(n)], with pa-
rameterss(n), c(n) and`(n) andq(n) as follows. A languageL is in this class iff there is a reduction
taking an instancex to a system of constraintsΦ(x) such that, forn = |x|,

• |Φ(x)| ≤ `(n); and each constraintϕ ∈ Φ(x) accesses at mostq(n) variables.

• If x ∈ L then1− UNSAT(Φ(x)) ≥ c(n)

• If x 6∈ L then1− UNSAT(Φ(x)) ≤ s(n)

Definition 8.2 (Locally Testable Codes)A codeC ⊂ Σn is (q, δ, ε)-locally testable if there is a ran-
domized algorithmA that is given oracle access to a stringx, then (non-adaptively) reads at mostq
symbols fromx, and decides whether to accept or reject such that

• For everyx ∈ C, Pr[Ax accepts] = 1.

• For every stringy ∈ Σn such thatrdist(y, C) ≥ δ, Pr[Ay rejects] ≥ ε.

8.2 Short PCPs

Our main theorem in this section is,

Theorem 8.1 SAT ∈ PCP 1
2
,1[log2(n · poly log n), O(1)].

We prove this theorem by relying on a recent result of Ben-Sasson and Sudan,

Theorem 8.2 ([8, Theorem 2.2])For any proper complexity functiont : N → N,

NTIME(t(n)) ⊆ PCP 1
2
,1[log(t(n)poly log t(n)),poly log t(n)].

From this result, we deriveSAT ∈ PCP1− 1
poly log n

,1[log2(n · poly log n), O(1)]. More precisely,

Lemma 8.3 There exist constantsc1, c2 > 0 and a polynomial-time reduction that transforms any SAT
instanceϕ of sizen into a constraint graphG = 〈(V,E),Σ, C〉 such that

• size(G) ≤ n(log n)c1 and|Σ| = O(1).

• If ϕ is satisfiable, thenUNSAT(G) = 0.

• If ϕ is not satisfiable, thenUNSAT(G) ≥ 1
(logn)c2

.

Before proving the lemma, let us see how it implies Theorem 8.1,
Proof of Theorem 8.1: Given a SAT instance of sizen, we rely on Lemma 8.3 to reduce it to a
constraint graphG whose size we denote bym = n · (log n)c1 . Then, we apply the main theorem
(Theorem 1.5) iterativelyk = c2 · log logm < 2c2 log log n times. This results in a constraint-graphG′

for which UNSAT(G′) ≥ min(2k · UNSAT(G) , α) = α, and such thatsize(G′) = Cc2 log logm ·m ≤
n · (log n)c1+2c2 logC = n · poly log n.

To get an error-probability of12 one can apply the expander-neighborhood sampler of [19] (see also
[16, Section C.4]) for efficient amplification.

Proof of Lemma 8.3: SinceSAT ∈ NTIME(O(n)), Theorem 8.2 yields some constantsa1, a2 > 0
and a reduction from SAT to a systemΨ0 of at mostm = n · (log n)a1 constraints, each over at
most(log n)a2 Boolean variables such that satisfiable inputs go to satisfiable systems, and unsatisfiable
inputs result in systems for which any assignment satisfies at most1

2 of the constraints. Our goal is to
reduce the number of queries per constraint. Basically, this is done by introducing new variables over
a large alphabet, which enables few queries in a naive way (which causes the rejection probability to
deteriorate). Then, the alphabet size is reduced through composition.

27

Two-variable Constraints For each constraint inΨ0, let us introduce one new (big) variable. This
variable will take values over alphabetΣ = {0, 1}(logn)a2 that supposedly represent values to all of the
original (small) variables queried in that constraint. The number of big variables ism = n · (log n)a1 .
Introduce(log n)a2 new constraints per big variable: Each constraint will query the big variable and
exactly one of the small variables queried by the corresponding constraint. The constraint will check
that the value for the big variable satisfies the original constraint, and that it is consistent with the second
(small) variable. Call this systemΨ and observe that|Ψ| = n · (log n)a1+a2 .

What isUNSAT(Ψ)? Given an assignment for the original variables it must cause at leastm/2 (orig-
inal) constraints to reject. Each big variable that corresponds to a rejecting constraint must now partic-
ipate in at least one new rejecting constraint. Indeed, even if it is assigned a value that is accepting, it
must differ from this assignment, so it will be inconsistent with at least one original (small) variable.
Altogether, at least m/2

m·(logn)a2
≥ (log n)−(a2+1) fraction of the constraints inΨ must reject.

Composition We next apply composition to reduce the alphabet size fromlog |Σ| = poly log n to
O(1). This is exactly as done in Lemma 1.8 except that we are somewhat more restricted in our choice
of the assignment tester algorithmP (or equivalently: a PCP of Proximity), in that the output size of
P must be polynomial in the input size. Observe that we only require that the size of the output is
polynomial(and not quasi-linear) in the input size, so there is no circularity in our argument. Existence
of such an algorithmP is an implicit consequence of the proof of the PCP Theorem of [3, 2], and was
explicitly described in [7, 11].

Here is a brief summary of the construction of Lemma 1.8: We encode each variable via a linear
dimension, linear distance error-correcting-code, treating the ‘small’ variable in each constraint as if its
value lies in the large alphabet. We then runP on each constraint and let the new systemΨ′ be the union
of the output constraint systems.

Assuming that the rejection probability ofP is ε = Ω(1), the soundness analysis shows that

UNSAT(Ψ′) ≥ UNSAT(Ψ) · ε = Ω((log n)−(a2+1)) =
1

poly log n

where the middle equality holds sinceε is a constant. Since the input size forP was the size of one
constraint inΨ, i.e., poly log n, it follows that the size of the constraint system output byP is also
poly log n. This means that|Ψ′| = |Ψ| · poly log n = n · poly log n

8.3 Short Locally Testable Codes

A similar construction to that of Theorem 8.1 can be used to obtain locally-testable codes with inverse
poly-logarithmic rate (i.e., mappingk bits tok ·poly log k bits), that are testable with a constant number
of queries.

