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Abstract

The LABEL-COVER problem, defined in [ABSS93], serves as a starting point for nu-
merous hardness of approximation reductions. It is one of six ‘canonical’ approximation
problems in the survey of Arora and Lund [AL97]. In this paper we present a direct com-
binatorial reduction from low error-probability PCP [DFK*99] to LABEL-COVER showing

it NP-hard to approximate to within 2(°8 ' s improves upon the best previous
hardness-of-approximation results known for this problem.

We also consider the MINIMUM-MONOTONE-SATISFYING-ASSIGNMENT (MMSA) prob-
lem of finding a satisfying assignment to a monotone formula with least number of 1s,
[ABMP98]. We define a hierarchy of approximation problems obtained by restricting the
number of alternations the monotone formula. This hierarchy turns out to be equivalent
to an AND/OR scheduling hierarchy suggested in [GM97]. We show some hardness results
for certain levels in this hierarchy, and place LABEL-COVER between levels 3 and 4. This
partially answers an open problem from [GM97] regarding the precise complexity of each
level in the hierarchy, and the place of LABEL-COVER in it.

1 Introduction

The LABEL-COVER problem is a combinatorial graph labelling problem defined as follows. The
input is a bipartite graph G = (U, V, E), two sets of labels, By for U and B, for V, and for each
edge (u,v) € E, a relation II,, ,, C By x By consisting of admissible pairs of labels for that edge.
A labelling (f1, fo) is a pair of functions fi : U — 251 fo : V — 252 assigning a subset of labels
to each vertex. A labelling covers an edge (u,v) if for every label as € fo(v) there is a label
a1 € fi(u) such that (a1, a2) € II,,,. The goal is to find a labelling that covers all edges such
that the [, norm of the vector (|f1(u1)|, |f1(u2)l, ..., |f1(um)]) € ZIY! is minimized.

This problem was shown (implicitly in [LY94] and more formally in [ABSS93|) quasi-NP-
hard to approximate to within a factor of 2log! ™0 n fo, any constant ¢ > 0 by showing a specific
two-prover one-round interactive proof protocol, which reduces to LABEL-COVER.

We prove that LABEL-COVER is NP-hard to approximate to within 2108’ n where § =
loglog=“n for any ¢ < 1/2. This improves the best previously known results achieving NP-
hardness rather than quasi-NP-hardness, and obtaining a larger factor for which hardness-
of-approximation is proven. Our result also immediately strengthens the results of [GM97,
ABMP98] and shows that the following problems are NP-hard to approximate to within a fac-
tor of 21081 E 1 g any ¢ < 1/2: MMSA, MINIMUM-LENGTH-FREGE-PROOF, MINIMUM-
LENGTH-RESOLUTION-REFUTATION, AND /OR SCHEDULING, LINEAR-REMOVE-PART, REMOVE-
PART, SEPARATE-PAIR, FULL-DISASSEMBLY, REMOVE-SET, and SEPARATE-SET.
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Remark. In [ABSS93|, LABEL-COVER was reduced to the CLOSEST-VECTOR problem, the
NEAREST CODEWORD problem, MAX-SATISFY, MIN-UNSATISFY, learning half-spaces in the
presence of errors, and a number of other problems. Unfortunately, their reduction, is not
from general LABEL-COVER, but rather relies on a special additional property of the LABEL-
COVER instance that they construct. Namely that the relations associated with each edge are
partial functions: every label for v can be covered by at most one label for v. This property is
inherently missing in our reduction, and indeed hardness results for the aforementioned problems
seem to require more work than is in our direct reduction.

A Formula-Depth Hierarchy

We also consider a related problem called MINIMUM-MONOTONE-SATISFYING-ASSIGNMENT
(MMSA) that was defined in [ABMP98], and shown there to be as hard as LABEL-COVER. Given
a monotone formula ¢ the problem is to find a satisfying assignment for ¢ with a minimum
number of 1’s. This problem was considered in [ABMP98] since it reduces to the problem
of finding the length of a propositional proof, a problem of considerable interest in proof-
theory. Although our LABEL-COVER result strengthens the hardness for MMSA, we note that
[Uma99] subsequently obtained an even better n'~° hardness result for this problem without
going through a reduction from LABEL-COVER.

