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Abstract

We prove that coloring a 3-uniform 2-colorable hypergraph with any constant number of
colors is NP-hard. The best known algorithm [20] colors such a graph using O(n'/5) colors. Our
result immediately implies that for any constants k > 2 and c2 > ¢; > 1, coloring a k-uniform
ci-colorable hypergraph with co colors is NP-hard; leaving completely open only the k = 2 graph
case.

We are the first to obtain a hardness result for approximately-coloring a 3-uniform hyper-
graph that is colorable with a constant number of colors. For k > 4 such a result has been
shown by [14], who also discussed the inherent difference between the k = 3 case and k > 4.

Our proof presents a new connection between the Long-Code and the Kneser graph, and
relies on the high chromatic numbers of the Kneser graph [19, 22] and the Schrijver graph [26].
We prove a certain maximization variant of the Kneser conjecture, namely that any coloring of
the Kneser graph by fewer colors than its chromatic number, has ‘many’ monochromatic edges.

1 Introduction

Background

A hypergraph H = (V, E) with vertices V and edges £ C 2V is 3-uniform if every edge in E has
exactly 3 vertices. A legal x-coloring of a hypergraph H is a function f : V' — [x] such that no edge
of H is monochromatic. The chromatic number of H is the minimal x for which such a coloring
exists.

During the past decade, significant progress has been made — via the PCP theorem — in under-
standing the complexity of many combinatorial optimization problems. It is known, for example,
that it is hard to approximate the chromatic number of a graph to within factor of n'=¢ [9] (this
holds for hypergraphs as well, see [21]). In numerous other cases the hardness lower bound almost
matches the algorithmic upper bound, or perhaps some constant gap separates between the two.
In contrast, the problem of approximate coloring (where the input is a hypergraph or a graph that
is known to be colorable with very few colors and the target is to color it with as few colors as
possible) retains perhaps the largest gap between lower and upper bounds.

The best algorithms for these problems require a polynomial number of colors: for example
the best approximate coloring algorithm for 2-colorable 3-uniform hypergraphs requires O(n'/%)
colors [20], and the best coloring algorithm for 3-colorable graphs, requires O(n3/1) colors [5].
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On the lower-bound side, not much is known. For graphs, the best hardness result states that
using 4 colors to color a 3-colorable graph is NP-hard [17, 13]. It would already be a significant
step to prove that coloring a 3-colorable graph with O(1) colors is NP-hard.

The property of being 2-colorable is well studied in combinatorics and is also referred to as
‘property B’ (see [14] for further references). Nevertheless, prior to this work no hardness of
approximation result was known for 3-uniform hypergraphs, and in fact it wasn’t even known if it
is NP-hard to color a 3-uniform 2-colorable hypergraph with 3 colors. For 4-uniform hypergraphs
and upwards, Guruswami, Hastad, and Sudan [14] were able to show such a separation, i.e., they
showed that it is NP-hard to color a 2-colorable 4-uniform hypergraph with any constant number of
colors (this result immediately extends to any k > 4). In their work an inherent difference between
the £ > 4 and k = 2,3 was raised, which was considered evidence that the case of & = 3 would
be harder to understand. This difference has to do with the corresponding maximization problem
called ‘Set-Splitting’, which is the problem of 2-coloring a k-uniform hypergraph while maximizing
the number of non-monochromatic hyperedges. This problem exhibits a different behavior for & > 4
and for k = 2,3. Indeed, for k > 4 there is a tight hardness result by Hastad [16] around 1 — 27++1
which is trivially matched by a random assignment. For k& = 2, 3 the best approximation algorithms
use semi-definite programming [11, 27] and have a constant gap from the best gadget-constructed
hardness results, see [15].

Guruswami, Hastad, and Sudan [14] also showed that unless NP C DTIM E(n€{oglogn)) there
is no polynomial-time algorithm for coloring a 2-colorable 4-uniform hypergraph with coloizolgol%
colors for some constant ¢y > 0. We can show that unless NP C DTIME(2PW1oen))  there is
no polynomial-time algorithm for coloring a 2-colorable 3-uniform hypergraph with O(+/loglogn)
colors. These results again extend to any k£ > 3.

