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Abstract

Given a k-uniform hypergraph, the Ek-Vertex-Cover problem is to find the smallest subset
of vertices that intersects every hyperedge. We present a new multilayered PCP construction
that extends the Raz verifier. This enables us to prove that Ek-Vertex-Cover is NP-hard to
approximate within a factor of (k — 1 — ¢) for arbitrary constants € > 0 and k > 3. The result
is nearly tight as this problem can be easily approximated within factor k. Our construction
makes use of the biased Long-Code and is analyzed using combinatorial properties of s-wise
t-intersecting families of subsets.

We also give a different proof that shows an inapproximability factor of L%J —e. In addition
to being simpler, this proof also works for super-constant values of k up to (log N )1/ ¢ where
c > 1 is a fixed constant and N is the number of hyperedges.

Keywords: Hypergraph Vertex Cover, Hardness of Approximation, PCP, Multilayered Outer
Verifier, Long Code.

1 Introduction

A k-uniform hypergraph H = (V, E) consists of a set of vertices V and a collection E of k-element
subsets of V' called hyperedges. A vertex cover of H is a subset S C V such that every hyperedge
in E intersects S, i.e., e NS # () for each ¢ € E. An independent set in G is a subset whose
complement is a vertex cover, or in other words a subset of vertices that contains no hyperedge
entirely within it. The Ek-Vertex-Cover problem is the problem of finding a minimum size vertex
cover in a k-uniform hypergraph. This problem is alternatively called the minimum hitting set
problem with sets of size k (and is equivalent to the set cover problem where each element of the
universe occurs in exactly k sets).
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The Ek-Vertex-Cover problem is a fundamental NP-hard optimization problem. For k = 2, it is
just the famous vertex cover problem on graphs. Owing to its NP-hardness, one is interested in how
well it can be approximated in polynomial time. A very simple algorithm that is often taught in
an undergraduate algorithms class is the following: greedily pick a maximal set of pairwise disjoint
hyperedges and then include all vertices in the chosen hyperedges in the vertex cover. It is easy
to show that this gives a factor k approximation algorithm for Ek-Vertex-Cover. State of the art
techniques yield only a tiny improvement, achieving a k—o(1) approximation ratio [14]. This raises
the question whether achieving an approximation factor of & — ¢ for any constant € > 0 could be
NP-hard. In this paper, we prove a nearly tight hardness result for Ek-Vertex-Cover,

Theorem 1.1 (Main Theorem) For cvery integer k > 3 and every ¢ > 0, it is NP-hard to
approzimate Ek-Vertex-Cover within a factor of (k—1—¢).

Previous Hardness Results

The vertex cover problem on hypergraphs where the size of the hyperedges is unbounded is nothing
but the Set-Cover problem. For this problem there is a Inn approximation algorithm [23, 20] and
a matching hardness factor of (1 —o(1))Inn due to Feige [10]. Feige showed that an approximation
algorithm achieving a factor of (1 — o(1))Inn would imply NP C DTIME(n®Ueglogn)) where n
is the number of hyperedges. The best NP-hardness result (where the reduction is polynomial
time) is due to Raz and Safra [25], who showed that it is NP-hard to approximate Set-Cover to
within ¢ - logn for some small ¢ > 0. The first explicit hardness result shown for Ek-Vertex-
Cover was due to Trevisan [27] who considered the approximability of bounded degree instances of
several combinatorial problems, and specifically showed an inapproximability factor of Q(k'/19) for
Ek-Vertex-Cover. Holmerin [18] showed that E4-Vertex-Cover is NP-hard to approximate within
(2 — ¢). Independently, Goldreich [12] showed a direct “FGLSS”-type [11] reduction (involving no
use of the long-code, a crucial component in most recent PCP constructions) attaining a hardness
factor of (2 — ¢) for Ek-Vertex-Cover for some constant k. Later, Holmerin [19] showed that Ek-
Vertex-Cover is NP-hard to approximate within a factor of Q(k'~¢), and also that it is NP-hard to
approximate E3-Vertex-Cover within factor (3/2 — ¢).

More recently Dinur, Guruswami and Khot gave a fairly simple proof of an « - k hardness
result for Ek-Vertex-Cover, for some o > % The proof takes a combinatorial view of Holmerin’s
construction and instead of Fourier analysis uses some properties concerning intersecting families
of finite sets. The authors also give a more complicated reduction that shows a factor (k — 3 — ¢)
hardness for Ek-Vertex-Cover. The crucial impetus for that work came from the recent result of
Dinur and Safra [9] on the hardness of approximating vertex cover (on graphs), and as in [9] the
notion of biased long codes and some extremal combinatorics relating to intersecting families of
sets play an important role. In addition to ideas from [9], the factor (k — 3 — ) hardness result
also exploits the notion of covering complexity introduced by Guruswami, Hastad and Sudan [13].
Neither the « - k result nor the k& — 3 — ¢ result has been published (an ECCC manuscript exists,
[7]) since they have been subsumed by the work presented herein.

Our result and techniques

In this paper we improve upon all the above hardness results by proving a factor (k — 1 — &)
inapproximability result for Ek-Vertex-Cover. Already for &k = 3, this is an improvement from
3/2—¢ to 2—e. Improving our hardness factor from (k—1—¢) to (k—¢) appears highly non-trivial
(although it was recently proven under a certain conjecture [22]). Note that such a bound would



imply a factor 2 — & hardness for vertex cover on graphs, a problem that is notoriously difficult.
While our proof shares some of the extremal combinatorics flavor of [9] and [7], it draws its strength
mainly from a new multilayered outer verifier system for NP languages. This multilayered system
is constructed using the Raz verifier [24] as a building block.

The Raz verifier, which serves as the starting point or “outer verifier” in most (if not all)
recent hardness results, can be described as follows. There are two sets of (non-Boolean) variables
Y and Z, and for certain pairs of y € Y and 2z € Z, a constraint m,_.,. The constraints are
projections, i.e., for each assignment to y there exists exactly one assignment to z such that the
constraint 7, is satisfied. The goal is to find an assignment A to the variables so that a maximum
number of constraints m,_,, are satisfied, i.e., have the property m,_..(A(y)) = A(z). By the PCP
Theorem [2, 1] together with the Parallel Repetition Theorem [24], we know that for every £ > 0 it
is NP-hard to distinguish between the case where all the constraints can be satisfied and the case
where no more than a fraction e of the constraints can be satisfied.

