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Abstract

We examine the tradeoff between privacy and usability of statistical databases. Our main
result is a polynomial reconstruction algorithm of data from noisy (perturbed) subset sums.
Applying this reconstruction algorithm to statistical databases we show that in order to achieve
privacy one has to add perturbation of magnitude Q(y/n). That is, smaller perturbation always
results in a strong violation of privacy. We show that this result is tight by exemplifying
access algorithms for statistical databases that preserve privacy while adding perturbation of
magnitude O(y/n). For time-7 bounded adversaries we demonstrate a privacy preserving access
algorithm whose perturbation magnitude is ~ v/7 .
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1 Introduction

Let us begin with a short story. Envision a database of a hospital containing the medical history
of some large population. On one hand, the hospital is interested in keeping the privacy of its
patients, and leaking no medical information that could be related to a specific patient. On the
other hand, the hospital would like to advance scientific research which is based (among other
things) on statistics of the information in the database. The hospital needs an access mechanism to
the database that allows certain ‘statistical’ queries to be answered, as long as they do not violate
the privacy of any single patient.

A tempting solution is to remove from the database attributes such as the patients’ names
and social security numbers. However, this is not enough to protect privacy since there usually
exist other indirectly identifying attributes in the database — identification may still be achieved by
crossing just a few ‘innocuous’ looking attributes!.

The topic of this work is to explore the conditions under which such a privacy preserving
database can exist.

1.1 A Brief Background

The problem of protecting sensitive information in a database while allowing statistical queries (i.e.
queries about sums of entries, and the like) has been studied extensively since the late 70’s, see for
example [1, 19]. In their comparative survey of privacy methods for statistical databases, Adam
and Wortmann [1] classified the approaches taken into three main categories: (i) query restriction
(e.g. [11, 7,10, 6]), (ii) data perturbation (e.g. [9, 17, 16, 18, 21, 5, 8]), and (iii) output perturbation
(e.g. 2, 3]). We give a brief review of these approaches below.

Query Restriction. In the query restriction approach, queries are required to obey a special
structure, supposedly to prevent the querying adversary from gaining too much information about
specific database entries. For example, if only queries of large sized sets are allowed, then the
amount of information a single query reveals about an entry is expected to be small. This intuition
fails for two or more queries if, for example, it is possible to query the sum of two ’large’ sets that
differ on a single entry — as subtraction of the two sums gives the exact value of that entry. To solve
this problem one may try to restrict query overlap, but again database privacy is compromised,
unless the number of queries is very low. A related idea is of query auditing, i.e. a log of the queries
is kept, and every new query is checked for possible compromise, allowing/disallowing the query
accordingly. (See also [15] where it is shown that the auditor’s computational task is NP-hard.)
The problem arising here is that the auditor’s ‘refusals’, in conjunction with the answers to ‘valid’
queries, may be used adversarially to achieve a partial (in some cases total) compromise of the
database (see further discussion in Appendix C).

Data/Output Perturbation. In the data perturbation approach queries are answered according
to a perturbed database. In the output perturbation approach, the database first computes an
‘exact’ answer, but returns a ‘noisy’ version of it. Methods of data perturbation include swapping

LA patient’s gender, approximate age, approximate weight, ethnicity, and marital status — may already suffice
for a complete identification of most patients in a database of a thousand patients. The situation is much worse
if a relatively ‘rare’ attribute of some patient is known. For example, a patient having Cystic Fibrosis (frequency
~ 1/3000) may be uniquely identified within a much larger population.



where portions of the data are replaced with data taken from the same distribution, and fized
perturbations where a random perturbation is added to every data entry. Methods of output
perturbation include wvarying output perturbations, where a random perturbation is added to the
query answer, with increasing variance as the query is repeated, and rounding - either deterministic
or probabilistic.

1.2 Database Privacy

Intuitively, to achieve database privacy one has to play a game of balancing two sets of func-
tions: (i) the “private” functions that we wish to hide and (ii) the “information” functions whose
values we wish to reveal. This general view allows for a great variety of privacy definitions. How-
ever, in most works the privacy functions are taken to be the single entries of the database, i.e.
mi(dy,..,d,) = d;. This choice captures the intuition that privacy is violated if an adversary is
capable of computing a confidential attribute d; from its identity 7. In the context of statistical
database privacy, the information functions are usually taken to be sums of subsets of the database
entries i.e. fo(d1,..,dn) = > e, di-

We present a computational definition of privacy that asserts that it is computationally infeasible
to retrieve private information from the database. We prefer that to other ‘natural’ measures that
were in use in previous works — such as the variance of query answers, and the estimator variance.
There are two potential drawbacks to these definitions. Firstly, it is not clear that large variance
necessarily prevents private information from being leaked?. Secondly, this kind of definition does
not allow us to capitalize on the limits of an adversary.

