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Abstract
We consider the problem of counting polynomial curves on analytic or definable
subsets over the field C..t// as a function of the degree r . A result of this type
could be expected by analogy with the classical Pila–Wilkie counting theorem in the
Archimedean situation.

Some non-Archimedean analogues of this type have been developed in the work
of Cluckers, Comte, and Loeser for the field Qp , but the situation in C..t// appears
to be significantly different. We prove that the set of polynomial curves of a fixed
degree r on the transcendental part of a subanalytic set over C..t// is automatically
finite, but we give examples that show their number may grow arbitrarily quickly even
for analytic sets. Thus no analogue of the Pila–Wilkie theorem can be expected to
hold for general analytic sets. On the other hand, we show that if one restricts to
varieties defined by Pfaffian or Noetherian functions, then the number grows at most
polynomially in r , thus showing that the analogue of the Wilkie conjecture does hold
in this context.

1. Introduction

1.1. Point counting in Archimedean and non-Archimedean fields
Over the reals, it is known by bounds of Pila and Wilkie [19] that the number of
rational points of height at most B on the transcendental part of analytic varieties
(or even definable sets in o-minimal structures) is bounded above by cB" for some
c D c."/ and with " > 0. Such bounds also hold over Qp by [6], and with uniformity
in p by [7]. However, for C..t//, the question about appropriate upper bounds for
rational points on analytic (definable) sets is left open in [6]. In this context, it is
natural to count points from CŒt � lying in the transcendental part of a definable set as
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a function of the degree r . The question of the finiteness of the set of such polynomials
of bounded degree is discussed in [6, Section 5.5], as well as the possibility of Wilkie-
type bounds under some extra Pfaffian style conditions, but the methods used there
do not allow one to establish any bounds on these sets, not even their finiteness.

1.2. General definable sets: Finiteness and a negative result
In the first part of this paper, we consider the analogue of the Pila–Wilkie counting
theorem in the context of the field C..t//. We make two contributions in this direction.
First, we show that the set under consideration is indeed finite, so that the counting
problem is well-posed. Second, we produce examples of analytic sets where the num-
ber of such polynomial curves grows arbitrarily fast as a function of r . In other words,
no analogue of the Pila–Wilkie counting theorem can be expected in this context. We
also give a variant of the finiteness result over Qunram

p , the maximal unramified field
extension of Qp . These results are presented in Section 2.

It is easy to explain intuitively why it may be unreasonable to expect a Pila–
Wilkie type counting result over the field C..t//. The basic idea behind the Bombieri–
Pila method and its subsequent generalization in the work of Pila and Wilkie is that
after making a suitable parameterization and cutting the domain into balls of radius
cB�", the rational points in each ball can be interpolated by a hypersurface of degree
d D d."/. A similar strategy has been made to work in [6] for the field Qp . On
the other hand, in C..t// the valuation field is infinite, and it is simply not possible
to subdivide a ball of radius 1 into any finite collection of smaller balls. The entire
approach, it appears, is doomed to fail—and this is borne out by our counterexamples.

1.3. Wilkie’s conjecture
The finiteness result, and the impossibility of Pila–Wilkie type bounds in general,
serve as double motivation to search for a framework with additional control where
some results in the spirit of the counting theorem can still be obtained. A potent source
of intuition in this direction is the Wilkie conjecture. This prominent conjecture due to
Wilkie states that for certain natural o-minimal structures (originally Rexp in Wilkie’s
formulation) one can sharpen the bound c."/B" to some polynomial in logB . Vari-
ous special cases of the Wilkie conjecture have been established for sets defined using
Pfaffian functions: either in small dimensions (see, e.g., [13], [16], [18]), or for gen-
eral sets definable in the class of “holomorphic-Pfaffian” functions (see [3]).

Given that in C..t// we are unable to subdivide the unit ball into any number
of smaller balls, the only hope seems to be to show that for some suitable degree
d , the rational points can all be approximated without any subdivision, that is, using
the single unit ball. According to work on the Wilkie conjecture in the Archimedean
context, it is known that, using hypersurfaces of degree d D .logB/˛ (rather than
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d D d."/), it is in fact possible to interpolate all rational points using .logB/ˇ balls
(rather than cB�"). In some cases, evenO.1/ balls suffice. It therefore appears at least
potentially plausible that in the more restrictive context of the Wilkie conjecture, the
point counting argument can be salvaged.

Following this intuition, we introduce Pfaffian and Noetherian functions into the
non-Archimedean picture. In the second part of the paper with Sections 3–5, we con-
sider an analogue of the Wilkie conjecture, with proof techniques which are indepen-
dent of Section 2. Namely, we restrict attention to the class of germs of sets defined
by Pfaffian or Noetherian equations over the field of convergent Laurent series C.¹tº/.
Many functions of interest in the classical applications of the Pila–Wilkie theorem
(e.g., abelian functions, modular functions, period integrals) fall within these classes,
and this therefore seems like a natural context in which to pursue non-Archimedean
counting theorems. By the general philosophy of the Wilkie conjecture one expects
sharper, even polynomial in r , bounds for the counting problem on such sets. Sur-
prisingly, we show that despite the failure of the Pila–Wilkie counting theorem in this
context, the analogue of the Wilkie conjecture does in fact hold for arbitrary Pfaffian,
or even Noetherian, varieties. Specifically, we show that the subdivision step can be
completely avoided in this case, and a single hypersurface of degree polynomial in
logB can indeed be used to interpolate all rational points of height B in the unit ball.
We remark that this second part of the paper can be read independently of Section 2.

