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1. Introduction

Let γ0 ⊂ C
2 be a regular curve, Σ a transversal to γ0, F a holomorphic function 

defined on a tubular neighborhood U ⊂ C
2 of γ0, formed by regular curves γ(t) ⊂ F−1(t), 

t ∈ F (Σ), with γ0 = γ(t0).
Consider the integrable foliation dF = 0 and its holomorphic deformation

dF + εω = 0 (1.1)

in U . We are interested in the displacement function Δ (holonomy along γ minus identity) 
of (1.1). Here Δ(t) denotes the holonomy of (1.1) along γ(t). It can be developed as

Δ(t) =
∑
i≥1

εiMi(t). (1.2)

The functions Mi(t) are called Melnikov functions. If Δ ≡ 0, this means that (1.1) has a 
first integral in a neighborhood of γ(t). If not, then there exists a first non-zero Melnikov 
function Mμ.

1.1. Françoise algorithm

Françoise algorithm allows to compute the first nonzero Melnikov function Mμ. Let 
us first recall the following classical Lemma.

Lemma 1.1. Given a holomorphic one-form ω and a family of cycles γ(t) ⊂ {F−1(t)}, 
the following conditions are equivalent:

(i) The form ω verifies

∫
γ

ω ≡ 0. (1.3)

(ii) There exists a function r holomorphic in a neighborhood of γ such that

dF ∧ (ω − dr) ≡ 0. (1.4)

(iii) There exist functions g and r holomorphic in a neighborhood of γ such that

ω = gdF + dr. (1.5)

Note that the functions g and r are univalued in U but in general do not extend to 
polynomial, nor even univalued functions in C2.
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Recall, the classical result of Poincaré and Pontryagin:

M1(t) = −
∫

γ(t)

ω.

If M1 ≡ 0, then, by Lemma 1.1,

ω = g1dF + dr1,

and in that case, Françoise [3] proves the following theorem (see also [13], [7], [8], [4], [5], 
[11], [12], [10]):

Theorem 1.2. Let (1.2) be the displacement function of (1.1). Assume that Mi(t) ≡ 0, 
for i = 1, . . . , k. Then Mk+1(t) = (−1)k+1 ∫

γ(t) gkω, where g0 = 1 and gi, ri verify

gi−1ω = gidF + dri, i = 1, . . . , k. (1.6)

The existence of the decomposition (1.6), follows by induction from Lemma 1.1.

Definition 1.3. We call any pair (gi, ri), verifying (1.6) an i-th Françoise pair associated 
to the deformation (1.1) and call the sequence (gi, ri), i = 0, 1, . . . a Françoise sequence. 
We say that the length of a Françoise sequence is �, if � is the smallest index such that 
g�+1 = 0. If there does not exist such an index, we say that the sequence is of infinite 
length.

1.2. Godbillon–Vey sequence

On the other hand, the classical Godbillon–Vey sequence is associated to a foliation 
defined by a single one form

ω = 0. (1.7)

It is a sequence of one-forms ω0 = ω, ωi, i = 1, . . . such that the formal one-form

Ω = dε + ω0 +
∑
i=1

εi

i!ωi (1.8)

in C2 × C verifies the formal integrability condition

Ω ∧ d̃Ω = 0. (1.9)

Here d̃ = dε + d denotes the total differential with respect to all variables x, y, ε.
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Condition (1.9) is equivalent to

dω0 = ω0 ∧ ω1,

dω1 = ω0 ∧ ω2,

· · · · · ·
dωn = ω0 ∧ ωn+1 +

∑n
k=1

(
n
k

)
ωk ∧ ωn−k+1.

We say that the Godbillon–Vey sequence is of length n if the forms ωk vanish for k ≥ n.

Definition 1.4. Let K be a differential field, G a function and KG the extension of K by G. 
We say that the extension KG is: Darboux, Liouville or Riccati, respectively, if it belongs 
to a finite sequence of field extensions starting from the field K. The extensions in each 
step are either algebraic or given respectively by solutions of the equations dG = η0, 
dG = Gη1 + η0 or dG = G2η2 + Gη1 + η0, with ηi one-forms with coefficients in the 
corresponding field extensions.

In that case, we call the function G Darboux, Liouville or Riccati with respect to K.

In [1], Casale relates the length n of the Godbillon–Vey sequence to the type of first 
integral of the foliation given by (1.7):

Theorem 1.5.

(i) There exists a Godbillon–Vey sequence of length 1 if and only if (1.7) has a Darboux 
first integral.

(ii) There exists a Godbillon–Vey sequence of length 2 if and only if (1.7) has a Liou-
villian first integral.

(iii) There exists a Godbillon–Vey sequence of length 3 if and only if (1.7) has a Riccati 
first integral.