Following our result, Khot [18] was able to prove, via different techniques yet relying on a
similar layered PCP, that it is NP-hard to color a 3-colorable 3-uniform hypergraph with any
constant number of colors. Although this result is already contained in ours, his construction has
the extra nice property that the bad instances do not contain even a small independent set, while
in our hypergraph construction, this is not the case.

Technique

The general structure of many hardness results has two main components. First, one takes a version
of the PCP theorem [2, 1] (usually, after an application of the parallel repetition theorem of [25])
and applies some transformations on it to construct a PCP system with certain desired properties.
Then, one applies a version of the Long-Code, tailored to the specific problem whose hardness is
being studied. The ‘trick’ is to obtain the correct interplay between the specific PCP properties
and the Long-Code variant, so as to capture the hardness of the problem. The proof of correctness
divides into two parts: completeness and soundness. First one proves completeness, i.e., that if
the initial PCP system was a ‘yes’ instance then the resulting construction is also a ‘yes’ instance
(in our case: a 2-colorable 3-uniform hypergraph), which generally follows from the construction
in a straightforward manner. Then one proves soundness, i.e., that if the initial instance was a
‘no’ instance then the resulting construction is also a ‘no’ instance (in our case: that the resulting
graph has a high chromatic number). The proof of soundness, which is where the heart of the
proof really lies, integrates the two components of the construction. First one applies some sort



of ‘list-decoding’ to the Long-Code, which in our case means to translate an arbitrary coloring of
the Long-Code with few colors into a short list of possible ‘decoded-values’. Then one exploits the
special PCP properties to ensure global consistency between these decoded values. In what follows
we describe the two components of our construction, and how they are combined together.

The Layered PCP. Let us focus on PCP systems whose tests look at two variables (correspond-
ing to 2-prover interactive proofs). In general, such PCP systems can be divided into those that
have one type of variables, X, and those that have two types of variables, X and Y. PCP systems
of the first kind have tests that look at two X-variables, x1,29 € X, and each value of z1 € X
still allows many values for x5 € X. This phenomenon does not go well with an application of
the Long-Code, since encodings of these variables appear falsely consistent. PCP systems of the
second kind, e.g., the parallel repetition theorem [25], have each test look at one ‘large’ X-variable
whose value completely determines that of the ‘small’ Y-variable, and whose tests are essentially
projection tests. Such tests do not suffer from the false-consistency problem but have an inherent
‘bipartite-ness’ problem in our coloring setting: coloring all the X variables red, and all the Y
variables orange, will be a legal coloring regardless of whether the initial PCP system was satisfi-
able or not. We take the second approach, and overcome the ‘bipartite-ness’ problem by utilizing
a layered-PCP that was constructed in [6]. This essentially extends the bipartite nature of Raz’s
PCP into being multipartite, with many ‘types’ of variables (rather than only X and Y'). Thus,
as the number of parts increases, the number of colors required to color an unsatisfiable instance
increases as well.

The Long-Code and the Kneser Graph. The Long-Code [4] of a domain R is a powerful tool
in numerous hardness of approximation results. We adopt a completely combinatorial viewpoint,
following [7], and discover a new connection between the Long-Code and a well-known combinatorial
object called the Kneser graph [19].

The Long-Code of a domain R consists of all possible subsets' of R. The Long-Code Graph,
explicitly defined in [7], is the graph whose 2lBl vertices are the subsets of R, and whose edges
connect disjoint subsets. Let us consider the following encoding of an element a € R: color all
subsets containing a red, and the rest orange. This coloring corresponds to the legal-encoding of
a € R via the Long-Code. It is easy to check that in the Long-Code Graph this coloring has
no red monochromatic edges, yet has many orange ones, and in particular it is not a 2-coloring.
Nevertheless, in our hypergraph this coloring corresponds to a legal 2-coloring. We prove the
following interesting property of the Long-Code graph. Namely, that any coloring of the vertices
by a constant number of colors contains one ‘special’ color that is used in a non-negligible fraction
of the vertices and colors two large disjoint subsets. This property enables a list-decoding of the
coloring in a manner that ensures global consistency. The property is established by proving a
maximization variant of the Kneser conjecture showing that using less than the chromatic number
colors to color the Kneser graph, leaves ‘many’ monochromatic edges. We use properties of both
the Kneser graph and the Schrijver graph, which appear as subgraphs in the Long-Code graph.

n the original and standard definition of the Long-Code [4], each subset of R is viewed as a Boolean function
f: R — {0,1}; and the Long-Code is the collection of all possible Boolean functions over R — hence the name.