The way we go about it is by relying on a variant of the main theorem (Theorem 1.5). Recall that the
main theorem is a reduction fromG toG′ = (prep(G)t) ◦P. We will need a stronger kind of reduction,
that is an assignment tester (also called a PCP of Proximity), as defined in Definition 2.2.

In the next section we will prove that the main amplification step (as in Theorem 1.5) can also work
for assignment-testers. Formally,

Theorem 9.1There existst ∈ N such that given an assignment-tester with constant-size alphabetΣ
and rejection probabilityε, one can construct an assignment-tester with the same alphabet and rejection

28

probability at leastmin(2ε, 1/t), such that the output size of the new reduction is bounded by at most a
constant factor times the output size of the given reduction.

Just as our main theorem (Theorem 1.5) could be combined with the construction of [8] yielding a
short PCP, Theorem 9.1 can be combined with the construction of [8] to yield short PCPs of Proximity /
assignment-tester reductions.

Corollary 8.4 There exists an assignment-tester with constant size alphabet, and constant rejection
probability ε > 0, such that inputs of sizen are transformed to outputs of size at mostn · poly log n.

Proof: As in the proof of Theorem 8.1, we begin with a lemma that follows from the construction of
[8],

Lemma 8.5 There exist a polynomial-time assignment-tester with constant alphabet size and rejection
probability ε ≥ 1

(logn)O(1) , such that inputs of sizen are transformed to outputs of size at mostn ·
poly log n.

The difference between this lemma and Lemma 8.3 is that here we require the reduction to be an
assignment-tester. This can be derived from the construction of [8], in a similar way to the proof of
Lemma 8.3.

LetA0 be the assignment-tester from Lemma 8.5. LetAi be the result of applying the transformation
guaranteed in Theorem 9.1 onAi−1. For i = O(log log n), the reductionAi will have the required
parameters.

Finally, we claim that Corollary 8.4 directly implies the existence of locally testable codes of rate
1/poly log n.

Corollary 8.6 For everyδ > 0 there exists anε = Ω(δ) > 0, and an infinite family of codes{CN}N
with rate1/poly logN , such thatCN is (2, δ, ε)-locally-testable.

Proof: Assuming we have the assignment tester from Corollary 8.4, we apply the construction of [7,
Construction 4.3]. We give a brief sketch of the construction. We constructCN as follows. Fixn ∈ N
and letC ′

n ⊂ Σn be an error correcting code with rate and distanceΘ(n). Let Φ be a circuit over
variablesX = {x1, . . . , xn} that accepts iff the assignment forX is a codeword inC ′

n. We can assume
that |Φ| = O(n) (using, e.g., expander codes [33]). Run the reduction of Corollary 8.4 onΦ, and letG
be the output constraint graph,size(G) = n · poly log n. Let Y = V \X be the new variables added
by the reduction, and denotem = |Y |,m ≤ n · poly log n. Let ` = 2m

δn ,N = n`+m, and define a new
code

CN =
{
a`b ∈ Σn`+m

∣∣∣ a ∈ C ′
n, b ∈ Σm andUNSATσ(G) = 0 whereσ|X = a andσ|Y = b

}
⊂ ΣN .

wherea`b denotes the concatenation of` copies ofa with b. Clearly, the rate ofCN is 1/poly logN . We
claim thatCN is (2, δ, ε)-locally-testable. Here is the testing algorithm for a given wordw ∈ Σn`+m.
Denote thei-th bit ofw bywi.

1. Flip a random coin.

2. If heads, choose a randomi ∈ [n] and a randomj ∈ {1, 2, . . . , `− 1}, and accept iffwi = wi+j·`

3. If tails, choose a random constraint inG. View w[1, . . . , n] as an assignment forX andw[n` +
1, . . . , n`+m] as an assignment forY . Accept iff the constraint is satisfied by this assignment.

29

Clearly, everyw ∈ CN passes the test with probability1. If rdist(w′, CN) > δ, then for any codeword
σ = a`b ∈ CN , sincem ≤ n` · δ2 , the stringsw′ andσ must differ onδn`/2 of their firstn` bits. The
reader may verify that the test rejects with probability at leastΩ(δ).

Remark 8.1 (Constant Relative Distance)The codes above also have a constant relative distance.
This follows almost immediately from the distance ofC ′

n, except for the following caveat. A problem
would arise if for some assignmenta for X that satisfiesΦ there are two assignmentsb1, b2 for Y such
that bothUNSATa∪b1(G) = 0 and UNSATa∪b2(G) = 0. This would imply thata`b1, a`b2 ∈ CN , and
their distance can be quite small. However, this can be ruled out if every assignmenta has only one
assignmentb such thatUNSATa∪b(G) = 0. This can be ensured here, and therefore we conclude that the
above does yield codes with constant relative distance.

9 Adapting the Main Theorem for Assignment-Testers

In this section we show how to adapt the main amplification step (Theorem 1.5), that was described as a
reduction between constraint graphs, to work within the more demanding framework of an assignment-
tester. This gives an extension of our main theorem (and Theorem 1.2), to assignment-testers / PCPs of
proximity.

Theorem 9.1 There existst ∈ N and |Σ0| > 1 such that given an assignment-tester with constant-size
alphabetΣ and rejection probabilityε, one can construct an assignment-tester with alphabetΣ0 and
rejection probability at leastmin(2ε, 1/t), such that the output size of the new reduction is bounded by
at mostC times the output size of the given reduction, andC depends only on|Σ|.