One difficulty in estimating (partial) compromise stems from the unknown extent of the adver-
sary’s a-priori knowledge. A way to model prior knowledge is by having the database drawn from
some distribution DB over strings {0, 1}". Having no prior knowledge is conceptually equivalent to
having all possible database configurations (n-bit strings) equally likely, a situation that is modelled
by letting DB be the uniform distribution over {0,1}".

Privacy and Cryptography. Privacy is treated in various aspects of cryptography, usually in a
manner that is complementary to our discussion. For example, in secure function evaluation [22, 12]
several parties compute a function f of their private inputs d1,..,d,. Privacy is perceived here as
protecting each party’s private input so that other parties can not deduce information that is not
already deducible from the function outcome f(dy,..,d,). In other words, the function f dictates
which information is to be revealed, and the goal is to leak no additional information. Note that
privacy is defined implicitly — according to the computed function f, this may lead to leaking no
information about the private inputs on one end of the spectrum, and leaking complete information
on the other end.

In this work we reverse the order. We first specify explicitly which information should not be
leaked, and then look for functions revealing the maximum information still possible. Our privacy
vs. information game can be viewed as an interplay between the “private” functions and the
“information” functions whose values we wish to approximate while maintaining privacy.

2 As is seen by the following example: Let d; € {0, 1}. Consider an estimator di =di+ E - e where e €g {—1,1}
and E is a large even number. We have that although Var[d;] is very large, d; may be exactly computed given just
a single a sample of d;, just by checking if the outcome is even. See related discussion in [2].



Our Definitions. A succinct catch-all definition of privacy is very elusive. To the best of our
knowledge none of the current definitions serves as one that is good for all possible situations.
For the first part of this work, we avoid giving a direct definition of privacy, and instead say
what privacy is not. We define a notion of non-privacy — a situation we believe should not be
allowed in any reasonable private database setting. For a database to be strongly non-private, a
computationally-bounded adversary should be capable of revealing a 1 — ¢ fraction of the database
entries.

For the second part of this work, we give a definition of privacy with respect to a bounded
adversary with no prior knowledge. Our definition of privacy tries to capture the fact that such
an adversary should not be able to predict the ith bit, regardless of the content of the rest of the
database. The database-adversary is modeled as a game that consists of two phases. In the first
phase, the adversary queries the database (adaptively). At the end of this phase, the adversary
outputs an index 4, of the private function 7;(dy,..,d,) = d; it intends to guess. In the second
phase, the adversary is given the query-response transcript of the first phase plus all but the ith
database entries, and outputs a guess. Privacy is preserved if the adversary fails to guess d; with
high probability.

1.3 This Work

We use a general model for statistical databases as follows. Denoting the database content by
dy,..,dy € {0,1}", a query ¢ C [n] is answered by >icq di + perturbation. We allow the database
to perturb its answers in such a way that hides values of specific bits, but (hopefully) still yields
meaningful information about sums of bits. In this model we present tight impossibility results. In
fact we show that unless the perturbation is as large as y/n (possibly totally ruining the database
usability) almost the whole database can be recovered by a polynomial adversary. Thus, any
reasonable definition of privacy cannot be maintained.

We proceed to define a bounded adversary model, where privacy may be achieved with lower
perturbation magnitude. We demonstrate the feasibility of this approach on random databases.

Impossibility Results as a reconstruction problem. Our main result is a polynomial re-
construction algorithm from noisy subset-sums, that — in case the answer to a queries are within
additive perturbation error £ = o(y/n) — succeeds in reconstructing a ‘candidate’ database ¢ whose
Hamming distance from d is at most en. lL.e. ¢ is very similar to the queried database d.

The reconstruction problem we solve may be viewed as a variant of list-decoding of error cor-
recting codes, where the task is to come up with all preimages whose codewords differ from a given
word on at most r locations [20, 14]. Given an encoding of the bits dy, .., d, in the form of noisy
subset-sums, we wish to decode this encoding. This is somewhat similar to the reconstruction prob-
lem in the Goldreich-Levin hard-core bit proof [13], in which noisy mod 2 sums of bits are given.
The Goldreich-Levin algorithm decodes this information as long as at least + + 1/poly(n) of these
mod 2 sums are correct. Note that in our case the list of feasible candidates is itself exponential
in size, so our goal is not to compute the entire list, but to come up with one such candidate.