We show that the MMSA problem can be viewed as a generalization of the LABEL-COVER prob-
lem. We examine a hierarchy of approximation problems formed by restricting the depth of
the monotone formula in the MMSA problem. This hierarchy is equivalent to a hierarchy of
AND/OR scheduling pointed out in [GM97]. A monotone formula is said to be of depth i if it
has 7 —1 alternations between AND and OR. A depth-i formula is called II; (3;) if the first level
of alternation is an AND (OR). It is easy to see that the complexity of MMSA restricted to ¥;41
formulas is equivalent the complexity of MMSA restricted to II; formulas, denoted MMSA,.

Each MMSA, is at least as hard to approximate as MMSA,;_;. MMSA, is trivially solvable
in polynomial time. MMSA,, is already quite harder, and actually a simple approximation-
preserving reduction from SET-COVER to MMSA, was shown in [ABMP98], implying that
MMSA, is NP-hard to approximate to within logarithmic factors [RS97]. In fact, the two
problems can be easily shown to be equivalent, thus the same greedy algorithm for SET-
COVER [Joh74, Lov75] approximates MMSA5 to within a factor of Inn. We know of no previous
hardness result for MMSA3. A reduction from LABEL-COVER to MMSA, was shown indepen-
dently in [ABMP98] and [GM97].

We show how to translate MMSAj3 to LABEL-COVER, altogether placing LABEL-COVER some-
where between levels 3 and 4 in this hierarchy. This partially answers an open question from
[GM97] of whether or not LABEL-COVER is equivalent to level 4 in the hierarchy. Furthermore,
we examine the (previously unknown) hardness of MMSA3 and via a reduction from PCP to
MMSA3 show that it is NP hard to approximate to within the above large factors. This imme-
diately follows through for MMSA; (for every ¢ > 3) and for LABEL-COVER. Our reductions all
involve a polynomial sized blow-up, thus the hardness-of-approximation ratios are polynomially
related. For the asymptotic approximation ratios discussed here, this polynomial blow-up is
irrelevant.

If we denote the relation reducible with a polynomially related approximation-ratio by <
we can write:

PCP <« MMSA; <« LABEL-COVER <« MMSA, <« ... <« MMSA,



We summarize the above in the following table:

| Formula Depth ‘ Approximation Algorithm | NP-Hardness Factor |

MMSA, 1 —
MMSA, Inn Q(logn)
MMSA>3 n 210g1_°(1) n

Technique

We show a direct reduction to LABEL-COVER from low error-probability PCP with parameters
D and e. Namely, we begin with a gap-SAT instance consisting of Boolean functions. These
Boolean functions each depend on D variables, and the variables range over {1...1/¢}. The
PCP theorem states that it is NP-hard to distinguish between the ’yes’ case where the whole
system is satisfiable, and the 'no’ case where every assignment satisfies no more than an  fraction
of the local-tests. The focus of [DFKT99] was on D = O(1), and thus only an error-probability
of & = 27 108" " for any constant § > 0 was claimed. This alone strengthens the hardness of
LABEL-COVER from quasi-NP-hardness to NP-hardness, but with the same hardness-factor as
before. For our purposes however, the best result is obtained by choosing D = loglog®n for any
c<1/2and e = 9= log! "V Thege parameters give the result claimed above. Notice that
our direct reduction immediately implies that a stronger PCP characterization of NP — e.g. one
with a polynomially-small error-probability and constant depend as conjectured in [BGLR93] —
would immediately give NP-hardness for approximating LABEL-COVER to within n® for some
constant ¢ > 0.

Structure of the Paper

Our main result for LABEL-COVER is proven in section 2. The hardness result for MMSAj3 is
proven in section 3, via a reduction from PCP. We then show, in section 4 a reduction from
MMSAj3 to LABEL-COVER thus placing LABEL-COVER between levels 3 and 4 in the ‘MMSA’
hierarchy. This also re-establishes the hardness result for LABEL-COVER already shown in
section 2.

2 Label Cover

The LABEL-COVER problem is defined as follows.

Definition 1 (LABEL-COVER (LC,)) The input to the label-cover problem is a bipartite graph
G = (U,V, E), two sets of labels, By for U and By for V', and for each edge (u,v) € E, a relation
I, € By x By consisting of admissible pairs of labels for that edge.
A labelling (f1, f2) is a pair of functions fy : U — 251, fo : V' — 282 assigning a subset of la-
bels to each vertex. The ly-cost of the labelling is the l, norm of the vector (| f1(u1)|, | fi(u2)l, ..., |fi(um)|) €
ZIVl. A labelling covers an edge (u,v) if for every label as € fo(v) there is a label a; € fi(u)
such that (a1,a2) € I1,,,. A total-cover of G is a labelling that covers every edge. The problem
LC, is to find a total-cover with minimal l,-cost (1 < p < o0).