1.4. Main ideas
We interpret systems of equations over C.¹tº/ as one-parameter deformations of sys-
tems over C. A crucial technical difference arises when comparing this local context
to the Archimedean one. In the Archimedean context, all known cases of the Wilkie
conjecture rely in a crucial way on Khovanskii’s Bézout-type bounds for Pfaffian
functions over the reals (see [17]), which gives bounds for the number of solutions
of systems of Pfaffian equations in terms of their degrees. This theory is purely real,
and it generally gives bounds only for real solutions of systems of equations. On the
other hand, in the local C.¹tº/-context, general bounds are in fact available for com-
plex, rather than real, solutions. Indeed, Gabrielov established general bounds for the
number of solutions of such complex-analytic deformations of Pfaffian functions in
[14]. Moreover, under a small technical restriction, similar results have been estab-
lished in the class of Noetherian functions by Binyamini and Novikov in [1]. Nothing
approaching such general results is known in the Archimedean situation. Using these
tools, it is at least plausible to expect that one can treat the case of general Pfaffian or
even Noetherian functions by the complex-analytic methods introduced in [3].

In Sections 4–5, we carry out this program. We introduce a local analogue of the
Weierstrass polydisks used in [3], and we apply the results of [1] and [14] to show
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that these can be constructed with appropriate control over complexity for Pfaffian
and Noetherian varieties. It is pleasantly surprising that in this local context we can
achieve this in full generality, for both Pfaffian and Noetherian functions, whereas the
corresponding results in the Archimedean context are currently far more restricted
in scope. Let us finally mention that this seems to be the first study of Pfaffian and
Noetherian functions in a non-Archimedean context, as far as we can see. We hope
that this will open the way for the study of Pfaffian and Noetherian functions over Qp
instead of C..t//.

2. Finiteness results
In this section, we state and prove our finiteness result for rational points of bounded
height (i.e., with coordinates which are polynomials in CŒt � of bounded degree) on
the transcendental part of analytic definable sets (see Theorem 1), and we show that
these numbers can grow arbitrarily fast with the degree (see Proposition 1). At the
end of Section 2, we adapt the finiteness result to the mixed characteristic case.

Let us make this all very precise. In this section, we write K for C..t//. We recall
some of the notions for K D C..t// from [6], analogous to the corresponding real
notions. For a set X � Kn, let X alg be the union of all semialgebraic sets C � X
which are of constant local dimension 1. Here semialgebraic means definable with
constants from K in the language of valued fields, with symbols C;�; �; j, where xjy
holds for .x; y/ in K2 if and only if y lies in xOK and where OK WD CŒŒt �� is the
valuation ring ofK . The local dimension of a nonempty semialgebraic set C �Kn at
x 2 C is defined to be the maximal integer m � 0 such that for all sufficiently small
semialgebraic open neighborhoods U of x there is a semialgebraic function U \C !
Km whose range has nonempty interior in Km. Correspondingly, the transcendental
part X trans of X is defined as X nX alg.

As replacement for the o-minimality condition in [19], we will impose a form of
analyticity on X as follows. For each integer n� 0, let OKhx1; : : : ; xni be the t -adic
completion of OK Œx1; : : : ; xn� inside OK ŒŒx1; : : : ; xn�� for the Gauss norm. Note that
OKhx1; : : : ; xni consists of power series

P
i2Nn aix

i , in multi-index notation, with
ai 2 OK and such that the t -adic norm jai j of ai goes to zero when i1 C � � � C in
goes to C1. Here the t -adic norm jxj of nonzero x 2K is defined as e�ordx , where
ordx is the t -adic valuation of x, namely, the largest integer n such that x=tn lies in
OK , the t -adic norm of zero is defined to be zero, and for x 2Kn, one defines jxj as
the maximum of the jxi j for i D 1; : : : ; n. For f in OKhx1; : : : ; xni, write f j for the
restricted analytic function associated to f , namely, the function Kn! K sending
z 2 On

K to the evaluation f .z/ of f at z (namely, the limit for the t -adic topology
over s > 0 of the partial sums

P
i;maxj ij<s

aiz
i ), and sending the remaining z to 0.

Let LK
an be the language containing the language of valued fields and, for each f in
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OKhx1; : : : ; xni for any n � 0, a function symbol for the restricted analytic function
f j associated to f .

Finally, we also follow [6] for the notion of integral points of bounded height on
subsets of Kn, which we now recall. For r � 1, denote by OK.r/ the subset of OK
consisting of polynomials

Pr�1
iD0 ai t

i with ai in C and with degree less than r (in the
variable t ). For any subset X �Kn and any r � 1, write X.r/ for the intersection of
X with .OK.r//n.

We can now state the first main result of this paper, addressing a question left
open in Section 5.5 of [6] (see the partial result, Proposition 5.5.1 of [6]).