1.4 Organization of this paper

We begin in Section 2 by presenting a model of statistical databases. In Section 3 we show our
lower bounds on the perturbation needed for privacy. In Section 4 we discuss the case of a bounded



adversary. The appendices include a proof of a technial lemma, an example of a database that lies
on the /n perturbation threshold and a short discussion of a variant of the auditor idea.

2 The model

2.1 Statistical Databases and Statistical Queries

The model of statistical databases has been extensively researched in conjunction with database
privacy [1]. A statistical database is a query-response algorithm that enables users to access its
content via statistical queries. We focus on binary databases, where the content is of n binary (0-1)
entries, and give its appropriate definition below. A statistical query specifies a subset of entries;
the answer to the statistical query is the number of entries having value 1 among those specified
in it. Users issue statistical queries to the database; the response to these queries is computed by
the database algorithm, that accesses the database content. This algorithm may keep additional
information (or state), and may update its state whenever it is invoked.

In this work we are not concerned with the specifics of the database language, and its indexing
mechanisms. Instead, we assume that users are able to specify any subset of database entries.

Definition 1 (Statistical Databases). Let d = (dy,...,d,) € {0,1}". A statistical query
(query for short) is a subset ¢ C [n]. The (exact) answer to a query q is the sum of all database
entries specified by q i.e. ag = > ;c,d;.- A statistical database (database for short) D = (d, A)
is a query-response algorithm. The response to a query q is A(q,d, o) where o is the internal state
of A (that may be affected by the computation).

In the following we omit d,o and write A(q) for A(q,d,c). We now define the quality of the
database algorithm A in terms of its perturbation magnitude:

Definition 2 (Perturbation). An answer A(q) is within £ perturbation if |a, — A(q)] < €.
We say that A is a within £ perturbation if for all queries ¢ C [n] the answer A(q) is within €
perturbation’.

We write M4 to denote a Turing Machine M with access to database algorithm A. The time
complexity of M is defined as usual, where each call to A costs a unit time.

2.2 A Probability Tool

Theorem 1 (Azuma’s Inequality, [4, Chapter 7]). Let 0 = sq, s1, .., S, be random variables
so that E[s;|si—1] = si—1, and so that |s; — s;—1| < 1, then

Pr[lsn| > Av/n] < 2e /2

3 Impossibility results

The main result in this section is a lower bound on the perturbation needed to maintain any reason-
able notion of privacy. We show that any database algorithm that is within o(y/n) perturbation, is
non private with respect to polynomial time adversaries. More accurately, we show that whenever

3For most of our results it suffices that A(q) is within € perturbation for all but a negligible fraction of the queries



the perturbation is smaller than y/n, a polynomial number of queries can be used to efficiently
reconstruct a ‘good’ approximation of the entire database.

We first formalize what we mean by a non-private database. Intuitively, for a database to be non-
private, an adversary should be able to efficiently reconstruct the entire database very accurately.
We denote by dist(c,d) the Hamming distance of ¢ and d i.e. dist(c,d) = |{i : ¢; # d;}|.

Definition 3 (Non-Privacy). A database D = (d, A) is t(n)-non-private if for every constant
e > 0 there exists a probabilistic Turing Machine M with time complezity t(n) so that

2
Pr[MA(1") outputs ¢ s.t. dist(c,d) < en] > 3

The probability is taken over the coin tosses of A and M.
Note that Definition 3 implicitely bounds the number of queries the adversary issues by ¢(n).

3.1 Exponential Adversary

We begin with a result pertaining to very small databases, where the adversary may issue all
possible queries. We show that such an adversary can violate privacy even with a nearly linear
perturbation magnitude.

Theorem 2. Let D = (d, A) be a database where A is within o(n) perturbation. Then D is exp(n)-
non-private.

Proof. Let A be within £ perturbation for £ = o(n). Let M be the following algorithm:
Query Phase: For all ¢ C [n] let a, — A(q).
Weeding Phase: For all c € {0,1}": If | >, ¢;i — ag| < & for all ¢ C [n] then output ¢ and halt.

It is easy to verify that M runs in exponential time. Note that M always halts and outputs some
‘candidate’ ¢ — because the real database d is certainly a good candidate. We now show that the
output candidate c satisfies dist(d, c) < 4 = o(n). Assume this is not the case, i.e. dist(d,c) > 4€.
Let qo ={i|di =1,¢; =0} and ¢1 = {i |d; = 0,¢; = 1}. Since |q1|+ |qo| = dist(d, c) > 4E, at least
one of the disjoint sets ¢1,qo has size 26 + 1 or more. W.l.o.g. assume |qi1| > 2. We have that
> ieq, i = 0 and hence it must be that a, < &. On the other hand ;.. ¢ = |q1| > 2E. We get
that | ;c,, ¢ — dq,| > &, contradicting the fact that ¢ survives the weeding phase. O

3.2 Polynomially Bounded Adversary — €)(y/n) Perturbation Needed for Privacy

We next turn to the more realistic case where the adversary is polynomially bounded. We show that
a minimal perturbation level of €2(1/n) is necessary for achieving even weak privacy in our model.
More concretely, we show that any database algorithm that is within & = o(y/n) perturbation is non-
private. We prove this by presenting a linear-programming algorithm, with which we reconstruct,
in polynomial-time, a candidate database ¢ and prove that dist(c,d) < en.