In [7], the « - k hardness result is obtained by replacing every Y variable by a block of vertices
(representing its Long-Code). Hyperedges connect y;-vertices to yo-vertices only if there is some
z € Z such that my, .., m,_, are constraints in the system. This construction has an inherent
symmetry between blocks which deteriorates the projection property of the constraints, limiting
the hardness factor one can prove to at most k/2. Since this is a relatively simple reduction, we
include a proof showing a hardness of approximation factor of (|k/2| — ¢). The improvement over
the factor k/3 in [7] is obtained using a better result on s-wise t-intersecting set families. We also
remark that this result itself suffices for the recent reduction from Ek-Vertex-Cover to asymmetric
K-center [5]. Moreover, this result has the advantage of working for much larger super-constant
values of k (up to (log N )1/ ¢ for some absolute constant ¢ where N is the number of hyperedges).

Another way of reducing the Raz verifier to Ek-Vertex-Cover is by maintaining the asymmetry
between Y and Z, introducing a block of vertices for each variable in Y and in Z (representing their
Long-Code). Each constraint m,_,, can be emulated by a set of hyperedges, where each hyperedge
consists of both y-vertices and z-vertices. The hyperedges can be chosen so that if the initial PCP
instance was satisfiable, then taking a particular fraction 1/k of the vertices in each block will be
a vertex cover. However, this reduction has a basic “bipartiteness” flaw: the underlying constraint
graph, being bipartite with parts Y and Z, has a vertex cover of size at most one half of the number
of vertices. Taking all the vertices of, say, the Z variables will be a vertex cover for the hypergraph
regardless of whether or not the initial PCP instance was satisfiable. This, once again, limits the
gap to no more than k/2.

We remark that this “bipartiteness” flaw naturally arises in other settings as well. One example
is approximate hypergraph coloring, where indeed our multilayered PCP construction has been
successfully used for showing hardness, see [8, 21].

The Multilayered PCP. We overcome the k/2 limit by presenting a new, multilayered PCP. In
this construction we maintain the projection property of the constraints that is a strong feature
of the Raz verifier, while overcoming the “bipartiteness” flaw. In the usual Raz verifier we have
two “layers”, the first containing the Y variables and the second containing the Z variables. In
the multilayered PCP, we have ¢ layers containing variables X1, Xo, ..., Xy respectively. Between
every pair of layers 41 and 79, we have a set of projection constraints that represent an instance of
the Raz verifier. In the multilayered PCP, it is NP-hard to distinguish between (i) the case where
there exists an assignment that satisfies all the constraints, between every pair of layers, and (ii)
the case where for every i1, o it is impossible to satisfy more than a fraction € of the constraints
between X;, and X,.



In addition, we prove that the underlying constraint graph no longer has the “bipartiteness”
obstacle, i.e. it no longer has a small vertex cover and hence a large independent set. Indeed we
show that the multilayered PCP has a certain “weak-density” property: for any set containing an
¢ fraction of the variables there are many constraints between variables of this set. This guarantees
that “fake” independent sets in the hypergraph (i.e., independent sets that occur because there are
no constraints between the variables of the set) contain at most € fraction of the vertices.

We mention that the PCP presented by Feige in [10] has a few structural similarities with ours.
Most notably, both have more than two types of variables. However, while in our construction the
types are layered with decreasing domain sizes, in Feige’s construction the different types are all
symmetric. Furthermore, and more importantly, the constraints tested by the verifier in Feige’s
construction are not projections while this is a key feature of our multilayered PCP, crucially
exploited in our analysis.

We view the construction of the multilayered PCP as a central contribution of our paper, and
believe that it could be a powerful starting point for other hardness of approximation results as
well. In fact, as mentioned above, our multilayered construction has already been used in obtaining
strong hardness results for coloring 3-uniform hypergraphs [8, 21] (namely the hardness of coloring
a 2-colorable 3-uniform hypergraph using an arbitrary constant number of colors), a problem for
which no non-trivial inapproximability results are known using other techniques. We anticipate
that this new outer verifier will also find other applications besides the ones in this paper and in
[8, 21].

The Biased Long-Code. Our hypergraph construction relies on the Long-Code that was in-
troduced in [3], and more specifically, on the biased Long-Code defined in [9]. Thus, each PCP
variable is represented by a block of vertices, one for each “bit” of the biased Long-Code. More
specifically, in z’s block we have one vertex for each subset of R, where R is the set of assignments
for the variable z. However, rather than taking all vertices in a block with equal weight, we attach
weights to the vertices according to the p-biased Long-Code. The weight of a subset F' is set to
plFl(1 — p)B\FI highlighting subsets of cardinality p - |[R|. Thus we actually construct a weighted
hypergraph; we will later describe how it can be translated to a non-weighted one.

The vertex cover in the hypergraph is shown to have relative size of either 1 —p in the good case
or almost 1 in the bad case. Choosing large p = 1— ﬁ, yields the desired gap of l%p ~k—1—¢
between the good and bad cases. The reduction uses the following combinatorial property: a family
of subsets of a set R, where each subset has size p |R|, either contains very few subsets, or it contains
some k —1 subsets whose common intersection is very small. 'We will later show that this property
holds for p < 1 — ﬁ and hence we obtain a gap of k — 1 — €. As can be seen, this property does

not hold for p > 1 — ﬁ and hence one cannot improve the k£ — 1 — ¢ result by simply increasing p.

Weighted versus unweighted

As mentioned above, our construction yields a weighted hypergraph: each vertex is associated with
a weight and the goal is to minimize the weight of the vertex cover. By appropriately duplicating
vertices, we can obtain an unweighted hypergraph (for more detail, see [6, 9]). We note that in all
of our constructions, duplicating vertices does not change the asymptotic size of the hypergraph
and hence all of our results carry over to the unweighted case.