THEOREM 1 (Finiteness)
Let X �Kn be LK

an-definable. Then for each r > 0,

.X trans/.r/

is a finite set.

Of course one would like to bound #X trans.r/ when r grows. However, without
extra information about the geometry of X , it is hard to bound the number of points
in X trans.r/, as X trans.r/ can grow arbitrarily fast with r by the following result.

PROPOSITION 1
For any sequence of positive integers Nr for r > 0, there is an LK

an-definable set
X �K2 such that

Nr < #.X trans/.r/:

Furthermore, for X one can even take the graph of a function f W OK ! OK given
by a power series in OKhxi in one variable x.

The proof of Theorem 1 uses a quantifier elimination result in a certain expansion
Lac

an of LK
an and a reduction to Zariski-constructible conditions on tuples of complex

polynomials in t of degree less than r (some similar techniques appear in [2], [3], [6]).
We start with developing these ideas, summarized in Proposition 2, which gives that
X.r/ is a constructible set. Let us mention that languages and formulas are always
first order in this paper (as is typical in model theory).

Consider the language Lac
an with three sorts (resp., valued field, residue field, and

value group) containing LK
an together with the field inverse .�/�1 extended by zero on

zero for the valued field sort, the ring language on the residue field, the Presburger
language on the value group, an angular component map ac sending nonzero x in
K to the coefficient of the leading term in t of x (namely, to xt�ordx mod .t/) and
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sending zero to zero, and the valuation map from K� to the value group. Clearly any
LK

an-definable set is also Lac
an-definable.

By the quantifier elimination statement of Theorem 4.2 of [11] together with
quantifier elimination in the Presburger language and the Chevalley–Tarski theorem,
any Lac

an-definable set X is given by a quantifier-free formula in the language Lac
an.

(This also follows from Theorem (3.9) of [21], or Theorem 6.3.7 and Example 4.4(1)
from [10].)

We can now state and prove the reduction to Zariski-constructible conditions.

PROPOSITION 2
Let X � Kn be Lac

an-definable, and let r > 0 be an integer. Then X.r/ is a Zariski-
constructible subset of Crn, where we identify .OK.r//n with Crn by mapping a
complex polynomial

Pr�1
iD0 ai t

i in OK.r/ to the tuple .ai /r�1iD0 in Cr .

Proof
By the mentioned quantifier elimination result for our structure with three sorts K ,
C, and Z in the language Lac

an, the set X �Kn is given by a quantifier-free formula
'.x/ in the language Lac

an, with free variables x running over Kn. We proceed by
induction on the number of occurrences of the function symbol .�/�1 in the quantifier-
free formula '.x/. By the form of quantifier-free formulas (see Theorem 4.2 of [11]),
'.x/ is equivalent to a finite Boolean combination of conditions on x 2 Kn of the
form
(a) ac.f .x//D 1,
(b) f .x/D 0,
(c) ord.f .x//� 0,
(d) ord.f .x//� 0 mod �,
for some Lac

an-terms f and some integers � > 0. By the definition ofX.r/, it is enough
to prove the proposition when ' itself has one of the above-mentioned forms (a), (b),
(c), or (d). Write x 2 .OK.r//n as .

Pr�1
`D0 aj`t

`/njD1 and write f .x/ as
P
s2Z fs.a/t

s ,
with aD .aj`/j;` and functions fs on Crn.

First, suppose that the term f does not involve field inversion. In this case, we
may suppose that f is a finite composition of K-multiples of restricted analytic map-
pings, that is, f D Ofk ı Ofk�1 ı � � � ı Of1.x/, where each Ofi is a map whose component
functions are elements of OKhxi˝OK K; namely, for each i there are restricted ana-

lytic functions f jij for j D 1; : : : ; ai and �ij 2 K such that Ofi .z/ D .�ijf
j
ij .z//j ,

where j D 1; : : : ; ai , z 2Kai�1 , and where ai is the arity of OfiC1 if i < k and with
ak D 1. (Indeed, since X.r/� On

K , the global ring operations on K are irrelevant in
the presence of all restricted analytic functions.) Write gi for Ofi ı Ofi�1 ı � � � ı Of1.x/ for
each i D 1; : : : ; k. Let us finish this case by induction on k. In fact, we will prove at the
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same time an additional statement by induction on k: there is an integer N > 0 such
that for x 2 OK.r/

n, one either has f .x/D 0 or �N � ordf .x/ � N , and, for any
tuple of integers O� D . O�ij /i;j , there are polynomials p O�;s such that fs.a/D p O�;s.a/
whenever x 2 OK.r/

n satisfies ordgij .x/D O�ij for all i; j and where a is still such
that x D .

Pr�1
`D0 aj`t

`/njD1.
If k D 1, then clearly each of the fs’s is a polynomial in the tuple a (no need

to specify O�), and there is an integer M > 0 such that tMf lies in OKhxi. By the
Noetherianity of any polynomial ring in finitely many variables over C, there exists
N >M such that ordf .x/ > N implies f .x/D 0 for x 2 .OK.r//n. It is thus suffi-
cient to show the constructibility in x 2 .OK.r//n of the following conditions:
(1) ac.f .x//D 1^ ord.f .x//D �,
(2) ord.f .x// > N ,
(3) ord.f .x//D �,
for integers�with�N � ��N . Each of these cases is straightforward; for example,
condition (1) on x 2 .OK.r//n is equivalent to

f�.a/D 1

��1^
sD�N

fs.a/D 0;

which is clearly a constructible condition on a 2 Cnr (where a corresponds to x as
above). Also N is as desired for the additional statement. This finishes the case that
k D 1.