Theorem 3. Let D = (d, A) be a database where A is within o(y/n) perturbation then D is poly(n)-
non-private.

Proof. Let A be E-approximate for £ = o(y/n). Let M be the following algorithm:



Query phase: Let t = n(logn)?. For 1 < j < t choose uniformly at random ¢; Cg [n], and set
g, — Alg).

Weeding phase: Solve the following linear program with unknowns cy, ..., ¢,:

dqj—egzieqjcigéqurE for1 <j<t
0<¢g<1 for1<i<n

(1)

Rounding phase: Let ¢, = 1if ¢; > 1/2 and ¢, = 0 otherwise. Output ¢.

It is easy to see that the LP in our algorithm always has a solution (in particular ¢ = d
is a feasible solution), and hence the algorithm always has an output ¢’. We next prove that
dist(c/,d) < en. We use the probabilistic method to show that a random choice of ¢, .., q; will
weed out all possible candidate databases ¢ that are far from the original one.

Fix a precision parameter k¥ = n and define K = {0, %, %, o %, 1}. For any z € [0, 1]" denote
by T € K™ the vector obtained by rounding each coordinate of x to the nearest integer multiple of
%. Applying the triangle inequality with Eq. (1) we get that for 1 < j <,

_ _ ~ ~ q;j
|Z(C,—dz)| < |Z(c,-—ci)|+|Zci—aqj|+|aqj — Zdzl < |—]j|+€+8§ 1+2¢E.

1€q; 1€q; 1€q; 1€q;
For any z € [0,1]", we say that a query q C [n] disqualifies T if |37, (% — d;)| > 28 +1.1If ¢
happens to be one of the queries in our algorithm, this means that = is an invalid solution to the
LP system. We now show that if = is far from d on many coordinates, then (with high probability)

Z is disqualified by at least one of the queries ¢, ..., q. We use the following lemma (see proof in
Appendix A):

Lemma 4 (Disqualifying Lemma). Let 2,d € [0,1]" and £ = o(\/n). If Pr;[|z; —di| > 4] > ¢
then there exists a constant 6 > 0 such that

Pr [|Z(xi—di)|>2€+1 > 4.

qCRrn] i€q

Define the set of ‘discrete’ 2’s that are ‘far’ from d:
1
X = {xGK” | Prllo — dif > 3] >6n} .
(3

Consider x € X. By Lemma 4 there exists a constant § > 0 such that Pryc ., [¢ disqualifies z] > 4.
By choosing t independent random queries ¢z, .., q;, of [n] we get that at least one of them disqualifies
x with probability 1—(1—0)!. Le. for each x € X there is just a tiny (1—49)! fraction of the selections
q1,---,q do not disqualify it. Taking the union bound over X, noting |X| < |K|" = (k + 1)", we
have that
Pr  [Va € X 3i, ¢; disqualifies 2] > 1 — (k+ 1)"(1 — 6)" > 1 — neg(n).
q1,-,9tCRr[N]

The last inequality holds assuming we take ¢ to be large enough (¢ = n(logn)? will work).

To complete the proof, observe that ¢ is not disqualified by any of the random subsets ¢1, .., q¢; C
[n] chosen by our algorithm (recall that ¢ is the solution to the LP system, and ¢ is the vector
obtained from rounding it to the nearest integer multiple of %) Thus, if these ¢, .., ¢; disqualify
all z € X, it must be that ¢ € X so dist(c,d) < en. O



Note that the proof relies on the fact that a random subset of linear size deviates from the
expectation by roughly \/n. We are bounding from below the deviation from expectation, converse
to the standard use of tail-inequalities in which the upper bound is needed.

3.3 Tightness of the Impossibility Results

Theorem 3 shows that for any database distribution a perturbation of magnitude Q(y/n) is nec-
essary for having (even a very weak notion of) privacy. We next show that this bound is tight
by exemplifying a database algorithm that is within O(y/n) perturbation and is private against
polynomial adversaries in the strongest possible sense. That is, if the database is queried by a
polynomial-time machine then with extremely high probability it does not reveal any information
about the data. Note that for showing tightness we assume a specific distribution on the database,
namely the uniform distribution over all strings of n bits?*.