Location of the gap

All our hardness results have the gap between sizes of the vertex cover at the “strongest” location.
Specifically, to prove a factor (k — 1 — £) hardness we show that it is hard to distinguish between
k-uniform hypergraphs that have a vertex cover of weight ﬁ + ¢ from those whose minimum
vertex cover has weight at least (1 —e&). This result is stronger than a gap of about (k— 1) achieved,
for example, between vertex covers of weight ﬁg and ﬁ In fact, by adding dummy vertices,
our result implies that for any ¢ < 1 it is NP-hard to distinguish between hypergraphs whose
minimum vertex cover has weight at least ¢ from those which have a vertex cover of weight at most
( = + s). Put another way, our result shows that for k-uniform hypergraphs, for k£ > 3, there
exist an @ = a(k) > 0 such that for arbitrarily small € > 0, it is NP-hard to find an independent
set consisting of a fraction € of the vertices even if the hypergraph is promised to contain an
independent set comprising a fraction « of the vertices. We remark that such a result is not known
for graphs and seems out of reach of current techniques. (The 1.36 hardness result for vertex cover
on graphs due to Dinur and Safra [9], for example, shows that it is NP-hard to distinguish between
cases when the graph has an independent set of size 0.38 - n and when no independent set has
more than 0.16 - n vertices.) This gap location feature was crucial to the recent tight Q(log* n)
inapproximability result for asymmetric K-center [5].

Organization

We begin in Section 2.1 by developing the machinery from extremal combinatorics concerning
intersecting families of sets that will play a crucial role in our proof. This is followed by a statement
of the starting point of our reduction, which is the standard gap instance obtained by combining the
PCP theorem with Raz’s parallel repetition theorem. In Section 3, we present a relatively simple
reduction that shows an inapproximability factor of |k/2| — e for arbitrary € > 0. As explained
earlier, this is as far as we can go using just the “bipartite” Raz outer verifier. In Section 4 we
present the multilayered PCP construction, which gives hope to break the k/2 barrier. In Section 5,
we present our reduction to a gap version of Ek-Vertex-Cover which allows us to prove a factor
(k — 1 — &) inapproximability result for this problem. Finally, we discuss the case when k is not a
constant but instead is a growing function of the number of hyperedges in Section 6.

2 Preliminaries

2.1 Intersecting Families

In this section we define the notion of an s-wise t-intersecting family and prove an important
property of such families. For a comprehensive survey, see [15]. Denote [n] = {1,...,n} and
ol = {F | F C [n]}. We start with a definition:

Definition 2.1 A family F C 21" is called s-wise t-intersecting if for every s sets Fy,...,Fs € F,
we have |FyN...NFs| >t.

For example, the family of all sets I € 2[" such that [t] C F is an s-wise t-intersecting family. A
more interesting example is given by the family of all sets F' € 2["! such that |FN[t+s]| > t+s—1.
Each set in this family has at most one “hole” in [t 4 s]. Therefore, any intersection of s sets of
this family contains at least t + s — s = t elements from the range [t 4+ s]. More generally, for any
j >0, we can define the family of all sets F' € 2[" such that |F'N [t + js]| >t + (s — 1)j; it is easy
to see that this is an s-wise t-intersecting family.



We need another important definition:

Definition 2.2 For a bias parameter 0 < p < 1, and a ground set R, the weight of a set ' C R is
def
pl(F) = plfl (1= p)l BV

When R is clear from the context we write p, for ,uﬁ. The weight of a family F C 28 is pu,(F) =
> rer Hp(F).

The weight of a subset is precisely the probability of obtaining this subset when one picks every
element in R independently with probability p.

The following is the main lemma of this section. It shows that for any p < %, a family of
non-negligible p,-weight (i.e., u,(F) > €) cannot be s-wise t-intersecting for sufficiently large ¢.

Lemma 2.3 For arbitrary €,6 > 0, and integer s > 2, let p = 1 — % — 0. Then, there exists
t = t(e,s,0) such that for any s-wise t-intersecting family F C olnl, pp(F) < €. Moreover, it is
enough to choose t(e, s,8) = Q55 (log 1 +log(1 + —3))).

Proof: In order to prove this lemma, we need to introduce the notion of a left-shifted family.
Performing an (7, j)-shift on a family consists of replacing the element j with the element ¢ in all
sets F' € F such that j € F,i¢ F and (F\ {j}) U{i} ¢ F. A left-shifted family is a family which
is invariant with respect to (i, j)-shifts for any 1 < i < j < n. For any family F, by iterating the
(4,7)-shift for all 1 < i < j < n we eventually get a left-shifted family which we denote by S(F).
The following simple lemma summarizes the properties of the left-shift operation.

Lemma 2.4 ([15], p. 1298, Lemma 4.2) For any family F C 2", there exists a one-to-one
and onto mapping T from F to S(F) such that |F| = |7(F)| for every F € F. In other words,
left-shifting a family maintains its size and the size of the sets in the family. Moreover, if F is an
s-wise t-intersecting family then so is S(F). [

It can be easily checked that the examples given after Definition 2.1 are all left-shifted. As the
next lemma shows, those examples essentially represent all possible sets in any left-shifted s-wise
t-intersecting family:

Lemma 2.5 ([15], p. 1311, Lemma 8.3) Let F C 2I" be a left-shifted s-wise t-intersecting fam-
ily. Then, for every F' € F, there exists a j > 0 with |[FN[t+ sj]| >t + (s —1)j.

Proof: For completeness, we sketch the proof of the lemma. For two equally sized sets A =
{a1,...,qi}, 1<a1 <...<agq<nand B={by,...,b}, 1 <by <...<b <n wesay that A < B
ifa; <b; foralli=1,...,l. Then, we claim that for such A, B, if [n]\ A € F then also [n]\ B € F.
We prove this by induction: for i = 0,...,[ define the set F; = [n]\ {a1,...,a;,bit1,...,b}. Notice
that F; = [n] \ A and therefore F; € F. Next, we show that F; € F implies that F;_; € F. If
a; = b; then the claim is obvious. Otherwise, a; < b; and hence b; € F;. Since F is left-shifted and
a; ¢ F; it follows that F; \ {b;} U {a;} = F;—1 is in F. This proves our claim since Fy = [n] \ B.

Let us now complete the proof of the lemma. Assume on the contrary that there exists F' € F
such that for all j >0, |[FN[t+sj]| <t+ (s—1)j. Let A={aj,...,a;} be such that F' = [n]\ A
and assume that a1 < ... < a;. The above condition implies that F' contains at least ¢ “holes” in
[t + (i — 1)s] and therefore a; < t + (i — 1)s. It also implies that [ > |(n —t)/s| + 1.