Suppose we have a reduction takingΦ toG. We construct fromG a new graphG′ and prove that the
reduction takingΦ toG and then toG′ has the desired properties.

Let H = (prep(G))t be the result of running the preprocessing step (Lemma 1.7) and then raising
the resulting constraint graph to the powert. What are the variables ofH? Going fromG to prep(G)
each variablev ∈ V is split into many copies, and we denote the set of copies ofv by [v]. Next, going
from prep(G) toH = (prep(G))t, the variables ofH are identical to those ofprep(G), but take values
from a larger alphabet. So denoting the variables ofH by VH , we haveVH = ∪v∈V [v]. Syntactically,
VH is disjoint fromV , although the values forVH are supposed to “encode” values forV . Indeed, an
assignmentσ : V → Σ can be mapped to an assignmentσ2 : VH → Σdt/2

that “encodes” it, by the
following two steps.

1. First define a mappingσ 7→ σ1, where the assignmentσ1 : VH → Σ for prep(G) is defined by
assigning all copies ofv the same value asσ(v):

∀v ∈ V w ∈ [v], σ1(w)
4
= σ(v). (13)

Let us name this mappingm1. Observe also that given any assignment forprep(G), σ′ : VH → Σ,
it can be “decoded” into an assignment forG according to “popularity” as follows. Simply set
σ = m−1

1 (σ′) to be an assignmentσ : V → Σ for whichm1(σ) is closest5 in Hamming distance
to σ′.

5Breaking ties arbitrarily.

30

2. Next, define a mappingσ1 7→ σ2, where the assignmentσ2 : VH → Σdt/2
for H is defined by

assigning each vertexw a vector consisting of theσ1-values of all vertices reachable fromw by a
t/2-step walk

∀w ∈ VH , σ2(w)v
4
= σ1(v) for all v reachable fromw by at/2-step walk inG . (14)

Let us name this mappingm2, and again, given any assignmentσ′ : VH → Σdt/2
for (prep(G))t

it can be “decoded” into an assignment forprep(G) as follows. Simply setσ = m−1
2 (σ′) to be

the assignment defined by

σ(v)
4
= max arga∈Σ

{
Pr[A randomdt/2e-step walk fromv reaches a vertexw for whichσ′(w)v = a]

}
.

This coincides with the “most popular opinion” assignment as defined in Equation (4) of Section 6.

Going back to our reduction, we recall that in order for our reduction to be an assignment-tester, our
output constraint graph must have the variablesX of Φ contained in its set of variables. Then, we must
also verify that the completeness and soundness conditions (that refer toX) hold.

The GraphH ′ We next transformH toH ′ so as to includeX among the variables ofH ′. The vertices
of H ′ will be VH ∪X. The constraints ofH ′ will include all of the constraints ofH, and also additional
constraints that will check that the assignment forVH is a correct encoding, according to the mapping
m2 ◦m1 which mapsσ to σ2 (via σ1), of the assignment forX.

We describe the constraints betweenX andVH by the following randomized procedure. LetA :
VH → Σdt/2

and leta : X → {0, 1}.

1. Selectx ∈R X.

2. Selectz ∈R [x] (recall that[x] is the set of vertices inprep(G) that are copies ofx).

3. Take at/2-step random walk inprep(G) starting fromz, and letw be the endpoint of the walk.
Accept if and only ifA(w)z = a(x).

For every possible random choice of the test, we will place (an edge and) a constraint betweenw and
x, that accepts iff the test accepts. We will reweigh the constraints (by duplication) so that the weight
of the comparison constraints defined by the random procedure is half of the total weight of the edges.
This completes the description ofH ′. Observe that the size ofH ′ is at most a constant times the size
of G, becauseprep(G) is d-regular ford = O(1), so every vertexw ∈ VH participates in exactly
dt/2 = O(1) new comparison constraints. The next lemma states that the reduction fromΦ toH ′ is an
assignment-tester with large alphabet, and rejection probabilityΘ(

√
t) · ε.

Lemma 9.2 Assumeε < 1/t, and fixa : X → {0, 1}.

• If a ∈ SAT(Φ), there existsb : VH → Σdt/2
such thatUNSATa∪b(H ′) = 0.

• If δ = rdist(a,SAT(Φ)) > 0, then for everyb : VH → Σdt/2
, UNSATa∪b(H ′) > δ·min(1

16 , (β1β2

√
t/2)ε).

We prove this lemma shortly below. First, note that the constraint graphH ′ is almost what we need,
except that it is defined over the alphabetΣdt/2

, rather than overΣ. Let us now proceed to construct the
final graphG′.

31

The Graph G′ To reduce the alphabet ofH ′, we use composition. I.e., we assume that we have at
our disposal an assignment-testerP such that its rejection probability is some constantε0 > 0, and its
alphabet isΣ0. We make no requirements about the length of the output ofP, because we will only run
it on inputs of bounded size. For example, we can use the construction given in Section 7.

Now, the Composition Theorem of assignment-testers, [11, Theorem 3.7], states that given any two
such reductions, their composition is well defined (it is essentially described in the proof of Lemma 1.8
herein) and is itself an assignment-tester, with the following parameters:

• Thealphabet sizeis that of the inner reductionP, thus the constraints inG′ are over alphabetΣ0,
as desired.

• Theoutput sizeis the product of the output sizes of the two reductions. In our case, this means that
the output size of the reductionΦ ⇒ H ′ is multiplied by aconstantfactor that is the maximum
size of the output ofP when run on a constraint ofH ′.