Let d €g {0,1}". Set the perturbation magnitude to & = v/n - (logn)'*< = O(y/n). Consider
the database D = (d,.A) with algorithm A as follows: (i) On input a query ¢ C [n] algorithm A

computes ag = Y ;.. (ii) If [ag — %| < & then A returns % (iii) Otherwise A returns a,. It is easy

to see that A is within perturbation £. Moreover, for any probabilistic polynomial time machine
M, the probability (over d and the coin tosses of M) that A acts according to rule (iii) is negligible.

Note that, although guaranteeing perturbation magnitude of O( \/n), the above algorithm ren-
ders the database effectively useless — users are extremely unlikely to get any non-trivial information
by querying the database, and hence they are unlikely to compute any non-trivial functionality of
it.

4 Preserving Privacy in a Bounded Model - Feasibility Results

In Section 3 we saw that if the querying adversary has exponential computational power, a linear
perturbation magnitude is needed for preserving privacy; and that a \/n perturbation magnitude is
needed for preserving privacy with respect to polynomially-bounded adversaries. A natural question
is whether further restricting the adversary complexity enables achieving privacy using a smaller
perturbation®. In this section we answer this question positively. We present a database access
algorithm that preserves privacy with respect to an adversary whose running time is no more than
7 (n) for an arbitrary 7. Our database algorithm uses a perturbation error of roughly /7 (n).

To show such a ‘feasibility’ result, it seems that one has no choice but to make an assumption
regarding the adversary’s a-priori knowledge about the database. Otherwise, considering a database
(d, A) where it is known that d is either 1™ or 0", unless the perturbation magnitude is at least
n/2 a single query obviously reveals the entire database. We model prior knowledge as having the
database drawn from some arbitrary distribution DB.

Our definition of privacy is very strong in that it requires that even if the adversary happens
to learn all the database content except the ith bit she still cannot predict the ith bit with good
probability. This scenario is modelled by a two-phase adversary. In the first phase, the adversary
is allowed to adaptively query the database. At the end of this phase the adversary commits to a

4Such an assumption was not needed for the proof of Theorem 3, the adversary there is oblivious both of the
database distribution and the perturbation method.

50ne way to interpret these restrictions is by considering an adversary of fixed power acting on a bigger and bigger
databases.



challenge — an index ¢ of the bit it intends to guess. In the second phase, all the database entries
except the ith bit are revealed to the adversary. The adversary succeeds if it outputs a correct
d;. The definition models the two phases by two Turing Machines M1, My, of which only My has
access to the database algorithm. More formally:

Definition 4 (Privacy). Let DB be a distribution over {0,1}" and let d be drawn according to
DB. A database D = (d, A) is (T (n),d)-private if for every pair of probabilistic Turing Machines
MA, My with time complexity T (n), it holds that

1
Pr[M“fl(ln) outputs (i, view); Ma(view,dy, ..., di—1,dit1,...,dy) outputs d;] < 5 +4.

The probability is taken over the choice of d from DB and the coin tosses of all machines involved.
In the following section we focus on the case where the adversary has no prior information.
This is modelled by assuming that the database is drawn from the uniform distribution over n-bit

strings. We denote O(T') def O(T) - polylog(n) and we also write log® n = (logn)*.

Theorem 5. Let 7(n) > polylog(n), and let § > 0. Let DB be the uniform distribution over
{0,1}"™, and d €g DB. There exists a O(+\/T (n))-perturbation algorithm A such that D = (d, A) is
(T (n),d)-private.

To prove the theorem, we demonstrate a database algorithm that answers each query ¢ by adding
a random perturbation to the exact value a; = 37;c, d;. The perturbation A adds is independent
of previous queries, hence A does not maintain a state between invocations.

In the main part of the proof, we claim that the “confidence” a bounded adversary gains with
respect to a value it tries to predict remains low. To show that, we define a random walk on a
line, corresponding to how the adversary’s confidence evolves as the adversary queries the database.
Analyzing the random walk, we prove that, with extremely high probability, a sub-linear number
of steps is not sufficient for reaching the confidence required for violating privacy.

Proof of Theorem 5. Let 7 (n) be some running-time bound, e.g. 7(n) = n, and define R =
T (n)-log” n for some p > 0 (taking p = 9 will work). Denote a query ¢ C [n] of size |¢| < v R-log*n
as small, all other queries are large. Let A be the following algorithm with input a query g:

1. If ¢ is small return 0.

2. If ¢ is large:
2.1 Let g = Zieq d;.
2.2 Generate a perturbation value: Let (eq,...,eg) €g {0,1}% and & — 32 e, — R/2.
2.3 Return a, + €.