Combining the Two Components. The vertices of our constructed 3-uniform hypergraph will
be partitioned into blocks whose vertices are roughly the vertices of the Long-Code graph. Every
hyperedge will contain both ends of an edge of the Long-Code graph. This guarantees that a global
2-coloring that within a block is a legal-encoding, will never contain red monochromatic hyper-
edges. The hyperedge will contain an additional vertex always from another block, that will ensure
‘inter-block consistency’ intuitively via the requirement of not having any non-red monochromatic
hyperedges.

In the soundness proof we will need to translate a legal coloring of the hypergraph (with some
X > 2 colors) within each block into a short list of elements of R that are supposedly encoded by
that coloring. The main difficulty arises from the need of ensuring consistency between the decoded
values of distinct blocks. We will do so by highlighting one color per block that ‘highly violates’
the edges of the Long-Code graph, in a certain sense that will be clarified later on.

2 The Long Code and the Kneser Graph

The Long-Code graph of a domain R, explicitly defined in [7], is the graph whose 2% vertices are
the subsets of R, and whose edges connect disjoint subsets. In this work we analyze colorings of this
graph using a constant number of colors. We discover that the induced subgraph of the Long-Code
graph obtained by taking vertices that correspond to subsets of size s = @ — ¢ for some constant
¢, is no other than the Kneser graph [19], whose chromatic number is well-studied. In this section
we define the Kneser graph and describe some of its important properties.

For n > 2s — 1, the Kneser graph K G, s has the set ([Z]) =l {S Cn]| |S|=s} as its vertex
set and two vertices S1, 5S> are adjacent iff S1 NSy = ¢. In other words, each vertex corresponds
to a s-set and two vertices are adjacent if their corresponding sets are disjoint. In this paper we
are mainly interested in the case where s is smaller than n/2 by a constant. These graphs have
the important property that the chromatic number is high although large independent sets exist.
For a discussion of Kneser graphs and other combinatorial problems, see an excellent book by
Matousek [24].

There exists a simple way to color this graph with n — 2s + 2 coloring. In 1955, Kneser [19]
conjectured that there is no way to color the graph with less colors, i.e., X(KG,s) =n —2s+ 2.
The first to prove this conjecture was Lovdsz in 1978 [22]. Many other proofs and extension are
known (see, e.g., [8, 3, 23]) and the latest and simplest one is by Greene [12].

We also define the Schrijver graph SG), s . Given a permutation 7 of [n], we say that an s-
subset S € ([Z]) is 7-stable if it does not contain two m-adjacent elements modulo n, i.e., if 7(i) € S
then 7(i + 1) ¢ S and if w(n) € S then (1) ¢ S. We denote the number of stable s-sets by (%) ,
(notice that it is independent of ). The graph SG), s » contains a vertex for each m-stable s-subset
of [n] and two vertices are adjacent if their corresponding sets are disjoint. Clearly, SG), s » is an
induced subgraph of KG,, ;. Interestingly, the chromatic of the Schrijver graph is the same, i.e.,
X(SGpsx) =n—2s + 2 [26].

We begin with a simple bound on the number of vertices in a Schrijver graph:

Claim 2.1 (1) ,,, < (,")

s n—2s



Proof: Consider a stable set S according to the permutation 7(i) = i. Notice that the set of all
i €[n]suchthati¢ Sandi—1¢ S (or n¢ Sifi=1) uniquely defines S. The claim follows from
the fact that this is always a set of n — 2s elements. [ |

The following is the main lemma of this section:

Lemma 2.2 In any coloring of KG), s by n—2s+1 colors there exists a monochromatic edge whose
2
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B -fraction of the vertices.
s/ stab

color is used in at least a
Proof: Fix a coloring of KGy, s by n—2s+1 colors. For every permutation 7, the induced subgraph
SG) s,x contains a monochromatic edge since x(SGp s ) = n — 2s + 2. Therefore, there exists a

color, say red, such that at least #8“ of the Schrijver graphs contain a red monochromatic edge.