• Therejection probabilityis the product of the rejection probabilities of the two reductions. Thus,
denoting the rejection probability ofP byε0, it is ε0 times the rejection probability of the reduction
Φ ⇒ H ′. Since this value wasmin(1

16 , (β1β2

√
t/2)ε), by choosingt large enough, even after

multiplying byε0 it is still larger than2ε for all small enoughε.

This completes the description of the transformation takingΦ toG′. It remains to prove Lemma 9.2.
Proof: (of Lemma 9.2) In this proof, there are four constraint graphs that we keep in mind

G ⇒ prep(G) ⇒ H = (prep(G))t ⇒ H ′ .

Recall that we encode assignments forG viam1, obtaining assignments forprep(G). These are encoded
viam2, giving assignments forH. We can also go in the opposite direction where an assignment forH
can be decoded into an assignment forprep(G) viam−1

2 , and similarly an assignment forprep(G) can
be decoded viam−1

1 into as assignment forG.

• Supposea ∈ SAT(Φ). Then, by assumption on the reduction fromΦ toG, there is an assignment
b : V → Σ such thatσ = a ∪ b satisfies all constraints inG. The assignmentσ is mapped, via
m1 to an assignmentσ1 for prep(G), andσ1 in turn is mapped viam2 into an assignment forH:
σ2 : VH → Σdt/2

. By the completeness of the preprocessing and the powering,σ2 will satisfy
all constraints inH. It is easy to verify thatσ2 will also satisfy (together witha) all of the new
comparison constraints, soUNSATa∪σ2(H

′) = 0

• Assume nowrdist(a,SAT(Φ)) = δ > 0. Fix some assignmentb : VH → Σdt/2
. We will show

that the assignmenta∪ b violates many of the constraints. The idea is to first “decode”b (through
m−1

2 and thenm−1
1) thereby getting an assignmentb0 : V → Σ. Then, we show that eitherb0 is

close to the assignmenta, in which case it is far from SAT(Φ), so by amplificationb must violate
many of the constraints inH. Otherwise, ifb0 is far froma, then many (a constant fraction!) of
the comparison constraints will fail.

So letb1 = m−1
2 (b) be an assignment for the vertices ofprep(G), and letb0 = m−1

1 (b1) be an
assignment for the vertices ofG, where notationm−1

1 ,m−1
2 was defined in steps1 and2 of the

construction. There are two cases.

– If rdist(b0|X , a) ≤ δ/2 thenrdist(b0|X ,SAT(Φ)) ≥ δ/2 by the triangle inequality. Since
the reduction fromΦ to G is an assignment-tester with rejection probabilityε, this means

32

that no matter whatb0|(V \X) is, UNSATb0(G) ≥ εδ/2. Now we claim thatb1 must also be
violating a similar fraction of the constraints ofprep(G):

UNSATb1(prep(G)) ≥ εδ/2 · β1. (15)

Indeed, recall Corollary 4.3 that asserts that for everyG and for every assignmentσ′ for
prep(G), the fraction of constraints ofprep(G) violated byσ′ is proportional to the fraction
of constraints ofG violated bym−1

1 (σ′). Plugging inb1 for σ′, and sinceb0 = m−1
1 (b1),

this implies (15).

Next, we claim thatb must be violating an even larger fraction ofH = (prep(G))t than
UNSATb1(prep(G)):

UNSATb((prep(G))t) ≥ β2

√
t ·min(

1
t
, UNSATb1(prep(G))) . (16)

Indeed, this follows precisely from Lemma 6.1 that states that for everyG and every assign-
ment~σ for Gt, the fraction of constraints ofGt violated by~σ is larger than the fraction of
constraints ofG violated by the “popular opinion” assignment, by factorΩ(

√
t). Observe

that indeedm−1
2 (~σ) is the “popular opinion” assignment. Plugging inb for ~σ, and since

b1 = m−1
2 (b), this implies (16). Combining (15) and (16), and observing that by assumption

1/t is clearly larger thanε > UNSATb1(prep(G)),

UNSATb(H) ≥ εδ/2 · β1 · β2

√
t .

Since the constraints ofH are half of the constraints ofH ′, we have

UNSATa∪b(H ′) ≥ 1
2

UNSATb(H) ≥ εδ/4 · β1 · β2

√
t.

– If rdist(b0|X , a) > δ/2, then we will show thatδ/8 fraction of the comparison constraints
reject. Indeed, with probability at leastδ/2 the randomized test selects, in step 1, a variable
x ∈ X for which b0(x) 6= a(x). Conditioned on that, consider the probability that in step2
a variablez ∈ [x] is selected such thatb1(z) 6= a(x). Sinceb0(x) is, by definition, a most
popular value among values assigned byb1 to the copies ofx, and since by conditioning
a(x) 6= b0(x), this probability is at least1/2. Conditioned on both previous events occurring,
step3 selects a vertexw for which b(w)z 6= a(x), with probability at least1/2 (for similar
reasoning). Altogether, with probability at leastδ

2 ·
1
2 ·

1
2 = δ/8 the test rejects. This means

that at leastδ/16 of the total number of tests reject, i.e.,UNSATa∪b(H ′) ≥ δ/16.

We have proven that forδ = rdist(a,SAT(Φ)), and for every assignmentb, the rejection proba-
bility UNSATa∪b(H ′) is either at leastδ · 1

16 or at leastδ · (β1β2

√
t/2 · ε).

This completes the proof.

Theorem 9.1 also gives an immediate combinatorial construction of assignment-testers or PCPPs in
the same way that the main theorem (Theorem 1.5) was used to derive the PCP Theorem (Theorem 1.2).

Corollary 9.3 There is an assignment-tester, with constant alphabet, constant rejection probability, and
polynomial output length.