The case of general k > 1 goes as follows. By induction on k, we have con-
structibility and the additional statement for gk�1 for some N > 0 and all O�. Let us
fix a tuple O� with �N � O�ij �N for all i and j and a maximal consistent set W of
conditions on x 2 .OK.r//n of the form ordgij .x/D O�ij or of the form gij .x/D 0,
where i < k. Now the case that x 2 .OK.r//n satisfies the conjunction of '.x/ with
the conditions from W can be finished as the argument for k D 1 (including the addi-
tional statement) by using again the Noetherianity of polynomial rings. This finishes
the case that the term f does not involve the function symbol for field inversion.

Next, suppose that f contains a subterm g which is of the form g�10 for some
term g0 which does not involve field inversion. Choose N > 0 for g0 as given by
the base case of our induction and its additional statement, as shown above. For each
integer � with �N � � �N , consider the condition B�.x; �/ on .x; �/ 2KnC1 being
the conjunction of ord.�/D 0 with

ordg0.x/D � ^ ac
�
�g0.x/

�
D 1

and with '.x/, where we recall that ' is the condition (a), (b), (c), or (d).
Note that there is an Lac

an-term h.x; �/, with .x; �/ running over KnC1, which
does not involve field inversion and such that for x 2 On

K and � 2 C� � O�K with
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ordg0.x/D � ^ ac.�g0.x//D 1, we can write

g.x/D
1

g0.x/
D �t��

1

1� .1� �t��g0.x//
D h.x; �/:

Indeed, h comes from developing 1=.1�m/ as a power series in m running over the
maximal ideal tOK of OK and evaluating at mD 1� �t��g0.x/. Let us now, inside
f , replace the subterm g.x/ by h.x; �/. Then we see by our ongoing induction on
the number of occurrences of the function symbol .�/�1 that condition B�.x; �/ on
.x; �/ 2 OK.r/

nC1 yields a constructible subset A� of Cr.nC1/. Hence, also the set
A0� consisting of .x; �/ in A� with moreover � 2 C� � ¹0ºr�1 � Cr is constructible.
By the Chevalley–Tarski theorem, the imageA00� ofA0� under the coordinate projection
to Cnr is also constructible, and A00� equals the set of x 2 OK.r/

n satisfying '.x/ ^
ordg0.x/D �, where ' is still (a), (b), (c), or (d).

Finally, consider the condition B0.x/ which is the conjunction of g0.x/D 0 and
the condition '0.x/ obtained from '.x/ by replacing the subterm g.x/ by zero in the
term f .x/. By induction on the number of occurrences of the function symbol .�/�1,
the condition B0.x/ on x 2 On

K.r/ is Zariski-constructible and the extra statement
also holds.

By construction, for x 2 On
K.r/, x lies in X.r/ if and only if B0.x/ holds or

x 2A00� for some � with �N � � �N . This finishes the proof of the proposition.

Remark 3
In fact, we will prove Theorem 1 more generally for any Lac

an-definable set X �Kn.

Proof of Theorem 1
We will prove the theorem for a subset X � Kn which is Lac

an-definable. Let r > 0
be an integer. By Proposition 2, X.r/ is a constructible subset of Crn. We prove the
finiteness of .X trans/.r/ by induction on the dimension ` of X.r/. If `D 0, then there
is nothing left to prove since X.r/ is finite in this case and since .X trans/.r/�X.r/.
If ` > 0, then write A for X.r/ and choose an algebraic family of algebraic (locally
closed) curves Cv � Arn

C
for v 2 V � As

C
for some s � 0 such that the union of the

sets Cv.C/ over v 2 V.C/ equals A.C/ n F , where F is a finite set. Such a family
clearly exists. For each v 2 V.OK/, let Sv be the image of Cv.OK/ under the map
p WOrn

K !On
K sending .xjk/ to .

Pr�1
kD0 xjkt

k/njD1. Clearly Sv is semialgebraic and
of dimension 1 for each v 2 V.OK/, since Sv is infinite and equal to the image under
a semialgebraic function of an algebraic curve. (See, e.g., Section 3 of [20], or the
dimension theory of [12] and Theorem 6.3.7 from [10].) For each v 2 V.OK/, let S 0v
be the subset of Sv \ X consisting of x such that Sv \ X is locally of dimension
1 at x. Let X 0 be X n .

S
v2V.OK /

S 0v/. Then clearly X 0 is Lac
an-definable. Moreover,

by construction, we have that X 0.r/ is of dimension less than ` (as a constructible
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subset of Crn). Indeed, Cv.C/\X 0.r/ is finite for any v 2 V.C/, since .Sv \X/nS 0v
is finite for each v 2 V.OK/. (Here we have used that the subset of points x in a
semialgebraic set S of local dimension 0 at x is finite; see again [20] or [12].) Since
clearly X trans.r/ is contained in X 0trans.r/, we can replace X by X 0 and thus we are
done by induction on `.