Consider the following distribution on the vertices of KGy, s: choose a random permutation 7 and

1 2
n—2$—|—1 (2)31‘,0})
since we first have to choose a Schrijver graph that contains a red monochromatic edge and then

then a random vertex in SG,, s ». The probability of choosing a red vertex is at least

one of the two end points of the monochromatic edge. Since each SG,, s » contains the same number
of vertices and each vertex of KG,, s is contained in the same number of SG,, s » this distribution
is equivalent to the uniform distribution on the vertices of KG,, 5. Therefore, the fraction of red

vertices is at least u
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Corollary 2.3 In any coloring of KG), s by n—2s41 colors there exists a color, say red, for which

1. The subset of red wvertices contains at least a )-fmction of the wvertices in the

2
(n—2s+1)( "

n—2s

graph.

2. There are two red vertices Sy, Sy such that S1 NSy = ¢.

3 The Layered PCP

We use the layered PCP construction of Dinur et al. [6]. For completeness, we describe the con-
struction and sketch the proof of its NP-hardness. In an I-layered PCP there are [ sets of variables
which we call layers and denote by Xi,...,X;. The range of variables in X; is denoted R;. For
every 1 <4 < j <[ there is a set of tests ®;; where each test ¢ € ®;; depends on exactly one
x € X; and one y € X;. For any two variables we denote by ¢,_., the test between them if such a
test exists. Moreover, the tests in ®;; are projections from x to y, that is, for every assignment to
x there is exactly one assignment to y such that the test accepts.

Theorem 3.1 For any parameters |, u there exists a reduction from an NP-hard problem of size n
to the problem of distinguishing between the following two cases in an l-layered PCP & with nC )
variables over a range of size 20 Either there exists an assignment that satisfies all the tests
or, for every i < j, not more than 2~ of the tests in ®;; can be satisfied by an assignment.
Moreover, for any constant § > 0 let m = [%1 Then, for any m layers i1 < ... < iy and sets
Sj C Xj; for j € [m] such that S; > §|X;;| we can find two sets Sj and Sy such that the number of

tests between them is at least % of the tests between the layers X;, and Xii"



Proof Sketch: We begin with the parallel repetition lemma [25] applied with parameter u to the
3-SAT-5 of [1]. This provides us with a reduction from an NP-hard problem of size n to a PCP ¥
over two sets of variables Y (with range Ry of size 7%) and Z (with range Ry of size 2") where the

number of variables is n@®)

. The tests 1, . are only between a variable y € Y and a variable z € Z
and are projections from Ry to Ry, i.e., for any given assignment to y € Y there exists exactly
one consistent assignment to z € Z. The problem is to decide whether there exists an assignment
that satisfies all the tests or no assignment satisfies more than 272 fraction of the tests. One
property of the resulting PCP that we use is its uniformity: the distribution created by uniformly
taking a variable y € Y and then uniformly choosing one of the variables in z € Z with which it
has a test is a uniform distribution on Z.

We construct ® as follows. The variables X; of layer i € [I] are the elements of the set Z/Y!~%
i.e., all [-tuples where the first ¢ elements are Z variables and the last [ — 7 elements are Y variables.
The variables in layer i have assignments from the set R; = RiZR%/_ ¢ corresponding to an assignment
to each variable of W in the [-tuple. It is easy to see that |R;| < 290 for any i € [I] and that the
total number of variables is n®®). For any 1 < i < j < I we define the tests in ®;; as follows. A
test exists between a variable z; € X; and a variable z; € X; if they contain the same ¥ variables
in the first ¢ and the last [ — j elements of their [-tuples. Moreover, for any ¢« < k < j there should
be a test in ¥ between x; and z; . More formally,

iy = {Pr;e; | vi € Xiyrj € X5, VR € IJ\{i+1,...,5}
Tik = xj,lmv}{: € {Z + ]-7 v 7]} wl’z‘,k@j,k € \I]}

As promised, the tests ¢, .. are projections. Given as assignment a to x;, we define the consistent
assignment b to x; as by = ¥y, , 2, (ax) for k € {i +1,...,7} and by = a;, otherwise.