Here we develop a version of Godbillon–Vey sequences well-adapted to studying a 
deformation of an integrable foliation given by (1.1). Recall that on the level ε = 0 it 
is integrable (with first integral F ). The Godbillon–Vey sequence gives a condition for 
verifying if this integrability extends to ε �= 0.

We define the form

Ω = Rdε + (dF + εω)G, (1.10)

with

G =
∑
i=0

εiGi, R =
∑
i=0

εiRi+1 (1.11)

unknown functions and G0 ≡ 1. The form (1.10) of Ω comes from the requirement to 
define the same foliation as (1.1) on each level ε = const.
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We give a relative version of the definition of different types of first integral for the 
deformation (1.1).

Definition 1.6. We denote by KF,ω the field associated to the deformation (1.1). That is, 
the smallest differential field in a tubular neighborhood U of a cycle γ0 containing the 
functions given by coefficients of dF and ω.

Let Fε =
∑�

i=0 ε
iFi, � < ∞, be a first integral of (1.1). We say that it is Darboux, 

Liouville or Riccati, respectively, if all Fi are in the corresponding extension of the field 
KF,ω.

Theorem 1.7. [6] There exists a solution (G, R) of the equation

Ω ∧ d̃Ω = 0, (1.12)

if and only if the deformation preserves formal integrability along γ i.e. Δ ≡ 0.

Proof. Indeed, if there exists a solution (G, R) of (1.7), then by Frobenius theorem, 
Ω defines a foliation in a neighborhood of (γ(t), 0) in C3 transversal to ε = 0. It follows 
from the existence of this foliation that the integrability on the level ε = 0 is preserved 
on nearby levels. �

We will also consider the Godbillon–Vey equation up to order k with Ω, G, R given 
by (1.10) and (1.11):

Ω ∧ d̃Ω = 0 mod εk+1. (1.13)

Definition 1.8. We call any pair (Gi, Ri), verifying (1.13) an i-th Godbillon–Vey pair 
associated to the deformation (1.1), (Gi, Ri), i = 0, 1, . . . is the Godbillon–Vey sequence 
associated to the deformation. We say that the length of a Godbillon–Vey sequence 
associated to the deformation is �, if � is the smallest index such that G�+1 = 0. If there 
does not exist such an index, we say that the sequence is of infinite length.

Remark 1.9. Note that the length is associated to any Françoise sequence or Godbillon–
Vey sequence associated to the deformation (1.1).

However, one deformation (1.1) can have Françoise sequences (or Godbillon–Vey se-
quence) of different lengths. The minimal length is well defined and one can choose a 
Françoise sequence so that all gk = 0, for k > �. The same applies for the Godbillon–Vey 
sequences.

Françoise pairs (gi, ri) and Godbillon–Vey pairs (Gi, Ri) exist for all i = 1, 2, 3, . . . if 
and only if the deformation preserves integrability along γ.
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2. Main theorems

In this section we state our two main results. The first establishes the relationship 
between the Françoise pairs and the Godbillon–Vey pairs associated to the deformation. 
In particular it shows that the minimal length of Françoise sequences and Godbillon–Vey 
sequences coincide:

Theorem 2.1.

(i) The Melnikov functions Mi, i = 1, . . . , k, are identically equal to zero if and only if 
one can solve the equation

Ω ∧ d̃Ω = 0 mod εk+1. (2.1)

(ii) For each choice of the Françoise sequence (gi, ri), i = 1, . . . , k, the Godbillon–Vey 
sequence (Gi, Ri), i = 1, . . . , k, can be chosen verifying the equations

Gi = (−1)igi, Ri = (−1)i+1iri. (2.2)

(iii) If Ω verifies (2.1) then
a) there exists a function N = 1 +

∑k
i=1 ε

ini such that

Ω = Nd̃Fε mod εk+1.

Then the function Fε is of the form

Fε = F +
k∑

i=1
(−1)i+1εiri. (2.3)

and

d̃Fε = R̃dε + G̃ (dF + εω) . (2.4)

b) Let G̃ and R̃ be given in (2.4) and (Gi, Ri), i = 1, . . . , k, be its coefficients as 
in (1.11). Then the functions (gi, ri), i = 1, . . . , k, given by (2.2) are Françoise 
pairs.

Our second result gives the type of local first integral Fε of the deformation (1.1) if 
the length of its Françoise sequence is finite. The first result is that the first integral is in 
a finite sequence of extensions of Darboux type. The second shows that it is in a single 
extension of Liouvillian type.

Theorem 2.2. Let ηε = dF + εω as in (1.1) be such that there exists a Françoise sequence 
of finite length �.
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(i) Then (1.1) admits a univalued first integral which is Darboux with respect to the field 
KF,ω of the deformation (1.1).