Note & is a binomial random variable with E[£] = 0 and variance v/R so that Pr[|€] > log?n -
VR] < neg(n), hence A is a O(y/T (n))-perturbation algorithm.

We now turn to prove that (d,.A) is private. Let M, M be as in Definition 4. W.l.o.g, assume
that M+! records all its queries and their answers in the view variable it transmits to Ms. Note
that M' does not get any information issuing small queries, hence we assume it issues only large
queries — at most t = 7 (n) queries which we denote q1,...,q. Let a; = A(q1),...,a; = A(q:) be
the answers to these queries.



In the following we analyze the (a-posteriori) probability p that d; = 1 given the query-answer
pairs (g, a¢) and dy,...,d;i—1,dit1,...,d,. Note that p bounds the correct prediction probability
of My. We show that 1/2 - < p <1/2+ 6, hence D = (d,.A) is private. For the analysis we run
a mental experiment in which we first reveal dy,...,d;_1,d;+1,...,d,, and then the query-answer
pairs (gg, a¢) one by one (in the same order M# issued these queries).

For 0 < ¢ < t let py, be the probability that d; = 1 given the answers to the first £ queries
a5 Qe

pe = Pr[d; = 1lay, ..., aq].
We will now use the following proposition.

Proposition 6. Let Ay, Ay, D be events where A1, As are independent. Then,

Pr{4s|D]

Pr(D| A1, A2] = Pr[DlA)] - 5=

Proof. Applying Bayes Rule®, and using the independence of A;, Ay we get:

Pr[A1, As|D] - Pr[D] _ Pr[A1|D] - Pr[Ao|D] - Pr{D] _ Pr[D|Ay] - Pr4s|D]

PI‘[D|A1, Az] = PI‘[Al, Az] PI‘[Al] . PI'[AQ] PI'[AQ]

O

Since ay is answered (by A) independently of the previous answers aq,...,ay_1 we plug in the
events Ay = {a1 = A(q1), ... a—1 = A(qe—1)}, A2 = {ay = A(qr)} and D = {d; = 1} to the above
proposition to get

Pria|d; = 1]

pe = Pr[D[Ay, Ao] = pe—1 - Prfa] (2)
and similarly (this time with D = {d; = 0}),
B Prlag|d; = 0]
1- be = (1 pf—l) PI'[CL[] (3)

We define the adversary’s confidence in d; = 1 after £ queries as the log-ratio of the a-posteriori
probabilities that d; = 1 and d; = 0 i.e.

d
conf; & log (pe/(1 = py)) -

Note that confy = log (po/(1 — po)) = log (%/(1 — %)) = 0 and that conf; = conf,_; whenever i & ¢,
(we assume that w.l.o.g. no such ‘useless’ queries occur). D is private if with high probability |conf|
never reaches a high value. Ie. |confy| < ¢’ = log (}gfg) for all 0 < ¢ < t. Substituting Eq. (2)
for py and Eq. (3) for 1 — p; we get the following equation that describes how the random variable

conf evolves:
Prlas|d; = 1]>
Prla|d; = 0]/

stepy def confy — conf,_; = log (

Note that conf; = Zézo step; and that step; are mutually independent.

Sl.e. Pr[E1|Es] - Pr[E2] = Pr[E:z|E1] - Pr[E1].



The sequence 0 = confy, ..., conf; defines a random walk on the line, starting from zero, and
advancing according to the random variable step,. To complete the proof we show that, with
extremely high probability, more than t steps are needed to reach confidence §’.

Assume d; = 1 (a similar analysis holds for the case d; = 0). Let k = ag — 3 ,,;d; — 1. Since

PriA(g) = a¢|di=0]=Prl€ =a;— Y dj—o]=Pr[€ =k+1—-0] (for o €{0,1})
J#

we get that the random variable step, takes the value log < (/ (kf1)> =log ((k+1)/(R — k)) with
probability (%) /2%,

Although k may take values in [0, ..., R], the probability that it largely deviates from R/2 is
small. Hence, in the rest of the proof we neglect this case, and assume that k is always in the interval
K =[R/2 — VR -log’n, R/2 4+ vR -log? n]. Conditioned on this we show that the expectation of
stepy is very small, and that |stepy| is small. We use Azuma’s inequality to conclude the proof.
Details follow.