Proof of Proposition 1
Let Nk be a strictly increasing sequence, and consider the analytic function OK !

OK given by the following converging power series f in KŒŒx��:

f .x/D
X
i>0

t iPNi ; where Pk D x
k

kY
jD1

.x � j /: (1)

Let X � O2
K denote the analytic set y D f .x/ for x 2 OK . For each i > 0 and j D

1; : : : ;Ni , note that f .j / is a polynomial in t of degree less than i and therefore

#X.i/�Ni : (2)

On the other hand,

suppx f .x/�
[
i

ŒNi ; 2Ni �; where suppx
�X

cjx
j
�
D ¹j W cj ¤ 0º: (3)

If we choose Ni to grow sufficiently quickly (e.g., if for every d 2 N, eventually
Ni > 2dNi�1), then (3) implies that f .x/ is transcendental. Indeed, if f is algebraic
of degree d , then by the Bézout theorem its order of contact with its 2Ni�1-Taylor
approximation should not exceed 2dNi�1. By choosing Ni in this manner, we obtain
from (2) the lower bound #X trans.i/D #X.i/�Ni , which finishes the proof.

A mixed characteristic variant
In this subsection, let L be Qunram

p , the maximal unramified field extension of Qp

for some prime p. Let � W Falg
p ! OL be the Teichmüller lifting, namely, the unique

multiplicative section of the natural projection map OL! F
alg
p with OL the valuation

ring of L, and where F
alg
p is an algebraic closure of Fp .

We use analogous notation and definitions for L as above for K , with the fol-
lowing natural adaption to define OL.r/. For any integer r � 1, denote by OL.r/ the
subset of OL consisting of elements of the form

Pr�1
iD0 �.ai /p

i . These elements can
informally be seen as polynomials in p with coefficients in �.Falg

p / and degree less
than r . We identify OL.r/ with .Falg

p /
r by sending

Pr�1
iD0 �.ai /p

i to the tuple .ai /i .

THEOREM 2 (Finiteness in mixed characteristic)
Let X �Ln be LL

an-definable. Then for each r > 0, X.r/ is a constructible subset of
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.F
alg
p /

rn and

.X trans/.r/

is a finite set.

Proof
The proof is, as for Proposition 2 and Theorem 1, using the usual operations on Witt-
vectors, with natural adaptations, in particular putting p in the role of t . For the first
part, one adapts the proof of Proposition 2 by using also higher-order angular com-
ponent maps and identifying OL=p

kOL with .Falg
p /

k in order to have quantifier elim-
ination. A higher-order angular component map is a map L! OL=p

kOL for some
integer k > 0 sending nonzero x to p�ordxx mod pkOL and zero to zero. For the
second part, one repeats the proof of Theorem 1 where one takes a lift of the family
of curves Cv �Arn

F
alg
p

to a family of curves Cv in ArnL by applying � to the coefficients

of the defining polynomials.

3. Non-Archimedean Wilkie-type conjecture for Pfaffian and Noetherian vari-
eties

Our goal is to prove an analogue of the Wilkie conjecture over the field of convergent
Laurent series C.¹tº/ for varieties defined using Pfaffian and Noetherian equations. We
begin by recalling these notions. Denote by xD .x1; : : : ;xn/ a system of coordinates
on Cn.

Definition 4 (Pfaffian and Noetherian functions)
A Pfaffian chain of order ` and degree ˛ at .Cn; 0/ is a sequence of holomorphic
functions �1; : : : ; �` W .Cn; 0/!C satisfying a triangular system of differential equa-
tions

d�j D
nX
iD1

Pi;j
�
x; �1.x/; : : : ; �j .x/

�
dxi ; j D 1; : : : ; `; (4)

where Pi;j are polynomials of degrees not exceeding ˛.
A Noetherian chain is defined similarly by dropping the triangularity condition,

that is, replacing (4) by

d�j D
nX
iD1

Pi;j
�
x; �1.x/; : : : ; �`.x/

�
dxi ; j D 1; : : : ; `: (5)

Given such a Pfaffian (resp., Noetherian) chain, a germ f W .Cn; 0/! C of the
form f .x/D P.x; �1.x/; : : : ; �`.x//, where P is a polynomial of degree not exceed-
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ing ˇ with coefficients in C, is called a Pfaffian (resp., Noetherian) function of order
` and degree .˛;ˇ/.

Let K DC.¹tº/ or K DC.t/. Let 	D .Cnx �Ct ; 0/ denote the germ of Cnx �Ct

at the origin. If P is a polynomial over the field K , then we will say that f W	! C

of the form f .x; t /D P.x; �1.x/; : : : ; �`.x// as above is Pfaffian (resp., Noetherian)
over K . If K D C.t/, then we also define the t -degree of f by considering the total
degree of P as a polynomial over C in nC 1 variables, where we treat t as an addi-
tional variable and clearing the denominators.

Remark 5
In contrast to Section 2, note that we now restrict to K given by convergent rings.
We also restrict, in Definition 4, to systems of differential equations with coefficients
independent of t .