The completeness of ® follows easily from the completeness of ¥. That is, assume we are
given an assignment A : Y U Z — Ry U Ry that satisfies all the tests. Then, the assignment
B : UX; — JR; defined by B(z1,...,2;) = (A(z1),...,A(z;)) is a satisfying assignment. For
the soundness part, assume that there exist two layers ¢ < j and an assignment B that satis-

Qu) of the tests in ®;;. We partition X; into classes such that two variables

fies more than 27
in X; are in the same class iff they are identical except possibly on coordinate j. The vari-
ables in X; are also partitioned according to coordinate j. Since more than 272w of the tests
in ®;; are satisfied, it must be the case that there exist a class x;1,..., 2 j—1,%ij+1,---,%i]
in the partition of X; and a class xj1,...,2;;-1,%jj4+1,-..,%j; in the partition of X; be-
tween which there exist tests and the fraction of satisfied tests is more than 2-2®. We de-
fine an assignment to ¥ as A(y) = (B(zi1,...,%ij—1,V,Tij+1,---,%iy)); for y € Y and as
A(z) = (B(xj1,-. s @jj—1,%,Tjj4+1,---,251)); for z € Z. Notice that there is a one-to-one and
onto correspondence between the tests in ¥ and the tests between the two chosen classes in ®.
Moreover, if the test is ® is satisfied, then the test in W is also satisfied. Therefore, A is an
assignment to U that satisfies more than 27 of the tests.

To prove the second part of the theorem take any m layers i1 < ... < ip and sets S; C X,
for j € [m] such that S; > 6|X;,|. Consider a random walk beginning from a uniformly chosen
variable 1 € X7 and proceeding to a variable x5 € X5 chosen uniformly among the variables with
which x7 has a test. The random walk continues in a similar way to a variable x3 € X3 chosen
uniformly among the variables with which 29 has a test and so on up to a variable in X;. Denote



by E; the indicator variable of the event that the random walk hits an S; variable when in layer
X,
inclusion-exclusion principle, we get:

From the uniformity of ¥ it follows that for every j, P(E;) > 6. Moreover, by using the

1> P\ Ej) > P(E)~ Y P(EjANEy)>2— (73) max; ., P(E; A Ey)
j i<k

which implies

52

man<kP(Ej AN Ek) > 1/ (77;) > Z

Fix j and k such that P(E; A E}) > % and consider a shorter random walk beginning from a
random variable in X, and proceeding to the next layer and so on until hitting layer ix. Since Ej is
uniform on X;, we still have that P(E; A Ey) > % where the probability is taken over the random
walks between X;, and Xj, . Also, notice that there is a one-to-one and onto mapping from the set

of all random walks between X;, and X;, to the set ®;, ;, . Therefore, % of the tests between X,
and X;, are between S; and Sj. ]

4 The Hypergraph Construction

Theorem 4.1 (Main Theorem) For any constant x > 2, it is NP-hard to color a 2-colorable
S-uniform hypergraph using x colors.

Proof: Let ® be a PCP instance with layers X1, .., Xj, as described in Theorem 3.1, with parameters
I = 2x?, and u to be chosen later. We present a construction of a 3-uniform hypergraph G = (V, E).

Vertices. For each variable z in layer X; we construct a block of vertices V[z], which is essentially
a variant of the Long-Code of z’s range R;. This block contains a vertex for each subset of R; of

size s; =l L(|Ril — x)/2], i.e., V[z] = (f’) Altogether,

v=J V.

reuUX;

Throughout this section we slightly abuse notation by writing a vertex rather than the subset
it represents.

Hyperedges. We construct hyperedges between blocks V[x] and V[y| only if there exists a test
Yz—y € . We put a hyperedge between any vy, ve € V{z] and u € V[y] whenever v; N v = ¢ and
Ygsy(Ri \ (11 Uvg)) C w. In summation,

E = U {H{v1, v2,u} |vi,v2 € Viz], uw € Vy], vi Nvg = ¢ and pp—y(Ri \ (v1 Uv2)) C u} .
Pr—y€P

The condition v; N vy = ¢ (in the terms of Section 2, that the hyperedge contain both ends
of an edge from the Long-Code Graph) guarantees that any coloring of G that within one V[x]



is a legal-encoding of an assignment a, to x (i.e., that colors all subsets containing a, red and
the rest orange), automatically contains no red monochromatic hyperedges. The second condition,
Ya—y(Ri \ (v1 Uvg)) C u guarantees consistency between the encodings of the blocks of 2 and y in
the following way. Intuitively, if both v; and vy are colored orange, and assuming the adversary
colors each block with a legal-encoding, then the encoded assignment must lie outside both v; and
vg, i.e., in R\ (v; Uwy). Hence, any set u containing the image under ¢,_,, of this set must be
colored red. A more accurate analysis is in the soundness proof.