To bound the expectation of stepy compare it with a random variable B that takes the value
log (k/(R — k)) with probability (¥)/2%. Clearly E[B] = 0 because Pr[B = log (k/(R — k))] =
Pr[B = —log (k/(R — k))] and hence

(&) (&)

E[step¢] = E[step; — B] = Z oR log ((k+1)/k) = Z oR log (1+1/k)
Since for small x log(1 + z) ~ x we have log ((k+ 1)/k) = O(1/R) for k € K, and

R
El[step)] = O(1/R) Z (2LR) =O(1/R) .

Thus,
t
B[S stepd] < ¢+ O(1/R) = O(1/(log" n)) .
I=1

To bound |stepy| note that it reaches its maximum on the ends of the interval K, hence we get
|stepe| < log ((R/? + VR -log?n)/(R/2 — VR - log? n)) = log (1 + log? n/\/ﬁ) = O(log*n/VR).

Define the random variable s, = Zgzl stepj — E 2521 stepj. This is a martingale with expecta-
tion zero, satisfying |sy — s¢_1| = O(log?n)?/V/R). Using Azuma’s inequality (Theorem 1) we get
that Pr[|s¢| > A - O(log® n/VR) - V] < 2e="/2,

Setting A = log?n we get that Pr[|sy| > m] < neg(n), so choosing 1 = 9 makes |sy| <
O(1/logn) almost always. Hence,

[ 1
Pr[conf; > O(1/logn)] = Pr Z step; > O(1/log n)}
[7=0

I
< Pr||s| > O(1/logn) —E[) Stepl]] < neg(n)
=0

Taking the union bound (for 0 < ¢ < t) completes the proof. O
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A  Proof of Lemma 4

Lemma 4. Letz,d € [0,1]" and & = o(\/n). If Pr;[|z; — di| > 3] > ¢ then there exists a constant
0 > 0 such that
Pr || (wi—di)| >28+1| >6.

qCRrn] i€q

Proof. Let X1, .., X,, be independent random variables such that X; takes value x; — d; with prob-
ability % and 0 with probability %, and define X & >oit1 Xi. Observe that all we need to prove is
that Pr[|X| > 2 + 1] > Q(1).

We divide the proof to two cases according to the size of E[X]. Let T' > /55 be some constant

to be specified later.

First assume E[X] > T'\/n, in which case the proof follows simply from Azuma’s inequality
(see Theorem 1). We apply this inequality by setting ¢; = 23':1()( ; — E[Xj]), noting that BE[X; —
E[X;]] = 0 s0 0 = qo,q1,..,¢n is a martingale (i.e. FElgi|¢i—1] = ¢i—1), and also |¢g; — ¢i—1| =
|X; — E[X;]| < 1. Since X — E[X] = ¢,, and £ < /n, we deduce

Pr[|X| > 26 + 1] > Pr[|X| > g\/ﬁ] > Pr]|X — E[X]| < g\/ﬁ] >1-2"T/8 = Q1)

The second and more interesting case is when E[X]| < T'y/n. We will prove that Pr[| X —E[X]| >
2Tv/n] > (1) and obtain the desired result since Pr[|X| > 2€ + 1] > Pr[|X — E[X]| > 2T\/n]
(recall £ < \/n).

This inequality can fail to hold only if X is very concentrated around E[X], so let us examine
X’s variance. We set Y = (X — E[X])? and observe that since the X; are independent,

n

EY]|=VarX = ZV@T(X,-) = Z % =a-n, for some o> 3&;6'
i=1 i=1

Now partitioning into three regions, with 3 to be chosen later,

A:{Y<%-om} Bz{%-anﬁYﬁﬁn} C={Y > pn}

13



we can write
an =E[Y] = Pr[A]-E[Y|A]+ Pr[B] - E[Y|B] + Pr[C] - E[Y|C] (4)
< 1 % -an + Pr[B] - Bn + Pr[C] - E[Y|C]

To complete our proof, we have the following claim,

Claim 7. There exists a constant 3 = B(«), s.t.
1
Pr[C]-E[Y|C] = Pr[Y > fgn] - E[Y|Y > fn] < 3 on

Proof. Whenever X; are independent random variables, and |X; — E[X;]| < 1 and setting ¢; =
X1+ ... + X, then ¢; — E[g;] is a martingale, and by Azuma’s inequality (see Theorem 1),

Pr(q, > Elg,] + tv/n] < 2e~t*/2

Now,

0= {Y > fn} = {|X ~E[X]| > VBn} = {|g. ~ Ela]| > V5]
so Pr[Y > fn] < 2¢%/2 and setting I, = [k - Bn, (k + 1) - Bn] for k > 0:

Pr[C]-E[Y|C] = > t-Prly =t
t>06n

WZPr[YEIk]-(k+1)~6n

k=1
2

nZPr[Y>k-ﬁn]-(k+1)-ﬁn

k=1

IN

IA

(k + 1)Be*F/2

hE

< n-

k=1

Since %° | 8- e #B/2(k + 1) converges to a function of § that is decreasing as 3 increases, we can
choose 3 large enough so that 352, 3- e *8/2(k + 1) < g O

Going back to (1), and choosing T'= /15 > /555, we can now deduce that

Clam_1
Pr|X — E[X]| > 2T - v/n] = Pr[Y > %] > pr[B] > 3;2 391 _ % —Q(1)

B A Closer Look on the Threshold

The private database of Section 3.3 imposes a disturbing question — must a private database be
useless? We show that is not necessarily the case by demonstrating a database algorithm that
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guarantees some privacy. For this section we slightly relax the requirements of Definition 2, and
require that A(q) is within perturbation £ for most ¢:

qg[l;z] [A(g) is within perturbation £] = 1 — neg(n) .
Note that Theorem 3 holds also with this relaxed definition.

Let DB be the uniform distribution over {0,1}", and d € DB. Recall that the database
algorithm may (see Definition 1) use an internal state storage o to keep information between its
invocations. Algorithm A maintains such a state, that it initializes upon the first call (and never
updates — unless new entries are added to the database). The internal state of A consists of an n
bits d' = (d,...,d}), where d} is chosen to be d; with probability 1/2 4+ § and 1 — d; otherwise.
On input a query ¢ C [n] algorithm A answers a = ), d;. Note that while A is within O(y/n)
perturbation, the above database has some usability. For instance it is possiblt to compute a subset
S of [n] so that significantly more than half of the entries specified by S are set to 1 in the original
database.

The CD Model. The database algorithm above essentially creates a ‘private’ version of the
database d’, and then answers queries using d’. Note that a user may retrieve the entire content of
d' by querying ¢; = {i} for 1 < i < n, after which she may answer all her other queries by herself.
This result indicates that it is in some cases possible to achieve privacy in a CD model, where users
get a ‘private’ version of the database (written on a CD), which they may manipulate (say, without
being restricted to statistical queries).

C Self Auditing

Auditing is a query restriction method in which a log of the queries is saved, and every query is
checked for possible compromise allowing or disallowing the query accordingly [6]. One problem
with this approach is of efficiency — the problem of deciding whether a sequence of queries violates
privacy was shown to be computationally hard ([15] show that it is NP-hard to decide, given a
database d and a set of queries, whether an exact answer to these queries lead to fully determining
the value of at least one database entry).

Another, perhaps more acute problem, is that the auditor’s approvals/refusals leak information
about the database. It is conceivable that this information helps an adversary to violate the
database privacy. We give a simple example to illustrate this problem. Consider a statistical
database with n binary entries d = dy,...,d,. The access to d is monitored by an auditor, with
the notion of privacy as in [15] — i.e. privacy is violated when one or more of the database entries
is fully determined by the queries.

Our attacker queries the sets {7,7 + 1} for 1 < i < n, and records for each query whether it
was allowed or not. Note that the auditor refuses to answer queries exactly when both entries
are zero or both are one (since in these cases the answer reveals the exact value of both entries).
Hence, if a query {i,7 + 1} is approved, the attacker learns that d; = d;;1 otherwise, she learns
that d; # d; 1. As a result the attacker remains with only two (complementary) candidates for the
database, namely di,...,d, and 1 —dy,...,1 —d,. The attacker can learn the entire database if
it manages to distinguish between these two candidates. Only a little more information is needed,
such as whether there are more zeros than ones in the database.
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The reason the above auditing paradigm fails to provide privacy is that the auditor function
takes into account not only the data that is already known to the user, but also the answer to
the query in question. To avoid leakage from the auditor we suggest to construct it such that its
decision whether to disqualify a query is based solely on information that is already known to the
potential attacker. It follows that, in principle, this function may be computed by every user, hence
the term self auditing.

Our analysis in the proof of Theorem 5 suggests a possible self auditing function, assuming
that the database distribution DB is known. The self-auditor algorithm is based on the analysis
of the confidence a potential attacker may have in the database sensitive entries. The auditor
maintains the confidence the attacker has in each of these entries. The auditor then checks whether
a query should be allowed by estimating the random variable that measures how an answer to the
query may contribute to the confidence. The distribution of this random variable (or its estimate)
may be computed, in an analogous manner to the computation in Theorem 5, from the history
of query-answer pairs, the current query and the properties of the distribution. A query should
be disallowed if it may, with too high probability, increase the confidence in any of the database
entries so as to violate its privacy.
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