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Abstract
In this work we look back into the proof of the PCP Theorem, with the goal of finding

new proofs that are “more combinatorial” and arguably simpler. For that we introduce the
notion of an assignment tester, which is a strengthening of the standard PCP verifier, in the
following sense. Given a statement and an alleged proof for it, while the PCP verifier checks
correctness of the statement, the assignment-tester checks correctness of the statement and
the proof. This notion enables composition that is truly modular, i.e., one can compose two
assignment-testers without any assumptions on how they are constructed. A related notion
called PCPs of Proximity was independently introduced in [BSGH+04].

We provide a toolkit of (non-trivial) generic transformations on assignment testers. These
transformations may be interesting in their own right, and allow us to present the following
two main results:

1. The first is a new proof of the PCP Theorem. This proof relies on a rather weak
assignment tester given as a “black box”. From this, we construct combinatorially the
full PCP. An important component of this proof is a new combinatorial aggregation
technique (i.e., a new transformation that allows the verifier to read fewer, though
possibly longer, “pieces” of the proof). An implementation of the black-box tester
can be obtained from the algebraic proof techniques that already appear in [BFLS91,
FGL+91].

2. Our second construction is a “standalone” combinatorial construction showing NP ⊆
PCP [polylog, 1]. This implies, for example, that approximating max-SAT is quasi-NP-
hard. This construction relies on a transformation that makes an assignment tester
“oblivious”: so that the proof locations read are independent of the statement that is
being proven. This eliminates, in a rather surprising manner, the need for aggregation
in a crucial point in the proof.

1 Introduction

The PCP Theorem is a characterization of the class NP which was discovered in the early
90’s [AS98, ALM+98] following an exhilarating sequence of results, including [GMR89, Bab85,
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BGKW88, FRS94, LFKN92, Sha92, BFL91, BFLS91, FGL+91] to list just a few. It has had
tremendous impact; most notably it lies at the heart of virtually all inapproximability results,
starting with the seminal work of [FGL+91].

Recall that a language L is in NP if there is a polynomial-time algorithm (verifier) that can
verify whether an input is in the language, with the assistance of a proof, called the NP witness.
The PCP Theorem says that every NP witness can be rewritten in a “PCP” format that allows
ultra-efficient (probabilistic) checking. Hence the name, Probabilistically Checkable Proofs.

More concretely, the PCP verifier is an algorithm that is given direct access to a proof, and
also a logarithmic number of random coins. The verifier reads the input, tosses the random
coins, and then decides which (constant number of) bits to read from the proof. Based on the
content of these bits, the verifier decides whether to accept or reject. The PCP Theorem asserts
the existence of a polynomial-time verifier for any L ∈ NP such that:

• (Completeness) For every x ∈ L there is a proof that causes the verifier to always accept.

• (Soundness) For every x 6∈ L, every alleged proof causes the verifier to reject with proba-
bility 99% over its coin tosses.

Let us fix the NP-language L in our discussion to be (circuit) satisfiability (SAT). For every
fixed outcome of the random coin tosses of the verifier, the verifier’s action can be described by
specifying which (constant number of) bits are read from the proof, along with the acceptance
predicate over these bits. Enumerating over all possible random coin tosses, one gets a list of
R = 2O(logn) = nO(1) constant-size predicates (described, say, via circuits) over Boolean variables
representing the bits in the proof. Thus, the verifier can be thought of as a deterministic
polynomial-time reduction whose input is a Boolean circuit ϕ of size n (denoted |ϕ| = n), and
whose output is a list of R = nO(1) circuits ψ1, . . . , ψR over a new set of variables, such that the
following holds:

• (Completeness) If ϕ is satisfiable, then there is an assignment that simultaneously satisfies
all of ψ1, . . . , ψR.

• (Soundness) If ϕ is unsatisfiable, then every assignment simultaneously satisfies at most
1% of ψ1, . . . , ψR.

This result is already non-trivial for |ψi| = o(n), but in fact holds for |ψi| = O(1). Indeed, the
discovery of this theorem was extremely surprising. The proof is not an easy one, and combines
many beautiful and influential ideas.

1.1 Overall Goals

Acknowledging the importance of the PCP Theorem, we look back into its proof, with the goal of
finding proofs that are substantially different and desirably also simpler. We note that while the
statement of the PCP Theorem is purely “combinatorial”, the original proof of [AS98, ALM+98]
is heavily based on algebra: low degree polynomials play a crucial role. Therefore, of particular
interest is coming up with proofs of “combinatorial” nature, see also [GS97]. In that we were
also influenced by the view that such combinatorial proofs, albeit more messy, are sometimes
more intuitive (or at least may shed new intuition). We also note that such new proofs and
constructions have the potential of implying new results, unknown with previous techniques.
A recent example is the combinatorial construction of expander graphs and the subsequent
construction of the so called lossless expanders [RVW00, CRVW02].
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Composition and Recursion. We first tackle a major ingredient in the original proof,
namely the use of composition. Composition is indeed natural in this setting. A given ver-
ifier reduction may possibly be improved by applying another (inner) verifier reduction to each
one of ψ1, . . . , ψR, replacing each ψi with a system Υi of even smaller circuits.

Unfortunately, this simplistic composition has a “consistency flaw”. It is likely that the
resulting system of circuits

⋃
i Υi be completely satisfiable, even if the original circuit ϕ is

unsatisfiable. Indeed each one of the ψi’s could be individually satisfiable, as it is only impossible
to satisfy more than 1% of them by the same assignment. Since Υ1, . . . ,ΥR are outcomes of
independent runs of the second verifier reduction, they are defined over syntactically disjoint
sets of variables. This makes it easy to combine inconsistent assignments (each satisfying one
ψi) into an assignment that satisfies all of

⋃
Υi.

In the proof of [AS98, ALM+98], this difficulty was overcome by having the second verifier
utilize the concrete structural details of the circuits ψ1, . . . , ψR output by the first verifier, and
relying on ingenious consistency mechanisms of algebraic nature.

In search of a simpler and more modular approach to composition, we introduce a natural
strengthening of the PCP verifier that we call assignment tester. Intuitively, an assignment
tester does not only verify satisfiability, but rather satisfiability by a specified assignment (given
as oracle). This will provide an alternative and simple way of ensuring consistency in the context
of PCP composition.

Assignment testers. An assignment tester is a polynomial-time reduction, whose input is a
circuit ϕ over a set of variables X, and whose output is a list of polynomially many significantly-
smaller circuits Ψ = {ψ1, . . . , ψR} over both X and auxiliary variables Y . The guarantee of the
reduction (for a complete definition see Definition 3.1) is that for every possible assignment
a : X → {0, 1},

• (Completeness) If a satisfies ϕ, then there is an extension of a, namely an assignment b
for Y , such that all of ψ1, . . . , ψR are satisfied by a ∪ b.

• (Soundness) If a is “far” from any satisfying assignment for ϕ then every extension of a
to Y can satisfy at most 1% of ψ1, . . . , ψR.

Thus, even if ϕ is satisfiable, but not by anything close to a, then 99% of ψ1, . . . , ψR must
reject any extension of a. An intuitive way to understand the difference between a standard PCP
verifier and an assignment-tester is the following. Given a statement (a predicate ϕ claimed
to be satisfiable) and an alleged proof for it (an assignment for X), the verifier checks that
the statement is correct. In contrast, the assignment-tester checks that the proof is correct.
A related notion was independently introduced by Ben-Sasson et. al. [BSGH+04], see further
discussion below.

With this notion, we proceed to prove a composition theorem that is truly modular. The
main idea is the following: Previously, relations between ψi and ψj (for i 6= j) were lost upon
reduction to Υi and Υj . Now, all of the R reductions (each reducing ψi to the system Υi) are
correlated through having to refer to the same assignment for X. To carry out this intuition,
we give a generic transformation of any assignment-tester into a ‘robust’ one (we discuss this
notion below). Once the first (outer) assignment-tester is robust, the naive composition is
trivially sound.

3



1.2 Our Contributions

To be able to discuss our results, let us first briefly state the parameters of assignment testers.
Let R be the number of circuits output by the assignment-tester, and let s upper bound their size.
There are three additional parameters: the query complexity q (how many variables are read by
each output circuit), the error-probability ε (what fraction of the output circuits may erroneously
accept on a “no” input; ε = 0.01 in the above discussion), and the distance parameter δ (what
distance of the input assignment from a satisfying assignment should make the tester reject).
For simplicity, we will ignore the three last parameters in most of the following discussion, with
the implicit understanding that any mention of an assignment-tester means constant q, ε and δ.

New Proofs of Versions of the PCP Theorem

As we discuss below, this paper provides a variety of transformations on assignment testers,
complementing the generic composition theorem already mentioned above. Armed with this
“toolkit” of transformations, we consider various ways of composing assignment testers with
the goal of reproving the PCP Theorem. We now elaborate on two results we obtain in this
manner.

An assignment tester with s = n (recall that s is the size of the circuits produced by the
assignment tester reduction) is completely trivial (letting the output equal the input). Never-
theless, we prove that given an assignment-tester with s = n0.99, we can get s all the way down
to a constant.

Theorem 1.1 (Informal Statement) Given an assignment-tester with R = nO(1) and s =
n0.99, we construct an assignment tester with R = nO(1) and s = O(1).

The idea of the construction is to use the given assignment-tester as a building-block, and
to compose it with itself. The output circuits will have size n0.99, n(0.99)2 , n(0.99)3 , and so on,
n(0.99)t

after t compositions. So taking t = log log n results in a polynomially long list of con-
stant size circuits. However, since the composition step roughly sums up the error probabilities
of the two components, going beyond a constant number of composition steps requires an addi-
tional ingredient. This is where we incorporate several of the assignment-tester transformations
mentioned above, to achieve error reduction. Particularly, we employ a new combinatorial ag-
gregation technique (namely, introducing new ‘aggregate’ variables which represent `-tuples of
old variables).

Our building-block assignment tester (i.e., the one with s = n0.99) can be constructed using
algebraic techniques (for example, such an assignment tester can be constructed via techniques
already present in [BFLS91, FGL+91]1). Coming up with a combinatorial construction for
such an assignment tester would yield a completely combinatorial proof of the PCP Theorem.
Subsequently to our work Dinur [Din05] directly (i.e., not going through this building block)
gave a completely combinatorial proof of the PCP Theorem.

Next, we present a combinatorial construction of an assignment tester, which is quasi-
polynomial. It gives a combinatorial proof for NP ⊆ PCP [polylog, 1] and implies, for example,
that approximating Max-3-SAT is quasi-NP-hard.

Theorem 1.2 (Informal Statement) There exists an explicit combinatorial construction of
an assignment tester with R = npoly logn and s = O(1).

1Taking a low degree extension with a constant dimension as in [PS94].
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This construction does not rely on any algebraic techniques, rather it is based on recursive
applications of our combinatorial transformations. In particular the construction relies on a
transformation that makes an assignment tester “oblivious”: so that the proof locations read
are independent of the statement that is being proven. This eliminates, in a rather surprising
manner, the need for aggregation in a crucial point in the proof.

The starting point is the previous construction, again relying on log log n steps of composition
and recursion. However, to compensate for the lack of a powerful building-block, the main idea
is to construct it ourselves, recursively. Thus the main step involves constructing an assignment
tester with s = nα (for some constant α < 1) relying on recursion.

The resulting construction of assignment tester is analogous to the following recursive con-
struction of error correcting codes based on tensor products: First, put your n-bit input in a√
n ×

√
n matrix. Now, recursively apply an error correcting code to each row. Then, making

additional recursive calls, apply an error correcting code to each column (of the new matrix).
Finally, as the relative distance has slightly deteriorated by this process, one can use simple
transformations to amplify it back. Our related construction, in the context of assignment
testers, is naturally more delicate and requires new ideas. However, the overall structure is very
similar.

We note that this construction makes use of a constant-size assignment tester, to facilitate
the composition. That is, the construction relies on an assignment tester that is only required
to work on inputs of size ≤ n0 for some large enough constant n0. (The only requirement
from this assignment tester is that it produces small enough circuits. Say circuits smaller than
s0 = (n0)0.99.) As in a similar situation in [RVW00], such an object can be obtained via an
exhaustive search over a constant range. However, the only proofs for its existence that we know
of, rely on previous constructions of PCP verifiers. Nevertheless, we can take the constant-size
assignment tester needed by the construction to be an instantiation (for constant size inputs)
of extremely inefficient constructions, e.g., a Long-code based assignment-tester [BGS98].

Combinatorial Transformations on Assignment Testers

As the above description of our constructions indicates, our main technique is perhaps the most
basic technique in computer-science, namely recursion. This is implemented through the basic
composition of a relatively weak assignment-tester with a (strong) assignment tester of smaller
size that is inductively constructed. Particularly, the composition theorem mentioned above
gives a way for reducing the circuit size (s) of an assignment tester (from s1 or s2 to s1 ◦ s2).

We study several generic transformations on assignment testers that serve to improve various
other parameters. We describe combinatorial methods to reduce the error probability, the
query complexity, and the distance parameter. While these transformations are required for
our constructions to work, we believe they are interesting in their own right. In particular,
they provide tradeoffs that allow us to focus our attention on the important parameters of an
assignment tester (e.g., it allows us to focus on constructing assignment testers with constant
error and constant distance parameter).

Robustness. We mentioned above that for our generic composition theorem to work, the first
(outer) assignment-tester needs to be converted into a ‘robust’ one. This means that in the ‘no’
case, not only do 1 − ε fraction of the circuits ψ1, . . . , ψR reject, but moreover they ‘strongly’
reject in that their input is at least δ-far from any satisfying input. More formally, recall that
each circuit reads some q variables. These are both X-variables (the original input variables of
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the input circuit), which are bits, and also auxiliary Y -variables that may come from a larger
alphabet. We interpret here the Y -variables as bit strings (i.e., chunks of bits that are always
read as a whole) and therefore the input of each ψi can be viewed as a longer bit string which is
the concatenation of all the variables it reads. It is now well defined to say that an assignment
to the input variables of ψi is δ-far (in Hamming distance) from any satisfying input.

We show a simple generic transformation taking every assignment tester into a robust one,
where the robustness parameter is inversely related to the number of variables read, q. Loosely,
the transformation goes as follows: given the output ψ1, . . . , ψR of the tester, construct a revised
output ψ′1, . . . , ψ

′
R over new variables that are supposed to be the error corrected version of the

old variables. (Here too the Y -variables are interpreted as bit strings and each X-variable
is simply encoded by repetition.) Each ψ′i now decodes its input variables and applies ψi on
the decoded variables. Our transformation uses an off-the-shelf error-correcting code and its
efficiency depends on standard parameters of the code (essentially on its distance, its rate and
the complexity of decoding codewords).

With this generic transformation, we can completely ignore the notion of robustness in all
other transformations and only refer to it in the composition theorem. We note in passing that
[BSGH+04] have the same notion of robustness. However, in their context, even the modest cost
of our generic transformation is impermissible. Therefore, [BSGH+04] works with assignment-
testers that are already robust (and indeed they name these objects ‘Robust PCP of Proximity’).
This difference between our definitions is further discussed in Section 7.

Distance reduction. The only new parameter of assignment testers, not already used by PCP
verifiers is their distance parameter δ (what distance of the input assignment from a satisfying
assignment should make the tester reject). We provide a generic method for strengthening
assignment-testers so that they identify smaller deviations from satisfying assignments. This
transformation comes at a fair cost in other parameters. The main idea is the following: On
input circuit ϕ, over Boolean variables X, encode X with “amplified” distance (so that two
assignments for X that are δ′ far from each other will be encoded by assignments that are
δ > δ′ apart), and let ϕ′ be the corresponding circuit (that first decodes its input and then
applies ϕ). Now, apply the original assignment tester on ϕ′ (instead of ϕ).

Error reduction with aggregation. It is easy to reduce the error probability of an assign-
ment tester by repetition: replace Ψ = {ψ1, . . . , ψR} by ANDs of all possible `-tuples of circuits
in Ψ. This reduces the error-probability from ε to ε` but causes an `-fold increase in the number
of queried variables. We cannot afford such an increase, as it hurts the effective ‘robustness’
of the assignment tester, a crucial property for composition. We avoid this increase through
aggregation (or alternatively, parallelization). That is, the introduction of new variables to
represent `-tuples of previous ones. Our new method of aggregation is purely combinatorial.

The original proof of the PCP theorem also contains an aggregation method, based on so-
phisticated algebraic techniques. One disadvantage of that method is that it causes a blowup in
the size of the domain of the variables, by a factor that is roughly log |X| (more precisely, it is
the degree of the low degree representation of the assignment for X), which cannot be afforded
in our context. In contrast, our combinatorial aggregation increases the variables by a factor
independent of |X|. On the other hand, our combinatorial aggregation introduces |X|` new
variables, even if we are only interested in the values of some t possible `-tuples. This is much
worse than the poly(`, |X| , t) new variables and tests, introduced by the algebraic aggregation.
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Nevertheless, this blow-up is tolerable in our context as we only care about ` = O(1) (since we
only plan on reducing error from one constant to another).

The main idea of our aggregation is the following: when reading `-tuples of variables, to
simulate the AND of ` circuits we are faced with the difficulty that the assignment to the
`-tuples may not be consistent with any assignment to the original variables. This problem
is exactly what makes the proof of Raz’s parallel repetition theorem [Raz98] so challenging.
Nevertheless, in our context, we can tolerate a more modest drop in the error probability than
in [Raz98], and can afford adding a constant (independent of `) number of queries. So our main
idea is the following: simply add a few queries directly aimed at testing the consistency of the
`-tuples of variables. This simple idea results in a significantly simpler analysis. In particular,
a sufficiently good consistency test was already provided by Goldreich and Safra [GS97]. We
give direct and simple analysis of essentially the same test.

Related Work

We have already mentioned that Ben-Sasson et. al. [BSGH+04] independently introduced an
object called “PCP of Proximity” which is essentially the same as our assignment tester, pre-
sented in a somewhat different language. The work of [BSGH+04] shows connections of these
objects to locally testable codes and therefore the results of this paper seem relevant in this
context as well. We further discuss this in Section 7.

The notion of assignment testers is very related to the area of property testing. In fact,
both assignment testers and PCPs of Proximity can be viewed as a special case of more general
definitions given by Ergun, Kumar and Rubinfeld [EKR99], in the context of proof-assisted
testing. To the best of our knowledge, the connection to the construction of PCPs has not been
explored in the past. The connection of assignment testers to property testing is elaborated
upon in Section 7.

As we discussed above, the motivation for defining assignment testers lies in the desire to
obtain simple and modular composition of PCPs. This goal was already explored in the past.
In particular, Szegedy [Sze99] derived a syntactic composition theorem for abstractions of PCPs
based on many valued logics.

Subsequent to our work, Dinur [Din05] described a combinatorial proof of the PCP Theorem
which also uses composition of Assignment-Testers, (and in particular, composition with an
Assignment-Tester of constant size just as in our second construction).

Organization

We formally define assignment testers in Section 3, and then proceed to prove the composition
theorem. In Section 4 we provide generic transformations on assignment testers. Our two main
constructions (Theorems 1.1 and 1.2) are proven in Sections 5 and 6 respectively. The proof of
the consistency test (required for the aggregation) can be found in Appendix A.

2 Preliminaries

In this section we define some standard combinatorial objects that our constructions rely upon.
These are error correcting codes and hitting sets. Both have a trivial random construction and
can also be constructed explicitly.