For k =0,...,s—1, define the set By, = {by.1,...,bk;} by by = min{t+k+(i—1)s,n—(I—1)}.
Since a; < t+ (i — 1)s and a; < n — (I — i) (just because a; < @11 < ... < a; < n are all
integers) we obtain that a; < bp;. In other words, A < By. Moreover, since by; < bgy1q, we



see that A < By < By = ... X Bs_1. Using the claim we proved before, we obtain that for all
k=0,...,s—1, [n]\ By € F. But this is a contradiction since ([n]\ Bo)N...N([n]\ Bs—1) C [t —1]
and in particular its size is less than t. ]

We now complete the proof of Lemma 2.3. We follow the general outline of the proof of
Theorem 8.4 in [15], p. 1311. Let F be an s-wise t-intersecting family where ¢ will be determined
later. According to Lemma 2.4, S(F) is also s-wise t-intersecting and f,(S(F)) = pp(F). By
Lemma 2.5, for every F' € S(F), there exists a j > 0 such that |[F N[t + sj]| >t+ (s —1)j. We
can therefore bound i, (S(F)) from above by the probability that such a j exists for a random set
chosen according to the distribution j,. We now prove an upper bound on this probability, which
will give the desired bound on p,(S(F)) and hence also on i, (F).

The Chernoff bound [4] says that for a sequence of m independent random variables X,..., X,
on {0, 1} such that for all ¢, Pr[X; = 1] = p for some p,

2

Pr[z X; > (p+7)m] < e M7,
Hence, for any j > 0, Pr[ |[FN[t+sj]| > t+ (s —1)j ] is at most
Prl |F O [t + sj]| — p(t + s§) > 6(t + s§) | < e 20+,

Summing over all j > 0 we get:

1

< —2(t+s5)0% _ —2t6? 1— —2562 < —2t52 1
() < 3 e (1= ) < (1 )
which is smaller than e for t = Q(55 (log L +log(1 + —2))). ]

2.2 The PCP Theorem and the Parallel Repetition Theorem

As is the case with many inapproximability results (e.g., [3], [16], [17], [26]), we begin our reduction
from the Raz verifier described next. Let R be some parameter and let ¥ be a collection of two-
variable constraints, where the variables are of two types, denoted Y and Z. Let Ry denote the
range of the Y-variables and Ry the range of the Z-variables!, where |Rz| < |Ry| and both are
at most RO, Assume each constraint 7 € ¥ depends on exactly one y € Y and one z € Z,
furthermore, for every value a, € Ry assigned to y there is exactly one value a, € Rz to z such
that the constraint 7 is satisfied. Therefore, we can write each constraint @ € ¥ as a function
from Ry to Rz, and use notation m,_., : Ry — Ryz. Furthermore, we assume that the underlying
constraint graph is bi-regular, i.e., every Y-variable appears in the same number of constraints in
v, and every Z-variable appears in the same number of constraints in ¥. Both of these numbers
are assumed to be at most RO,

The following theorem follows by combining the PCP Theorem with Raz’s Parallel Repetition
Theorem. The PCP given by this theorem will be called the Raz verifier henceforth.

Theorem 2.6 (PCP Theorem [1, 2] + Raz’s Parallel Repetition Theorem [24]) Let U be as
above. There exists a universal constant v > 0 such that for every (large enough) constant R it is
NP-hard to distinguish between the following two cases:

'Readers familiar with the Raz verifier may prefer to think concretely of Ry = [7*] and Rz = [2%] for some
number u of repetitions.



e Yes: There is an assignment A:Y — Ry, A: Z — Ry such that all m € VU are satisfied by
A, de, Yy, €V, . (Aly)) = A(2).

e No: No assignment can satisfy more than a fraction % of the constraints in W. [ |

Remark: The reduction, from 3SAT say, proving the above hardness can be assumed to run in
time nC1osH) where n is the size of the 3SAT instance. Also recall that the constraint graph of ¥
is bi-regular with Y and Z degrees d; and d, where both d;,d, < RO,

3 A Factor k/2 inapproximability result

In this section, we prove the factor (|k/2] — €) hardness result for Ek-Vertex-Cover, for k& > 4.
We will show this by proving a factor (k/2 — &) hardness for even k > 4 (the result for odd &
follows by a trivial reduction that adds a new vertex to every hyperedge of a hard instance of the
(k — 1)-uniform hypergraph).

Let IS(G) denote the weight of vertices contained in the largest independent set of the hyper-
graph G.

Theorem 3.1 Let k > 4 be an arbitrary even integer. Then for every € > 0, it is NP-hard to
approzimate Ek-Vertex-Cover within a factor of (k/2 — e). More specifically, for every e, o > 0, it
is NP-hard to distinguish, given a k-uniform hypergraph G, between the following two cases:

e IS(G)>1—-2-5§

e IS(G) <e.
Proof: Start with a PCP instance, as given in Theorem 2.6, namely a set of local constraints ¥
over variables Y U Z, whose respective ranges are Ry, Rz. For parameters, we pick ¢ to be larger
than ¢(3, %,(5) in Lemma 2.3; say, t = O((%3 log %) with some large enough constant. Moreover,
take R > (2%2)1/ 7 where v > 0 is the universal constant from Theorem 2.6. From ¥, we now
construct a (weighted) k-uniform hypergraph G whose minimum vertex cover has weight = 2/k or
~ 1 depending on whether W is satisfiable or not.

For a set R we denote by 2% the power set of R. The vertex set of G is

vy« ofy
namely for each i € Y we construct a block of vertices denoted V[y] = {y} x 27 corresponding to
all possible subsets of Ry . The weight of each vertex (y, F') € V' is
def 1
A(<y7F>) - |Y| ul—%—é(F)

The hyperedges are defined as follows. For every pair of local-constraints m, .., m,—, € ¥ sharing
a common variable z € Z, we add the hyperedge

{0 B, o B s Flya) P U { (w2 PR, (o B, (0, B }

if and only if there is no 1 € (V<< /2 Fj1 and 12 € (V1<j<p/o sz such that 7y, .. (r1) = mTy,—.(r2).
Formally,

E déf U {{<y17F11>7 ’<y1’Fk1/2>7<y27F12>7”' ’<y2’F]?/2>} ‘

Tl'y] —yz77ry2—>z€(b

Tz (P ﬂ"'ﬁFkl/Q) Ny (FY ﬂ"'ﬂFI?/Q) =0 }
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where the union is taken over all pairs of local-constraints with a common variable z.

Lemma 3.2 (Completeness) If U is satisfiable then IS(G) >1— 2 — 4.