The former restriction is a technical convenience meant to give a situation more
closely analogous to the analytic deformations studied in [14] and [1]. We believe it
is likely one can prove analogous results in the Pfaffian case also for formal deforma-
tions. The latter restriction is more serious: in both the Pfaffian and the Noetherian
contexts, the existing results produce bounds when one deforms a system of Pfaffian
or Noetherian equations with a fixed chain, but not when one deforms the chain itself.

Denote by 
x (resp., 
t ) the projection from 	 to the Cn (resp., C) factor. We
will say that an analytic germ X �	 is flat if it is flat with respect to the projection

t , that is, if X has no components contained in the fiber 
�1t .0/. We will identify
a K-variety in .AnK ; 0/ with the flat holomorphic variety in 	 defined by identifying
t with the second factor in Cn �C and removing any nonflat components. This will
allow us to apply results from the usual theory of Pfaffian varieties over C to the study
of Pfaffian varieties over K .

Definition 6 (Pfaffian and Noetherian varieties)
If f1; : : : ; fk W 	! C are Pfaffian (resp., Noetherian) over K with degree .˛;ˇ/
and a common Pfaffian chain of order `, then we define V.f1; : : : ; fk/ � 	 to be
the analytic germ obtained from ¹f1 D � � � D fk D 0º by removing any components
contained in the fiber t D 0. We call a germ obtained in this manner a Pfaffian (resp.,
Noetherian) variety over K . Note that since we remove components over t D 0 there
will be no harm in assuming from the start that the coefficients of the polynomials
defining f1; : : : ; fk are in fact holomorphic at t D 0, and the corresponding functions
are in fact holomorphic germs.



1834 BINYAMINI, CLUCKERS, and NOVIKOV

Example 7
Let nD 2, and consider the Noetherian chain whose elements are given by x;y. The
two equations f1 D x and f2 D x � ty define the isolated point x D y D 0 over
generic t , but over t D 0 the entire y-axis appears as an extra component. In our
notation V.f1; f2/ will be the analytic germ defined by x D y D 0.

Below we will suppose that a Pfaffian chain has been fixed, and in our asymptotic
notation we will allow the constants to depend on ˛;n; ` (we note that all constants
can be explicitly computed). We will refer to ˇ in Definition 6 as the complexity of
the Pfaffian (resp., Noetherian) variety. If K D C.t/, then we define the notion of
t -complexity by replacing degrees with t -degrees.

Let X �	 be a flat analytic germ. If p W .C; 0/! .Cn; 0/ is an analytic germ,
then we denote by Qp W .C; 0/!	 the map t! .p.t/; t/. If every coordinate of p is a
polynomial, of degree less than r for some r > 0, then we write degp < r (otherwise
we set degpD1).

Definition 8
We denote

X.r/ WD
®
p W .C; 0/! .Cn; 0/ W Im Qp �X;degp < r

¯
: (6)

More generally, if g W .Cn; 0/! .Ck; 0/ is holomorphic, then we denote

X.g; r/ WD
®
Im Qp W Im Qp �X;deg g.p/ < r

¯
: (7)

Our first main result is the following analogue of the Wilkie conjecture for Pfaf-
fian varieties over C.¹tº/.

THEOREM 3
Let X � 	 be a Pfaffian variety over C.¹tº/ of complexity ˇ, and let r 2 N. Then
there exists a collection ¹W�º� of irreducible algebraic varieties over C.t/ such that
W� �X as germ at the origin and X.r/�

S
�W�.r/. Moreover,

#¹W�º D poly.ˇ; r/; degW� D poly.ˇ; r/: (8)

Theorem 3 is analogous to the Wilkie conjecture combined with Pila’s “blocks”
formalism, where each algebraic W� can be thought of as a block. In particular, any
positive-dimensional W� lies by definition in X alg, and

X trans.r/D
[

�WdimW�D0

W�.r/: (9)
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By irreducibility, #W�.r/ � 1 for the 0-dimensional W� , and one concludes that
#X trans.r/D poly.r;ˇ/.

Our second main result is the following analogue of the Wilkie conjecture for
Noetherian varieties over C.t/. We are unable to prove the same result over C.¹tº/
in the Noetherian category due to certain limitations in the available complexity esti-
mates for the Noetherian category (see Fact 17 and the following discussion). On the
other hand, we remark that many of the classical transcendental functions involved
in applications of the Pila–Wilkie theorem do lie in the Noetherian (and not in the
Pfaffian) category, and the limitation of algebraic dependence on the variable t does
not seem to be overly restrictive.

THEOREM 4
Let X �	 be a Noetherian variety over C.t/ of t -complexity ˇ, and let r 2N. Then
there exists a collection ¹W�º� of irreducible algebraic varieties over C.t/ such that
W� �X as germ at the origin and X.r/�

S
�W�.r/. Moreover,

#¹W�º D poly.ˇ; r/; degW� D poly.ˇ; r/: (10)

The proofs of Theorems 3 and 4 are given in Section 5, after developing some
preliminary material in Section 4.

4. Weierstrass polydisks and interpolation

4.1. Analytic germs and Weierstrass coordinates

Definition 9
Let X �	 be a flat analytic germ of pure dimension mC 1. Let x WD z �w W Cn!
C
p
z �C

n�p
w be a unitary linear map. We will say that z�w are Weierstrass coordinates

for X if p D m and the projection 
z � 
t W X ! .Cm � C; 0/ is finite. We denote
by e.X;x/ the degree of this projection, that is, the number of points (counted with
multiplicities) in the fiber of any point p 2 .Cm �C; 0/.