33

Proof: Given a circuitΦ it is easy to construct a constraint graphG0 such that the reductionΦ 7→ G0

is an assignment-tester with rejection probability1/ |G0|. Let us name this (trivial) assignment tester
P0. Let us denote the rejection probability of an assignment testerP by ε(P). We can now constructPi
inductively for everyi ≥ 1. Indeed for everyi ≥ 0 let us constructPi+1 by applying the transformation
guaranteed in Theorem 9.1 toPi. The theorem asserts that the assignment-testerPi+1 mapsΦ toGi+1

such that

1. The alphabet ofGi+1 is Σ0.

2. ε(Pi+1) ≥ min(1
t , 2ε(Pi)), wheret is a global constant.

3. The running time ofPi+1 is at most a constantC times the running time ofPi.

We now prove that fork = log2 n, wheren = size(G0),Pk is the desired assignment tester. Clearly the
alphabet isΣ0. It is also easy to see by induction that the running time ofPk is at mostCk = poly(n)
times the running time ofP0. SinceP0 runs in polynomial-time, altogetherPk is a polynomial-time
transformation.

It remains to show thatε(Pk) ≥ 1/t. Indeed, if for somei∗ < k, ε(Pk) ≥ 1/t then for everyi > i∗

ε(Pi) ≥ 1/t and in particular this holds forPk. Otherwise, it follows by induction from item 2 above
thatε(Pk) ≥ 2kε(P0) > 1/t.

10 Graph Powering and Parallel-Repetition

The celebrated parallel repetition theorem of Raz [29] gives a different method of amplification. Given
a systemC of constraints, a new systemC`q is constructed by taking new variables corresponding to
`-tuples of the old variables, and new constraints corresponding to`-tuples of the old constraints (we
ignore the issue of bipartiteness in this discussion). The alphabet grows fromΣ to Σ`. The theorem
asserts that given a system of constraintsC with UNSAT(C) = α, the `-parallel-repetition system,C`q ,
will have UNSAT(C`q) ≥ 1− (1− α)Θ(`).

Our graph powering construction can be viewed as setting` = dt/2 (where the graph underlying the
constraints isd-regular) and taking a small and carefully chosen subset of the`-tuples of variables and of
the`-tuples of constraints. Viewed this way, the graph powering construction is a ‘derandomization’ of
the parallel-repetition theorem. We recall that Feige and Kilian proved that no generic derandomization
of the parallel-repetition theorem is possible [13]. Their result focuses on a range of parameters that does
not apply to our setting. This raises questions about the limits of such constructions in a wider range of
parameters.

Let us conclude by mentioning a specific setting of the parameters which is of particular interest.
When the unsat value of a constraint system is some fixed constant, then applying the parallel repetition
transformation results in a new system whose unsat value approaches1 as` increases. This feature is
very useful in inapproximability reductions. On the other hand, our amplification stops to make any
progress for constantα > 0, as is demonstrated in the instructive example of Bogdanov [10].

Of course, the main advantage of our ‘derandomized’ construction is that the new system size is only
linear in the old system size. This feature is essential for our inductive proof of the PCP theorem.

Acknowledgements

I am thankful to Omer Reingold and Luca Trevisan for many discussions, especially ones about com-
binatorial analyses of graph powering, which were the direct trigger for the amplification lemma. I

34

would like to thank Jaikumar Radhakrishnan for very helpful comments on an earlier version of this
manuscript, and the anonymous referees whose excellent comments greatly improved the quality of the
manuscript. I would also like to thank David Arnon, Miki Ben-Or, Ehud Friedgut, Oded Goldreich, and
Alex Samorodnitsky for helpful comments.

References

[1] S. Arora.Probabilistic checking of proofs and the hardness of approximation problems. PhD thesis,
U.C. Berkeley, 1994. Available via anonymous ftp as Princeton TR94-476.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and intractability of
approximation problems.J. ACM, 45(3):501–555, 1998.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.J. ACM,
45(1):70–122, 1998.

[4] L. Babai. Trading group theory for randomness. InProc. 17th ACM Symp. on Theory of Computing,
pages 421–429, 1985.

[5] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interactive
protocols.Computational Complexity, 1:3–40, 1991.

[6] M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi prover interactive proofs: How
to remove intractability assumptions. InProc. 20th ACM Symp. on Theory of Computing, pages
113–131, 1988.

[7] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity,
shorter PCPs and applications to coding. InProc. 36th ACM Symp. on Theory of Computing, 2004.

[8] E. Ben-Sasson and M. Sudan. Robust locally testable codes and products of codes. InRANDOM:
International Workshop on Randomization and Approximation Techniques in Computer Science,
2004.

[9] E. Ben-Sasson, M. Sudan, S. P. Vadhan, and A. Wigderson. Randomness-efficient low degree tests
and short PCPs via epsilon-biased sets. InProc. 35th ACM Symp. on Theory of Computing, pages
612–621, 2003.

[10] A. Bogdanov. Gap amplification fails below 1/2. Comment on ECCC TR05-046, can be found
at http://eccc.uni-trier.de/eccc-reports/2005/TR05-046/commt01.pdf ,
2005.

[11] I. Dinur and O. Reingold. Assignment testers: Towards combinatorial proofs of the PCP theorem.
In Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS), 2004.

[12] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete.Journal of the ACM, 43(2):268–292, 1996.

[13] U. Feige and J. Kilian. Impossibility results for recycling random bits in two-prover proof systems.
In Proc. 27th ACM Symp. on Theory of Computing, pages 457–468, 1995.

[14] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.Theo-
retical Computer Science, 134(2):545–557, 1994.

35

[15] E. Friedgut, G. Kalai, and A. Naor. Boolean functions whose fourier transform is concentrated on
the first two levels.Adv. in Applied Math., 29:427–437, 2002.