Proof: Assume a satisfying assignment A : Y UZ — Ry U Rz for U. The following set is an
independent set of G:
I={{y, F)eVlyllyeY, Aly) e F'}. (1)

For every hyperedge e = {(yl, Y,y Fkl/2>, (Yo, F2), -+, (ya, FkQ/2>} either A(y;) € FLN---N
F} Jo 00 Alys) ¢ Fin.. -ﬂFkQ/Q, otherwise since A(y;), A(y2) agree on every common Z-variable, we
have 7y, .z (F{ N+ N Ey ) N7y (FE N+ N ) # 0, and e would not have been a hyperedge.

Now note that the weight of the family {F | A(y) € F'} w.r.t. the bias parameter (1 —2/k — 0)
is (1 —2/k — 9). Hence the weight of the independent set Z in (1) is 1 — 2/k — 4. ]

Lemma 3.3 (Soundness) If IS(G) > ¢, then there exists an assignment A :Y UZ — Ry U Ry
that satisfies more than a fraction 1/RY of the constraints in V.

Proof: Let S C V be such an independent set of weight at least e. We consider the set Y’ C Y of
all variables y for which the weight (under A) of SNV[y] in V[y] is at least £/2. A simple averaging
argument shows that [Y'| > |Y|e/2.
For each y € Y, define
Fy={Fe2f | (y F)e S} .

Thus we have Vy € Y/, '“1—%—6(]:2/) > 5. By Lemma 2.3, applied with the choice s = k/2 and £/2
in place of e, there must exist FY, Fy, ..., F,f/z € F, such that |[FYNFyN--- ﬂF,'g/2| < t where t is
as defined before. Let us denote by B(y) the intersection FY N FYN---N Fgﬂ; we will refer to B(y)
as the core of assignments for y. Intuitively, for any y for which the independent set S has large
intersection with V[y], we can decode a small collection of potential values from Ry, specifically
the core B(y), that may be assigned to y.

We next translate these cores into an assignment satisfying more than a fraction % of the
constraints in U. Observe that for every z € Z and y1,y2 € Y', y1 # y2 such that my, ., 7y, € ¥,
we must have

Ty —2(B(y1)) Ny,—z(B(y2)) # 0 . (2)

Indeed, otherwise the set {(y1, F{*), -, (y1, F,f/lQ), (ya, FV?), -, (y2, F,i"/QQ)} would be a hyperedge
whose vertices all lie in S, contradicting the assumption that S is an independent set. Let us now
slightly modify the definition of B(y): for any y such that B(y) is empty, we add to B(y) some
arbitrary element of Ry. Notice that Equation 2 still holds; moreover, it holds also in the case that
y1 and yo are equal.

Let Z' C Z denote the set of all Z variables of the instance ¥ that participate in some constraint

with some y € Y’. Formally, Z' 4s {z | my—, € ¥ for some y € Y'}. Associate each such z € Z'

with an arbitrary y € Y’ for which m,—., € ¥, and let B(z) = my—z(B(y)) € Rz. Now define

a random assignment A by independently selecting for each y € Y’, 2 € Z’' a random value from
B(y), B(z) respectively. Assign the rest of the variables (Y \Y')U(Z\ Z’) with any arbitrary value.
To complete the proof, we prove:

3

> — || .
> |9 0

E4 [‘{ﬂ'y_)z € V¥ | my_., is satisfied by A}|]



Here the expectation is taken over the choice of the random assignment A. We will show that for

every y € Y/, each constraint m,_,, € U is satisfied by A with probability > t%; thus the expected

number of local-constraints satisfied by A is % U] >

_E_

577 * || (because each y € Y appears in

the same number of local constraints).
So, let 7y, € U for arbitrary y € Y'. Assume z is associated with some 3y’ € Y’/ possibly equal
to y. By Equation (2), we have

my—z(B(y) N B(2) = my—:(B(y)) Nmy—.(By)) #0.

Therefore, there is at least one value a,, € B(y) such that 7,_,,(a,) € B(z). Since for every y € Y,
|B(y)| < t, there is at least a - probability of having m,_..(A(y)) = A(2), thereby showing (3).

Thus, there exists some assignment A that meets the expectation, which means it satisfies

> 5 > % (by our choice of R) of the local constraints in W. This completes the proof of the
soundness Lemma 3.3. [
Theorem 3.1 now follows from Lemmas 3.2 and 3.3 and Theorem 2.6. [

Let us compute some parameters of the reduction, which will be useful in Section 6 where we
will consider the case with super-constant values of k. First, let us compute R. The condition
R > (2t2/)Y/7, together with our choice of ¢, implies that it suffices if

1\00)
R=(=)".
£d
By the remark following Theorem 2.6, the number of variables in the PCP instance is at most
nOUogR) — O(log(1/29)) where n is the size of the original 3SAT instance. Since there is a block of
2R%Y Gertices corresponding to all subsets of R,, for each of these variables, the number of vertices
in the hypergraph produced by the reduction is at most
nO(log(l/eé))QRo(l) < nO(log(l/eé))z(l/eé)o(l). (4)
The degree of the hypergraph, i.e., the maximum number of hyperedges each vertex appears in, is

at most 277k -RO(M) since each variable in the PCP instance appears in at most R constraints.

Hence, the degree is at most
ok/(€6)°™)

Finally, the running time of the reduction is polynomial in the number of hyperedges. A bound on
the latter can be obtained by combining the two previous bounds:

OU0E(1/0))9(1/e8)°0)  oh/(26)°) | Olog(1/28))gh/(20)°) | (5)

4 The Multilayered PCP

As discussed in the introduction, a natural approach to build a hypergraph from the PCP ¥ is to
have a block of vertices for every variable y or z and define hyperedges of the hypergraph so as
to enforce the constraints m,_,,. For every constraint m,_ ., there will be hyperedges containing
vertices from the block of 1y and the block of z. However, this approach is limited by the fact that
the constraint graph underlying the PCP has a small vertex cover. Since each hyperedge contains
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vertices from both the Y and Z “sides”, the subset of all vertices on the Y (resp. Z) “side”, already
covers all of the hyperedges regardless of whether the initial PCP system was satisfiable or not.

This difficulty motivates our construction of a multilayered PCP where we have many types of
variables (rather than only Y and Z) and the resulting hypergraph is multipartite. The multilayered
PCP is able to maintain the properties of Theorem 2.6 between every pair of layers. Moreover, the
underlying constraint graph has a special “weak-density” property that roughly speaking, guaran-
tees that it will have only tiny independent sets (thus any vertex cover for it must contain almost
all of the vertices).