Note that our hyperedges are always between two layers of the PCP and are ‘directed’ in the
sense that they have two vertices from block of the bigger variable x, and one vertex in the block
of the smaller variable y.

Remark. Interestingly, it is easy to see that this construction has rather large independent sets
no matter what the underlying PCP is. For example, we can choose from each block all the
vertices that contain a certain assignment, say the first one. Moreover, it is possible to construct
two independent sets (i.e., two colors) that cover almost all of the hypergraph, leaving out only
a sub-constant part. We briefly sketch this example which originally appeared in [10]. Consider

any x € X;, i € [l] and let T; be any subset of R; of size @. The first independent set contains

|T2z'|.
independent set contains all the vertices in V[z] whose intersection with R; \ 7; is more than J%[
These are indeed independent sets because two vertices in the first independent set intersect on T;

all the vertices in V]z] whose intersection with T is of size more than

Similarly, the second

and similarly for the second independent set. Also, most of the vertices in V[z]| are in one of the
independent sets. Informally, this is true because the size of the intersection of a vertex in V|[z]
and T; has a standard deviation of O(\/|R;]).

Lemma 4.2 (Completeness) If O is satisfiable then G is 2-colorable.

Proof: Let A be a satisfying assignment for ®, i.e., A maps each variable z € X; to an assignment
in R; such that all the tests are satisfied. In the block V[z] we color all the vertices that contain
the assignment A(x) red and all the rest orange. There are no red monochromatic edges because
two red vertices inside the same block have a non-empty intersection. Also, let {v1,v2,u} be any
hyperedge and choose x,y,i such that vi,ve € V[z], x € X; and u € V[y]. Assume that both v;
and vy are orange. Since there exists a hyperedge between them, v; and vy are disjoint. Therefore,
A(x) € R; \ (v1 Uwvg) which implies that ¢, (A(x)) € wpy(R;i \ (v1 Uwvz)) € u where the last
containment is again because {v1,vs,u} is a hyperedge. But ¢,_.,(A(x)) = A(y) since A is a
satisfying assignment and therefore A(y) € u and wu is red. [

Lemma 4.3 (Soundness) If G is x-colorable then ® is satisfiable.

Proof: Fix a coloring of the graph G. The first step in our proof is to ‘list-decode’ this coloring,
i.e., to find a list of candidate-assignments for each variable. For any variable z € X;, i € [l],
consider the vertices inside the block V[x]. We can map them to the vertices of the Kneser graph
KGR, |(1Ri|-x)/2|- According to Corollary 2.3 we can find a color ¢, with the following double
property:

1. The subset Ulz] C V[z] of vertices colored ¢, contains at least an Q(|R;|~**+1) fraction of

the vertices in V[z].



2. There are two vertices vy 1, vz2 € U[z] such that vy 1 Ny o = ¢.

Let B(x) be the set R;\ (vy1 Uvg2). This is the list of ‘decoded’ values. Notice that it contains
at most y + 1 assignments. We say that the variable x is colored with c,, and denote as above by
Ulz] C Vx| the set of vertices V[z] colored with c,.

The next step in the proof is to establish consistency. Define the color of a layer i € [I] to be the
color in which most of its variables are colored. Notice that at least % of the variables of the layer
must be colored with the color of the layer. Finally, we can find % = 2x layers that are colored

with the same color, say red. Using the properties of the PCP with the set of red layers and the
1

ax?

of the tests between them are tests between red variables. Let us denote by X the red variables in

X; and by Y the red variables in X;.
In the following we define an assignment to the variables in X and Y such that many of the

red variables within each layer, we conclude that there exist two layers X; and X; such that

tests between them are satisfied. For a variable x € X we choose a random assignment from the
set B(z). For a variable y € Y we choose the assignment

A(y) = maxvareer, {2 € X | pz—y € ® and a € v,y (B(x))}],

i.e., the assignment that is contained in the largest number of projections of B(x).
In order to prove that this assignment satisfies a good fraction of the tests, we need the following
simple claim:

Claim 4.4 Let Aq,..., A, be a collection of n sets of size at most m such that no element is

contained in more than k sets. Then, there are at least w > o disjoint sets in this collection.