7



2.1 Error Correcting Codes

As in the original proof of the PCP theorem [AS98, ALM+98], error correcting codes are a
very useful tool for our proof. However, unlike the original proof, we do not rely on algebraic
properties of the codes nor do we require the codes to be locally testable. The relevant para-
meters of the code in our case are rather generic: these are its rate, its distance, and the circuit
complexity of verifying and decoding legitimate codewords. We call the latter task, “codeword
decoding”. In the next lemma we give the parameters of the codes that will imply the most
elegant version of our results. As we discuss below, such codes are easy to come by. We also
note that much weaker codes still imply our main results.

Lemma 2.1 There exists a polynomial time computable family of codes e = {ew : {0, 1}w →
{0, 1}O(w)}w∈N, such that ew(·) is a code with minimum distance w that satisfies

Linear circuit size for codeword decoding: For every w there exists a circuit Cw of size
O(w) that takes as input a string z ∈ {0, 1}O(w) and outputs y such that z = ew(y) if
such a string y exists and ⊥ otherwise. Furthermore, the circuit Cw can be uniformly
constructed in time poly(w).

Lemma 2.1 asks for codes with constant rate and constant relative distance, which is quite
standard. In addition, it requires linear circuit size for “codeword decoding”, that is, for the
task of verifying that a word is a legitimate codeword and then decoding it. This second part
of decoding a legitimate codeword is trivial in case ew(y) contains y as a substring (such codes
are sometimes called systematic).2 Linear error correcting codes can be assumed without loss of
generality to be systematic (by changing the basis of the generating matrix of the code, one can
obtain a generating matrix for the same code that contains the identity matrix as a submatrix.
Note that changing the basis doesn’t change the code, so the parity check matrix is the same.)
In addition, whenever a linear code is defined by a sparse parity check matrix (that contains
only linear number of non-zero entries), verifying that a word is a legitimate codeword can be
performed by a circuit of linear size. In particular, Lemma 2.1 holds for the linear codes that are
obtained by selecting a sparse parity check matrix, uniformly at random. In addition, it holds
for the explicit codes best known under the name LDPC (Low Density Parity Check) codes.
Note that the expander LDPC codes of [Gal63, Tan81, SS96, Spi96] have explicit combinatorial
constructions based on the combinatorial construction of Expander Graphs in [RVW00].

Notation 2.2 We denote by e−1
w the “maximum likelihood” decoding transformation that cor-

responds to the code ew. That is, e−1
w (z′) = y if z = ew(y) is the codeword of minimal Hamming

distance to z′ (where ties can be broken arbitrarily). In particular, e−1
w (ew(y)) = y (assuming

w > 0). We do not assume anything on the computability of this mapping (in particular we do
not assume that it is polynomial-time computable). It is important to note that this maximum
likelihood notion of decoding has little to do with “codeword decoding” as defined in Lemma 2.1.

2A natural approach for obtaining efficient codeword decoding is the following. First, slightly revise the error
correcting code such that it will be systematic (simply appended y to ew(y)). Now codeword decoding is as easy
as encoding: First, we can extract y from the alleged codeword, then re-encode y and finally we can compare
the result with the original alleged codeword. Unfortunately, error correcting codes with linear size circuits for
encoding are not known (and may very well not exist). Instead, one may use error correcting codes with quasi-
linear size circuits for encoding (these are not hard to come by). This natural approach can therefore give codes
that are only slightly less efficient than Lemma 2.1 promises, and are still good enough for obtaining the main
results of this paper.
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2.2 Hitting Sets

We specify parameters of two families of sets with standard hitting properties. We then spell
out in Corollary 2.5 the precise (standard) use of them for “error reduction”. Both of these
hitters can be constructed in an elementary way based on expander graphs. The hitters we give
here rely on optimal expanders known as Ramanujan graphs [LPS88]. We note that our main
results can be proven using significantly weaker hitters (such as those implied by the expander
graphs of [RVW00]).

Lemma 2.3 Let N be an integer and 0 ≤ µ ≤ α ≤ 1/2 two real values. Then there exists a
family F = {F1, . . . , FN} such that

1. Each Fi is a k-tuple of integers in [N ] = {1, . . . N}, with k = O(α/µ).

2. Every subset T ⊂ [N ] of size at least µN intersects at least αN of the Fi’s (i.e., |{i :
Fi ∩ T 6= φ}| ≥ αN).

3. Given N, i, α and µ, each Fi can be constructed uniformly in polynomial time (in the input
and output lengths).

The set F in Lemma 2.3, can be constructed from a k-regular expander graph GN on the set
of vertices [N ]. Each Fi is simply the neighbor list of vertex i. Requirement (2) asks for sets
of size µN to expand by a factor α/µ which for the expanders of [LPS88] can be obtained with
degree k = O(α/µ) (for the expanders of [RVW00] it requires k = poly(α/µ)).

Next, we consider a more traditional setting of the hitting problem. For that we use the so
called combined hitter from Corollary C.5 in [Gol97],

Lemma 2.4 Let N be an integer and β and µ be two positive real values. Then there exists a
set F = {F1, . . . , FM} of size M = N · poly(1/β) such that

1. Each Fi is a k-tuple of integers in [N ], with k = O(log(1/β)/µ).

2. Every subset T ⊂ [N ] of size at least µN intersects at least (1 − β)M of the Fi’s (i.e.,
|{i : Fi ∩ T 6= φ}| ≥ (1− β)N).

3. Given N, i, β and µ, each Fi can be constructed uniformly in polynomial time (in the input
and output lengths).

The usefulness of Lemma 2.4 for this paper is in the standard application of hitters to error
reduction. Particularly, we will use the following immediate corollary.

Corollary 2.5 Let ψ1, . . . , ψN be a sequence of N circuits over a set of variables Y . Let β and
µ be two positive real values. Then there exists a sequence of M = N · poly(1/β) new circuits
ψ′1, . . . , ψ

′
M such that

1. Each new circuit ψ′i is the AND of k old circuits ψi with k = O(log(1/β)/µ). In particular,
every assignment to the variables Y that satisfies all of the old circuits also satisfies all of
the new circuits.

2. Every assignment to the variables Y that causes µN of the old circuits to reject also causes
(1− β)M of the new circuit to reject.

3. On input ψ1, . . . , ψN , β and µ, the new sequence can be constructed uniformly in polyno-
mial time (in the input and output lengths).
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3 Assignment Testers and their Composition

In this section we formally introduce the notion of an assignment tester, which is an enhancement
of the PCP verifier. As discussed in the introduction, the motivation for assignment testers is
in the rather simple and natural way two assignment testers compose. This property is very
appealing as composition is a major ingredient in the proof of the PCP Theorem.

Like the PCP verifier, an assignment tester reduces an input circuit ϕ over variables X into a
list of output circuits ψ1, . . . , ψR over the variables (X and) Y . The main difference is that the
output circuits of the PCP verifier might not depend on X at all, while the output circuits of
the assignment tester certainly do. Moreover, the completeness and soundness conditions of an
assignment tester are with respect to a specific assignment for X, rather than with respect to
the general satisfiability of ϕ. Loosely, an assignment tester doesn’t just check that the input
is satisfiable, but rather that the input is satisfied by a specified assignment.

This simplifies composition by eliminating consistency issues altogether. Recall that the main
idea of composition is to improve a given verifier reduction by applying another (inner) verifier
reduction to each one of ψ1, . . . , ψR, replacing each ψi with a system Υi of even smaller circuits.
By feeding the same assignment to each of the parallel runs of the inner reduction, all of the
systems Υi directly refer to satisfiability by the same single assignment.

An important parameter, inherent to an assignment tester, is its distance parameter. In
the soundness condition, it is unreasonable to require that in case the assignment for X is not
satisfying, a sizeable fraction of ψ1, . . . , ψR reject. If we wish each ψi to read only a constant
number of bits, most ψi’s won’t be sensitive to a single bit flip in X turning a satisfying
assignment into an unsatisfying one. Thus, we only require that if the assignment is δ-far (i.e.,
is at relative Hamming distance δ) from every satisfying assignment, then an 1 − ε fraction of
ψ1, . . . , ψR must reject. The parameter δ > 0 is the distance parameter of the assignment tester,
and it should be at least inversely proportional to the number of variables (unless we are willing
to compromise on the detection probability 1− ε being subconstant).

In subsection 3.1 we give the formal definition of an assignment tester. In subsection 3.3 we
define ‘robust’ assignment testers and prove an immediate composition theorem for this object.
We show a generic way to transform every assignment tester into a robust one (“robustization”)
in section 3.4. Finally, in subsection 3.5 we combine the above and deduce a composition
theorem of assignment testers. We consider additional transformations on assignment testers
in Section 4. In Section 7, we shortly discuss the relation between PCP testers and property
testers.

3.1 Defining Assignment-Testers

We denote Boolean circuits by ϕ,ψ, etc., and refer to the predicate computed by the circuit by
the same name. We say that an assignment is δ-far from satisfying a circuit ϕ, if its relative
Hamming distance from every satisfying assignment for ϕ is at least δ.

Definition 3.1 (Assignment-Tester) An Assignment-Tester with parameters (R, s, q, δ, ε) is
a reduction whose input is a Boolean circuit ϕ of size n over Boolean variables X. The reduction
outputs a system of R(n) Boolean circuits Ψ = {ψ1, . . . , ψR} each of size at most s(n) over X
and auxiliary variables Y such that the following conditions hold:

• The running time of the algorithm is polynomial in n and R(n).
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• R(n) - Number of output circuits. Reminiscent of the amount of Randomness of the
verifier.

• s(n) - Size of output circuits.

• q(n) - Maximal number of variables read (or queried) in one circuit.

• δ(n) - Distance to a satisfying assignment.

• ε(n) - Error probability: the fraction of circuits that erroneously accept a far-from-
satisfying assignment. (Sometimes we consider the detection probability γ = 1 − ε, i.e.
the remaining fraction of circuits that reject).

• w(n) - ‘Width’ of Y variables, i.e. log of alphabet size. This parameter plays a minor role
in our discussion and so we usually omit it. We note that w is smaller than s.

Figure 1: The parameters (R, s, q, δ, ε) of an assignment tester.

• Each ψi depends on q(n) variables from X ∪ Y . The variables in Y take values in an
alphabet Σ, and are accessible to ψi as a tuple of w(n) = dlog |Σ|e bits3.

• For every assignment a : X → {0, 1},

1. [Completeness:] If a satisfies ϕ then there exists an assignment b : Y → Σ such that
a ∪ b satisfies all of ψ1, . . . , ψR.

2. [Soundness:] If a is δ-far from every satisfying assignment for ϕ, then for every
assignment b : Y → Σ, at least 1− ε of ψ1, . . . , ψR reject a ∪ b.

This definition should be compared to the standard notion of a PCP verifier. The PCP
verifier can also be defined as a reduction4 precisely as above, but there are two differences.
One is superficial in that the PCP verifier produces circuits that only depend on the (new) Y
variables. The main difference is in the completeness and soundness conditions which in the
case of the PCP verifier reduction are defined as follows:

1. [Completeness:] If ϕ is satisfiable, then there exists an assignment b : Y → Σ that satisfies
all of ψ1, . . . , ψR.

2. [Soundness:] If ϕ is unsatisfiable, then for every assignment b : Y → Σ, at least 1 − ε of
ψ1, . . . , ψR reject.

Every assignment tester is also a PCP verifier reduction. To see for example that the sound-
ness condition carries over, observe that if the input ϕ is unsatisfiable, then any a : X → {0, 1}

3So accessing all w(n) bits of a single variable in Y , counts as a single “query”.
4The PCP verifier is usually described as a probabilistic polynomial-time algorithm that verifies a (PCP)

proof by tossing r random coins and then probing the proof in some q locations. By considering the action of the
verifier in parallel over all possible outcomes of the random coins, the verifier corresponds to a list of 2r circuits
(each over q input variables). Thus, the verifier can also be viewed as a (deterministic) reduction that outputs a
list of circuits. We call this a PCP verifier reduction.
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is (δ = 1)-far from all (non-existent) satisfying assignments. Thus it cannot be extended with
b so as to satisfy more than ε of ψ1, . . . , ψR.

The converse is not necessarily true since in an arbitrary PCP verifier reduction we have no
control over the dependence of ψ1, . . . , ψR on X. In particular, the output circuits may not even
depend on the variables in X. Interestingly, the original proof of the PCP theorem implicitly
constructs assignment-testers rather than just PCP verifiers.

Theorem 3.2 (The PCP Theorem [AS98, ALM+98]) There is a polynomial-time PCP
verifier algorithm (alternatively, assignment-tester) with R(n) = nO(1) and q(n) · w(n) ≤ s(n) =
O(1), and constant 0 < ε, δ < 1.

3.2 On the Width of Variables

An assignment tester produces circuits ψi that are defined over two different kinds of variables.
The X variables are Boolean, whereas the auxiliary Y variables take value from a possibly larger
alphabet Σ. We would like to think of the assignment to a Y variable as a w-long bit string.
(Recall, that w(n) = dlog |Σ|e is the width of the Y -variables.) This allows us to view each ψi
as a Boolean circuit (just as ϕ is), which is particularly important for the composition theorem
(where we apply the inner assignment tester to the circuits ψi produced by the outer assignment
tester). In particular, if ψi reads the assignment to qx variables from X and to qy variables
from Y then we view its input as a (qx + qy · w)-long bit string which is the concatenation of
the assignment to all of the variables it reads. Note that, since the size of each ψi is larger than
the length of its input, we have that s > qx + qy · w. We can now define the restriction of a
global assignment to the input variables of a particular ψi. This definition will allow repetitions
of variables.

Definition 3.3 Each output circuit in {ψ1, . . . , ψR} is defined to be a pair 〈C, τ〉 where C is a
circuit over local inputs v1, v2, . . . , vq and τ = (xi1 , . . . , xiqx

, yiqx+1 , . . . , yiq) is a tuple of variables
from X ∪ Y specifying which variables are mapped to the inputs of the circuit. We emphasize
that τ is allowed to have repetition of variables.5

Given an assignment σ for X ∪ Y , its restriction to ψi is denoted σ|ψi
and is defined as the

appropriate string of qx + (q − qx) · w bits (that possibly reflects the repetitions in τ).

It turns out that almost everywhere, the width parameter w only plays a very minor role.
The two related parameters that will be much more crucial to our discussion are the size of the
circuits s and the query complexity q. We will therefore almost always omit reference the w and
be satisfied with the bound on w implied by s (as discussed above).

3.3 Robust Assignment Testers and their Composition

A robust assignment tester is an assignment tester such that in the soundness case, not only
do 1 − ε of the output circuits reject, but in fact they see an assignment that is ρ-far from
a satisfying one (i.e., at least a ρ-fraction of the bits read by each of these circuits need to
be changed in order for the circuits to be satisfied). This variant is natural in the context of
composition, as will be seen below.

5Such repetition will be quite useful below: It implicitly affects the distance between the restrictions of
assignments to ψi, turning it into a weighted Hamming distance (more weight to the repeated variable).
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Notation: For a circuit ϕ, denote by SAT (ϕ) the set of all satisfying assignments for ϕ.
Let SATδ(ϕ) be the set of assignments that are δ-close to some assignment in SAT (ϕ) (namely,
assignments that are at relative hamming distance at most δ from some assignment in SAT (ϕ)).

Definition 3.4 An assignment-tester is called ρ-robust if in the soundness case in Definition 3.1
above, for every assignment b : Y → Σ, the assignment (a ∪ b)|ψi

is ρ-far from SAT (ψi) for at
least 1− ε fraction of ψ1, . . . , ψR.

It is very easy to compose robust assignment testers.

Lemma 3.5 let A1,A2 be two assignment-testers with parameters (R1, s1, q1, δ1, ε1) and (R2, s2, q2, δ2, ε2)
respectively. If A1 is ρ-robust with ρ = δ2 then one can construct an assignment tester A3 with
parameters (R3, s3, q3, δ3, ε3) such that:

R3(n) = R1(n) · R2(s1(n)), s3(n) = s2(s1(n)), q3(n) = q2(s1(n)),

and
ε3(n) = ε1(n) + ε2(s1(n))− ε1(n)ε2(s1(n)), δ3(n) = δ1(n) .

Moreover, if A2 is ρ2-robust then so is A3.

Proof: Given an input ϕ, the tester A3 will simply run A1 on it, outputting ψ1, . . . , ψR, and
then run A2 on each ψi. The completeness and the parameters of A3 follow from the definition.
The soundness of A3 draws on the robustness of A1 in the following way. Let {ψi,j} be the list
of circuits output by A2 on input ψi. The soundness of A2 asserts that a 1 − ε2 of the {ψi,j}
reject if the assignment for ψi’s variables is far from a satisfying one. The robustness of A1

guarantees that this is indeed the case for 1 − ε1 of the ψi’s, provided that the assignment for
ϕ’s variables is far from a satisfying one.

3.4 Robustization

We next show a generic way to transform an arbitrary assignment-tester into a robust one.
The idea is to replace each variable in Y with a collection of bits that are supposed to be an
encoding via some error correcting code e of the value of the variable. In addition, we repeat
the X variables for balance, and modify the output circuits accordingly.

Lemma 3.6 There exists some c1 > 0 such that given an assignment tester A with parameters
(R, s, q, δ, ε), we can construct a ρ-robust assignment tester A′ with parameters R′ = R, s′ =
c1 · s, ρ = Ω(1

q), ε′ = ε, δ′ = δ.

This transformation allows us to replace the condition about A1 being ρ-robust in Lemma 3.5,
with a condition about its query complexity, see Theorem 3.7 below. Throughout the rest of the
paper the lemma is used only in the proof of Theorem 3.7. In fact there is no further mention of
robustness, as the lemma allows us to restrict our attention to the query complexity parameter.

We also mention that this transformation is useless for the setting of [BSGH+04], as they
cannot afford the (super-linear) increase in the number of variables that is incurred here.

Proof: A′ will run A on input ϕ, and obtain output circuits ψ1, . . . , ψR over variables X
and Y . Each ψi will be replaced by a “robust” circuit ψ′i, whose inputs are encodings (via some
error-correcting code e) of the inputs to ψi.
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Let Σ be the alphabet of the Y variables, and let w = dlog |Σ|e be the number of bits needed
to represent a value in Σ. Let ew : Σ → {0, 1}` be an error correcting code as in Lemma 2.1
(with ` = c·w and c a small absolute constant). For each y ∈ Y introduce new Boolean variables
v̄(y) = v1(y), . . . , v`(y) supposedly representing y’s encoding ew(y). Denote these new sets of
bits by

Y ′ =
⋃
y∈Y

v̄(y) .

Suppose the tuple of variables accessed by ψi is (x1, . . . , xqx , y1, . . . , yqy), with q = qx + qy.
Define a new circuit ψ′i whose input consists of ` · q variables: the first `qx variables are ` copies
of each variable of x1, . . . , xqx . The next `qy variables are v̄(y1), . . . , v̄(yqy). The circuit ψ′i
accepts an input if and only if it is a correct encoding of an input that would have satisfied ψi.
More explicitly, ψ′ accepts input z1, . . . , z`q ∈ {0, 1}`q if and only if (1) zi = (ziq+1, . . . , z(i+1)q)
is the all-0 or all-1 string for 1 ≤ i ≤ qx, (2) zi is a legal codeword of e for i > qx, (3) the values
encoded by the zi’s do satisfy ψi.

This completes the description of A′ and we now prove its properties. Completeness is clear:
a satisfying assignment a : X → {0, 1} for ϕ can easily be extended by b : Y ′ → {0, 1} so that
a ∪ b satisfies all of {ψ′i}.

What is the size of ψ′i? Since for the code ew there exists a linear size circuit for codeword
decoding (see Lemma 2.1), then there exists some c1 such that the size of each ψ′i is bounded
by s(n) +O(`q) ≤ c1 · s(n).