[16] O. Goldreich. A sample of samplers a computational perspective on sampling. Electronic Collo-
quium on Computational Complexity TR97-020, 1997.

[17] O. Goldreich and S. Safra. A combinatorial consistency lemma with application to proving the PCP
theorem. InRANDOM: International Workshop on Randomization and Approximation Techniques
in Computer Science. LNCS, 1997.

[18] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear length. InProc.
43rd IEEE Symp. on Foundations of Computer Science, pages 13–22, 2002.

[19] O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A qualitysize
tradeoff for hashing.Journal of Random structures and Algorithms, 11(4):315–343, 1997.

[20] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proofs.SIAM
Journal on Computing, 18:186–208, 1989.

[21] P. Harsha and M. Sudan. Small PCPs with low query complexity. InSTACS, pages 327–338, 2001.

[22] J. Håstad. Some optimal inapproximability results.Journal of ACM, 48:798–859, 2001.

[23] N. Linial and A. Wigderson. Expander graphs and their applications. Lecture notes of a course:
http://www.math.ias.edu/ boaz/ExpanderCourse/, 2003.

[24] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
Journal of the ACM, 39(4):859–868, October 1992.

[25] R. O’Donnell and V. Guruswami. Lecture notes from a course on: the PCP theorem and hardness
of approximation. 2005.

[26] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.Jour-
nal of Computer and System Sciences, 43:425–440, 1991.

[27] A. Polishchuk and D. Spielman. Nearly linear size holographic proofs. InProc. 26th ACM Symp.
on Theory of Computing, pages 194–203, 1994.

[28] J. Radhakrishnan. Private communication. 2005.

[29] R. Raz. A parallel repetition theorem.SIAM Journal on Computing, 27(3):763–803, June 1998.

[30] O. Reingold. Undirected st-connectivity in log-space. InProc. 37th ACM Symp. on Theory of
Computing, 2005.

[31] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new
constant-degree expanders and extractors.Annals of Mathematics, 155(1):157–187, 2002.

[32] A. Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, October 1992. Prelim. version in
1990 FOCS, pages 11–15.

[33] M. Sipser and D. A. Spielman. Expander codes.IEEE Trans. Inform. Theory, 42(6, part 1):1710–
1722, 1996. Codes and complexity.

36

A A Lemma about similar binomial distributions

Forn ∈ N andp ∈ (0, 1) letBn,p denote a binomially distributed random variable, i.e.,Pr[Bn,p = k] =(
n
k

)
pk(1− p)n−k. The following lemma asserts that ifn,m are close, then the distributions ofBn,p and

Bm,p are close.
Lemma 6.4For everyp ∈ (0, 1) and c > 0 there exists some0 < τ < 1 andn0 such that ifn0 <
n−

√
n ≤ m < n+

√
n, then

∀k ∈ N, |k − pn| ≤ c
√
n, τ ≤ Pr[Bn,p = k]

Pr[Bm,p = k]
≤ 1
τ
.

Proof: Assume first thatm ≤ n. We writen = m + r for some0 ≤ r ≤
√
n and use the identity(

m+1
k

)
= m+1

m+1−k
(
m
k

)
,

Pr[Bn,p = k] =
(
m+ r

k

)
pk(1− p)m+r−k

=
m+ 1

m+ 1− k
· m+ 2
m+ 2− k

· · · m+ r

m+ r − k

(
m

k

)
· pk(1− p)m−k(1− p)r

= X · pk(1− p)m−k
(
m

k

)
= X · Pr[Bm,p = k]

whereX = (1 − p)r m+1
m+1−k ·

m+2
m+2−k · · ·

m+r
m+r−k is bounded as follows. LetXa = m+a

m+a−k . For all
a ≤ r ≤

√
n we haveXa = 1

1− k
m+a

and clearly

1
1− k

m

≥ 1
1− k

m+a

≥ 1
1− k

n

.

We will choosen0 large enough to make all of the expressions below strictly positive. Sincek ≥
pn− c

√
n,

Xa ≥
1

1− k
n

≥ 1
1− p+ c√

n

=
1

1− p
· 1
1 + c

1−p
1√
n

.

Now,X = (1− p)r ·
∏r
a=1Xa ≥ (1 + c

1−p
1√
n
)−r =: τ1.

Similarly, sincen−
√
n < m andpn− c

√
n ≤ k it follows that1− k

m ≥ 1− p− c+1√
n

. So

Xa ≤
1

1− k
m

≤ 1
1− p− c+1√

n

=
1

1− p
· 1
1− c+1

(1−p)(
√
n)

,

and we haveX = (1− p)r ·
∏r
a=1Xa ≤ (1− c+1

(1−p)(
√
n−1)

)−r =: τ2. Clearly sincer ≤
√
n bothτ1 and

τ2 can be bounded by constants (independent ofn), and we takeτ = min(τ1, τ−1
2).

Finally, if n < m, then since clearlym−
√
m < n < m we can deduce the result from applying the

lemma with the roles ofm andn reversed, the samep, and the constantc′ = c+ 1.

B The Long Code Test

In this section we prove Theorem 7.1. Let us identify{0, 1}s with [n] (wheren = 2s) in an arbitrary
way. We consider Boolean functionsψ : [n] → {1,−1} by identifying−1 with true (soa ∈ [n] is said

37

to satisfyψ iff ψ(a) = −1). Recall thatL = {f : [n] → {−1, 1}} is the set of Boolean functions on[n].
We restate Theorem 7.1 with this modified notation.