In this section we show a direct reduction from PCP to LABEL-COVER with [, norm, 1 <
p < oo, such that the approximation factor is preserved.



Let us denote g.(n) el glog ™. Our reduction will imply that LABEL-COVER is

NP-hard to approximate to within factor g.(n) for any ¢ < 1/2. Our starting point is the PCP
theorem from [DFK*99),

1—-1/loglog®n

Theorem 1 (PCP Theorem [DFK99]) Let ¢ < 1/2 be arbitrary and let D < loglog®n.
let U = {91,....,0n} be a system of Boolean functions over variables X = {x1,..,x,} such
that each Boolean function depends on D wvariables, and each variable ranges over F where

|F| = 0(2(1°g”)1_1/O(D)). It is NP-hard to distinguish between the following two cases:

Yes: There is an assignment to the variables such that all 11, ...,y are satisfied.

No: No assignment can satisfy more than % fraction of the ;’s.

In this section we prove LABEL-COVER to be NP-hard to approximate to within a factor of
g, where g = g.(n) is fixed for some arbitrary ¢ < 1/2.

Theorem 2 For any ¢ < %, and any 1 < p < oo, LABEL-COVER,, is NP-hard to approrimate
to within a factor of g = g.(n).

Proof: The proof follows by reduction from PCP. Choose some ¢ < ¢ < 1/2, let F be such
that |F| = O(ge(n)), and let ¥ = {41,...,9,} be a PCP instance as in the above theorem.
For a test ¥ € ¥ and a variable x € X, we write € ¢ when ¢ depends on z, and denote
U, Y pev|ney).

We construct from ¥ a bipartite graph G = (U, V, E) with U def {u1, ..., upp} consisting of
a vertex for every appearance of a variable in ¥ and V = [n] consisting of a vertex for every

test » € W. We denote U(x) C U the set of vertices corresponding to the variable z. A vertex
J € V is connected to all appearances of the variables in 1;. Formally,

E™ {(u,j)|ueU) and z € 9}

We set B “I F and By “/ FD. For an edge (u,j) € E, assume u € U(x) and z is the ith

variable in 9, and define

HUJ = {(a”i? (ala ..,(ID)) | Qz[}j(al? ..,CLD) = True} :

Proposition 1 (Completeness) If there is a satisfying assignment for U, then there is a
total-cover for G with lo-cost 1, and l1-cost n - D.

Proof: Let A : X — F be an assignment satisfying all of ¥. Define for each u € U(x),

f1(uw) =l {A(z)} and fa(vj) =l {(A(z4,), .., A(xip)) | ¥; depends on x;,, .., 2;, } (these are both
singleton sets). This is a total-cover of lo, cost 1 and l1-cost n - D. [ ]

We next show that if ¥ is a ‘no’ instance, then any label-cover has [, cost more than g. This
is formulated in a contrapositive manner as follows.

Proposition 2 (Soundnessy,) If there is a total-cover for G with lo-cost g, then there is an
assignment A satisfying g~ > ﬁ fraction of ¥ (and ¥ is not a ‘no’ instance).

4



Proof: Let (f1, f2) be a labelling for G that is a total-cover with [,.-cost g, i.e.
max (| fi(vi)]) = g

We define a random assignment A for the variables X by choosing for every variable z; a value
uniformly at random from fi(u) where u € U(z;) is an arbitrary vertex in U(z;). Each label
r € fa(v;) corresponds to an assignment that satisfies ¢; and such that r|,, € fi(u) for every
vertex u € U(xz;) and variable x; appearing in ;. Thus, a test 1; is satisfied with probability
|f2(v))| /gP > g~ P, so the expected number of tests satisfied by A is also > g~”. There must
be an assignment that attains the expectation, and satisfies at least ¢~ fraction of the tests in
v,

Note that for the g = g.(n) chosen above g~ > % because |F| = O(ge(n)) for ¢ > ¢, thus
¥ is not a ‘no’ instance. [ |

We next show that if ¥ is a ‘no’ instance, then any label-cover has [1 cost more than g. This
again, is formulated in a contrapositive manner as follows.

Proposition 3 (Soundnessl) If there is a total-cover for G with li-cost g - nD, then there is

an assignment A satisfying 2 7' @D g)D > |]_-| fraction of .