Next, the soundness of A′. Assume an assignment a : X → {0, 1} that is δ-far from satisfying
ϕ. The soundness of A guarantees that every b : Y → Σ extending a will be rejected by at
least 1 − ε of the ψi’s. What does this mean for the robust version ψ′i? Consider an arbitrary
assignment b′ : Y ′ → {0, 1}. Such an assignment defines a ‘decoded’ assignment b′′ : Y → Σ by
relying on the “maximum likelihood” decoding mapping e−1

w of the code ew (see Notation 2.2)
as follows:

b′′(y) : Y → Σ, b′′(y)
def
= e−1

w (b′(v1(y)), . . . , b′(v`(y))) .

The soundness of A implies that at least 1 − ε of ψ1, . . . , ψR will reject a ∪ b′′, regardless of
the assignment b′′ to Y . For each rejecting ψi, at least one of the q variables it queries must
be re-assigned in order for it to accept. Consider now the corresponding ψ′i and its assignment
σ = (a∪b′)|ψ′i . Recall that by definition (see also Definition 3.3) σ is an `q-bit-string. Clearly, σ
will not satisfy ψ′i. More importantly, there must be at least one of the q (`-bit)-blocks that need
to be changed into a different legal `-bit-block in order to turn σ into a satisfying input: If this
`-bit block consists of Y ′-variables, then it must be changed in more than half the code distance
(i.e. w

2 ) locations. If it consists of (repetitions of) an X-variable, then it must be changed in all
` bits. In any case, this means that A′ is ρ-robust with ρ = min(w/2,`)

q·cw = 1
2cq .

It is important to note that the error correcting code e we use to obtain the robustness
property is not part of the definition of an assignment-tester but rather part of the robustization
transformation. Furthermore, a feature of this transformation is that e, defined in Lemma 2.1,
is quite a generic error correcting code. We do not rely on algebraic properties of e nor require
it to be locally testable.

3.5 Generic Composition of Assignment Testers

Combining Lemmas 3.6 and 3.5 we get a convenient composition theorem:
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Figure 2: Composing A1 and A2

Theorem 3.7 (Composition) There exists some constants c1, c2 such that, let A1,A2 be two
assignment-testers with parameters (R1, s1, q1, δ1, ε1) and (R2, s2, q2, δ2, ε2) respectively. If δ2 ≤

1
c2·q1

then one can construct an assignment tester A3 with parameters (R3, s3, q3, δ3, ε3) such

that, for n′
def
= c1 · s1(n):

R3(n) = R1(n) · R2(n′), s3(n) = s2(n′), q3(n) = q2(n′),

and
ε3(n) = ε1(n) + ε2(n′)− ε1(n)ε2(n′), δ3(n) = δ1(n) .

Comparing this composition theorem with the robust composition of Lemma 3.5, we see
that the condition about A1 being robust has been removed, and the condition δ2 ≤ ρ has
been replaced by the condition δ2 ≤ 1

c2·q2
. The parameters are almost the same, except here

n′ = c1 · s1(n) rather than n′ = s1(n) (and this slightly affects R3, s3, q3 and ε3).
We mention that the parameters of A3 in Theorem 3.7 are very similar to those that would

follow from a näıve composition of two PCP verifiers, when in the soundness argument one
ignores consistency issues altogether (imagining a prover that is “honest” with respect to con-
sistency). In that sense, these parameters are essentially the best one could hope for in this
type of composition.

Proof: We first turn A1 into a robust assignment tester A′
1, using the transformation of

Lemma 3.6. Thus, n′ = c1 · s1(n) is the size of the output circuits of A′
1. Next, we compose A′

1

with A2 according to Lemma 3.5, obtaining A3. See also Figure 2 for an illustration of the two
transformations combined.

4 Transformations on Assignment Testers

The composition of assignment testers is mainly used as a tool for reducing the size, s, of
the circuits an assignment tester outputs. In this section we give general transformations for
reducing (and thus improving) three additional parameters: (i) The tested distance, δ, from a
satisfying assignment; (ii) The error probability, ε, in case of a far-from-satisfying assignment;
and (iii) The number, q, of variables read by each output circuit.

Our motivation is threefold. First, these transformations will come in handy in our construc-
tions of assignment testers. Second, given these transformations it is fair to concentrate on
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the construction of testers for some constant values of δ and ε. These parameters can be then
reduced to the desired values using the general transformations. Finally, as we believe that the
concept of assignment tester is interesting in its own right, it is natural to study the behavior
of its various parameters.

To illustrate the need, in our context, for transformations that improve these (ε, q, δ) para-
meters, note that composition may indeed reduce s, but it incurs costs in other parameters. In
particular, it causes the error-probability, ε, to increase, as it is the sum of the error-probabilities
of the two composed component. This is easily fixable since it is easy to reduce ε by increasing
q. However, if we increase q then we will require a smaller value of δ during composition in
the next phase. The transformations of this section will help us essentially enhance the basic
composition theorem such that it reduces s without harming other parameters.

4.1 Reducing the Distance: δ −→ δ′

In this subsection we describe how the distance parameter δ of a generic assignment-tester can
be improved (with fair cost in terms of the other parameters). The goal here is to improve the
“sensitivity” of the assignment tester, so that the behavior of its output-circuits on mildly bad
assignments (i.e., whose distance from satisfying is at least δ′) imitates their behavior on very
bad assignments (i.e., whose distance from satisfying is at least δ > δ′).

Our transformation is of ‘black-box’ nature: we are given an assignment tester A, whose
inner workings we do not wish to manipulate, yet we want to reduce its distance parameter. A
natural approach would be to manipulate the input variables X, creating a new set of variables
X ′ (which will be part of the auxiliary variables) that encode X with amplified distance. This
encoding would guarantee that two assignments for X that are δ′-apart are encoded by two
assignments for X ′ that are δ-apart. Naturally, manipulating the input variables is not enough
and we also need to manipulate ϕ such that it “recognizes” the X ′ variables. Specifically,
instead of applying A to ϕ, we apply it to ϕ′ that is defined over X ′ (rather than over X),
where ϕ′ is defined to decode the assignment to X ′ and to apply ϕ to the decoded assignment
(viewed as an assignment to X). But we are not done, as the circuits that A produces on ϕ′

do not even depend on the X variables (as ϕ′ does not depend on these variables either). We
therefore augment these circuits by a verification that the assignment to X ′ correctly encodes
the assignment to X. We will need to carefully define the encoding of the X variables so that
verifying consistency between the X and X ′ variables would be sufficiently efficient.

Lemma 4.1 (Distance Reduction) There exists a positive constant δ̄ such that for every
0 < δ′ ≤ δ ≤ δ̄, given an assignment-tester A with parameters (R, s, q, δ, ε) we can construct an
assignment-tester A′ with parameters (R′, s′, q′, δ′, ε) where for Q = O( 1

δ′ log 1
ε ) and M = O( δδ′ n),

R′(n) = poly(1/ε) · R(M), s′ = s(M) +Q, q′(n) = q(M) +Q .

Remark 4.2 Note that both the size of the new circuits s′ and the number of queries q′ contain
an additive term of O( 1

δ′ log 1
ε ). This seems acceptable as it is not hard to show that both s′

and q′ must be Ω( 1
δ′ log 1

ε ) by the definition of assignment testers and lower bounds on the query
complexity of hitters [Gol97]. Consider for example an input circuit ϕ that is only satisfied by
the all-zero assignment. For each of the circuits produced by the assignment tester consider the
set of variables in X that it reads. For every subset T of variable of density δ′, at least γ = 1−ε
fraction of the sets must hit T .
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Proof: We follow the basic sketch outlined above. Let the input for our tester be a circuit
ϕ over Boolean variables X. We fix an encoding E whose properties will be formally defined
below. We let X ′ be new variables whose assignment supposedly represents the encoding via
E of some assignment for X. We define the circuit ϕ′ over X ′ to be a circuit that accepts only
assignments for X ′ that encode (via E) an assignment for X that would have caused ϕ to accept.
In other words, SAT (ϕ′) = E(SAT (ϕ)). We choose E so that if an assignment a : X → {0, 1}
is δ′-far from the set SAT (ϕ), then its encoding b : X ′ → {0, 1} is δ-far (recall δ > δ′) from the
set SAT (ϕ′).

Now, we run A on ϕ′ and obtain a list of output circuits ψ′1, . . . , ψ
′
R(|ϕ′|) over the variables

X ′ and new variables Y . By the soundness of A, starting with an assignment b 6∈ SATδ(ϕ′) for
X ′, no matter how one assigns the remaining Y variables, at most ε fraction of the ψ′is accept.

It remains to add tests comparing between the assignment b for X ′ to the assignment a for
X. In order to be able to do this via circuits that make only few queries, X ′ must encode X in
a “locally checkable” manner. Thus, the heart of our proof is the encoding E, whose properties
are formalized next.

Lemma 4.3 Let δ̄ be a universal constant. For every δ1 < δ2 < δ̄, there exists a constant
c = O( δ2δ1 ) ≥ 1 and an encoding E : {0, 1}n → {0, 1}cn that is polynomial-time computable, such
that

1. If a1, a2 ∈ {0, 1}n, dist(a1, a2) > δ1 then dist(E(a1), E(a2)) > δ2.

2. There is a linear time circuit that computes E−1(b), if b is in the image of E, and otherwise
rejects.

3. There is a polynomial-time constructible collection of n circuits each of size O(c) = O( δ2δ1 )
such that given a ∈ {0, 1}n and b ∈ {0, 1}cn the following hold:

• If b = E(a) all of the circuits accept.

• At least a dist(b, E(a)) fraction of the circuits reject.

Before proving Lemma 4.3, let us complete the description of A′, and prove its properties.
Let E be as in the lemma, choosing δ1 = δ′ and δ2 = 2δ.

As a first step, A′ will compute ϕ′ from ϕ, and generate ψ′1, . . . , ψ
′
R(|ϕ′|) which are the outcome

of running A on ϕ′. Recall that ϕ′ is a circuit over variables X ′ that satisfies SAT (ϕ′) =
E(SAT (ϕ)). Due to the second item in Lemma 4.3, the size of ϕ′, denoted M , is larger than
the size of ϕ by a multiplicative factor O( δδ′ ). The number of circuits output by A is R(M),
their size is s(M) and they read q(M) variables.

In addition, let {comparer}r be the collection of at most n circuits guaranteed by the third
item of Lemma 4.3. We amplify the rejection probability of {comparer}r by derandomized serial
error-reduction. We define a set of tests by applying Corollary 2.5 on the sequence {comparer}
with parameters µ = δ and β = ε. Denote the new tests by

{
compare′1, . . . , compare′M1

}
. By

Corollary 2.5, M1 = poly(1/ε)n and each compare′i is the AND of d = O(1
δ log 1

ε ) compare tests.
Therefore the size, denoted by Q, of each compare′i satisfies Q = O(c · d) = O( 1

δ′ log 1
ε ) (which

also upper-bounds the number of X and X ′ variables these circuits read).
The final output circuits of A′ will be {(ψi ∧ compare′i)}i, where by repetition we may assume

an equal number of at most poly(1/ε) · R(M) circuits of each type.
It is easy to check that A′ has the claimed parameters, and it remains to prove the complete-

ness and soundness of A′.
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Completeness is immediate: Given some a ∈ SAT (ϕ), extend it to X ′-variables by letting

b : X ′ → {0, 1} be defined by b
def
= E(a). The rest follows from the completeness of A.

For soundness, one needs to show that given any assignment for X that is δ′-far from a
satisfying assignment, no assignment for the remaining variables (X ′ ∪ Y ) can cause more than
ε of the output circuits to accept. So let a 6∈ SATδ′(ϕ). Let b : X ′ → {0, 1} and c : Y → Σ be
arbitrary. There are two cases:

• If dist(E(a), b) ≥ δ then by Lemma 4.3 at least δ fraction of the circuits {comparer}r reject,
so by construction and according to Corollary 2.5, at most ε of the circuits in {compare′i}
accept.

• Otherwise, dist(E(a), b) < δ. Then, using dist(a, SAT (ϕ)) > δ′, the first item in Lemma 4.3
implies dist(E(a), SAT (ϕ′)) > 2δ. So by the triangle inequality, dist(b, SAT (ϕ′)) > δ. The
soundness of A implies that no matter what the assignment for Y , at most ε of the circuits
ψ′i accept.

This completes the proof of soundness, since in both cases, a 6∈ SATδ′(ϕ) allows at most ε
fraction of the final circuits to accept. Thus, assuming Lemma 4.3 we have proved Lemma 4.1.

Proof: (of Lemma 4.3) Clearly, item 1 can be obtained using any error-correcting code
(though the length of the code will be somewhat larger than in the lemma) . However, this
would fail to give item 3, as given strings a and b, it is not clear how to check that dist(E(a), b)
is small with few queries. Instead, we will use an encoding that is not an error correcting code
in the standard sense, but does have the desired amplification property.

Let k = O( δ2δ1 ). We first describe an encoding over non-binary alphabet Σ = {0, 1}k, denoted
E0 : {0, 1}n → ΣN . To encode a string a ∈ {0, 1}n, simply write its restriction on all possible k-
bit substrings (so there areN = nk possible such restrictions). It is easy to see that this encoding
achieves distance amplification. Indeed, two strings a1, a2 ∈ {0, 1}n with dist(a1, a2) > δ1, will
differ on 1− (1− δ1)k ≈ kδ1 > δ2 fraction of the symbols.

Moreover, it is unnecessary to take all N = nk restrictions. With judicious choice of k-
tuples, distance amplification will hold even with N = n restrictions. Let Xk be an efficiently
constructible hitting set of k-tuples of [n], such that every subset of X of size ≥ δ1n intersects at
least a c1δ2 fraction of the k-tuples in Xk (the constant c1 > 1 will be chosen below). Lemma 2.3
guarantees such a set Xk with |Xk| = n. This gives an encoding E1 : {0, 1}n → Σ|Xk|. The
choice of Xk guarantees that if dist(a, a′) > δ1 then dist(E1(a), E1(a′)) > c1δ2, because at least
c1δ2 fraction of the tuples in Xk ‘hit’ the set { i | ai 6= a′i}. Note that we are assuming (when
applying Lemma 2.3) c1δ2 < 1/2, which can be ensured by setting δ̄ to be a small enough
constant.

The encoding E1 is almost what we want, except it is not binary. Thus, we concatenate E1

(in the coding-theoretical sense) with the error-correcting code ek : {0, 1}k → {0, 1}c2·k, given
by Lemma 2.1. We now fix c1 > 0 to be a constant such that ek has relative distance ≥ 1/c1.
Recall that ek also has constant rate (i.e., c2 is a constant), and linear size “codeword decoding”

as defined in Lemma 2.1. Let E
def
= E1 ◦ ek encode a string a ∈ {0, 1}n by first computing

E1(a) and then encoding each symbol of E1(a) using ek. The distance of ek being at least 1/c1
guarantees that

dist(a, a′) > δ1 ⇒ dist(E1(a), E1(a′)) > c1δ2 ⇒ dist(E(a), E(a′)) > δ2,

which establishes item 1 of the lemma. For item 2, we use the fact that codeword decoding ek
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needs circuits of size O(k), and the fact that verifying that a string is an output of E1 and then
inverting E1 on it is easy to do by a linear size circuit.

For item 3, we consider the following randomized test (which translates in the natural way
to the required n circuits). The input is a ∈ {0, 1}n and b ∈ {0, 1}c2kn, and we wish to verify
that b = E(a).

• Select a random k-tuple in Xk, and denote it by (i1, . . . , ik). Read ai1 , . . . , aik .

• Let j1, . . . jc2k be the indices such that b|j1,...,jc1k
supposedly equals ek(a|i1,...,ik). Read

bj1 , . . . , bjc1k
.

• Accept iff ek(ai1 , . . . , aik) = bj1 , . . . , bjc1k
(this is performed by first applying the circuit for

codeword decoding of ek on bj1 , . . . , bjc1k
and then comparing the result with ai1 , . . . , aik).

The test requires log |Xk| = log n random bits, and reads k + c1k = O( δ1δ2 ) bits. If b = E(a),
the test clearly accepts. Otherwise, denote β = dist(b, E(a)). By construction of E1, for at least
β fraction of the tuples (i1, . . . , ik) ∈ Xk: ek(ai1 , . . . , aik) 6= (bj1 , . . . , bjc1k

), so the test rejects
with probability at least β. The test for any particular fixing of the log n random bits can be
implemented by a circuit of size O(k) = O( δ1δ2 ).

Remark 4.4 In the construction provided in Lemma 4.1 of the new distance-reduced assignment
tester A′ for inputs of size n, we only require A to be well-defined on inputs of size at most
M = O( δδ′n). This will be important for our inductive constructions, where A has only been
defined for inputs of up to a certain size.

Remark 4.5 Lemma 4.1 will only be used in this work, for constant δ. However, we will ignore
for the simplicity of presentation, the requirement that δ is smaller than some fixed constant δ̄.
It is not hard to ensure that the lemma is only applied with sufficiently small δ.

4.2 Serial Error-Reduction: ε −→ ε′

Let ε be the error probability of an assignment tester A, i.e., the fraction of output circuits that
erroneously accept a far-from-satisfying assignment. The naive way of reducing ε is by serial
repetition. Namely, taking ANDs of k uniformly selected output circuits of A (as the output
circuits of the new assignment tester A′). The set of variables for A′ is exactly the same as for A
(therefore the width of variables does not change by this transformation). However the number
of variables read by each circuit increases by a factor k. This implies the following reduction:

Lemma 4.6 (Serial Error Reduction) For any integer `, given an assignment-tester A with
parameters (R, s, q, δ, ε), we can construct a new assignment tester A′ whose error probability
is ε`. The other parameters of A′ are: R′(n) = (R(n))`, s′ = O(`s(n)), q′ = O(`q), δ′ = δ.

The number of circuits R′ that A′ outputs can be decreased by standard derandomization
techniques. Particularly, based on Corollary 2.5 we obtain the following reduction.

Lemma 4.7 (Derandomized Serial Error Reduction) Given an assignment-tester A with
parameters (R, s, q, δ, ε), we can construct a new assignment tester A′ whose error probability is
ε′. The other parameters of A′ are R′(n) = O(poly(1/ε′)R(n)), s′ = O(`s(n)), q′ = O(`q), δ′ = δ,
where ` = log(1/ε′)/(1− ε).
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The main disadvantage of the serial error reduction (in both versions) is that it reduces ε at
the expense of increasing the number of variables q that the circuits read. When error reduction
will be used in our constructions, increasing q will not be acceptable. Therefore, we next give
a new method for decreasing q back, by aggregation (i.e., by “consistently” reading some `
variables at once “in parallel”).

4.3 Error Reduction via Parallelization/Aggregation

A central ingredient in the proof of the PCP-theorem is the notion of aggregation (alternatively
referred to as parallelization). Namely, starting with an assignment-tester that reads q variables
we want to construct a new assignment-tester that reads fewer q′ < q variables and is otherwise
comparable to the old assignment-tester (though typically the width of the new variables will be
larger to compensate for the fewer number that are being read). One motivation for aggregation
in our context is error reduction, as discussed above. (Indeed, Theorem 4.8 below reduces both
q and ε.) The original proof of the PCP theorem [AS98, ALM+98] gives a very powerful
aggregation method based on low-degree curves. The proofs in this paper will also require an
aggregation theorem. However, our setting is significantly simpler as we only need to reduce
the number of variables read by the assignment-tester from one constant q to a smaller constant
q′. A “combinatorial” aggregation method for this setting can possibly be based on parallel
repetition theorems. In particular, we could rely on the work of Feige and Kilian [FK94], as
we do not require the full exponential decrease provided by [Raz98]. We remark that since we
require the result to be an assignment-tester (rather than a verifier), some more details may be
involved when applying [FK94, Raz98] in this context.