4.1 Layering the Variables

Let £, R > 0. Let us begin by defining an ¢-layered PCP. In an ¢-layered PCP there are ¢ sets of
variables denoted by Xi,..., Xy;. The range of variables in X; is denoted R;, with |R;| = RO®),
For every 1 < i < j < { there is a set of constraints ®;; where each constraint = € ®;; depends
on exactly one z € X; and one 2’ € X;. For any two variables we denote by m,_,,» the constraint
between them if such a constraint exists. Moreover, the constraints in ®;; are projections from x to
2', that is, for every assignment to x there is exactly one assignment to 2’ such that the constraint
is satisfied.

In addition, as mentioned in the introduction, we would like to show a certain
property of our multilayered PCP:

“weak-density”

Definition 4.1 An ¢-layered PCP is said to be weakly-dense if for any 6, 2/¢ < § < 1, given
m > [2] layers i1 < ... < iy, and given any sets S; C Xy, for j € [m] such that S; > §|X;,|, there

. . . 52
always ewist two sets Sj and Sy such that the number of constraints between them is at least a 7
fraction of the constraints between the layers X;; and Xi.

Theorem 4.2 There exists a universal constant v > 0, such that for any parameters £, R, there is
a weakly-dense (-layered PCP ® = U®;; such that it is NP-hard to distinguish between the following

two cases:

e Yes: There exists an assignment that satisfies all the constraints.

e No: For every i < j, not more than 1/R" of the constraints in ®;; can be satisfied by an
assignment.

Moreover, the theorem holds even if every variable participates in RCY constraints.

Proof: Let ¥ be a constraint-system as in Theorem 2.6. We construct ® = U®;; as follows. The
variables X; of layer i € [¢] are the elements of the set Z x Y/~ i.e., all {-tuples where the first
elements are Z variables and the last ¢ — ¢ elements are Y variables. The variables in layer ¢ have
assignments from the set R; = (Rz)" x (Ry)*~* corresponding to an assignment to each variable
of ¥ in the (-tuple. It is easy to see that |R;| < RO® for any i € [¢(] and that the total number of
variables is no more than |\II|O(€). For any 1 < ¢ < j </ we define the constraints in ®;; as follows.
A constraint exists between a variable z; € X; and a variable z; € X; if they contain the same ¥
variables in the first 4 and the last £— j elements of their £-tuples. Moreover, for any ¢ < k < j there
should be a constraint in ¥ between z; ; and x;;. More formally, denoting z; = (z;1,..., ;) for

11



€ X; =20 x Y

i € Xi,fL‘j S Xj,

(I)ij = {Wmi,mj
Vk € [é] \ {i-l— 1,...,j},xi7k =Tjk

Vk € {Z+ 17--'7j}77TI¢,k_’xj*k € \II} .

As promised, the constraints 7, .., are projections. Given an assignment a = (a1,...,a¢) € R;
to x;, we define the consistent assignment b = (b1,...,by) € R;j to zj as by = 7y, —a,, (ax) for
ke{i+1,...,5} and by = ay for all other k.

How many constraints does a variable z participate in? Let 2 € X; for some ¢ € [¢]. Then
z = (x1,...,2¢) has a constraint with 2’ = (2],...,2)) € X; if ¢ < j and on each coordinate
ke{i+1,...,7}, ¥ contains a constraint between z) and xj. For each k there are at most ROM
constraints in ¥ that touch zy, so altogether there are R°U~% such constraints that touch z. This
is similar for the case where j < i, and summing these together there are at most ¢ - RO = RO®
constraints that touch any given z.

The completeness of ® follows easily from the completeness of ¥. That is, assume we are given
an assignment A : Y U Z — Ry U Ry that satisfies all the constraints of ¥. Then, the assignment
B :|JX; — |JR; defined by B(x1...2¢) = (A(z1) ... A(xy)) is a satisfying assignment.

For the soundness part, assume that there exist two layers ¢ < j and an assignment B that
satisfies more than a 1/R" fraction of the constraints in ®;;. We partition X; into classes such that
two variables in X; are in the same class iff they are identical except possibly on coordinate j. The
variables in X; are also partitioned according to coordinate j. Since more than 1/R7 of the con-
straints in ®;; are satisfied, it must be the case that there exist a class x; 1,..., 2 j—1,Zij+1,..., Tis
in the partition of X; and a class @ 1,...,%;j—1,%jj+1,- .., %;j¢ in the partition of X; between which
there exist constraints and the fraction of satisfied constraints is more than 1/RY. We define an
assignment to ¥ as

A(Y) = (B(@is - s Tije1, Ys Ti b1y - - Tif))
for y € Y and as
A(Z) = (B($j71, ey :Ejyj_l, zZ, xj7j+1, . ,IEL[))]‘

for z € Z. Notice that there is a one-to-one and onto correspondence between the constraints in
¥ and the constraints between the two chosen classes in ®. Moreover, if the constraint in ® is
satisfied, then the constraint in ¥ is also satisfied. Therefore, A is an assignment to ¥ that satisfies
more than 1/R7 of the constraints.

To prove that this multilayered PCP is weakly-dense, we recall the bi-regularity property men-
tioned above, i.e., each variable y € Y appears in the same number of constraints and also each
z € Z appears in the same number of constraints. Therefore, the distribution obtained by uniformly
choosing a variable y € Y and then uniformly choosing one of the variables in z € Z with which it
has a constraint is a uniform distribution on Z.

Take any m = [2] layers 41 < ... < ip, and sets S; C X;, for j € [m] such that S; > §|X;,|.
Consider a random walk beginning from a uniformly chosen variable 21 € X7 and proceeding to a
variable x9 € X5 chosen uniformly among the variables with which x1 has a constraint. The random
walk continues in a similar way to a variable 23 € X3 chosen uniformly among the variables with
which x5 has a constraint and so on up to a variable in X,. Denote by E; the indicator variable of
the event that the random walk hits an S; variable when in layer X; .. From the uniformity of ¥ it

12



follows that for every j, Pr[E;] > 6. Moreover, using the inclusion-exclusion principle, we get:

1 > Pr[\/ Ej] =) Pr(E;] - Pr[E; A Ey]
j

J<k

2 m
> fg] 0 — <2>man<k Pr(E; A Ej]
m
>2— 9 max;<g PI‘[Ej A Ek]

which implies
m 52
max;, Pr[E; A B > 1/ 9 > T
Fix j and k such that Pr[E; A Ey] > % and consider a shorter random walk beginning from
a random variable in X;; and proceeding to the next layer and so on until hitting layer ix. Since

Ej is uniform on X;, we still have that Pr[E; A Ey] > % where the probability is taken over the
random walks between X;. and Xj, . Also, notice that there is a one-to-one and onto mapping from
the set of all random walks between X;. and Xj, to the set ®;, ;, . Therefore, at least a fraction %
of the constraints between X; and Xj, are between S; and Sk, which completes the proof of the

weak-density property. [ |

5 A factor (k — 1 — ¢) inapproximability result

Theorem 1.1 (Main Theorem) For any k > 3, it is NP-hard to approzimate Ek-Vertez-Cover
within any factor less than k — 1. More specifically, for every e, > 0, it is NP-hard to distinguish,
given a k-uniform hypergraph G, between the following two cases

e IS(G)>1— -6
e IS(G)<e.