Theorem 7.1 There exists aLong-Code TestT which is a randomized algorithm that has input a
function ψ : [n] → {1,−1}, and also oracle access to a folded stringA : L → {1,−1}. T
reads the inputψ and tosses some random coins. Based on these it computes a three-bit predicate
w : {0, 1}3 → {true, false} and three locationsf1, f2, f3 ∈ L in which it queries the stringA. It then
outputsw(A(f1), A(f2), A(f3)). Denote an execution ofT with access to inputψ and folded stringA
byTA(ψ). Then the following hold,

• (Perfect completeness:) Ifa ∈ [n] such thatψ(a) = −1, thenPr[TAa(ψ) = true] = 1.

• (Strong6 soundness:) For everyδ ∈ [0, 1], if A : L→ {1,−1} is folded and at leastδ-far fromAa
for all a for whichψ(a) = −1, thenPr[TA(ψ) = false] ≥ Ω(δ).

Our proof is basically a reworking of a test of Håstad [22], into our easier setting:

Standard Definitions. We identifyL = {f : [n] → {−1, 1}} with the Boolean hypercube{1,−1}n,
and use lettersf, g for points in the hypercube. We use lettersA,B or χ to denote functions whose
domain is the hypercube7. Forα ⊂ [n], define

χα : {−1, 1}n → {−1, 1}, χα(f)
4
=

∏
i∈α

f(i) .

The characters{χα}α⊆[n] form an orthonormal basis for the space of functions{A : {−1, 1}n → R},
where inner product is defined by〈A,B〉 = Ef [A(f)B(f)] = 2−n

∑
f A(f)B(f). It follows that any

functionA : {−1, 1}n → {−1, 1} can be written asA =
∑

α Âαχα, whereÂα = 〈A,χα〉. We also
have Parseval’s identity,

∑
α |Âα|2 = 〈A,A〉 = 1.

The Test. Letψ : [n] → {−1, 1} be some predicate and fixτ = 1
100 . LetA : {−1, 1}n → {−1, 1} be

a folded string, i.e., for allf ∈ {−1, 1}n A(−f) = −A(f) and alsoA(f) = A(f ∧ ψ) wheref ∧ ψ is
defined by

∀a ∈ [n], (f ∧ ψ)(a) =


−1 f(a) = −1 andψ(a) = −1

1 otherwise
.

A functionA : {1,−1}n → {1,−1} is the legal encoding of the valuea ∈ [n] iff A(f) = f(a) for all
f ∈ L. The following procedure tests whetherA is close to a legal encoding of some valuea ∈ [n] that
satisfiesψ.

1. Selectf, g ∈ L uniformly at random.

2. Seth = gµ whereµ ∈ L is selected by doing the following independently for everyy ∈ [n]. If
f(y) = 1 setµ(y) = −1. If f(y) = −1 set

µ(y) =


1 w. prob.1− τ

−1 w. prob.τ
.

6We refer to ‘strong’ soundness as opposed to regular soundness, since due to the stronger property of having the rejection
probability proportional to the distance from a “good” string.

7We consider here functions whose domain is an arbitrary set of sizen, and wlog we take the set[n]. In the application this
set is usually some{0, 1}s but we can safely ignore this structure, and forget thatn = 2s.

38

3. Accept unlessA(g) = A(f) = A(h) = 1.

It is clear that the test behaves according to the description in Theorem 7.1. It remains to prove
completeness and soundness.

Proposition B.1 (Completeness)If a ∈ [n] such thatψ(a) = −1, thenPr[TAa(ψ) = true] = 1.

Proof: It is easy to check completeness: We fix somea ∈ [n] for whichψ(a) = −1 and assign for all
f , A(f) = f(a). ClearlyA is folded. Also, ifA(f) = f(a) = −1 then the test accepts. Finally, if
A(f) = f(a) = 1 thenA(h) = h(a) = −g(a) = −A(g) 6= A(g), and again the test accepts.

Proposition B.2 (Soundness)There exists a constantc > 0 such that for everyδ ∈ [0, 1], if A : L →
{1,−1} is folded and at leastδ-far fromAa for all a for whichψ(a) = −1, thenPr[TA(ψ) = false] ≥
c · δ.

Proof: Let us fix δ ∈ (0, 1] and assume thatA is δ-far from everyAa for a ∈ [n] that satisfiesψ.
Denote the rejection probability of the test byPr[TA(ψ) = false] = ε. The proof of soundness will be
based on the following proposition.

Proposition B.3 There exists a constantC > 0 such that ifT rejects with probabilityε then∑
|α|>1

∣∣∣Âα∣∣∣2 ≤ Cε.

We defer the proof of the proposition to later. We will need the following result,

Theorem B.4 ([15]) There is a global constantC ′ > 0 (independent ofn) such that the following holds.
Letρ > 0 and letA : {1,−1}n → {1,−1} be a Boolean function for which

∑
α,|α|>1 |Âα|2 < ρ. Then

either|Âφ|2 ≥ 1− C ′ρ, or for somei ∈ [n], |Â{i}|2 ≥ 1− C ′ρ.

It is well-known that sinceA is foldedÂα = 0 whenever (i)|α| is even, or (ii)∃i ∈ α for whichψ(i) = 1
(recall that1 corresponds to false). The reason is that we can partition{1,−1}n into pairsf, f ′ such that

Âα = 2−n
∑
f

A(f)χα(f) = 2−n · 1
2

∑
f

(A(f)χα(f) +A(f ′)χα(f ′)) = 2−n−1
∑
f

0 = 0 .

In (i) let f ′ = −f , soχα(f) = χα(f ′) butA(f) = −A(f ′). In (ii) let f ′ = f + ei wherei is an index
for whichψ(i) = 1; soχα(f) = −χα(f ′) butA(f) = A(f ′). We can thus deduce from Theorem B.4
that there is somei ∈ [n] for whichψ(i) = −1 and|Â{i}|2 ≥ 1− C ′Cε.