In this section, we present a simple alternative to both solutions. An advantage of our
aggregation compared with the one based on curves, is that it can produce variables of constant
width (rather than logarithmic width). This feature is vital for our proofs. Compared to parallel
repetition theorems, our setting is easier since we can afford more than two queries (but shall
make a constant number of queries).

Note that the aggregation method of Theorem 4.8 below, increases the distance parameter
δ. This is the reason that the constructions of this paper require a method for reducing δ, as
indeed given by the transformation of Lemma 4.1.

Theorem 4.8 (Aggregation) Let A be an assignment-tester with parameters (R, s, q, δ, ε).
For every ε′ > 0, one can construct a new assignment tester with parameters (poly(1/ε′) ·R`, ` ·
s ·Q,Q, 2δ, ε′), for Q = O(1

δ log( 1
ε′ )), and ` = poly( q

1−ε).

Before turning to the actual proof, let us sketch the idea. First, it is easy to reduce q to
a constant (q = 3 in our case), at the price of increasing the error. This is done by adding
auxiliary variables which encode the entire input of a circuit, and then replacing that circuit by
q circuits that compare the new ‘big’ variable to one of the q original variables (in fact it will
be convenient for us to compare to one X-variable and also to one Y -variable, implying query
complexity three rather than two). This (standard) transformation will be described in detail
later.

Next, the error probability can easily be reduced again by serial repetition, i.e., by taking
ANDs of multiple circuits. However, the resulting circuits access more variables than before
(i.e., by these two steps, q just got larger). To avoid this, it is natural to use parallel repetition.
Namely, we introduce new variables X ≡ X` that are supposed to be `-tuples of the original
variables X. Now, the effect of serial repetition can be emulated with only few accesses to the
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new (wider) variables. The main obstacle this approach must overcome is that of consistency:
Suppose x ∈ X occurs in two tuples, x̄ and x̄′. Given an assignment F : X → Σ`, it is quite
possible that the value x receives in F (x̄) differs from that in F (x̄′). If we were assured that
there are no (or few) inconsistencies of this sort, then the analysis of parallel repetition would
be as easy as that of serial repetition. We therefore address this issue by a consistency test
(described in Figure 3) such that passing it with high probability guarantees that most tuples
are ‘mostly’ consistent with the plurality function of F , defined shortly (after specifying some
notation and conventions).

For the sake of generality, and in order to simplify our analyses, we will define both the
plurality function and the consistency test with respect to an arbitrary distribution D on X.
Also for simplicity, we assume that we will always encounter assignments F : X → Σ` that
are rotation consistent. Namely, that if x̄′ is obtained from x̄ using some cyclic shift of
its ` components, then F (x̄′) can be obtained from F (x̄) in the same way. This assumption
slightly simplifies the consistency test and is easy to achieve in our setting using a trivial folding
argument (simply let F be specified by the assignment for the various subsets of X of at most
` elements rather than by assignments to ordered `-tuples of elements). Finally, for any ` tuple
x̄, let x̄i denote its ith component.

Definition 4.9 (Plurality) Let X and Σ be finite sets, let ` ≥ 1 be an integer, and set X ≡ X`.
Let D be an arbitrary probability distribution over X. Let F : X → Σ`. Define the plurality
function of F with respect to D, denoted fF,D : X → Σ as follows. For every x ∈ X, let fF,D(x)
be the value that is assigned to x most frequently by F (with respect to the distribution D` on
X). Formally,

∀x ∈ X, fF,D(x)
def
= max arga∈Σ

{
Pr

x̄∈D`,i∈[`]
[F (x̄)i = a | x̄i = x]

}
.

In case D is the uniform distribution over X, we denote the plurality function as fF (i.e., we
omit D from the notation).

In Figure 3 we describe the consistency test. Essentially the same test was first studied by
Goldreich and Safra [GS97], who proved that (for uniform D) the test establishes consistency
with some f . Their proof used a different “two-stage” plurality function f and was established
via reduction to another (derandomized) test. In Appendix A we give a direct proof for the
same test, summarized by the following theorem,

Theorem 4.10 (Consistency) Let F : X → Σ` and D an arbitrary probability distribution
over X. Let f = fF,D : X → Σ be the plurality function of F . Let T be the test described in
Figure 3.

• If for all x̄ = (x1, . . . , x`) ∈ X, it holds that F (x1, . . . , x`) = (f(x1), . . . , f(x`)), then T
always accepts.

• Call x̄ = (x1, . . . , x`) ∈ X bad if F (x̄) disagrees with (f(x1), . . . , f(x`)) on more than 3
√
`

entries. There exists a constant c such that for every γ > 0,

Pr
x̄∈D`

[x̄ bad] > γ =⇒ T rejects with probability at least γ/c .
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1. Select a random x̄ = (x1, . . . , x`) ∈ D`.

2. Select a random x̄′ = (x′1, . . . , x
′
`) ∈ X as follows: for each j ∈ [`], x′j = xj with probability

α
def
= `−1/3, otherwise x′j is selected independently according to D.

3. Accept only if F (x̄) agrees with F (x̄′) on all common variables, otherwise reject.

Figure 3: Consistency Test for F : X → Σ`, any |X| , |Σ| <∞ and any probability distribution
D over X. In case F is not guaranteed to be rotation consistent then the test is revised slightly:
the query x̄′ is also rotated cyclicly by a random shift in [`].

Proof: (of Theorem 4.8) Our approach will be as follows. We first transform the circuits
generated by A to circuits that each depend on 3 variables. This is a simple (almost standard)
transformation that replaces every circuit reading q variables by several circuits each reading
three variables (over a larger domain). This causes the error probability to increase. Next,
we perform `-parallel repetition: instead of reading 3` variables as in the serial repetition, we
introduce new variables that are `-tuples of the previous ones, and read only three of these.
We ensure soundness of this step by adding a separate consistency test. The number of circuits
produced by the assignment tester will be bounded by RO(` log `). By redefining ` to be a slightly
larger polynomial in q

1−ε , the dependence on ` becomes as claimed.
Let A be an assignment-tester with parameters (R, s, q, δ, ε). Let γ = 1− ε be the detection

probability of A. We first fix γ′ = δ/24c, where c is the absolute constant from Theorem 4.10,
and prove that one can construct a new assignment tester with parameters (RO(` log `), O(` ·
s), O(1), 2δ, γ′), for ε′ = 1−γ′ and ` = O(( q

γ )3/2). The theorem will then follow for an arbitrarily
small ε′ as a simple corollary of Lemma 4.7 (i.e., by serial error reduction). The proof will follow
the two steps mentioned above.

Step 1: Getting to three queries

Let ϕ be a circuit over variablesX. RunA on input ϕ, generating output circuits ψ1, . . . , ψR over
X,Y . Define new variables Z = {z1, . . . , zR}, one zi per ψi. The variable zi will assume values
that are supposedly the complete input to ψi. Notation: we denote by ΣX = {0, 1},ΣY ,ΣZ the
set of values assumed by the variables in X,Y, Z respectively. Thus, ΣZ ⊆ (ΣX ∪ΣY )q. We also
denote by X(zi) (resp. Y (zi)) the set of X- (resp. Y -) variables accessed by the corresponding
circuit, ψi. Assume wlog that these sets are non-empty for all i. Clearly, |X(z) ∪ Y (z)| ≤ q for
all z.

By introducing the Z variables, we can get a system of circuits each reading 3 (rather than q)
variables, but with a lower detection probability. This is a variant on a standard “transformation
to two-provers” [FRS94], and can be done for example as follows. Replace each ψi with circuits
ψ

(1)
i , . . . , ψ

(q)
i that each read zi, and also one x ∈ X(zi), and one y ∈ Y (zi), and then check that

the value of zi would have satisfied ψi, and that it is consistent with the values of x and y. (Each
one of the x ∈ X(zi) and y ∈ Y (zi) is read by at least one of these circuits ψ(q)

i .) We remark
that each new circuit ψ(j)

i could have read two variables (as is more standard) rather than three:
Instead of reading both an X-variable and a Y -variable (in addition to the Z-variable), it could
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have read either an X or a Y variable. However, looking ahead, making three queries (each into
a different set of variables) will be convenient for repetition. It will allow us, more naturally, to
use three separate tables for `-tuples of Z, Y , and X variables. This way we will avoid having
to deal with tuples mixing both X and Y variables.

Clearly if σ|X∪Y satisfies all ψi, it can be extended to Z such that all of the ψ(j)
i accept. Also,

Proposition 4.11 Let σ : X ∪Y ∪Z → ΣX ∪ΣY ∪ΣZ . If σ|X is δ-far from satisfying ϕ, then,

Pr
i,j

[
ψ

(j)
i rejects

]
≥ γ/q .

Proof: By the soundness of A, at least γ fraction of the ψis reject the assignment σ|X∪Y . No
matter how one assigns the Z variables, on these ψis either σ(zi) 6∈ SAT (ψi) or there is an
inconsistency between the value of zi and at least one one of the q variables accessed by ψi. We
detect this inconsistency with probability at least 1

q .

Step 2: Parallelization

We now define new variables that are tuples of the variables X,Y, Z above. Let ` = O(( q
γ )3/2).

For every possible `-tuple of X-variables, we have a new variable x̄ = (x1, . . . , x`) ∈ X, so that
X ≡ X`. Similarly we define Y ≡ Y ` and Z ≡ Z`.6

We now define three types of building-block circuits. The first will perform `-parallel repeti-
tion of the circuits {ψ(j)

i } in order to reduce their error. The second will facilitate the analysis
of the parallel repetition by performing a consistency test of the assignment to the ` tuples (as
in Figure 3). The first two types only test the new variables that supposedly represent `-tuples
of original variables. We therefore still need to compare the assignment for the `-tuples to the
assignment for the original X-variables.

Parallel-Repetition Circuits. For every choice of an `-tuple of circuits ψ(j1)
i1

, . . . , ψ
(j`)
i`

in

{ψ(j)
i }i∈[R],j∈[q] we will have one circuit simulating their `-wise AND. For every 1 ≤ t ≤ ` let xt

(resp. yt, zt) be the single x- (resp. y-, z-) variable accessed by ψ
(jt)
it

. The circuit will access
z̄ = (z1, . . . , z`) ∈ Z, x̄ = (x1, . . . , x`) and ȳ = (y1, . . . , y`) and accept if on every coordinate
1 ≤ t ≤ `: zt satisfies ψit and is consistent with xt and yt (recall that the assignment for each zt
is interpreted as an assignment for all of the variables of ψit , and in particular it specifies values
for xt and yt). Denote these circuits by C1

1 , . . . , C
1
R1

with R1 = (qR)` ≤ RO(`) (since q � R).
Let C1 =

{
C1

1 , . . . , C
1
R1

}
.

Consistency Circuits. Let Dx be the distribution on X defined by having Prx∈Dx [x] equal
the probability that a uniformly random ψ

(j)
i circuit reads x. Define Dy,Dz similarly. For all

possible random choices of x̄, x̄′ as described in the consistency test in Figure 3, with D = Dx,
we have a consistency circuit for the corresponding test. Likewise for all choices of ȳ, ȳ′ and of
z̄, z̄′. Let C2 = {C2

1 , . . . , C
2
R2
} be the sequence of these circuits. The number of random choices

is bounded by the number of pairs of circuit ψ(j)
i and variable x (or y) which is ≤ qR, raised to

6As discussed above, we ensure that the assignment to these `-tuples is rotation consistent, by a simple folding
argument. Instead of requiring an assignment to `-tuples we ask for an assignment to subsets of cardinality at
most `. This naturally defines a rotation consistent assignment to the `-tuples.
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the power `, and then at most squared. So, R2 ≤ 3 (qR)2` ≤ RO(`) (note that we have exactly
the same number of circuits testing the X-variables, the Y -variables, and the Z-variables).

Comparison Circuits. These ensure consistency between X and X. For each x ∈ X and
x̄ ∈ X that contains it, we have a comparison circuit, comparing the value of x, with the value
given to it in the tuple x̄. Denote the resulting circuits C3 = {C3

1 , . . . , C
3
R3
}, then R3 = `R` =

RO(` log `) such circuits.

Final Circuits. For simplicity, we assume R1 = R2 = R3 = RO(` log `) (otherwise, equality
can be obtained by duplication). The final circuits output by our assignment tester will be the
AND of the i-th C1 circuit with the i-th C2 circuit and with the i-th C3 circuit. That is the i-th
output circuit is C1

i ∧C2
i ∧C3

i . This guarantees that if ε′ of the final circuits accept, then ε′ of
the C1 circuits accept as do ε′ of the C2 circuits and ε′ of the C3 circuits. Observe that these
circuits are over variables X ∪X ∪ Y ∪ Z.

This completes the description of the new assignment tester. Before we prove completeness
and soundness, let us examine its parameters. The number of output circuits is indeed RO(` log `)

Each output circuit queries O(1) variables. The maximum size of an output circuit is ≤ O(` · s).
Completeness is immediate: Given an assignment to X that satisfies ϕ, it can be extended

(due to the completeness of A) to the Y variables so that all ψi are satisfied. This naturally
extends to an assignment for Z, and then for X,Y , Z.

Lemma 4.12 (Soundness) Given an assignment σ for X ∪X ∪ Y ∪ Z, if σ|X is 2δ-far from
satisfying ϕ, then at least γ′ of the output circuits reject.

Proof: Let Fx
def
= σ|X : X → ΣX be the restriction of σ to X, and similarly, Fy

def
= σ|Y

and Fz
def
= σ|Z . Recall Dx (respectively, Dy,Dz) was the distribution according to which the

consistency test of X (respectively: Y ,Z) was performed. Let fx = fFx,Dx and fy = fFy ,Dy

and fz = fFz ,Dz be the plurality functions of Fx, Fy, Fz respectively, as in Definition 4.9. In the
following proof the reader may wish to regard Dx,Dy,Dz as being uniform, although in general
this need not be the case. We will however require Dx to be uniform, so let us explain why this
can be assumed with no loss of generality. The distribution Dx would be uniform if the sequence
of ψ(j)

i circuits access each X-variable the same number of times. To enforce this condition,
we slightly modify the ψi circuits. We introduce a new set of variables X ′ that is supposed
to be the exact copy of X, and apply the ψi circuits on the assignment to X ′ (instead of the
assignment to X). In addition, we add consistency checks to test that the assignments to X
and to X ′ are δ-close, by checking equality between a random variable in X and its copy in X ′.
It is easy to argue that the new circuits still define an assignment tester (with a small increase
in the distance parameter but otherwise almost identical parameters to the original one, A).
In addition, since the consistency checks between X and X ′ access each X-variable the same
number of times, we get the additional desired property.

Recall that σ|X is 2δ-far from satisfying ϕ. We prove that either γ′ of the circuits in C3 reject,
or γ′ of the circuits in C2 reject, or γ′ of the circuits in C1 reject.

Proposition 4.13 If distX(fx, SAT (ϕ)) ≤ δ, then γ′ of the circuits in C3 reject.

Proof: If distX(fx, SAT (ϕ)) ≤ δ, then since distX(σ|X , SAT (ϕ)) > 2δ, the triangle inequality
implies distX(fx, σ|X) > δ. Let x ∈ X be such that σ(x) 6= fx(x). By definition of plurality (and
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since Dx is the uniform distribution!), fx = fFx(x) is defined to be the value that is assigned
most often to x, among all tuples that contain x. Thus, assuming fx 6= σ(x), the value of σ(x)
must occur in no more than half of the tuples containing x. Thus, at least half of the comparison
circuits (in C3) that access x reject, altogether δ

2 > γ′ of all of the comparison circuits reject.
Recall that an `-tuple x̄ ∈ X is bad with respect to Fx, if Fx(x̄) disagrees with (fx(x1), . . . , fx(x`))

on more than 3
√
` locations. A similar definition applies to bad tuples in Y and in Z.

Proposition 4.14 If more than 1
8 fraction of the tuples (in each of X,Y or Z) are bad, then

at least γ′ of the circuits in C2 reject.

Proof: Assume there are more than 1
8 bad tuples, with respect to Fx, Fy or Fz then Theo-

rem 4.10 guarantees that for some absolute constant c, the consistency test for the particular
table will reject with probability ≥ 1

8c . Thus, at least 1
24c ≥ γ′ of the circuits in C2 will reject.

Now, assume the conditions in both Propositions 4.13 and 4.14 fail to hold. This will en-
able us to argue that the circuits in C1 are emulating the serial repetition of

{
ψ

(j)
i

}
, and to

deduce that many of them reject. Failure of the condition of Proposition 4.13 means that
distX(fx, SAT (ϕ)) > δ. Together with Proposition 4.11, this implies that at least γ/q of the{
ψ

(j)
i

}
circuits reject the assignment fx ∪ fy ∪ fz. Failure of the condition of Proposition 4.14

means that the variables X,Y , Z are consistent with the plurality assignments fx, fy, fz. So for
example reading the assignment for a tuple (x1, . . . , x`) ∈ X “emulates” reading the assignment
fx in locations x1, . . . , x`.

We now combine the above to deduce that at least γ′ fraction of C1 reject.
Indeed, choose ` random circuits ψ(j1)

i1
, . . . , ψ

(j`)
i`

∈
{
ψ

(j)
i

}
, and let ψ = (ψ(j1)

i1
, . . . , ψ

(j`)
i`

).

Under assignment fx∪fy∪fz, we expect to see at least ` · γq of ψ’s components reject. Moreover,
` is chosen exactly so that this expectation is sufficiently above 3 3

√
`, so most tuples ψ see more

than 3 3
√
` rejecting components. Indeed the following proposition follows from a standard tail

inequality,

Proposition 4.15 Assume the failure of the condition of Proposition 4.13. For some ` =
O(( q

γ )3/2),

Pr
ψ

[
ψ contains ≤ 3 3

√
` circuits that reject fx ∪ fy ∪ fz

]
≤ 1/8 .

We now examine which circuits in C1 can possibly accept. A circuit C ∈ C1 corresponding
to some ψ = (ψ(j1)

i1
, . . . , ψ

(j`)
i`

) reads three variables x̄, ȳ, z̄, and rejects unless:

1. At least one of x̄, ȳ or z̄ is bad, or

2. ψ has at most 3 3
√
` components that reject fx ∪ fy ∪ fz.

Indeed, otherwise there must be at least one coordinate 1 ≤ t ≤ ` for which ψ
(jt)
it

rejects, and
also the t-th coordinate of Fx(x̄) equals the plurality function fx(xt), and similarly for Fy(ȳ)
and Fz(z̄), thus by definition C rejects.

Proposition 4.15 bounds the probability of the second item by 1
8 . The probability of the

first item is bounded by the probability of hitting a bad tuple in either one of the tables
Fx, Fy or Fz. Each of x̄, ȳ or z̄ is a random (according to the corresponding distribution
Dx,Dy,Dz) entry in the corresponding table. Therefore, by the bound on the number of bad
tuples (Proposition 4.14), the probability of the first item does not exceed 3 · 1

8 . Altogether, the
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probability that ψ doesn’t reject is bounded by 1
8 + 3

8 = 1
2 , which means that ψ rejects with

probability at least 1/2 > γ′.
In conclusion, at least γ′ of the final output circuits reject, completing the proof of Lemma 4.12

(soundness).
Having established the soundness of the assignment-tester, Theorem 4.8 follows.