1+

Proof: We prove by induction on n that there are at least m disjoint sets in the collection.
The claim holds trivially for n < 1+ (k — 1)m. Otherwise, consider all the sets that intersect A;.
Since no element is contained in more than k sets, the number of such sets (including A;) is at
most 1+ (k — 1)m. Removing these sets we get, by using the induction hypothesis, a collection
that contains ;—F(_k—l)m = 1+(k”_1
disjoint sets. [ |

i 1 disjoint sets. We conclude the proof by adding A; to the

Consider a variable y € Y and a variable x such that the test ¢,_., exists. Since the vertices
Vg1, Uz 2 and the vertices in Uly] are colored red, there are no hyperedges between them. Therefore,
all the vertices v € Uly] must not contain ¢,_.,(B(z)). Now consider the family of projections
0g—y(B(z)) for all the variables x such that the test ¢,_, exists. Let ¢ denote the number of
disjoint sets in this family. The following claim provides an upper bound on g¢:

Claim 4.5 Let A,..., A, € () be disjoint. Let F = {F e (W) | Vi FnA; # 0}. Then if

g<k< %n we have
1
qg<3° §logn+co—log <|.7:|/<Z>>}

where ¢o s an absolute constant.

Proof: Consider the probability distribution z on 2" where each element i € [n] is chosen to be in
the set with probability £ and out of it with probability 1 — £. Thus, u(F) = (£)IFl(1 — £yn=IF]



and for F C 2I" we define u(F) = 3. rer W(F). Since all k-sets appear with equal probability, we

#1/(3) =n e (1))

JFrom Stirling’s formula we get n! = ©(n"e~"y/n) and hence N(([Z])) = () (E)k(1 — Eyn=k
O(vn/\/k(n —k)) which for 2 < k < Z equals ©(1/y/n). Since u(F) < (1 — (1 — £)9) <
exp(—q(1— £)*), we have |F|/(}) = ©(y/nexp(—q(1— £)%)). Taking logarithms we get ¢(1 — %) <
$log(n) + o —log(|F|/(})) for some constant ¢y > 0. Since & < k < 2 this implies the conclusion
of the claim. [ ]

have

Al

We use this claim with the family Uly| for which log( y ) —(x + 1)log(|Ry|). There-
fore, we get that ¢ < 3X*1(log|Ry |+ co + (x + 1)10g(|Ry|)) = O(x3Xlog(|Ry])) = O(x3Xul).
Claim 4.4 implies that there exists an assignment for y that is contained in at least a fraction
Q(x 137 X(ul) "L (x + 1)71) of the projections ¢,_,(B(z)). Therefore, since we randomly choose
one out of y+ 1 possible assignments to each z € X, the expected fraction of tests satisfied between
X and Y is at least Q(x337X(ul)~!). Recalling that tests between X and Y represent Q(x~2) of
the tests between layers X; and X, we get that Q(x°37X(ul)~!) of the tests between layers X;
and X; are satisfied. Choosing u to be cx with a big enough constant ¢, this is more than 2= (u)
and hence ® is satisfiable. [ |

Theorem 4.6 Assuming NP ¢ DTIM E(2”Oly(log ")), there is no polynomial time algorithm that
colors a 2-colorable 3-uniform hypergraph using O(/loglog N) colors where N is the number of
vertices in the hypergraph.

Proof: We note that in the previous proof, we can take y = cv/loglogn where ¢ > 0 is any
constant and n is the size of the 35S AT'5 instance from which the reduction begins. The parameters
we chose are | = O(x?) and v = O(x). Therefore, the size of the hypergraph we construct is N =
nO)92°tD _ gpoly(logn) ~ The proof is completed by noting that loglog N = log(poly(logn)) =
O(loglogn). ]

5 Discussion

The construction we presented relies on the properties of the Kneser graph in a strong way. To our
knowledge, this is the first time hardness of coloring is shown directly and not via the size of the
maximal independent set. We believe that the Kneser graph might be useful in understanding the
hardness of approximate coloring for graphs, a problem that is notoriously difficult.
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