Proof: Let (f1, f2) be a total-cover with I cost g - nD. For every variable z, define A(xz) = def
Nuev () f1(u) C F (this set is non-empty since (f1, f2) is a total cover). Recall ¥, C ¥ denoted
the set of tests that depend on z. If u € U(z) then |A(z)| < |fi(u)], hence

Z|\I’mz| () |<Z|f1 JN=g-nD. (*)
i=1

uelU

Consider the random procedure of choosing a test » €r ¥ uniformly at random and then
choosing a variable € g ¥ uniformly at random. The probability of choosing x is J—l Equation
(*) is equivalent to E(|A(x)|) < g where E(|A(z)|) denotes the expectation of |A( )| for z is
chosen by the above random procedure.

We call a variable x for which |A(x)| > 2D - g, a bad variable. By the Markov inequality

1

Pr(|fi(@) > 2D E(A@))] < 55

which means that the probability of hitting a bad variable is less than %

1
—_— >
5D = we%’ [.’L‘ is bad]
= wPr [zp Contams a bad variable] - pr [z is bad | ¥ contains a bad variable]
€rVY

> Pr [¢ contains a bad variable] - —
YeRWY

Multiplying by D, we deduce that at least half of the tests v €g ¥ contain no bad variable.
Next, define a random assignment A for ¥ by choosing, for every variable z, a random value

a € Ax), A(x) “/ 4. For a test 1; and a value r € fo(v;), the probability that each variable
x € 1; was assigned a = 7|, is Hmwm (recall that r satisfies ¢; so this is a lower bound on
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the probability that v; is satisfied by A). For tests that contain no bad variable, this probability
is > W. Hence the expected fraction of tests (of those containing no bad variable) that are
satisfied by A is > W. Thus, there exists an assignment A that attains this expectation,

i.e. that satisfies > W fraction of the tests that contain no bad variables. Thus A satisfies

a > W fraction of all of the tests.

Note that for the above chosen g = g.(n) 1 o > 1/|F|, thus ¥ is not a ‘no’ instance. m

» 2:(2D-

Propositions 1 and 3 imply that distinguiéhingg between the case where there is a total-
cover for G whose [y cost is nD or g - nD would enable distinguishing between ‘yes’ and ‘no’
PCP instances, hence it is NP-hard. Similarly, Propositions 1 and 2 imply the same about
distinguishing between the case where there is a total-cover for G whose [, cost is 1 or g. The

above can easily be generalized for any l, norm, 1 < p < oo. [

3 Reducing PCP to MMSA;

The Minimum-Monotone-Satisfying-Assignment (MMSA) problem is defined as follows,

Definition 2 (MMSA) Given a monotone formula p(x1,..,x) over the basis {A\,V}, find
a satisfying assignment A : {x1,..,xp} — {0,1}, (i.e. such that p(A(xy),..,A(zg)) = True),
minimizing the weight S8 A(x;).

MMSA,; is the restriction of MMSA to formulas of depth-i. For example, MMSAj3 is the problem
of finding a minimal-weight assignment for a formula written as an AND of ORs of ANDs.

In this section we show a direct reduction from PCP to MMSAg, that preserves the approxi-
mation factor.

Theorem 3 For anyc < %, it is NP-hard to approximate MMSAs to within g.(n) def 2log

1—-1/loglog®n n

Proof: Again, our starting point is the low error-probability PCP theorem, Theorem 1. Fix
g = ge(n), and fix ¢ < ¢ < 1/2 arbitrarily. Take F to be such that |F| = O(g~(n)), and
D = O(loglog® n). Let ¥ be a PCP instance as in Theorem 1. For a fixed ¢ € ¥, we denote
the set of satisfying assignments for it R, C FP. For an assignment r € Ry and a variable
x € 1p we write r|, € F to denote the restriction of r to x.

We construct the monotone formula ® over the following set of literals

7Y\ (T2, 0,0) | € Uy, a € F)
reX

This set has cardinality nD-|F|. The pair of variable x and assignment a for it will be represented

by the conjunction Lz, a] = Apew, Tlx,9,a] that can be read as “a is assigned to z”. We
define the formula ®(7T") by

om) Y N\ A Lzl

Ypev reRy zey

This is a depth-3 formula, since the conjunction of conjunctions is still a conjunction.

Proposition 4 (Completeness) If ¥ is satisfiable, then there is a satisfying assignment for
®, whose weight isn - D.