5 The PCP Theorem - An Alternate Proof

In this section we give a new proof for the PCP theorem [AS98, ALM+98]. Our proof involves
composition, and a combination of the combinatorial transformations described in Section 4,
applied on a ‘weak’ assignment-tester, that is assumed to be given:

Theorem 5.1 (Weak Tester) For some constants β > 0, c1 and qβ, there exists an assign-
ment tester Aβ with the following parameters

• Number of output circuits, R(n) = nc1,

• Size of output circuits, s(n) = O(n1−β),

• Number of queries, q(n) = qβ,

• Error probability, ε(n) = 0.1,

• Distance, δ(n) = 0.1).

Such an assignment tester (and even stronger) can be constructed, for example, by relying
on algebraic techniques already present in [FGL+91]. In particular, by taking a low-degree-
extension with a constant number of dimensions (as opposed to the way it is usually invoked
with a logarithmic number of dimensions) and then performing the [LFKN92] “sum-check”
procedure (while relying on a weak low degree test). It is interesting to note that although
an assignment-tester seems stronger than just a PCP verifier, all known constructions give the
stronger object.

Our main theorem in this section is the following,

Theorem 1.1 (Formal Statement) Assuming Aβ as in Theorem 5.1, there exists an assign-
ment tester A with parameters

• Number of output circuits, R(n) = poly(n),

• Size of output circuits, s(n) = O(1),

• Number of queries, q(n) = O(1),

• Error probability, ε(n) = 0.1,

• Distance, δ(n) = 0.1.

The PCP theorem now follows as an immediate corollary,

Corollary 5.2 (PCP Theorem) Given a set of Boolean constraints ψ1, . . . , ψR over Boolean
variables Z, such that each read a constant number of variables, it is NP-hard to distinguish
between the following two cases:

26



1. [Completeness:] There is an assignment to Z satisfying all of ψ1, . . . , ψR.

2. [Soundness:] Every assignment to Z satisfies at most 10% of ψ1, . . . , ψR.

Proof: We reduce from SAT. On input a SAT formula ϕ over variables X, feed it to the
assignment tester algorithm A given by Theorem 1.1. The output is a list of R(|ϕ|) circuits
ψ1, . . . ψR such that each read a constant number of bits from Z = X ∪ Y .

If ϕ is satisfiable, say by an assignment a : X → {0, 1}, then there is some b such that together
a ∪ b satisfy all of ψ1, . . . , ψR. If ϕ is not satisfiable, at most ε = 0.1 fraction of {ψ1, . . . , ψR}
can accept. Otherwise, the soundness condition of A implies that a is δ-close to a satisfying
assignment for ϕ, and in particular it means that ϕ is satisfiable.

The naive approach for proving Theorem 1.1, the main theorem of this section, is to compose
Aβ with itself log log n times. Starting with an input circuit of size n, the output circuits
have size n1−β, (n1−β)1−β = n(1−β)2 , and so on n(1−β)i

at step i. Therefore, the circuit size
of the output circuits is constant for i = O(log log n). While already achieving non-trivial
parameters, this construction does not quite give the PCP Theorem. The reason has to do with
the error probability, or its complement, the detection probability (γ = 1 − ε), which will be
more convenient to work with in this section. The detection probability becomes γ1γ2 · · · γi =
(γβ)log logn = O(1/ log n), rather than constant as we would like. Our proof of Theorem 1.1 will
have the same general structure as in the naive approach but with a more elaborate recursive
step, as follows.

It may seem at first that there is an additional more inherent problem with the naive approach.
After all, to compose an assignment tester with itself we need δ < 1/q which seems impossible.
However, recall that the number of queries q of an assignment tester can be easily made a small
fixed constant (e.g. 3) without harming the distance parameter δ (see Proposition 4.11).

Figure 4: The inductive step. Error reduction encapsulates the additional parameter-fixing
steps which compensate for the error-increase of the composition step.

Inductive step - quick overview (see also Figure 4). Our construction is bottom-up.
We assume having constructed an assignment tester with the desired parameters that works
for inputs of size smaller than n, and show how to extend it for inputs of size n. Therefore, by
induction, we obtain the desired assignment-tester for all input-sizes n.

Our inductive step begins with composition of the black-box assignment tester with the one
assumed by induction. This composition, as discussed above, increases the error of the as-
signment tester. To correct this we next perform error-reduction by ‘parallelization’ (as in
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Theorem 4.8) which will take care of the error but will have two undesirable side effects: the
distance parameter δ will increase and the size of the output circuits will increase as well. The
next step will be to perform a distance reduction (as in Lemma 4.1). Finally, the last step will
be to reduce back the size of the output circuits, to achieve the inductive hypothesis. This is
done by composition (again) but this time with a constant size assignment tester (the inputs
to this assignment tester will always be of some bounded constant size). We note that this
second assignment tester (called A0 below) can be obtained, e.g., by instantiation of the black
box tester (of Theorem 5.1) for a fixed input size.

Before proceeding to the formal proof, it will be convenient to strengthen a bit the parameters
of Aβ given in Theorem 5.1.

Corollary 5.3 Assuming Aβ as in Theorem 5.1, there exists a constant q̄ such that for every
α > 0 there exists c1 and an assignment tester Aα with the following parameters R(n) =
nc1 , s(n) = O(nα), q(n) = q̄, δ(n) = 0.1, ε(n) = 0.1.

This strengthening follows by an appropriate sequence of transformations similar to those be-
low. We defer the proof to Appendix B.

The rest of this section is devoted to proving Theorem 1.1 by following the outline above. We
first describe the building blocks used to construct the recursive algorithm A, and then formally
describe A, see also Figure 5.

5.1 Building-block testers and their parameters

As discussed above, we consider three testers in this construction. A itself (that is constructed
recursively), Aα which is essentially the assignment tester we assume as a black box, and
finally A0 - the constant size assignment tester. It is important to note that there are various
interdependencies between the parameters of these three testers, for example, to allow their
composition (as Theorem 3.7 makes some restriction on parameters of the composed testers).
The main purpose of the following definitions and discussion is to make explicit the dependencies
between the various parameters, so as to make sure that we do not run into circular definitions.
The reader may choose to ignore at first reading these subtleties and skip to the construction
of A (provided in Figure 5).

First, Aα (guaranteed by Corollary 5.3) has the parameters (R(n) = nc1 , s(n) = O(nα), q(n) =
q̄, δ(n) = 0.1, ε(n) = 0.1). We will select α later and remember that c1 is a constant and is the
only parameter that depends on α. We stress that q̄ is an absolute constant. Since Aα will only
be applied on input circuits of size larger than some n0 (that can be made large enough), we can
assume that s(n) = nα. Denote the error probability and distance parameter by εα = δα = 0.1
and the detection probability, by γα = 1− εα = 0.9.

Regarding the two additional testers A and A0, we first set their distance parameters in a way
that will allow the composition needed by the construction. Set δ = 1

c2q̄
, where c2 is the constant

from Theorem 3.7. Recall that composition of two assignment testers is allowed (Theorem 3.7)
if the distance parameter δ of the second (inner) is related to the query parameter q̄ of the first,
by δ ≤ 1

c2q̄
. In foresight, set q1 = O(1

δ log 1
εα

) (the constant in the ‘O’ notation is an absolute
constant that will be determined by the analysis below). Set δ0 = 1

c2q1
. As we can set q1 ≥ q̄

we obtain δ0 ≤ δ. We can now state the parameters of A0 (and prove its existence).
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Let the input ϕ of A be a circuit of size n. If |ϕ| ≤ n0, then A just runs A0. Otherwise, we
describe the algorithm A via several ‘intermediate’ transformations
(AI ⇒ AIIa ⇒ AIIb ⇒ AIIc = A):

I. Initial Composition (major size reduction): Let AI = Aα ◦ A be the result of composing Aα
with a recursive invocation of A using Theorem 3.7. That is, the recursive invocation refers
to circuits of size at most s(n) = O(nα).

II. Error Reduction:

a) (Error and query reduction) Let AIIa be the outcome of reducing the error parameter
of AI to εα using Theorem 4.8.

b) (Distance reduction) Let AIIb be the outcome of reducing the distance parameter of
AIIa to δ using Lemma 4.1.

c) (Auxiliary size reduction) Let AIIc = AIIb ◦ A0 be the composition of AIIb with A0

again using Theorem 3.7, obtaining circuits of size s0.

A will run AIIc on ϕ.

Figure 5: The Assignment Tester A

Proposition 5.4 For any α0 > 0 and any n0 which is large enough (as a function of α0 and
δ0), there exist R0, s0 and q0 with s0 < (n0)α0 and there exists an assignment tester A0 such that
for input circuits of size ≤ n0, A0 has parameters (R0, s0, q0, δ0, εα). (By definition q0 ≤ s0.)

Proof: Set α′0 = α0/3 and let Aα′0 be the assignment tester guaranteed by Corollary 5.3. A0

will be the result of applying the distance-reduction transformation (given by Lemma 4.1) to
Aα′0 , reducing its distance parameter to δ0. All we need to verify is the condition on s0. By
Corollary 5.3 and Lemma 4.1 we have that the size of the output circuits of A0 for input circuits
of size ≤ n0 is at most s0 = O(n0/δ0)α

′
0 +O( 1

δ0
log 1

εα
). By setting n0 to be large enough we get

that indeed s0 < (n0)α0 .
In the proof we will need to set α0 to be a small enough constant, this in turn will set n0 and

also R0 to be large enough constants.

5.2 The Recursive Construction

The following lemma restates Theorem 1.1, giving explicit parameters forA that will be obtained
by induction. The constants s0 and q0 are as in Proposition 5.4, and δ = 1

c2q̄
and γα = 0.9.

Lemma 5.5 There exists C > 0 and an assignment-tester A with the following parameters:
R(n) ≤ nC , s(n) = s0, q(n) = q0, δ(n) = δ = 1

c2q̄
, ε(n) = 1− (γα)2 .

Proof: We give a full description of A, and prove (using induction) that A is well defined,
and has the desired final parameters. A brief outline of A is given in Figure 5.

Let the input ϕ of A be a circuit of size n. If |ϕ| ≤ n0, then A just runs A0. In this case, the
base of the induction is established by Proposition 5.4. As long as the constant C is chosen to
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be large enough so that R(n0) = nC0 ≥ R0), we have that the parameters of A0 (on input size at
most n0) are only better than required.

Assume by induction that Lemma 5.5 holds for all circuits of size smaller than n (in fact
we will only use that it holds for circuits of size s(O(n)) = O(nα)). We verify that each of the
following steps (I, IIa, IIb, IIc below) is well defined, and that we get the claimed parameters.
Figure 6 may assist the reader in following the evolving parameters.

Name Description system-size (R) circuit-size (s) q δ γ

Aα Black-box nc1 nα q̄ δα γα
A Induction nC s0 q0 δ (γα)2

A0 Const. Size R0 s0 q0 δ0 γα

AI reduce s nc1 ·O(nα)C s0 q0 δα (γα)3

AIIa &
raise γ
reduce q

(
nc1+αC

)O(`)
` · s0 · q′1 q′1 2δα γα

AIIb reduce δ
(
nc1+αC

)O(`)
` · s0 · q1 q1 δ γα

AIIc reduce s
(
nc1+αC

)O(`)
s0 q0 δ (γα)2

Figure 6: Evolution of parameters during one inductive step. Recall that q1 = O( 1
δ log 1

εα
). In

addition, q′
1 = O( 1

δα
log 1

εα
) and ` = poly

(
q0
γα

)
. The main composition step (step I), reduces the circuit

size to s0 at the price of reducing the detection probability from (γα)2 to (γα)3. The error-reduction
step (step IIa), increases the detection probability back (even above its final intended value). It is also
crucial that the number of queries is also reduced, i.e. q′

1 < q0. However, both s and δ increase. This is
corrected in steps IIb and IIc.

I. AI is the composition of Aα with the recursive invocation of A, using Theorem 3.7.
This is well defined because A uses distance parameter δ ≤ 1

c2q̄
and since A is defined

(inductively) for all inputs of size smaller than s(n) < n. Based on Theorem 3.7, we have
that AI = Aα ◦A produces nc1 ·(O(nα))C circuits, and has detection probability γα ·(γα)2.
As for the additional parameters, we have circuit size s0, number of queries q0 and error
parameter δα.

IIa. We now apply error-reduction to AI to increase the detection probability from (γα)3 to γα,
using Theorem 4.8. For q′1 = O( 1

δα
log 1

εα
) and ` = poly

(
q0

γα

)
, we have that the resulting

assignment tester AIIa produces poly(1/εα) ·
(
nc1+αC

)O(`) =
(
nc1+αC

)O(`) circuits. Its
circuit size is ` · s0 · q′1, the number of queries is q′1, the distance parameter is 2δα and the
detection probability is γα as desired.

IIb. Next, we get AIIb by reducing the distance parameter of AIIa from 2δα to δ according
to Lemma 4.1. As discussed in Remark 4.4, this will require applying AIIa on circuits of
size M = O(2δα

δ n) = O(n) (recall that δ = Ω(1/q̄) is a constant). We note that as long as
α is small enough this will only require invoking A recursively on circuits of size smaller
than s(M) < n. The number of circuits that AIIb produces is poly(1/εα)

(
M c1+αC

)O(`) =(
nc1+αC

)O(`). The number of queries is q1 = q′1+O(1
δ log 1

εα
) = O(1

δ log 1
εα

). Note that this
is consistent with our previous definition of q1. The circuit size is ` · s0 ·q′1 +O(1

δ log 1
εα

) <
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` · s0 · q1 (by setting q1 = O(1
δ log 1

εα
) to be large enough). The detection probability

remains γα and the distance parameter is δ as desired.

IIc. Finally, for the composition AIIc = AIIb ◦ A0 to be well-defined we need to have n0 ≥
O(` · s0 · q1). Note that ` · s0 · q1 = poly(s0) (there are hidden constants here which
depend on δα, εα and q̄). Since s0 < (n0)α0 the condition that n0 ≥ O(` · s0 · q1) is
satisfied provided that α0 is small enough (which translates to n0 and R0 being large
enough). In addition, we have that δ0 satisfies the condition of Theorem 3.7, and allows
the composition of AIIb with A0. The parameters obtained by AIIc are: number of circuits
is R0 ·

(
nc1+αC

)O(`) =
(
nc1+αC

)O(`); the circuit size is s0; the number of queries is q0; the
detection probability is (γα)2 and the distance parameter is δ.

It remains to verify that the parameters of AIIc are as good as those required of A (and so A
will just simulate AIIc on inputs with |ϕ| > n0, and this will complete the proof by induction).
This already holds directly for all parameters apart of the number of circuits which is supposed
to be nC . Therefore, the condition that is imposed is

(
nc1+αC

)c′·` ≤ nC , for some constant c′

derived from the analysis above. For that we set α < 1/(2c′ · `) (which causes the constant c1
that controls the number of circuits output by Aα to increase, but still remain constant). The
required condition now holds as long as C > 2c1 · c′ · `.

6 A Combinatorial Construction

In this section we describe a fully combinatorial construction of assignment testers with parame-
ters R = npoly logn and s = O(1). This implies a combinatorial proof for NP ⊆ PCP [polylog, 1].
Although not as strong as the PCP-Theorem, such a result still has quite powerful implications,
for example that approximating Max-3-SAT is quasi-NP-hard.

In the construction of the assignment tester A, we follow the recursion style of Section 5.
Namely, we compose an assignment tester Aα that produces circuits of size nO(α), with a recur-
sive call to A itself on circuits of this size. We then reduce the error of the resulting tester to
maintain the induction hypothesis (as described in step II of Figure 5). The main difference,
is that here we can no longer assume the existence of Aα as a black box that is given to the
construction. We will therefore have to construct Aα ourselves.

The first observation we make is the following: when defining A on input circuits of size n we
only need to apply Aα on inputs of size O(n). However, when defining A on input circuits of size
n we are allowed to assume that A is already well defined for inputs of size smaller than n (in
fact we are already making this assumption in the construction of Section 5). For this reason,
we do not really have to build Aα from scratch. Instead, in the definition of Aα on inputs of
size n′ = O(n) we are allowed to invoke A itself as long as we only invoke it on inputs that
are smaller than n. In the presentation below we will concentrate on this task of constructing
Aα given A which is only defined on smaller inputs (formally stated in Lemma 6.3). This will
include all of the new ideas not already described in Section 5.

Putting everything together (as we do in Section 6.3), we obtain a construction of A which
on inputs of size n makes two recursive calls, one with inputs of size n1−α (in the construction of
Aα) and the other with inputs of size n3α (when composing Aα with A similarly to Section 5).
Taking into account the additional costs of the error-reduction steps we get a recursion formula,
essentially of the form, R(n) = (R(n1−α) · R(n3α))O(1) which solves to 2poly logn.
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We note that, for the base of the induction, we rely on a given constant-size tester, say like
the one in Proposition 5.4 of Section 5. For that we can rely even on extremely inefficient
constructions of PCPs like the one based on the long-code. (As mentioned earlier, the constant-
size assignment tester can also be found via exhaustive search but its existence is only guaranteed
through some explicit proof.)

6.1 Overview – Constructing Aα and Oblivious Testers

Before turning to the formal proof, let us first give a more detailed overview of the construction
of Aα. This will also allow us to introduce a new desired property of assignment testers that
lies at the heart of our new construction, namely we discuss the notion of oblivious assignment
testers.

Recall the task at hand: we would like to construct a tester Aα that on input circuits of size
n produces circuits of size nO(α). In addition we need Aα to have constant query complexity.
Namely, each of the circuits produced by Aα should only read a constant number of variables.
On the other hand, we have at our disposal a tester A that produces circuits of constant size
(and in this respect is much better than what we need of Aα), albeit it is only defined on input
circuits of size smaller than n by some constant factor.

Our approach is to decompose the input for Aα into smaller pieces, and apply A on each piece
separately. We then show how to combine the outcomes of the different runs of A, resulting in
our Aα.

Ignoring various important issues (which we will soon address) the construction goes as fol-
lows: On an input circuit ϕ of size n, the first step will be to decompose ϕ into the disjunction of
n3α smaller circuits

∧
i ϕi. Now we apply the assignment tester A on each one of the ϕi’s to ob-

tain ψi,1, . . . , ψi,R1 , where each ψi,k has constant size. It may be useful to think of ψi,1, . . . , ψi,R1

as the i’th row of a very skewed matrix (with longer rows and shorter columns). At this point,
we will turn each column of this matrix into a new test. For the kth column we define the test
ψk =

∧
i ψi,k. These circuits have size O(n3α), as they are composed of n3α circuits of size O(1).

The transformation ϕ ⇒ {ψk} defines the desired Aα (in other words, on input ϕ, the tester
Aα outputs {ψk}).

In the informal description above, we have ignored two major issues, to which we now draw
attention.

1. Lack of robustness. It comes up when trying to argue soundness for Aα, say as a PCP
verifier: in the case that ϕ is not satisfiable then any assignment will fail to satisfy at
least one of the ϕi’s. We now want to argue that this implies that for this i many of
the ψi,k’s will not be satisfied, which will finally imply that many of the ψk’s will not be
satisfied. Our problem is that while the given assignment will not satisfy one of the ϕi’s it
may be close to satisfying each and every one of them. In that case, applying A does not
guarantee much regarding the ψi,k’s. Similarly to the proof for the composition theorem
for assignment testers we solve this difficulty by applying A on a “robust version” of the
ϕi’s rather than on the ϕi’s themselves. The robust circuits ϕ′i will be defined such that
when ϕ is not satisfiable then any assignment will be far from satisfying at least one of
the ϕ′i’s (in fact we will need a bit more of the ϕ′i’s in order to argue soundness as an
assignment tester rather than as a PCP verifier).