Proof: Fix k > 3 and arbitrarily small €, > 0. Define p = 1 — k—ll — 4. Let ® be a PCP
instance with layers X1,..., Xy, as described in Theorem 4.2, with parameters ¢ = 33¢~2 and R
large enough to be chosen later. We present a construction of a k-uniform hypergraph G = (V, E).
We use the Long Code introduced by Bellare et al. [3]. A Long Code over domain R has one bit
for every subset v C R. An encoding of element = € R assigns bit-value 1 to the sets v s.t. z € v
and assigns 0 to the sets which do not contain z. In the following, the bits in the Long Code will
be vertices of the hypergraph. The vertices that correspond to a bit-value 0 are (supposedly) the
vertices of a Vertex Cover.

VERTICES. For each variable x in layer X; we construct a block of vertices V[x]. This block
contains a vertex for each subset of R;. Throughout this section we slightly abuse notation by
writing a vertex rather than the set it represents. The weight of each vertex in the block Vx| is
set according to ,uf‘i, i.e. the weight of a subset v C R; is proportional to p,(v) = p|”|(1 — p)l R\
as in Definition 2.2. All blocks in the same layer have the same total weight and the total weight
of each layer is }. Formally, the weight of a vertex v € V[z] where z € X; is given by

I
mﬂp (v).
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HYPEREDGES. We construct hyperedges between blocks V[z| and V[y| such that there exists a
constraint 7m,_,,. We connect a hyperedge between any vy, ...,vx_1 € V[z] and u € V[y| whenever
oy (NS 0) N = 0.

The intuition for the hyperedges comes from the proof of completeness. In fact, the hypergraph
is constructed by first deciding how to map a satisfying assignment for ® into a subset of G’s
vertices. Then, we construct the hyperedges so as to ensure that such subsets are independent sets
in G.

Let IS(G) denote the weight of vertices contained in the largest independent set of the hyper-
graph G.

Lemma 5.1 (Completeness) If @ is satisfiable then IS(G) >p=1— 1 — 6.

Proof: Let A be a satisfying assignment for ®, i.e., A maps each i € [(] and z € X; to an
assignment in R; such that all the constraints are satisfied. Let Z C V contain in the block V[z]
all the vertices that contain the assignment A(x),

I=|J{veVp]lvsA@)}.

We claim that Z is an independent set. Take any v1,...,vx_1 in Z N V]z] and a vertex u in
INV]y]. The vertices vy, ..., vx_1 intersect on A(z) and therefore the projection of their intersection
contains m,_,, (A(z)) = A(y). Since u is in ZNV[y] it must contain A(y). The proof is completed by
noting that inside each block, the weight of the set of all vertices that contain a specific assignment
is exactly p. [ |

We now turn to the soundness of the construction.

Lemma 5.2 (Soundness) If IS(G) > ¢ then ® is satisfiable.

Proof: Let Z be an independent set of weight €. We consider the set X’ of all variables x for
which the weight of Z N V[x] in V[z] is at least €/2. A simple averaging argument shows that the
weight of |J,cy V(2] is at least £. Another averaging argument shows that in at least £¢ > 2
layers, X' contains at least £ fraction of the variables. Using the weak-density property of the PCP
(see Definition 4.1) with the choice § = £/4, we conclude that there exist two layers X; and X;
such that % fraction of the constraints between them are constraints between variables in X'. Let
us denote by X the variables in X; N X’ and by Y the variables in X; N X".

We first find, for each variable x € X, a short list B(x) of values that are “assigned” to it by
Z. Indeed consider the vertices in Z N V[z]. Define ¢ to be O(éi3 log %) with some large enough
constant. Then, since t > (5, k—1, ), Lemma 2.3 implies that there exist k —1 vertices in ZNV[z]
that intersect in at most ¢ assignments. We denote these vertices by vz 1,...,v; -1 and their
intersection by B(x), where |B(x)| < t.

In the following we define an assignment to the variables in X and Y such that many of the
constraints between them are satisfied. For a variable y € Y we choose the assignment that is
contained in the largest number of projections of B(z):

A(y) = maxvargepry, [{z € X | a € mp—y(B(x))}|.

For a variable x € X we simply choose A(z) to be a random assignment from the set B(z) (or
some arbitrary assignment in case B(x) is empty). We will prove that indeed A(y) occurs in many
of the projections of B(z).

14



Claim 5.3 Let y € Y, and let X (y) be the set of all variables x € X that have a constraint with

y. Then,
Pr [A(y) € ooy (B@))] > 21 & :
2€X(y) tlog(%)/log(1 —1/(k—1)")
Before we prove the claim let us see how it concludes the proof. Indeed, the fraction of constraints
between Y and X satisfied by A is, in expectation, at least £1/t. This is because for every y, the
fraction of x € X(y), for which A(y) € mp—y(B(z)) is by Claim 5.3 at least ;. For such z, the
probability that A(z) was randomly chosen so that m,_,(A(x)) = A(y), is at least B B( e L

Thus, there must be some assignment A that attains the expectation, and satisfies at least g1/t
of the constraints between X and Y. This amounts to <t - % fraction of the total constraints, which
would imply that ® is satisfiable, as long as

1 1 &2

1
tlog(£)/log(1—1/(k— 1)) "t 64 =R (6)

Proof: (of Claim 5.3) Let y € Y, x € X(y). By definition, there are no hyperedges of the form
(Vg,1,- -V k—1,u) for any vertex u € Z N V]y]. In other words, every vertex u € Z N V[y] must
intersect m, ., (B(x)). Let a;,,..., 2, be the variables in X such that the constraint , [y exists,
and consider the collection of sets A; = m, _>y(B (zi;)) for j =1,..., N. Clearly |A; < t, and let
D denote the maximum number of dlSJOlIlt sets 1ns1de this famlly We will show that D cannot
be too large by estimating the maximum possible weight of the vertices in Z N V[y]. Indeed the
vertices in Z NV [y] must intersect every A;. The constraint imposed by one A; in isolation reduces
the maximum possible weight of the Vertlces in ZNV(y] by a factor of 1 — (1 — p)'A l<1-(1-p)t
Moreover, for disjoint A;’s, these constraints are independent, so the total weight becomes at most
(1—(1-p)HP. Since the weight of Z N Vy| is at least £, we have

D
<(1-(1-phHP< (1—%_171)t)

D<log( )/log(l—l/( Y.