(ii) Then there exists a meromorphic form η̃ε verifying the Godbillon–Vey sequence of 
length 2:

dηε = ηε ∧ θ̃ε

dθ̃ε = 0,

such that there exists a (possibly multivalued) first integral F̃ε of (1.1) verifying

dF̃ε = fηε,

where

df = fθ̃ε

is a (possibly multivalued) function in a tubular neighborhood U of the cycle γ0.
In particular, the function f belongs to a Liouville extension of KF,ω and F̃ε belongs 
to a Darboux extension of this Liouville extension.

Remark 2.3. Note that we are restricting our study to a tubular neighborhood U of a 
cycle γ0. A first integral Fε which is Darboux in U can be more complicated (Liouville, 
Riccati, . . . ) when studied globally.

Remark 2.4. In Theorem 2.2 (ii) we prove in particular that if the deformation (1.1) has 
a finite Françoise sequence, then it has a Liouvillian first integral. The converse is an 
interesting question.

Remark 2.5. In Theorem 2.2 we suppose that (1.1) has a Françoise sequence of finite 
order. What happens in the case of � = ∞? In particular, is it possible to give a condition 
assuring that a deformation (1.1) has a Liouville or a Riccati first integral in these terms?

3. Proof of Theorem 2.1

Proof. We first prove the direct implication of the statement (i), the converse will follow 
from (iii)(b). If the functions Mi identically vanish for i = 1, . . . , k, then one can build a 
first integral Fε of dF + εω mod εk+1 in the following way: extend F to transversal Σ
to γ ×{0} in C3 = C

2
x,y ×Cε as F (x, y, ε) = F (x, y), and extend it to a neighborhood U

of γ × {0} in C3 by the flow. The extension Fε is a multivalued function, but different 
branches of Fε agree mod εk+1 on Σ by assumption, and therefore everywhere in U . In 
other words, in the decomposition Fε = F +

∑
i≥1 ε

iFi, Fi = Fi(x, y), the functions Fi

are univalued for i = 1, . . . , k.
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This implies that in the decomposition

d̃Fε = (Fε)′ε dε + (dF + εω)G,

the coefficients (Fε)′ε , G are univalued modulo terms of order ≥ k + 1, and we take 
Ω := jk−1

ε (Fε)′ε dε + (dF + εω) jkε G, where jkε denotes the k-th jet with respect to ε. 
Then Ω verifies (2.1).

Using (1.6), the proof of (ii) follows from the computation:

(dF + εω)
(

1 +
k∑

i=1
(−1)iεigi

)
=dF +

k∑
i=1

εi
(
(−1)igidF + (−1)i−1gi−1ω

)

=dF +
k∑

i=1
εi(−1)i−1dri mod εk+1,

where g0 ≡ 1. Therefore, by (2.2) and (1.11),

Ω = Rdε + G(dF + εω) =
(

k∑
i=1

(−1)i−1iεi−1ri

)
dε + dF +

k∑
i=1

εi(−1)i−1dri

=d̃

(
F +

k∑
i=1

εi(−1)i−1ri

)
mod εk+1

is closed up to order εk+1 and therefore satisfies (2.1).
We prove statement (iii)(a) and (iii)(b) simultaneously by induction. We define weights 

of monomials by posing w(x) = w(y) = w(dx) = w(dy) = 0 and w(ε) = w(dε) = 1, so d
and d̃ preserve weights. We will denote by ok any collection of terms of weight > k. In 
these notations, (2.1) is equivalent to

Ω ∧ d̃Ω = ok+1. (3.1)

Let Nj = 1 +
∑j

i=1 ε
ini. We construct the function N = Nk by induction.

Consider first k = 0. A simple computation shows that

Ω ∧ d̃Ω = dF ∧ dε ∧ (ω − dR1) + o1,

so, simplifying by ∧dε, (3.1) for k = 0 is equivalent to

dF ∧ (ω − dR1) = 0.

By Lemma 1.1, this equation can be solved if and only if 
∫
γ
ω ≡ 0, i.e. if and only if 

the first Françoise condition M1 ≡ 0 is satisfied. Therefore, the existence of Ω satisfying 
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(2.1) for k = 0 is equivalent to the first Françoise condition, and we can choose r1 in 
(1.6) to be equal to R1,

ω = dr1 + g1dF.

Hence,

Ω = r1dε + (dF + εω)(1 + εβ1) + o1 (3.2)

for some function β1. Therefore,

Ω = [r1dε + (dF + εω)(1 − εg1)] (1 + ε(β1 + g1)) + o1 = N1d̃Fε,1 + o1,

where N1 = 1 + ε(β1 + g1) and Fε,1 = F + εr0.
Now, let k > 0 and assume (3.1). In particular, it means that Ω ∧ d̃Ω = ok. By 

induction, we have

Ω = Nk−1d̃Fε,k−1 + ok−1, where Fε,k−1 = F + εr0 − . . . + (−1)k−2εk−1rk−1.