We omit from this overview more specific details of how the ϕi and ϕ′i circuits are defined
and instead turn our attention to the second and potentially more devastating difficulty
of our construction.
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2. Huge query complexity. It is indeed true that the tester Aα described above produces
circuits ψk, of size nO(α) as desired. However, in the general case, the query complexity of
Aα is also nO(α) rather than O(1) as required (recall that large query complexity means
low “effective robustness” which implies that the composition of Aα with the recursive call
to A as in Section 5 will fail miserably). To overcome this major obstacle we introduce
the notion of an “oblivious” assignment-tester. Such a tester produces output circuits
that have the following property: the names of the variables queried by each circuit is a
function only of |ϕ| and not of ϕ. Formally,

Definition 6.1 Let A be an assignment tester that on input ϕ over variables x1, . . . , xn1,
produces circuits ψ1, . . . , ψR(n) over variables x1, . . . , xn1 , xn1+1, . . . , xn1+n2. A is called
oblivious if for every n there exist q(n) functions

ν1, .., νq : {1, . . . ,R(n)} → {1, . . . , n1 + n2}

such that ψk (1 ≤ k ≤ R) always depends on the q variables indexed by ν1(k), . . . , νq(k).
In other words, which variables are read by ψk depends on |ϕ| but not on ϕ.

Note that the predicate evaluated by each ψk may certainly depend on ϕ and not only on
|ϕ|. Also note that we do not make any requirement on the efficiency of evaluating the
νi’s, (we can point out however that their efficiency does follows from the efficiency of A).

Intuitively, the reason that obliviousness of A is useful in reducing the query complexity
of Aα is that it implies a very regular structure of the variables read by the ψi,k’s that
compose the final circuit ψk. This allows us to cluster the variables read by the output
circuits ψk into larger, nO(α)-bit long, variables, such that each ψk depends only on a
constant number of those larger variables. We would like to point out that this is not
a generic method to obtain aggregation of variables but rather a method tuned towards
our specific construction. Finally it remains to address the typical case where A is not
oblivious. Luckily, we show that it is not hard to turn every assignment tester into an
oblivious one.

6.2 Constructing Aα

We now formalize the construction of Aα for inputs of size Nα > N based on A which is only
defined for input circuits whose size is smaller than N .

Lemma 6.2 For every α < 1
3 , given an assignment tester A defined for inputs of size n such

that n < N , with parameters (R(n), s(n) = O(1), q(n) = O(1), δ(n) = O(1), ε(n) = O(1)), we can
construct Aα defined for inputs of size at most Nα, where Nα is such that N (1−α)

α poly logNα <
N , with circuit size sα(n) = O(n3α), and other parameters:

Rα(n) = R(n1−αpoly log n) · n · poly(1/ε), qα(n) = O(
1
δ

log
1
ε
), δα(n) = 24δ, εα(n) = ε .

Remark 6.3 Note that the main advantage of Aα over A is that it is defined for significantly
larger inputs. In the application of Lemma 6.3, we will only need it to be defined for inputs of
length at most Nα = c ·N for some constant c > 1.

Proof: Let ϕ, |ϕ| = n ≤ Nα, be the input circuit over a set of variables X. First, we
decompose it as the disjunction of smaller circuits ϕi.
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Decomposing ϕ. We start by preprocessing ϕ, transforming it into a 3SAT formula C1∧· · ·∧
Cm, where each variable appears only a constant number of times. This can easily be done by
adding new variables Y for each internal gate as well as for multiple copies of X variables with
out degree larger than one. Some of the clauses Ci will correspond to gates in ϕ. These clauses
verify that the assignment for the gate variable is consistent with the assignment for the input-
variables. In addition, for variables yi1 , yi2 , yi3 , . . ., that are supposed to be copies of a variable
xi, we have clauses verifying that xi = yi1 , and that yij = yij+1 . Clearly, |X ∪ Y | ≤ n = |ϕ|.
This also guarantees that an assignment to X could be extended to an assignment to X ∪ Y
that satisfies C1 ∧ · · · ∧ Cm if and only if the assignment to X satisfies ϕ.

Assume that n1 = n1−α is an integer. Arrange the variables in an nα-by-n1 matrix V , such
that the X variables fill the first |X|

n1
rows (for simplicity, assume that n1 divides |X|). Each row

of V consists of n1 variables. Denote the rows by Vi, i = 1, . . . , nα.
For every i = (i1, i2, i3) ∈ [nα]3, define ϕi to be the AND of all of the clauses Ci whose three

variables are contained in Vi1 ∪ Vi2 ∪ Vi3 . This is a decomposition of ϕ in that

C1 ∧ · · · ∧ Cm =
∧

i=(i1,i2,i3)

ϕi .

Moreover, the circuits ϕi are significantly smaller than n: Each ϕi depends on≤ |Vi1 ∪ Vi2 ∪ Vi3 | =
3n1 variables and consists of O(n1) clauses (since each variable appears in a bounded number
of clauses in the 3SAT formula).

Making the ϕi’s robust. Next, we prepare the ϕi’s for composition by making them robust
(similarly to the proof of Lemma 3.6). Define new circuits ϕ′i over new ‘encoding’ variables Wi in
a natural way as follows. Let e : {0, 1}n1 → {0, 1}cn1 be an error correcting code, defined below.
For every i = 1, . . . , nα, let Wi be a set of cn1 new Boolean variables, supposedly representing
the encoding via e of Vi. Let

∀i = (i1, i2, i3) ∈ [nα]3, ϕ′i be a circuit over variables Wi1 ∪Wi2 ∪Wi3 (1)

that accepts only those assignments that are correct encodings (via e) of assignments that would
have made ϕi accept.

With foresight, we choose an encoding e that in addition to having good rate and distance,
also has the following “local-checkability” property. Given an assignment a for the original X
variables, and an assignment b for the encoding variables, it is easy to verify (with two queries)
that either b is close to e(a), or it is far from any codeword. This property is needed for Aα to
be an assignment tester, rather than just a PCP verifier. We obtain this property by choosing
e to be the string-concatenation of two error-correcting codes e1 and e2 where e1 : {0, 1}n1 →
{0, 1}

c
2
n1 is an error-correcting-code as defined in Lemma 2.1, and e2 : {0, 1}n1 → {0, 1}

c
2
n1 is

the trivial ‘repetition’ encoding, i.e. it outputs c/2 repetitions of each bit in the input. The
distance of e is at least the distance of e1, i.e. at least n1. By Lemma 2.1, the size of ϕ′i is linear
in that of ϕi, i.e. it is O(n1).

Let W be an nα × cn1 matrix whose rows are Wi. The first c
2n1 columns (the ‘left’ half)

of W correspond to encoding according to e1, and the last c
2n1 columns (the ‘right’ half) of

W correspond to c
2 copies of V (recall V is the matrix that contains the X). The following

proposition is straightforward,
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Figure 7: The variables V = X ∪ Y and W .

Proposition 6.4 Let b : W → {0, 1}, and define ab : X → {0, 1} to be the maximum-likelihood
decoding7 of b. If ab doesn’t satisfy ϕ, then there exists some i such that ϕ′i is 1

6c -far from being
satisfied by b.

Proof: If ab doesn’t satisfy ϕ, then there is some ϕi, i = (i1, i2, i3), that falsifies ab. This means
that at least one of Wi1 ,Wi2 ,Wi3 need to be changed in more than half of the code’s distance,
n1 number of bits, so that together they encode a value that satisfies ϕ′i. The number of bits
that need to be changed is at least n1/2, which is at least a 1

6c fraction of the 3 · cn1 input bits
of ϕ′i.

Applying A. As discussed in the informal overview, before applying A on the ϕ′i circuits we
need to turn A into a robust tester. Fortunately this is can be done by the following lemma
whose proof we defer to Section ??.

Lemma 6.5 There exists some constant c1 > 0, such that any assignment tester A can be made
into an oblivious assignment tester A′, and the parameters of A′ are equal to A’s parameters
computed on input size n′ = n ·(log n)c1. Furthermore, on an n-bit input, A′ only needs to invoke
A on one n′-bit input.

Let A′, be the oblivious version of A guaranteed by Lemma 6.2. Next, apply A′ on each of ϕ′i,
denoting the output by ψi,1, . . . , ψi,R1 . Note that this application of A′ only requires applying
A on inputs of size n1poly log n1 < N (by Lemma 6.2 and the definition of Nα and n1), so
R1 = R(|ϕ′i| poly log |ϕ′i|) = R(n1poly log n1). The circuits ψi,1, . . . , ψi,R1 , are over variables from
at most three rows in W and over new variables Zi. Each circuit has size O(1).

Circuit and Variable Aggregation. The next step is to think of each ψi,1, . . . , ψi,R1 as a
row in a matrix, and to define a new test for each column:

∀k = 1, . . . ,R1, ψk =
∧
i

ψi,k .

7As in Notation 2.2, the decoding of a word σ is e−1(σ̂) where σ̂ is the codeword with minimal Hamming
distance to σ (where ties can be broken arbitrarily).
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There are m = n3α rows, and since the size of each ψi,k is O(1), these new circuits have size
m · O(1) = O(n3α). Moreover, as long as the distance parameter of A is δ ≤ 1

6c , it follows
immediately from the above that

Proposition 6.6 Let b, ab be as in Proposition 6.5 above. Let b1 be any assignment for
⋃

i Zi.
If ab doesn’t satisfy ϕ, then at most ε of ψ1, . . . , ψR are satisfied by b ∪ b1.

The circuits ψ1, . . . , ψR, are therefore close to being the desired output of Aα. They do however,
each depend on many (Θ(m)) Boolean variables, rather than on a constant number of possibly
larger-range variables. This is of course where the obliviousness of A′ comes into play. We can
simply cluster the variables into ‘columns’ so that each ψk will depend on a constant number
of clusters (and the clusters are not too large).

For any i = (i1, i2, i3), the circuits ψi,1, . . . , ψi,R1 , are defined over variables in three rows
of the matrix W , namely Wi1 ∪Wi2 ∪Wi3 , and also over Zi, the auxiliary variables generated
by running A′ on ϕ′i. Let Z be the matrix whose rows are Zi. Now, for each k, the circuit
ψ′i,k depends on some constant q locations in the string Wi1 ∪Wi2 ∪Wi3 , and Zi. Since A′ is
oblivious, the positions queried in these four strings are only a function of the index k (and are
independent of i). We therefore easily obtain the following proposition:

Proposition 6.7 For each circuit ψk, all of the variables read by ψk are contained in q columns
of W and Z, where q = O(1) is the query complexity of A.

The next step is now clear. We replace each column of variables (in both matrices W and
Z) by a new (non-Boolean) variable that has width nα or n3α respectively. Let w1, . . . , wm1

be new variables representing the columns of W , m1 = cn1. Similarly and let z1, . . . , zm2 be
new variables representing the columns of Z, m2 ≤ R1. The tests simulate the previous ones as
follows. For every k ∈ [R1], we define ψ̄k to be the test that verifies the predicate ψk by reading
the appropriate ≤ q column variables that, by Proposition 6.7, contain all of the variables read
by ψk.

The main point is that every variable in W ∪ Z appears in exactly one new column vari-
able. Therefore, consistency is not an issue, as there is a one-to-one correspondence between
assignments to the old variables and assignments to the new ones.

Consistency with the assignment to X. Finally, we must add tests that compare the
values of

{
wi

}
i
∪

{
zi

}
i
to the assignment for the original X variables. Recall that each variable

x belongs to some row Vi, and that c
2 entries in the right half of Wi are supposed copies of x.

For every x ∈ X let there be c
2 compare tests, each checking the value of x against one of the

c
2 columns in W that are supposed to contain a copy of x.

We now amplify the detection probability of the compare tests. Let d = O(1
δ log 1

ε ), we
define a set of tests by applying Corollary 2.5 on the sequence of the above compare tests, with
parameters µ = 6δ and β = ε. The number of compare tests is c

2 |X| = O(n), the size of each
one is O(nα) (because it reads one bit of X, one variable wi of width nα, and later only compares
two of its input bits). Denote the new tests by

{
compare′1, . . . , compare′M1

}
. By Corollary 2.5,

M1 = poly(1/ε)n and each compare′i is the AND of d compare tests. Therefore it accesses O(d)
variables, and its size is O(n3α).

Final circuits and their soundness. By appropriate replication, we can assume that the
number (M1) of tests in {compare′i} is equal to the number of tests in {ψ′i}, and both are equal
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to poly(1/ε)nR1. Let the i-th final output circuit of Aα be the AND of ψ′i and compare′i. We
next prove the soundness condition of Aα (all other properties are easy to verify).

Lemma 6.8 (Soundness) Let δ1 = 24δ and let a : X → {0, 1}. If a is δ1-far from satisfying
ϕ, then for every assignment b for

{
w1, . . . , wm1

}
∪

{
z1, . . . , zm2

}
, at most ε of the final circuits

can be satisfied.

Proof: The assignment b can be read as an assignment for W ∪ Z. Define ab : X → {0, 1} to
be the maximum-likelihood decoding according to e of b|W :

∀Vi ⊂ X, ab(Vi) = e−1(b(Wi)) .

If ab does not satisfy ϕ, then the lemma follows from Proposition 6.6. Otherwise, ab is δ1-
far from a. We must consider also the following ‘majority’ assignment, that can be defined
according to b. Recall that the right half of W is supposedly the repetition encoding of V . Let
ab,maj : X → {0, 1} be the majority decoding (understood to be defined on the appropriate
coordinates) of b restricted to the right half of W (denoted W r with rows W r

i ):

∀Vi ⊂ X, ab,maj(Vi) = majority(b(W r
i )) .

We have three assignments for X: a, ab,maj and ab. If the first two are δ1/2-far from each
other then by definition an ε-fraction of the compare tests will reject and we are done. We know
that a and ab are δ1-far from each other, so the only other possibility is that the last two are
δ1/2-far from each other. In this case, there must be some Vi for which ab(Vi) disagrees with
ab,maj(Vi) on at least δ1

2 · n1 entries. This, by definition of ab, ab,maj and e, implies that Wi is at
least δ1

8 far from a legal codeword. Thus every circuit that reads Wi (say for example, ϕ′i with
i = (i, i2, i3)) sees an input that is at least δ1

24 -far from a satisfying input. Since δ = δ1
24 is the

distance parameter of A, this means that at most ε of ψi,1, . . . , ψi,R1 are satisfied by b, which
implies the same for ψ1, . . . , ψR1 .

6.3 Proof of Theorem 1.2

As discussed above, given the construction of Aα, completing the proof of Theorem 1.2, goes
along the same lines as the construction of Section 5. In the following, we formalize this idea.

Theorem 1.2 (Formal Statement) There exist constants s0, q0 > 0 and ε, δ < 1, and an ex-
plicit combinatorial construction of an assignment tester A with parameters R(n) = npoly logn, s(n) =
s0, q(n) = q0, δ(n) = δ, ε(n) = ε.

Proof: The proof follows by induction on the input size. As discussed above, for the base
of the induction, we rely on a given constant-size tester, say like the one in Proposition 5.4 of
Section 5. Denote this tester by A0 and let its parameters for input circuits of size at most n0,
be (R0, s0, q0, δ0, ε0).8

Now we assume by induction that A has already been constructed for inputs of length smaller
than N . Its parameters are (R(n), s(n) = s, q(n) = q, δ(n) = δ, ε(n) = ε), with s, q, ε and δ being

8Such an A0 can be derived from an even less efficient tester A′
0 that produces circuits of size smaller than

(n0)
1−β0 for some constant β0 rather than circuites that are smaller than (n0)

α0 for arbitrarily small α0. The
desired A0 can now be obtained as in the proof of Corollary 5.3.
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fixed constants (δ will be set by the proof to a small enough constant). Applying Lemma 6.3
for some fixed α < 1

3 , we get an assignment tester Aα that is defined for inputs of size O(N)
(and even larger), and such that Aα’s output circuit size is s(n) = O(n3α). The rest of Aα’s
parameters are Rα(n) = R(n1−αpoly log n) · n · poly(1/ε) = O(R(n1−αpoly log n) · n); qα(n) = 3
(this is obtained as in Proposition 4.11); εα(n) = εα; δα(n) = δα.

We can now use Aα to extend A to n-bit inputs in exactly the same way it is done in Section 5.
That is, we apply steps I, IIa, IIb, IIc described in Figure 5. The analysis is as in Section 5, but
a bit less delicate as we are allowing ourselves quasi-polynomial R (and thus are less constrained
in setting the relations between the various parameters). We therefore quickly go through the
details.

I. AI is the composition of Aα with the recursive invocation of A, using Theorem 3.7. This
is well defined as long as we set δ (the distance parameter of A) to be a small enough
constant. AI is defined for inputs of length O(N). The number of circuits produced by
AI is RI(n) = O(R(n1−αpoly log n) · n · R(O(n3α))). AI has a (small) constant detection
probability γI , circuit size s0, number of queries q0 and distance parameter δα.

IIa. We now apply error-reduction to AI to increase the detection probability from γI to
√
γ,

using Theorem 4.8, where γ = 1− ε.

Since both γI and γ are constants we have that the resulting assignment tester AIIa
produces RI(n)O(1) circuits. Its circuit size is O(s0), the number of queries is O(1), the
distance parameter is 2δα and the detection probability is

√
γ as desired.

IIb. Next, we get AIIb by reducing the distance parameter of AIIa from 2δα to δ according to
Lemma 4.1. As discussed in Remark 4.4, this will require applying AIIa on circuits of size
M = O(2δα

δ n) = O(n). This is fine as AI is defined for such input lengths.

The number of circuits that AIIb produces is RI(M)O(1) = RI(O(n))O(1). The number
of queries is O(1), the circuit size is O(s0) the detection probability remains

√
γ and the

distance parameter is δ as desired.

IIc. Finally, we define AIIc as the composition AIIc = AIIb ◦ A0. This is well defined as long
as n0 is a large enough constant with respect to s0 (a more delicate analysis shows that
here too it is enough to have n0 = poly(s0)) and δ0 is a small enough constant that satisfies
the condition of Theorem 3.7. The parameters obtained by AIIc are: number of circuits
is R0 · RI(O(n))O(1) = RI(O(n))O(1); the circuit size is s0; the number of queries is q0; the
detection probability is

√
γ · (1− ε0) which is larger that γ in case ε0 is small enough; the

distance parameter is δ.

Finally A is simply defined to run AIIc on circuits of length n ≤ N . It remains to verify that
the parameters obtained by AIIc for such circuits are as good as those required of A. Note that
this holds trivially for all parameters apart of the number of circuits. The number of circuits
are RI(O(n))O(1) which opens to the following recursion formula R(N) = (O(R(n1−αpoly log n) ·
n · R(O(n3α))))O(1). Letting a ≥ 1 be such that (1 − α)a+1 + (3α)a+1 < 1, R(n) = O(n(log n)a

)
solves this recursive formula.

6.4 Turning Testers Oblivious

We now return to proving Lemma 6.2 that shows how every tester can be turned oblivious.

38



Proof: (of Lemma 6.2) We start by showing the existence of the following “universal
circuit”: CU takes as input some encoding of a Boolean circuit ϕ, an assignment a to the input
variables X of ϕ and an assignment b to some additional “help variables”. The following hold:
(1) The encoding of ϕ can be computed in polynomial time. (2) If a satisfies ϕ then there exists
an assignment b, (computed from ϕ and a in polynomial time), such that CU (ϕ, a, b) = 1. (3)
If a does not satisfy ϕ then for any b, CU (ϕ, a, b) = 0. (4) For input circuits ϕ of size n, the size
of CU is bounded by n · poly log n (and this in particular bounds the size of the encoding of ϕ).