To finish, we need the following simple claim:

> M

SO

Claim 5.4 Let Aq,...,An be a collection of N sets, each of size at most T > 1. If there are not
more than D pairwise disjoint sets in this collection, then there is an element that is contained in
at least Y 7p sets.

Proof: Take any maximal collection of pairwise disjoint sets and let A’ denote their union. Notice
that |A’| < T'D and that any set not in this collection must contain one of the elements of A’. Hence,
there must exist an element of A’ that is contained in at least 1 4+ 5= DD > N/TD sets. [

Claim 5.4 implies that there exists an assignment for y that is contained in at least

N
t-log(3)/log(1 —1/(k — 1))
of the A;’s. ]
This completes the soundness proof. (Lemma 5.2) ]
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Theorem 1.1 now follows from Lemmas 5.1 and 5.2, and our main multilayered PCP construction
from Theorem 4.2, since the ratio between the sizes of the vertex cover in the yes and no cases is
at least %_;; = (1 —¢)/(3%5 + &) which can be made arbitrarily close to k — 1. ]

As before, let us compute some parameters of the reduction, which will be useful in the next

section. We start by choosing R so that Equation (6) is satisfied. Since ﬁ is small, we estimate

log(1 — ) ~ —z and get
1.1, A
By plugging in the value for ¢, we obtain that choosing

R = 906 3 logklog )

suffices. The number of variables in the multilayered PCP is n®(¢198 ®) which, using ¢ = O(1/2),

is at most
(l_og_k)o(l)
n e .

Hence, the number of vertices in the hypergraph is at most

o o log k\O(1)
logkyo(1) HROM . (1Ek)OW) o FIO

<n

nl

Since the number of constraints each variable participates in is at most R, the degree of the
hypergraph is at most
log k\O(1)
ROW) . 9O(RRO®) g2 e )

Finally, the running time of the reduction is polynomial in the number of hyperedges which is at
most

log k\O(1) log k
g2 e )7 (legkyo) (8)

6 Non-constant values of &

In this section we outline what happens to our construction when we increase k beyond a con-
stant. This should be contrasted with the general hypergraph vertex cover problem in which k is
unbounded (i.e., the set cover problem). It is well known that, if N is the number of hyperedges,
the greedy algorithm achieves a factor In IV approximation, and no polynomial time algorithm can
achieve approximation factor (1 — o(1))In N, unless NP C DTIME(n©oglogn)) [10].

Below, we discuss in turn the extension of both the k—1 and k/2 hardness bounds from Sections
5 and 3 respectively to the case when k is super-constant. We note that in this context the k/2
result is not subsumed by the (k —1) result since it works for much larger values of k (as a function
of the number of hyperedges in the hypergraph). We discuss the (k — 1) result first since this
reduction and the calculations at the end of Section 5 are hopefully fresh in the reader’s mind at
this point of reading.

6.1 The (k—1— ¢) inapproximability bound

Theorem 6.1 There exists some ¢ > 0 such that unless NP C DTIME(nC(0g108n)) * there is no
polynomial time algorithm for approximating Ek-Vertex-Cover for k < (loglog N )1/ ¢ to within a
factor of k — 1.01, where N is the number of hyperedges in the k-uniform hypergraph.
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Proof: Recall the calculation at the end of Section 5, specifically the bound on number of hyper-
edges from Equation (8). The produced hypergraph G has
log k\O(1) o
N =2 W e
hyperedges, when starting from a 3SAT instance of size n. Furthermore, the reduction runs in time

polynomial in the number of hyperedges.
The gap in vertex cover sizes equals

ﬁ > (k—1)(1—¢)(1 — ko) > (k — 1.01)

if we set ¢ = 1/(200k) and 6 = 1/(200k?). For these choices of ,d, the number of hyperedges

N is at least 22k0(1 , so the largest value of k we can set is k = (loglog n)l/ < for a large enough
constant ¢’. For this choice of k, the number of hyperedges N and the runtime of the reduction can
both be bounded above by n®eglogn) For large enough n, loglog N < 2loglog n for this choice of
parameters, so we get a result that works for k < (loglog N )1/ ¢ for some fixed constant c. "]

6.2 The (k/2 —¢) inapproximability bound

We can obtain a similar result corresponding to the factor k/2 hardness result, as stated below.
Note that this result works for k& up to (log N)'/? for some fixed constant b > 0.

Theorem 6.2 There exists some b > 0 such that unless NP C DTIME(nC(oglogn)) * there is no
polynomial time algorithm for approzimating Ek-Vertez-Cover for k < (log N)'/° to within a factor
of [%J — 0.01, where N is the number of hyperedges in the k-uniform hypergraph.

Proof: Recall the calculation at the end of Section 3, specifically Equations (4) and (5). The
produced hypergraph G has ng < n@Uog(1/6)2(1/ <)% Vertices and N = no2k/ (e9)9® hyperedges,
when starting from a 3SAT instance of size n. Furthermore, the reduction runs in time polynomial
in the number of hyperedges.

By plugging in & = (logn)'/?" for a large enough constant ¥ > 0, ¢ = 1/(100k) and § =
1/(100k2%), we get log(1/ed) < loglogn, and 2k/(€)° < . Thus, the reduction runs in time
nOUoglogn) hroduces a hypergraph with N = n@Uo8logn) hyneredges, with a gap in vertex cover
sizes (assuming k is even for convenience) of

1

100

1—c¢ k
>

has 23—k 2

N |

by our choices of €, 9. Since for large enough n, logn > /log N for the above choice of parameters,
we get a result that works for k < (log N)'/? for some fixed constant b. n
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