Proof: Let A : X — F be a satisfying assignment for ¥. Define an assignment A’ : T —
{True,False} for the literals of ® by setting A’ (T'[z, v, a]) = True iff A(z) = a. This assignment
clearly satisfies ®, and has weight exactly nD. [ |

Proposition 5 (Soundness) If there is a weight-gnD satisfying assignment for ®, then there
1

is an assignment satisfying 3@Dg)D fraction of W.
The proof of this proposition is very similar to the proof of Proposition 3.

Proof: Let Ag : T — {True,False} be a weight-gnD satisfying assignment for ®. For each
variable x € X, let A(x) def {a € F| As(L[z,a]) = True}. A(x) is non-empty since z appears
in some test = € ¢, and for each 1) € ¥ there must be some r for which Ayey L[z, 7|;] = True
because Ag satisfies .

L[z, a] contains |V, | literals that, if a € A(x), are by definition set to True. These are distinct
for distinct z’s, thus

> [Pl [A(z)[ < g-nD.
reX

Consider the procedure of choosing a test ¢ €p ¥ uniformly at random and then choosing
a variable z €gr ¢ uniformly at random. The probability of choosing z is %. The above
equation is thus equivalent to E(|A(z)|) < g where E(|A(z)|) denotes the expectation of |A(z)]
where x is chosen by the above procedure.

We call a variable x for which |A(x)| > 2D - g, a bad variable. The Markov inequality yields

1

Pr{lA(@)] > 2D - E(|A(=)])] < 55

which means that the probability of hitting a bad variable is less than %

> ;
5p 2 weig}ew [x is bad]

= Pr [¢ contains a bad variable| - Pr [z is bad | ¢ contains a bad variable]
PYeERY TEY
1
> P tai bad variable] - —
= b [¢ contains a bad variable] D

Multiplying by D, we deduce that at least half of the tests ©» €gr ¥ contain no bad variable.

Next, we define a random assignment A for ¥ by choosing, for every variable z, a random

value a € A(z), A(x) /4. For each test 1 € W there is at least one value r € Ry with

Nzey Ao(L[z,7|:]) = True since Ag satisfies . The probability that each variable z € 1) was
assigned a = r|, € A(z) is Hm@/,m. For tests that contain no bad variable, this probability

is > W. Hence there is an assignment that satisfies at least

1 1
2 (2D -g)P
fraction of the tests.
Since W > %, we deduce that ¥ is not a ‘no” PCP instance. [
We saw in Proposition 4 that if ¥ is a PCP ’yes’ instance then there is a weight-nD satisfying
assignment for ®. On the other hand, if ¥ was a PCP 'no’ instance (i.e. any assignment satisfies



no more than 1/|F| fraction of the tests), then there cannot be even a weight-gnD satisfying
assignment for ®. Otherwise Proposition 5 would imply that there is an assignment satisfying
1/2 - (2Dg)P > 1/|F| fraction of the tests (the last inequality follows mainly because ¢’ > c).
Thus, distinguishing between the case where the monotone formula has a satisfying assignment
of weight nD or gnD is NP-hard because it enables distinguishing between ‘yes’ and ‘no’ PCP
instances. This completes the proof of the theorem. [ |

4 Reducing MMSA; to LABEL-COVER

In this section we show a reduction from MMSA3 to LABEL-COVER. This shows that MMSAj3
is no-harder than LABEL-COVER, and (together with the reduction from [ABMP9S8]) places
LABEL-COVER between level 3 and 4 in the ‘MMSA-hierarchy’. It also re-establishes the result
in section 2 showing NP-hardness for approximating LABEL-COVER to within the same factor.

An instance of MMSA3 is a formula

7.77

||>N

AV

where the T; ; , are literals from the set {xi,..,x7} for some L < TI-.J-K (by repeating literals
we may assume wlog that all conjunctions are of the same size and similarly all disjunctions).

We construct a bipartite graph G = (U, V, E') with vertices U {ul, uy } for the literals, and

v U {010, .., 071} for W copies of the I disjunctions (where W is chosen large enough,

say W = L). The edges in E connect every literal to the disjunctions in which it appears,

d
EY {(u,viw) | 3j ks Trjp =%}

The sets of possible labels are B; = {0,1,..., W} for U and B, = {1,..., W} for V.

For j =1,...,J, denote T; ; = {T; ;x| 1 <k < K}. If a vertex v = v;,, is labelled by j, we
differentiate between two kinds of neighbors u; of v: those with x; € T ; and those with z; ¢ T; ;.
For an edge e = (uy, v; ), we construct the relation I, so that the two kinds of neighbors are

‘covered’ differently,

e {(w, )| % € T} U{(0,5) | x & Tj} -

Note that for every label j for v there is at least one v; for which x; € Tj ;, thus labelling u1, .., uz,
with 0 cannot be a total-cover.