LEMMA 10
Weierstrass coordinates exist for every flat analytic germ X �	 of pure dimension
mC 1.

Proof
Since X is flat, the fiber X0 over t D 0 has pure dimension m. Let x D z � w be
unitary coordinates, and let �z ��w be a Weierstrass polydisk (in the sense of [3])
for X0, that is, X0\ . N�z � @�w/D;. Since X is closed, for a sufficiently small disk
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Dt � .C; 0/ we also have X \ . N�z � @�w � NDt /D ;. Then .�z �Dt /� .�w/ is a
Weierstrass polydisk forX , and in particular the projection 
z�
t WX! .Cm�C; 0/

is finite.

PROPOSITION 11
Let X �	 be a flat analytic germ of pure dimension mC 1 and x Weierstrass coor-
dinates for X , and set � WD e.X;x/. Then for any f 2O.	/ there exists a function

P 2O0.C
m �C/Œw�; degwi P � � � 1; i D 1; : : : ; n�m (11)

such that f jX � P jX , and where O0 stands for the holomorphic germs at zero.

Proof
The claim follows from [3, Proposition 7] applied to a Weierstrass polydisk in the x; t
coordinates as constructed in the proof of Lemma 10.

4.2. Interpolation determinants
In this section, we give a non-Archimedean analogue of the interpolation determinant
method of Bombieri and Pila [4].

Let X �	 be a flat analytic germ of pure dimension mC 1 and x Weierstrass
coordinates for X , and set � WD e.X;x/. Let pD .p1; : : : ; p�/ with pj W .C; 0/!Cn,
and let fD .f1; : : : ; f�/ with fj 2O.	/. We define the interpolation determinant of
f and p to be �.f;p/ WD det.fi . Qpj //.

PROPOSITION 12
Suppose that Im Qpj �X for all j . Then

ordt �.f;p/� Cn��.n�m/=m�1C1=m; (12)

where the constant Cn depends only on n.

Proof
Expand each fj using Proposition 11, and then expand the determinant �.f;p/ by
linearity in each column over C.¹tº/. Each term of order k in the x variables, when
evaluated at Qpj , has order at least k in t . Moreover, in the decomposition of each fi
there are fewer than �n�mkm�1 linearly independent terms of each order k. It follows
that

ordt �.f;p/�
bX
kD0

.�n�mkm�1/ � k; (13)

where
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��

bX
kD0

�n�mkm�1: (14)

Then we have b 	 .�=�n�m/1=m, and plugging into (13) gives (12).

4.3. Polynomial interpolation determinants
Fix d 2N , and let � denote the dimension of the space of polynomials of degree at
most d in mC 1 variables. Note that �	 dmC1.

For g an (m C 1)-tuple of functions and p a �-tuple of points, we define the
polynomial interpolation determinant �d .g;p/ WD�.f;p/, where f is the tuple of all
monomials of degree at most d in the coordinates of g.

PROPOSITION 13
Let g W .Cn; 0/! .CmC1; 0/, and suppose that

pi 2X.g; r C 1/; j D 1; : : : ;�: (15)

Then

deg�d .g;p/�EndmC2r; (16)

where En is some constant depending only on n.

Proof
There are �	 dmC1 columns in the matrix defining deg�d .g;p/ and each of them
has degree at most dr in t .

COROLLARY 14
Let g W .Cn; 0/! .CmC1; 0/. Then there exists a constant An depending only on n
such that if

d > An�
n�mrm; (17)

thenX.g; rC1/ is contained in the zero locus of a polynomial P 2C.¹tº/Œg� of degree
at most d .

Proof
By elementary linear algebra, if�d .g;p/ vanishes for each pi 2X.g; rC1/, then the
conclusion of the corollary follows. To see that this indeed happens, we use Proposi-
tions 12 and 13, and we note that the order at zero of a polynomial cannot exceed its
degree. Therefore, unless �d .g;p/ vanishes we have
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Cn�
�.n�m/=m�1C1=m � ordt �.g;p/� deg�d .g;p/�EndmC2r: (18)

Since �	 dmC1 this gives

Cnd
1=m �En�

.n�m/=mr; (19)

and for d as in (17) we indeed obtain a contradiction.

5. Proofs of the main theorems

5.1. The Pfaffian case
We will use the following result of Gabrielov.

FACT 15 ([14, Theorem 2.1])
Let f1; : : : ; fn W	!C be Pfaffian over C.¹tº/ of degree .˛;ˇ/ over a common Pfaf-
fian chain of order `, and let X D V.f1; : : : ; fn/. Then the number of isolated points
(counted with multiplicities) in the fiber Xt converging to the origin as t ! 0 is
bounded by O.ˇnC`/, where the constants depend only on ˛;n; `.

We now deduce a general result on Weierstrass coordinates for Pfaffian varieties
over C.¹tº/. For an analytic germ X �	, we denote by X�m the union of the irre-
ducible components of X having dimension m or less (and similarly for Xm).