This means that one of the following holds,

1. Â{i} ≥
√

1− C ′Cε ≥ 1− C ′Cε, or

2. −Â{i} ≥
√

1− C ′Cε ≥ 1− C ′Cε.

Since by definitionÂα = Ef [A(f)χα(f)] = 1 − 2rdist(A,χα), it follows that rdist(A,χ{i}) =
1−Â{i}

2 . If the first item holds, then clearlyrdist(A,χ{i}) ≤ CC ′ε/2 and we are done by choosing
c ≤ 2/CC ′. Suppose the second item holds, we will show thatε is larger than some absolute constant,
and by choosingc smaller than that constant we will be done. Imagine first that−Â{i} = 1, i.e.,
A = −χ{i}. Then the probability (over the choice off, g, andh) thatf(i) = −1 andg(i) = −1 and

39

h(i) = −1 is at least14 · (1 − τ), and in this case we haveA(f) = A(g) = A(h) = 1 and the test
rejects (soε ≥ (1− τ)/4 > 1/8). This probability can go down by at most3rdist(A,−χ{i}) (which is
an upper bound on the probability that at least one off, g, h is a point of disagreement betweenA and
−χ{i}). We get

ε ≥ 1− τ

4
− 3rdist(A,−χ{i}) >

1
8
− 3CC ′ε

rearranging we getε > 1
8(1+3CC′) .

Choosingc = min(2
CC′ ,

1
8(1+3CC′)), we have proven thatA is δ-far from everyχ{i} for a value ofi

that satisfiesψ, then the test rejects with probability at leastcδ.
It remains to prove the proposition.

Proof of Proposition B.3: Let us arithmetize the acceptance probability as follows

1− ε = Pr[Test accepts] = Ef,g,h
[
1− (1 +A(f))(1 +A(g))(1 +A(h))

8

]
=

and note that since the pairs(f, g) and (f, h) are pairs of random independent functions, and since
E[A] = Âφ = 0 due toA being folded, this equals,

=
7
8
− 1

8
Eg,h [A(g)A(h)]− 1

8
Ef,g,h [A(f)A(g)A(h)] .

Using the Fourier expansionA(g) =
∑

α Âαχα(g) the first expectation can be written as

Eg,h

 ∑
α,β⊆[n]

ÂαÂβχα(g)χβ(h)

 =
∑
α⊆[n]

Â2
α(−τ)|α|

which is bounded byτ in absolute value, sincêAφ = 0. Recall that the entire expression is equal1− ε
by assumption. This implies that the second expectation (whose value let us nameW) must be at most
−1 + τ + 8ε. We write it as

−1 + τ + 8ε ≥W = Eg,f,µ

 ∑
α,β,γ⊆[n]

ÂαÂβÂγχα(g)χβ(gµ)χγ(f)

 =

=
∑

α,γ⊆[n]

ÂγÂ
2
αEf,µ [χα(µ)χγ(f)]

=
∑

γ⊆α⊆[n]

ÂγÂ
2
α(−1 + τ)|γ|(−τ)|α\γ| .

where the last equality holds because of the correlation ofµ andf . In particular, (i) if γ 6⊆ α then
Ef,µ [χα(µ)χγ(f)] = 0, and (ii) for everyi ∈ [n], E[µ(i)] = τ andE[f(i)µ(i)] = −1 + τ .

We now bound the absolute value of this sum, following [22]. First we claim that∑
γ⊆α

((1− τ)|γ|(τ)|α\γ|)2 ≤ (1− τ)|α| .

The left hand side is the probability that tossing2 |α| independentτ -biased coins results in a patternγγ
whereγ ∈ {0, 1}|α|. This probability is(τ2 + (1 − τ)2)|α| ≤ (1 − τ)|α| sinceτ < 1 − τ . By the
Cauchy-Schwarz inequality,∑

γ⊆α
|Âγ |(1− τ)|γ|(τ)|α\γ| ≤

√∑
γ⊆α

|Âγ |2 ·
√∑
γ⊆α

((1− τ)|γ|(τ)|α\γ|)2 ≤ (1− τ)|α|/2

40

so, splitting the sum into|α| = 1 and|α| > 1,

|W | ≤
∑
|α|=1

|Â2
α|(1− τ) +

∑
|α|>1

|Âα|2(1− τ)|α|/2 .

Let ρ =
∑

|α|>1 |Âα|2. We have|W | ≤ (1− ρ)(1− τ) + ρ(1− τ)3/2, sinceÂα = 0 for |α| even. Thus

1− τ − 8ε ≤ |W | ≤ (1− τ)((1− ρ) + ρ
√

1− τ) ⇒ ρ ≤ 8ε
(1− τ)(1−

√
1− τ)

.

Sinceτ = 1
100 is fixed, we haveρ = O(ε).

41

	Introduction
	PCP and Inapproximability
	Constraint Graphs and Operations on them
	Graph Powering
	Preprocessing
	Alphabet Reduction by Composition

	The Combined Amplification Step
	Related Work
	Further Results
	Short PCPs and Locally Testable Codes
	Assignment Testers

	Organization

	Preliminaries
	Expander Graphs
	Probability
	Error Correcting Codes
	Assignment Tester

	Proofs of the Main Theorem and of the PCP Theorem
	Preprocessing
	Alphabet Reduction by Composition
	Amplification Lemma
	Proof of Lemma 6.2
	Proof of Lemma 6.3

	An Explicit Assignment Tester
	Short PCPs and Locally Testable Codes
	Definitions and Notation
	Short PCPs
	Short Locally Testable Codes

	Adapting the Main Theorem for Assignment-Testers
	Graph Powering and Parallel-Repetition
	A Lemma about similar binomial distributions
	The Long Code Test