Proposition 6 (Completeness) If there is a satisfying assignment for ® with weight t, then
there is a total-cover for G with ly-cost L+t-W = (t+1)-W.

Proof: Let A be a weight-t satisfying assignment for ®. Define a cover as follows, for every
u; € U set
{0,1,..,W} A(x;) = True

{0} otherwise



For every v; , € V let fo(vj ) = {j*} where j* is the smallest index for which /\szl AT j+ 1) =
True (such an index j* exists because A satisfies ®). Obviously f1, fo are non-empty, and the
l1 cost of the labelling is exactly L +t - W.

Let us show that the labelling (f1, f2) is a total cover. Let e = (uy, v; ) be an arbitrary edge,
and let j € fo(vi). By definition of fo, j is such that A(x;) = True for all x; € T} ;. Thus,
for an index [ with x; € T; ;, by definition fi(u;) = {0,1,..., W} and e is covered by (w,j). If
x; € T; ; then (0, ) € I, so e is covered because 0 € fi(uy). |

Proposition 7 (Soundness) If there is a total-cover for G with ly-cost g -tW, then there is a
satisfying assignment for ® with weight gt.

Proof: Let (f1, f2) be a total cover with Iy cost gt-W. Since Vu € U  f1(u) C {0,1,.., W}, and
Youev [fi(w)| = gt - W, there must be at least one w* > 0 for which [{u| w* € fi(u)}| < gt. We
claim that the assignment A (whose weight cannot exceed gt) defined by assigning x; the value
True if and only if w* € f(vu;), satisfies .

Fix i. We will show that the ith disjunction is satisfied. Consider the vertex wv; ,+ and a
label j € fo(viuw+) # ¢. As before, define T; ; = {T; ;x| k=1,..,K}. We will show that the
jth conjunction of the ith disjunction is satisfied (thus satisfying the whole disjunction). For
this purpose we need to show that every literal x; € T;; is assigned True, or in other words

w* € f1(u;). This is immediate since there is no other way of covering the edges e = (ug, Vi),
and f1, f2) is a total-cover. [ ]
Summarizing Propositions 6 and 7, we see that if the original formula ® had a satisfying
assignment of weight ¢, then the LABEL-COVER instance has a total-cover whose [i-cost is
W(t+ 1). If, on the other hand, every satisfying assignment for ® has weight > gt, then every
total-cover has l;-cost > ¢ - tW. This completes the reduction.
Choosing g = g.(n) and by the result in the previous section we deduce that it is NP-hard

to approximate LABEL-COVER to within a factor of % > g/2 = Q(21°g1_1/D”

D =loglog®n for any ¢ < 1/2. The proof for other [, norms follows similarly.

) where

5 Discussion and Open Questions

A Depend-2 PCP Characterization of NP

In [ABSS93] LABEL-COVER was used to prove the hardness of the CLOSEST-VECTOR problem
along with several other problems. However, they used a slightly modified version of LABEL-
COVER, in which the relation II. for each edge is actually a function from By to Bs. In our
result, II. is a function from By to Bj and inherently cannot be extended to this version.
This obstacle could be overcome had we known a low error-probability PCP characterization
of NP with ezactly two provers (i.e. a PCP test-system where each tests accesses exactly
two variables, called depend-2-PCP). Compare this to the known low error-probability PCP
characterization of NP [RS97, DFK199] where each test depends on a constant (> 2) number of
variables. Whether or not such a characterization exists remains an open question. Note that
it is highly unlikely that this problem is in P since such an interactive proof protocol for NP
exists [LS91, FL92, Raz98], with a quasi-polynomial blow-up.



The MMSA Hierarchy

We considered a hierarchy of approximation problems, equivalent to that in [GM97]. We showed
a new hardness-of-approximation result for it (starting from the third level). Are higher levels
in this hierarchy even harder to approximate, perhaps to within some polynomial n® factor?
Such a result would immediately strengthen the known hardness results for the aforementioned
problems in [GM97, ABMP98].

We know that LABEL-COVER resides between levels 3 and 4 in this hierarchy. However, the
factor for which it is NP-hard to approximate LABEL-COVER is the same as for MMSA,; for
1 > 3. Is this an indication that the hierarchy collapses, or is there really a difference in the
hardness of hierarchy levels for i > 37
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