THEOREM 5
Let X �	 be a Pfaffian variety over C.¹tº/ of complexity ˇ, and let 1�m� n. Then
there exists an analytic germ Z �	 of pure dimension m satisfying X�m � Z and
Weierstrass coordinates x for Z such that e.Z;x/DO.ˇnC`/.

Proof
Let Qf1; : : : ; QfnC1�m be nC1�m generic linear combinations of the Pfaffian functions
defining X , and set QX WD V. Qf1; : : : ; QfnC1�m/ and Z D QXm. It is easy to see that for
a sufficiently generic choice, every component of X�m is contained in a component
of QX of dimension m and hence X�m �Z.

Let x be a set of Weierstrass coordinates for Z, and set 
Z WD 
z �
t jZ . Denote
by Zb the set of components of QX of dimension greater than m. Then Z \ Zb has
dimension strictly smaller thanm, and Y WD 
Z.Z\Zb/ is a (strict) analytic germ in
.Cm�C; 0/. It follows that for a generic choice of the vector v 2Cm, the line C �.v; 1/
meets Y only at the origin. Thus, a fiber of the map 
Z over any point .v � t; t / with
t 2 .C; 0/ and t ¤ 0 consists of � D e.Z;x/ isolated points in Z nZb which converge
to the origin as t! 0. Each such isolated point is an isolated solution of the system
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¹ Qf1 D � � � D QfnC1�m D 0; z1 D v1 � t; : : : ; zm D vm � tº; (20)

and the bound on � thus follows from Fact 15.

The following proposition gives the basic induction step for the proof of the
Wilkie conjecture over C.¹tº/.

PROPOSITION 16
Let X �	 be a Pfaffian variety over C.¹tº/. Let W �	 be an irreducible algebraic
variety over C.¹tº/ of dimension k over C.¹tº/, and suppose thatX �W andX ¤W .

Then for any r > 0, there exists an algebraic hypersurface H 6
W over C.¹tº/

of degree O.ˇ.nC`/.n�kC1/rk�1/ such that X.r/� .X \H/.r/.

Proof
Let g W .Cn; 0/! .Ck; 0/ be a linear projection which is dominant on W . Note that
necessarily dimCX < dimCW D k C 1. By Theorem 5, we choose an analytic germ
Z 
 X of pure dimension k (over C) and Weierstrass coordinates x for Z such that
� WD e.Z;x/DO.ˇnC`/. Then, by Corollary 14, we may choose a polynomial P 2
C.¹tº/Œg� of degree at most O.�nC1�krk�1/ such that

X.r/�Z.g; r/�H; H D ¹P D 0º (21)

and W 6�H since g was assumed to be dominant on W .

Proof of Theorem 3
First, set X 0 D X;W 0 D An

C.¹tº/
. If X 0 DW 0, then we can finish with ¹W�º D ¹W 0º.

Otherwise, we may apply Proposition 16 with W D W 0 to find a collection of
poly.ˇ; r/ hypersurfaces Hj �An

C.¹tº/
such that

X 0.r/�
[
j

.X 0 \Hj /.r/: (22)

Denote by ¹H 0
k
ºk the collection of irreducible components of the hypersurfaces Hj .

It will be enough to prove the claim for each pair .X 0 \H 0
k
;W 0 \H 0

k
/ and take the

union of all the resulting collections ¹W�º. For this, we repeat the same argument as
above with .X 0;W 0/ replaced by this pair.

Proceeding in this manner for n steps, we end up with W 0 of dimension 0 over
C.¹tº/ and X 0 �W 0. If X 0 DW 0, then we can take ¹W�º D ¹W 0º, and otherwise the
intersection X 0 \W 0 is empty and we take ¹W�º D ;.
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5.2. The Noetherian case
The proof in the Noetherian case is entirely analogous to the proof in the Pfaffian case,
and we leave the detailed derivation for the reader. The only significant difference is
that in this case Fact 15 should be replaced by the following.

FACT 17 ([1, Theorem 1])
Let f1; : : : ; fn W	! C be Noetherian over C.t/ of t -degree .˛;ˇ/ over a common
Pfaffian chain of order `, and let X D V.f1; : : : ; fn/. Then the number of isolated
points (counted with multiplicities) in the fiber Xt converging to the origin as t ! 0

is bounded by poly.ˇ/, where the constants depend only on ˛;n; `.

Note that, comparing with Fact 15, in Fact 17 the bound depends on the t -degree
of the equations with respect to t . We must therefore restrict to varieties over C.t/.
It has been conjectured by Gabrielov and Khovanskii [15] that a similar result should
hold without dependence on the t -degree, and this conjecture would indeed imply an
analogue of Theorem 3 without the restriction to C.t/.

5.3. A final remark
In new work in [5] it is shown that the finiteness result from Theorem 1 no longer
holds if one weakens the condition of LK

an-definability to just definability in a
Hensel minimal structure. Hensel minimality is a non-Archimedean analogue of
o-minimality introduced in [8] and [9]. Other bounds based on dimension (instead of
on counting) are put forward and are shown in the Hensel minimal curve case in [5].
The higher-dimensional case remains open and will represent the non-Archimedean
analogue of the bounds in o-minimal structures from [19].
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