Let us first see how such a CU can produce an oblivious tester A′. We will then describe how
to construct CU .

First apply A on the universal circuit CU of the appropriate length. More accurately, A is
applied to C ′

U that takes the following inputs: an encoding of ϕ with the error correcting code
of Lemma 2.1, and repetition encoding of the assignment to the X variables and a repetition
encoding of the the assignment to the Y variables. In both cases, the number of repetition is
set so that the encoding of ϕ, and the two assignments are of equal length. C ′

U verifies that all
of the encodings are legal. It then decodes the values it got and applies CU . Now A′ will run
as follows. A′ first applies A on C ′

U . Then, A′ evaluates the description ϕ that CU expects,
and hardwires the encoding of this description to the circuits produced by A (i.e., whenever
these circuits query a value in the encoded description of ϕ this value is assigned by A′ and the
circuit is possibly simplified). Now the circuits that are obtained are just over the assignment
to the X and Y variables. More accurately, the circuits are over the repetition encoding of these
variables. However, whenever an assignment to a copy of one of the variables is required, we
use the original assignment.

The correctness of A′ follows from the correctness of A and the properties of CU . It essentially
has the parameters of A (when applied to inputs of quasi linear size). Finally, it is oblivious
as the locations accessed by the circuits produced do not depend on ϕ at all (as these circuits
were first produced by applying A to the universal circuit).

We now describe how to construct the universal circuit CU . CU will operate over a pre-
processed ϕ, transformed into a 3SAT formula C1 ∧ · · · ∧Cm, where each variable appears only
a constant number of times. This can easily be done by adding new help variables Y for each
internal gate as well as for multiple copies of X variables with out degree larger than one. Some
of the clauses Ci will correspond to gates in ϕ. These clauses verify that the assignment for the
gate variable is consistent with the assignment for the input-variables. In addition, for variables
yi1 , yi2 , yi3 , . . ., that are supposed to be copies of a variable xi, we have clauses verifying that
xi = yi1 , and that yij = yij+1 . Clearly, |X ∪ Y | ≤ n. This also guarantees that an assignment
to X could be extended to an assignment to X ∪ Y that satisfies C1 ∧ · · · ∧ Cm if and only if
the assignment to X satisfies ϕ.

A standard universal circuit for such a 3SAT formula is not hard to construct. The evaluation
of the formula will be done in three phases. First we order the m clauses by the order of their
variable of smallest index (i.e., first the clauses that contain x1 (or its negation), then those
that contain x2 and do not contain x1, and so on). Together with the clauses we order the
variable names and their assignments. Now that both are jointly ordered, we can assign values
to one variable from each clause (at this point, the location of each clause in the joint order is
a constant distance away from the location of an assignment to one of its variables). Repeating
these operations two additional times allows us to assign values to all of the variables of all of
the clauses, which implies a value to the formula. It remains to argue that there are circuits
of quasi linear size for sorting. This however follows immediately from the existence of sorting
networks (where any one of a number of simple sorting networks will do, see, e.g., [CLR90,
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Section 55]).

7 Discussion and Further Research

We have introduced the notion of assignment testers and provided a simple and truly modular
composition theorem for testers. We feel that it is beneficial to state even the original proof
of the PCP Theorem via assignment testers, as their composition seems to us simpler and
more natural. In addition, we provided various generic transformations for assignment testers:
(1) Making assignment testers “robust” (Section 3.4). (2) Reducing the distance parameter
(Section ??). (3) Error reduction via a new method of combinatorial aggregation (Section ??).

Our first construction of assignment testers (given in Section 5) provides a new proof of the
PCP theorem. It relies on the existence of a relatively weak assignment tester which is provided
as a black-box. One advantage of this construction over the original proof of the PCP-Theorem is
that the algebraic building block requires only the algebraic techniques that are already present
in [BFLS91, FGL+91] (in particular, it only needs a weak form of the low-degree test, and it
does not use aggregation via low-degree curves). More importantly, the algebraic techniques
are confined to the construction of the black-box. The way the black-box was constructed can
then be forgotten and we only care about its parameters. Finally, we only use a building-block
PCP of one particular kind (as opposed to the original proof which also used Hadamard-based
PCP). This is made possible through using a non-constant number of composition steps (to
which our composition theorem readily yields itself). On the other hand, one may also consider
the super-constant number of recursive steps to be a disadvantage. It is indeed harder to know
“what’s going on” by such a construction and particularly to track how the final variables relate
to the original ones.

Our second construction is fully combinatorial, and it only relies on standard objects such
as error-correcting codes and hitting sets (which both follow from expander graphs). It also
relies on a constant-size tester, which is easy to construct due to its allowed inefficiency. In this
respect the construction is even simpler (even though the combinatorial part of the construction
is somewhat more complicated). The major disadvantage is of course the quasi-polynomial size.
We note however that such a result has similar applications to those of the PCP Theorem
(basing hardness of approximation on the still highly conservative assumption that NP is not
contained in quasi polynomial time).

On the Robustness Property

We mentioned above that a very related notion to assignment testers was independently in-
troduced by Ben-Sasson et. al. [BSGH+04], where it was named ‘Robust PCPs of Proximity’.
Interestingly, their motivation was completely different, namely constructing length-efficient
PCPs and locally testable codes, yet they came up with essentially the same object.

Just as in [BSGH+04], robustness is an essential part of our composition. However, our com-
position theorem (Theorem 3.7) applies directly to assignment testers that are not necessarily
robust. For that we use in the proof of the composition theorem a generic transformation that
turns any assignment tester into a robust one, with the robustness inversely related to the query
complexity. Most of our work can therefore ignore this additional parameter of robustness. Em-
phasizing assignment testers rather than robust assignment testers has the advantage of staying
closer to the original definition of a PCP verifier. In addition, the importance of the query
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complexity as the effective measure of robustness is emphasized. In particular, it seems more
natural to state and prove the aggregation theorem, a central ingredient of our work, in terms
of query complexity.

We note that the cost of a generic robustization transformation is too high in the context
of [BSGH+04], hence they work only with assignment-testers that are, by definition, robust
(indeed they call these objects Robust PCPs of Proximity). Since [BSGH+04] demonstrates the
usefulness of having the robustness property as an explicit parameter, it could be interesting to
study how our transformations on assignment testers behave in terms of this parameter.

On PCP-Testers and Property Testing

The notion of assignment testers is very related to the area of property testing [RS96, GGR98],
and we were most likely inspired by property testing in coming up with this notion. An assign-
ment tester can easily be converted into a test that checks if an assignment is close to being
a satisfying assignment of a circuit ϕ. The object being tested is the assignment (hence the
name ‘assignment tester’), and the circuit ϕ is a description of the tested property (usually,
in property testing this is a fixed property such as graph connectivity). Of course, the main
difference from standard property testing is that assignment testers also rely on a proof (the
assignment of the new variables) in order to perform the testing. This is a special case of the
notion of proof-assisted-testing of Ergun, Kumar and Rubinfeld [EKR99].

Adding proofs to property testing allows extremely efficient testing of any property com-
putable in polynomial time (as observed in [BSGH+04], this easily extends to properties in
NP). Every such property can be tested by reading only O(1) bits of an object X and a proof
Y . This can loosely be interpreted as saying that every property has a highly-testable repre-
sentation. While being a very powerful statement, it is also a flat one as it does not distinguish
between different properties. In some sense, it reemphasizes that the richness of property testing
is as a study of specific representations. (This was already well understood, as some properties
behave very differently with respect to different representations.)

Locally Testable-Codes

An interesting aspect of our construction, especially of the fully combinatorial one, is that we do
not make any real use of locally-testable codes (apart of the constant size tester). Nevertheless,
as was shown in [BSGH+04], assignment testers easily imply locally-testable codes (and also
a relaxed form of locally-decodable codes). The focus of [BSGH+04] was to get short locally-
testable codes. Our Theorem 1.2 implies the first combinatorial construction of locally testable
codes with subexponential (in fact even quasi-polynomial) rate.

Further Research

The most obvious problem that was left open by this work, is coming up with a combinatorial
proof of the PCP theorem. This has been recently obtained by Dinur [Din05]. Still, one
may also hope to give an elementary construction for the constant-size testers used by the
combinatorial constructions (constant-sized testers are used also in [Din05]). Nevertheless, the
known constructions based on Hadamard or Long codes are already rather simple (especially
compared to other parts of the proof of the PCP-Theorem).

A task of a different nature is related to Raz’s parallel repetition theorem [Raz98]. Recall that
our aggregation method bypasses the complexity of this theorem by adding a few additional
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“consistency queries”. Nevertheless, we only use this method to reduce errors up to some
constant probability. It seems possible that this approach could be extended to a simple,
combinatorial way of reducing errors in an exponential rate. Though this will not provide a
full substitute for the parallel repetition theorem, we still find it an interesting line for further
research.
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Appendix

A Analysis of the Consistency Test

As discussed in Section 4, the heart of our aggregation/parallelization theorem (Theorem 4.8)
is a test T for the consistency of a table F : X → Σ` that is supposed to contain the values of
some function f : X → Σ on all `-tuples of inputs. In other words, F (x1, . . . , x`) is supposed to
equal (f(x1), . . . , f(x`)), for some underlying function f . Such a “combinatorial” consistency
test was given by Goldreich and Safra [GS97]. We described our test in Figure 3, and stated its
properties in Theorem 4.10. This test is in fact a (somewhat stronger) version of Lemma 1.1
from [GS97], which was derived as a simple special case of a more elaborate test which is their
main objective. The more sophisticated test is for tables containing a small “derandomized”
subset of `-tuples. Interestingly, in the context of our paper, the simple and “inefficient” version
of the GS-Test is sufficiently good. We now give a direct proof of Theorem 4.10. Our theorem
proves that if the test accepts with high enough probability then the table F is in fact consistent
with the plurality function of F (as in Definition 4.9), which is the function f that maximizes
individual agreements between F and f . This seems more natural than the two-stage plurality
function obtained by the proof of [GS97]. We view the main contribution of this section to be
the new and direct proof of the consistency test, which relies on a rather natural Markov-Chain
approach. Possibly, this proof can be generalized to work for a wider range of parameters (as
mentioned in the open problems in Section 7).

Proof: (of Theorem 4.10) Clearly, the completeness condition holds. We prove soundness
(that is, we analyze the rejection probability when the table is sufficiently inconsistent with the
plurality function).

We will concentrate on the test with respect to the uniform distribution on X (i.e., D in the
statement of the theorem is uniform). The proof for general D is obtained by simple reduction
to the uniform case:

Proposition A.1 Assuming a restricted version of Theorem 4.10 where D is the uniform dis-
tribution, the theorem holds for an arbitrary D.

Proof: We can translate any D over X into the uniform distribution over Z, where Z is
obtained from X by duplicating elements in X according to their probability under D. Elements
that are not in the support of D are simply dropped. It is clear that the projection of the uniform
distribution on Z to the original set of variables X can be made arbitrarily close to D (and from
now on we will simply assume that the two distributions are identical).

Let Z ≡ Z`. The duplication of variables naturally defines F̂ : Z → Σ`, where for each z̄ ∈ Z,
we let x̄ be the corresponding `-tuple in X and define F̂ (z̄) = F (x̄). The soundness of the test
of Figure 3 when applied to F with respect to D immediately reduces to the soundness of the
same test applied to F̂ with respect to the uniform distribution. (Note that, by definition, the
plurality function of F̂ agrees on any two copies z̄ and z̄′ in Z that correspond to the same
x̄ ∈ X.)

Another simplifying convention is our assumption that F is rotation consistent. Recall that
F is rotation consistent if whenever x̄′ is obtained from x̄ using some cyclic shift of its `
components, F is consistent on these two entries (i.e., F (x̄′) can be obtained from F (x̄) by a
similar shift). As discussed in Section 4, in our setting we can indeed assume that F is rotation
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consistent. Moreover, it is easy to see that the general case can be reduced to the rotation
consistent case.

Proposition A.2 Assuming Theorem 4.10 holds for every F that is rotation consistent, the
theorem holds for an arbitrary F , with the slightly revised test described in Figure 3.

Proof: The original test makes two queries into the table F for the values F (x̄) and F (x̄′).
The revised test will select x̄ and x̄′ in the same manner but instead of querying for F (x̄′) it
will query for the value of F on a random cyclic rotation of x̄′. It is not hard to see that this is
equivalent to performing the original test on a related distribution F ′ over rotation consistent
tables. More specifically, for every set of ` entries x̄1, . . . x̄` that are cyclic shifts of each other,
the value of F ′ on all these tuples is defined as F (x̄i) for a random i. This implies that if F
violates the soundness of the revised test, then at least one of those rotation consistent tables
violates the soundness of the original test.

Let us now recall the test T that we are analyzing and introduce some notations. Let x̄ =
(x1, . . . , x`) and suppose F (x̄) = (a1, . . . , a`), we write x̄i to mean xi and F (x̄)i to mean ai.

1. Select x̄ ∈ X uniformly at random.

2. Select a set of indices JT such that each j ∈ [`] is placed into JT with probability α = 1/ 3
√
`,

independent of other choices.

3. Select x̄′ ∈ X as follows: for each j ∈ JT , we let x̄′j = x̄j , otherwise x̄′j is selected uniformly
in X, independent of other choices.

4. Accept only if F (x̄)j = F (x̄′)j for every j ∈ JT , otherwise reject.

Let f = fF : X → Σ be the plurality function of F . For every x̄ ∈ X define the set of indices
on which F (x̄) differs from f ,

wrong(x̄)
def
= { i ∈ [`] |F (x̄)i 6= f(x̄i)} .

Call a tuple x̄ ∈ X bad if |wrong(x̄)| > 1
α = 3

√
`. Let γ be the fraction of bad tuples. We will

prove that the test T rejects with probability at least γ/c, where c is some absolute constant.
The general idea for our proof is the following: with probability γ a bad x̄ is selected by

T . Fix some bad x̄, since wrong(x̄) > 1
α and each index is placed into JT with probability α,

we have that there exists some i in wrong(x̄) ∩ JT with constant probability. Recall that for
every i ∈ JT the test T sets x̄′i = x̄i. Let ai = F (x̄)i, by the definition of f , for a uniformly
distributed ȳ ∈ X such that ȳi = x̄i, we have that Pr[F (ȳ)i = ai | ȳi = x̄i] ≤ 1/2. Ideally, if x̄′

was distributed exactly like ȳ, the test would reject with constant probability. Our argument is
based on the fact that even though x̄′ has some dependency of x̄, it is still “sufficiently random”
and therefore F (x̄′)i 6= ai (so the test rejects) with some constant probability. What do we
mean by x̄′ being sufficiently random? Consider the stochastic process Gx,i of selecting x̄′ given
x̄ and conditioned on i ∈ JT and x̄i = x for some fixed i and x. We will show that this process
has good expansion properties. We will later argue that these expansion properties are indeed
sufficient to carry out the above intuition.

Definition A.3 For any i ∈ [`] and x ∈ X define the set Vx,i
def
=

{
x̄ ∈ X

∣∣ x̄i = x
}
. Note

that |Vx,i| = |X|`−1. Define Gx,i to be the Markov process over Vx,i where starting at x̄ ∈ Vx,i
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we move to x̄′ selected as follows: x̄′i = x and for each j ∈ [`] \ {i}, with probability α we let
x̄′j = x̄j, otherwise x̄′j is selected uniformly in X, independent of other choices. Let Ax,i be the
transition probability matrix corresponding to Gx,i.

Proposition A.4 For every i ∈ [`] and x ∈ X, the second eigenvalue of Ax,i is λ = λ(Ax,i) = α.

Proof: Since in the space state of Gx,i, the value in the ith coordinate is fixed (to x), we can
simply ignore this coordinate. On the other hand, Gx,i acts on each one of the ` − 1 other
coordinates independently (in an identical way). Consider the transition probability matrix A0

corresponding to the action of Gx,i on each one of the `− 1 coordinates in [`] \ {i}. This matrix
equals the convex sum (1 − α)K|X| + αI|X|, where K|X| corresponds to moving to a uniformly
distributed element (i.e., every entry in K|X| is 1/|X|), and I|X| is the identity matrix. Consider
any vector P ∈ R|X| which is perpendicular to the all one vector (i.e., the sum of the entries in
P is zero), then A0 · P = ((1 − α)K|X| + αI|X|)P = α · P (since K|X| · P = 0). This implies
that the second eigenvalue of A0 is α. To conclude, Gx,i acts on `−1 coordinates independently
according to a transition probability matrix A0 that has second eigenvalue α. It is well known
and not hard to show that in such a case the second eigenvalue of Ax,i is also α.9

Consider now the forgoing intuition. We know that a bad x̄ is selected by T with probability
γ. Furthermore, we know that with constant probability, some i ∈ wrong(x̄) is selected into
JT , meaning that x̄′i = x̄i. We hope to argue that with constant probability, this location i will
reveal to T that the table F is inconsistent. Let x̄i = x and ai = F (x̄)i, we have that x̄ ∈ Vx,i (as
in Definition A.3), and since i ∈ wrong(x̄), for most ȳ ∈ Vx,i we have that F (ȳ)i 6= ai. Therefore,
if x̄′ was a random element of Vx,i the test T would reject with constant probability (conditioned
on x̄ being selected and i ∈ JT ). However, the distribution of x̄′ is obtained by taking a random
step from x̄ according to the process Gx,i (again, conditioned on x̄ being selected and i ∈ JT ).
With this choice of x̄′, we can no longer argue that for any fixed choice of a bad x̄, with constant
probability the test rejects (it may very well be that for all the “neighboring” x̄′’s the value
F (x̄′) is consistent with F (x̄)). We will therefore make an average argument that will exploit the
expansion of Gx,i. We consider not one possible value of x̄ but rather a set Sx,i,a that contains
all the values of x̄ such that x̄i = x and F (x̄)i = a (with f(x) 6= a). Conditioned on x̄ ∈ Sx,i,a
and i ∈ JT we do have that with constant probability x̄′ 6∈ Sx,i,a (since Sx,i,a contains at most
half the tuples in Vx,i and due to the expansion of Gx,i). Therefore, with this conditioning,
the test will reject with constant probability (as with constant probability F (x̄′)i 6= a). Details
follow.

Consider the process G that corresponds to T selecting x̄′ given x̄ (without further condition-
ing). The same transition (x̄, x̄′) is also an edge in various Gx,i. To complete the proof, we want
to lower bound the weight of rejecting edges in each Gx,i separately (as outlined above) and
deduce a similar lower bound for G (which reflects the rejecting probability of T ). However, this
may not be sound as the Gx,i’s may not be a “uniform enough cover” of G. More specifically,
consider a transition (x̄, x̄′), where x̄ is bad. For every i ∈ wrong(x̄)∩ JT , this corresponds to a
transition in Gx̄i,i from some Sx̄i,i,a of density at most half in Vx̄i,i. However, the cardinality of
wrong(x̄) ∩ JT may vary quite a lot. Potentially, this could mean that by counting separately
for each Gx̄i,i, rejecting edges are counted many times while accepting edges are only counted a
few times. Indeed, if we were assured that the size of wrong(x̄) will either be zero (for all of the

9 Each eigenvector of Ax,i corresponds to an (`− 1)-tuple of eigenvectors of A0, the corresponding eigenvalue
of Ax,i is the product of the `− 1 corresponding eigenvalues of A0. Therefore, the second eigenvalue of Ax,i is α,
and it is obtained as the product of `− 2 times the eigenvalue one and the eigenvalue α once.

48



good x̄’s) or some fixed value (for all of the bad x̄’s), then the cardinality of wrong(x̄)∩JT would
not vary too much and the proof would become easier. Intuitively, the larger |wrong(x̄)| is the
better, since the test has “more opportunity” to detect an inconsistency and reject. However,
the argument is much more subtle, due to the fact that we are not arguing for every value of x̄
separately but rather averaging over sets of values Sx,i,a.

To help us manipulate the conditional probabilities more elegantly, it is convenient to consider
as a “mental-experiment” the following revised test T ′:

1. Choose x̄ ∈ X uniformly at random.

2. Set k(x̄) = max{16/α, |wrong(x̄)|}.10 Select an index i ∈ [`] ∪ {0} such that each i ∈
wrong(x̄) is selected with probability 1/k(x̄) and with the remaining probability i = 0. If
i = 0 then T ′ accepts and halts.

3. Let x = x̄i. Take a random step from x̄ to x̄′ according to Gx,i.

4. If F (x̄′)i 6= F (x̄)i reject, otherwise accept.

We note that T ′ is not efficiently implementable, and is not meant to be. T ′ is merely a tool of
the analysis, used to bound the probability that T rejects. The main convenience of T ′ is that it
concentrates on a single possible inconsistency between F (x̄) and F (x̄′), namely inconsistency
on the ith coordinate. This way we rather naturally avoid overcounting the rejection probability
associated with a particular choice of x̄ and x̄′. Such overcounting may arise by counting the
same pair (x̄, x̄′) separately for every inconsistent coordinate. Note that if wrong(x̄) is small
then JT ∩wrong(x̄) is likely to be empty and thus T will accept. Therefore, if wrong(x̄) is small,
we let T ′ accept too with some probability (ignoring F (x̄′) altogether). We do that by allowing
i to be set to zero with some probability that depends on the size of wrong(x̄). We remark that
if i is different than zero, it is uniformly distributed in wrong(x̄).

To bound the rejection probability of T through the rejection probability of T ′ we would
have liked to show that: (a) Pr[T ′ rejects] = O(Pr[T rejects]), and (b) Pr[T ′ rejects] = Ω(γ).
However, as we do not know how to argue that (a) holds, we first factor out a possible (but rare)
bad event B, on which T ′ may reject with significantly higher probability than T . Taking B into
account, we prove Lemma A.8 and Lemma A.9 that are small variations on (a) and (b) above.
These two lemmas immediately imply the soundness of T and therefore also Theorem 4.10.

For the definition of the bad event B, we will need a definition of a random variable JT ′ in
analogy to the random variable JT .

Definition A.5 Recall the definition of the index i selected by T ′. We define the random
variable JT ′ as follows: JT ′ is set to be empty if i = 0. Otherwise JT ′ is the set of indices j ∈ [`]
for which T ′ sets x̄′j = x̄j (in particular i ∈ JT ′).

We would like to compare the behavior of T and T ′, and it would be convenient to do so
conditioned on the value of x̄ and on a particular value J of both JT and JT ′ . However, for sets
J such that J∩wrong(x̄) is large, we have that the probability that JT ′ = J may be significantly
larger than the probability that JT = J . The reason is that as long as i ∈ J ∩ wrong(x̄), it is
possible that JT ′ = J . Therefore, the larger |J ∩ wrong(x̄)| is, there are more ways to obtain
JT ′ = J . For this reason, we define the “bad event” B where |JT ′ ∩ wrong(x̄)| is too large. The
exact threshold is meant to facilitate the proof of Lemma A.8 and is less important for now.

10The purpose of the constant 16 is for the proof of Proposition A.11.
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Definition A.6 Define the event B to be |JT ′ ∩ wrong(x̄)| /k(x̄) > 9α.

Recall that by definition, k(x̄) is always positive and hence B is well defined. We would now
like to argue that B is indeed a rare event.

Proposition A.7 Conditioned on any particular value of x̄ and of i, the probability that B
occurs is smaller than 2/9.

Proof: If i = 0 then JT ′ is empty and the proposition follows trivially. Otherwise, each index in
wrong(x̄)\{i} is placed into JT ′ with probability α (and i is placed into JT ′ with probability one).
Therefore, the expected size of JT ′∩wrong(x̄) is at most 1+α |wrong(x̄)| ≤ 1+α·k(x̄) < 2α·k(x̄)
(last inequality follows from k(x̄) ≥ 16/α > 1/α). Now, by Markov’s Inequality, the event
B ≡ (|JT ′ ∩ wrong(x̄)| > 9α · k(x̄)) has probability at most 2/9.

We can now relate T ′ to T .

Lemma A.8 Pr[T ′ rejects ∧ (¬B)] = O(Pr[T rejects]).

Proof: Both T and T ′ select x̄ uniformly at random. We prove the inequality separately
for every value of x̄ (that is, conditioned on x̄ taking some arbitrary value). Therefore, fix the
value of x̄ in an arbitrary way. We first argue that for any value J ⊆ [`],

Pr[T ′ rejects | JT ′ = J ] ≤ Pr[T rejects | JT = J ]. (2)

First note that the distribution of x̄′ is identical in both cases (i.e., x̄′j = x̄j for j ∈ J and x̄′j
is uniform outside J). If J ∩ wrong(x̄) = φ, then Pr[T ′ rejects | JT ′ = J ] = 0 and we are done.
Otherwise, T will reject if for some j ∈ J , we have that F (x̄′)j 6= F (x̄)j , whereas T ′ will reject
only if F (x̄′)i 6= F (x̄)i (recall that in this case i 6= 0 as otherwise JT ′ is empty). This implies
inequality (2).

We now want to show that Pr[(JT ′ = J)] = O(Pr[JT = J ]). However, this may not be
true in two cases which fortunately enough we can ignore. The two cases to ignore are: (a)
J ∩wrong(x̄) = φ, in which case T ′ always accepts, and (b) |J ∩ wrong(x̄)| /k(x̄) > 9α, in which
case the event B occurs. Let the collection of sets J satisfying either (a) or (b) be denoted
Jignore. For all other values of J , the event B does not occur and therefore,

Pr[T ′ rejects ∧ (¬B)] =
∑

J 6∈Jignore

Pr[T ′ rejects | JT ′ = J ] · Pr[JT ′ = J ].

In addition, for J 6∈ Jignore we have that

Pr[JT ′ = J ] =
∑

j∈J∩wrong(x̄)

Pr[i = j] · α|J |−1 · (1− α)`−|J |

=
∑

j∈J∩wrong(x̄)

(1/k(x̄)) · α|J |−1 · (1− α)`−|J |

= (|J ∩ wrong(x̄)| /k(x̄)) · α|J |−1 · (1− α)`−|J |

≤ 9α · α|J |−1 · (1− α)`−|J |

= 9 · Pr[JT = J ] .
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By inequality (2), we can now conclude that

Pr[T ′ rejects ∧ (¬B)] =
∑

J 6∈Jignore

Pr[T ′ rejects | JT ′ = J ] · Pr[JT ′ = J ]

≤
∑

J 6∈Jignore

Pr[T rejects | JT = J ] · 9 Pr[JT = J ]

≤ 9 Pr[T rejects]

It remains to bound the probability that T ′ rejects (again, factoring out the bad event B):

Lemma A.9 Pr[T ′ rejects ∧ (¬B)] = Ω(γ).

Proof: Throughout this proof, x̄ will always denote the tuple selected by T ′ at step 1, and
i the index selected at step 2. If, say, we consider the probability of this tuple being equal to a
specific tuple z̄, we write Pr[x̄ = z̄], etc.

If T ′ rejects then in particular it selects i 6= 0. Recall that Pr[x̄ is bad] = γ by definition. By
inspecting step 2 in the definition of T ′, and recalling that x̄ is bad means |wrong(x̄)| > 1

α , we
have

Pr[i 6= 0 | x̄ is bad] =
|wrong(x̄)|
k(x̄)

=
|wrong(x̄)|

max(|wrong(x̄)| , 16/α)
≥ 1/16 .

So we can conclude that Pr[i 6= 0] = Pr[x̄ is bad] · Pr[i 6= 0 | x̄ is bad] ≥ γ/16. To complete the
proof we will show that

Pr[T ′ rejects ∧ (¬B) | i 6= 0] = Ω(1) . (3)

We will do this by showing that for every fixed i0 6= 0 and x0 ∈ X, conditioned on T ′ selecting
x̄ and i such that i = i0 and x̄i = x0, the test rejects (and B does not hold) with constant
probability. Summing over all values of i0 6= 0 and x0 ∈ X this will complete the proof.

So let us fix an arbitrary i = i0 6= 0 and x0 ∈ X. Denote V0 = Vx0,i0 , the set of tuples
z̄ for which z̄i0 = x0 (as defined in Definition A.3). We will rely on the expansion of the

Markov process G0
def
= Gx0,i0 to show that the probability mass placed on tuples z̄ ∈ V0 for

which F (z̄)i0 6= f(x0), ‘spreads’ after one step of G0. Thus, starting from such an x̄, with high
probability we arrive at an x̄′ for which F (x̄)i0 6= F (x̄′)i0 . To do this, we will partition the
tuples z̄ ∈ V0 according to the value of F (z̄)i0 = a, and show that each part in the partition has
many outgoing transitions, each causing T ′ to reject.

For every a ∈ Σ, let us define

Sa = { z̄ ∈ V0 |F (z̄)i0 = a} .

The set Sa also depends on the specific choice of x0 and i0, but this is omitted from the notation.
Let Ex0,i0,a denote the event that T ′ selects i = i0, and x̄ for which x̄i = x0 and F (x̄)i0 = a.

Observe that conditioned on a specific value i = i0 selected at step 2 of T ′, not all tuples
in V0 have positive probability of being chosen at step 1 of T ′. Indeed, a tuple x̄ ∈ V0 for
which F (x̄)i0 = f(x0) can not be chosen, because the conditioning requires in particular that
i0 ∈ wrong(x̄) which is equivalent to F (x̄)i0 6= f(x0). So PrT ′ [Ex0,i0,a] > 0 implies a 6= f(x0).
In that case let Pa denote the probability distribution over V0, defined by

∀z̄ ∈ V0, Pa(z̄) = Pr
T ′

[x̄ = z̄ |Ex0,i0,a] .
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Fix some value a ∈ Σ such that Pr[Ex0,i0,a] > 0. Note that Pr[T ′ rejects ∧ (¬B) | Ex0,i0,a] ≥
Pr[T ′ rejects | Ex0,i0,a]−Pr[B | Ex0,i0,a]. By Proposition A.7, the probability of the bad event B
is bounded by 2/9 even if conditioned on any specific x̄ and i, so in particular: Pr[B | Ex0,i0,a] <
2/9. It is therefore sufficient to show that

Pr[T ′ rejects | Ex0,i0,a] ≥ 1/4 (4)

(as the probability in (3) will be lower bounded by 1/4− 2/9 > 0).
By the definition of T ′, we take a random step from x̄ according to the process G0 and arrive

at x̄′. The probability distribution over x̄′ is given by A0Pa, where A0 is the transition matrix
of G0, and Pa ∈ RV0 is a vector of probabilities that corresponds to the initial choice of x̄
conditioned on Ex0,i0,a. Finally, T ′ rejects if F (x̄′)i0 6= a, or in other words, if x̄′ 6∈ Sa. In
conclusion,

Pr
[
T ′ rejects

∣∣Ex0,i0,a

]
= Pr[A0Pa 6∈ Sa] . (5)

Following is a brief outline of how we lower bound (5). We already established that a 6=
f(x). This implies that Sa cannot contain more than half of the elements in V0 (because f is
the plurality; this is formally shown in Proposition A.10). Next, observe that if x̄ had been
distributed uniformly in Sa, then by expansion, one step according toG0 leaves this set with good
probability. Our situation is slightly more complicated because x̄ is not distributed uniformly
over Sa but rather according to Pa. Proposition A.11 proves that Pa is “uniform enough” (or
rather, that it has “enough entropy”). We deduce our bound from a (known) variant of the
expander mixing lemma (Proposition A.12) that can handle slightly skewed distributions.

Proposition A.10 |Sa| / |V0| ≤ 1/2.

Proof: Recall the definition of the plurality function (Definition 4.9). Since f(x0) 6= a, we have
that for less than half of {(z̄, j) | j ∈ [`], z̄ ∈ Vx0,j}, it holds that F (z̄)j = a. Since F is rotation
consistent (namely, if z̄′ is obtained from z̄ using some cyclic shift of its ` components, then
F (z̄′) can be obtained from F (z̄) in the same way), it is easy to verify that for any particular
value of j, less than half of Vx0,j have F (z̄)j = a. Fixing j = i0, for less than half of V0 = Vx0,i0 ,
it holds that F (z̄)i0 = a. The proposition follows.

We first show that the distribution Pa is not too far from being uniform over Sa,

Proposition A.11 Let λ(A0) be the second largest eigenvalue of A0. Then

max
z̄
{Pa(z̄)} ≤ 1/(16 |Sa|λ(A0)2) .

Proof: Recall from Proposition A.4 that λ(A0) = λ(Ax0,i0) = α, and that α3 = 1/`. By
definition of Pa, we may rewrite what we are trying to prove as

∀z̄, Pr[x̄ = z̄ | Ex0,i0,a] ≤
α`

16
1
|Sa|

.

Clearly this probability is zero for all z̄ 6∈ Sa. The point is to show that even though we have
fixed i0 and x0 and a, this does not give too much information about x̄. We will use Bayes’
rule,

Pr[x̄ = z̄ |Ex0,i0,a] = Pr[Ex0,i0,a | x̄ = z̄] · Pr[x̄ = z̄]
Pr[Ex0,i0,a]

. (6)
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We now estimate each of the three factors on the right hand side. Surely, with no conditioning,
Pr[x̄ = z̄] = 1/

∣∣X∣∣. To estimate Pr[Ex0,i0,a | x̄ = z̄] observe that conditioned on x̄ = z̄, the
random choice of the index i (at step 2 of T ′) determines whether the event Ex0,i0,a occurs or not
(because z̄ and F (z̄) and therefore z̄i and F (z̄)i are already fixed). The probability, for a given
x̄ = z̄, of selecting i = i0 at step 2 of T ′ is exactly 1/k(z̄). If i0 was selected, the event occurs iff
z̄ ∈ Sa (which means that z̄i0 = x0 and F (z̄)i0 = a). Thus, Pr[Ex0,i0,a | x̄ = z̄] = 1/k(z̄) ≤ α/16
if z̄ ∈ Sa and equals zero otherwise.

Finally, we estimate Pr[Ex0,i0,a]. We write

Pr[Ex0,i0,a] =
∑
z̄∈X

Pr[Ex0,i0,a | x̄ = z̄] · Pr[z̄]

Just as before, Pr[Ex0,i0,a | x̄ = z̄] = 1/k(z̄) if z̄ ∈ Sa and 0 otherwise. Plugging this into the
above equation gives Pr[Ex0,i0,a] =

∑
z̄∈Sa

1
k(z̄) ·Pr[z̄] =

∑
z̄∈Sa

1
k(z̄) ·

1
|X| ≥

|Sa|
|X| ·

1
` , because always

k(z̄) ≤ `. Plugging everything into Equation (6),

Pr[x̄ = z̄ |Ex0,i0,a] ≤
α

16
·

1
|X|

|Sa|
|X| ·

1
`

=
α`

16
· 1
|Sa|

It remains to observe that for every vector ~p = (p1, . . . , pn), if
∑

i pi = 1 then

‖~p‖2
2 =

∑
i

p2
i ≤

∑
i

pi ·max
i
pi = max

i
pi = ‖~p‖∞ .

So in particular, the previous proposition gives ‖Pa‖2
2 ≤ maxz̄ Pa(z̄) ≤ 1/(16 |Sa|λ(A0)2).

We can now conclude the proof of Lemma A.9, and of the theorem by the following proposition
which is a slight generalization of the standard expander mixing lemma (for the case that the
initial distribution is not uniform over some subset of the sample space).

Proposition A.12 Pr[A0Pa ∈ Sa] ≤ |Sa| / |V0|+ λ(A0)
√
|Sa| · ‖Pa‖2

2

Proof: Let χa ∈ {0, 1}|V0| be the characteristic vector of Sa in V0 (i.e., for every z̄ ∈ V0 we set
χa(z̄) = 1 iff z̄ ∈ Sa). Let U ∈ {0, 1}|V0| be the vector corresponding to the uniform distribution,
where all the entries in U equal 1/ |V0|. As usual, we break Pa into a two components, parallel
to U , and perpendicular to U . Let P⊥

a = Pa − U . Note that P⊥
a is perpendicular to U because〈

P⊥
a , U

〉
= 〈Pa, U〉 − 〈U,U〉 =

∑
x̄∈V0

Pa(x̄) · 1
|V0|

−
∑
x̄∈V0

1
|V0|

· 1
|V0|

=
1
|V0|

(1− 1) = 0,

where 〈·, ·〉 denotes the inner product. Now we have that

Pr[A0Pa ∈ Sa] = 〈χa, A0Pa〉

= 〈χa, A0U〉+
〈
χa, A0P

⊥
a

〉
Since A0U = U , the first summand becomes |Sa| / |V0|. To bound the second summand, we use
Cauchy-Schwartz inequality, and get that

〈
χa, A0P

⊥
a

〉
≤ ‖χa‖2 · ‖A0P

⊥
a ‖2 ≤

√
|Sa| · ‖A0P

⊥
a ‖2.

The proposition follows since λ(A0) is the second largest eigenvalue of A0,

‖A0P
⊥
a ‖2 ≤ ‖λ(A0)P⊥

a ‖2 ≤ λ(A0)‖Pa‖2 .
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Using |Sa| / |V0| ≤ 1
2 and λ(A0)

√
|Sa| · ‖Pa‖2

2 ≤ λ(A0)
√

(1/16) · λ(A0)2 ≤ 1
4 (as established in

Propositions A.10 and A.11), we lower bound (5) by 1−(1
2+ 1

4) = 1
4 as needed. This concludes the

proof of Equation (4) and therefore of Lemma A.9, showing that Pr[T ′ rejects ∧ (¬B)] = Ω(γ).

Combining Lemma A.9 with Lemma A.8 we obtain Pr[T rejects] = Ω(Pr[T ′ rejects∧(¬B)]) =
Ω(γ), and the theorem follows.

B Strengthening the black-box assignment tester from Section 5

Proof:(of Corollary 5.3) We would like to compose Aβ with itself a constant number of times
to reduce the size of the output circuits from O(n1−β) to O(nα). For the composition of Aβ
with itself to be well defined we need the distance parameter to be small enough with respect
to the number of queries. To do that we first apply the distance-reduction transformation given
by Lemma 4.1, to Aβ, reducing its distance parameter to another constant δ′ < 1/(3c2), where
c2 is the constant from the composition theorem, Theorem 3.7. We then reduce the number of
queries to 3 as was done in Proposition 4.11. The result of these two steps is an assignment
tester A′

β with parameters (R(n) = nO(1), s(n) = O(n1−β), q(n) = 3, δ(n) = δ′, ε(n) = ε̄), with
ε̄ being some fixed constant.

It is now possible to compose A′
β with itself and doing it a constant number of times (which

depend on α of course) will reduce the output circuit size to O(nα). This almost gives us the
assignment tester we are after, with the only problem being that the new error is some small
constant that depends on α. Reducing the error parameter to εα = 0.1 using Theorem 4.8, will
complete our proof as we now have that the circuit size is indeed O(nα), and the only parameter
that depends on α is the number of circuits produced (and it is polynomial for every fixed α).
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