Define

Θ = N−1
k−1Ω = d̃Fε,k−1 + θk + ok,

where θk is homogeneous of weight k. We have Θ ∧ d̃Θ = Ω ∧ d̃Ω = ok.
But d̃Θ = d̃θk has weight k. Therefore

Θ ∧ d̃Θ = dF ∧ d̃θk + ok.

Note that Θ has form (1.10), with Gi, Ri as in (2.2) for i ≤ k − 1. Separating terms of 
weight k, we get

θk = εk−1Rkdε + εkGkdF + (−1)k−1εkgk−1ω.

Therefore

0 = dF ∧ d̃θk = εk−1dF ∧ dε ∧
(
(−1)k−1kgk−1ω − dRk

)
. (3.3)

As Θ is a solution of (2.1), this equation is solvable, which, by Lemma 1.1, means that ∫
γ
gk−1ω ≡ 0, i.e. that the k-th Melnikov function vanishes identically. Moreover, (3.3)

implies

kgk−1ω = (−1)k−1dRk + kgkdF,
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i.e. Françoise decomposition (1.6) of gk−1ω with k-th Francoise pair (gk, rk), such that 
Rk = (−1)k−1krk.

Therefore

Θ =
(
r0 + . . . + εk−1(−1)k−1krk

)
dε

+ (dF + εω)
(
1 + . . . + (−1)k−1εk−1gk−1 + εkGk

)
+ ok =

=
(
1 + εk(Gk + (−1)k−1gk)

)
d̃Fε,k + ok,

where Fε,k = F + εr0 − . . . + (−1)k−1εkrk, and

Ω = Nkd̃Fε,k + ok, Nk = Nk−1
(
1 + εk(Gk + (−1)k−1gk)

)
,

as required. �
4. Proof of Theorem 2.2

Proof. Proof of (i): Let (gi, ri), i = 0, 1, 2, . . . be a Françoise sequence and assume that 
gi = 0, for i ≥ � + 1 (see Remark 1.9). Let

ηε = dF + εω, G =
�∑

i=0
(−1)iεigi, Fε = F +

�∑
i=1

(−1)i+1εiri. (4.1)

It follows from the definition of Françoise pairs (1.6) that

Gηε = dFε. (4.2)

Differentiating (1.6) and dividing by dF (that is, applying the Gelfand–Leray derivative), 
one obtains

dgi = dgi−1 ∧ ω

dF
+ gi−1

dω

dF
=: ηi−1.

By induction, from the Definition 1.4, gi is Darboux, for i = 0, . . . , �. It now follows from 
(1.6) that ri, i = 1, . . . , �, is Darboux as well and by Definition 1.6, the first integral Fε

is Darboux with respect to the field KF,ω.

Proof of (ii): Let ηε, G and Fε be as in (4.1). Now from (4.2) it follows that

dηε = dG−1

G−1 ∧G−1dFε = θε ∧ ηε, for θε = dG−1

G−1 .

Hence, dθε = 0. The two equations together give a Godbillon–Vey sequence of length 2 
in a Liouville extension of the space of forms with coefficients in KF,ω in (x, y) ∈ U and 
holomorphic with respect to the parameter ε.
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Now Singer’s theorem [9] (see also [2]) gives that there exists a form θ̃ε with coefficients
in KF,ω (holomorphic with respect to ε) verifying the same Godbillon–Vey equations:

dηε = ηε ∧ θ̃ε,

dθ̃ε = 0.

That is θ̃ε is closed. Hence, there exists a (possibly multivalued) function f defined in U
such that

df = fθ̃ε.

One verifies that the form fθ̃ε is closed. This means that there exists a (possibly multi-
valued) function F̃ε verifying

dF̃ε = fηε. �
5. Classical Godbillon–Vey sequences and examples

Let Ω be the form given by (1.10). We apply the classical Godbillon–Vey condition 
(1.9) to the form

Ω
R

= dε + η0 + εη1 + . . . + εi

i! ηi + . . .

Comparing to the closed form (1.10), we conclude that the forms η1, . . . defined by

ηε =
∑ εi

i! ηi = dFε

dεFε
=

dF +
∑∞

i=1 ε
i(−1)i−1dri∑∞

i=1(−1)i−1iεi−1ri
(5.1)

from a Godbillon–Vey sequence of dFR1
:

η0 = R−1
1 dF, η1 = R−1

1 (2R2dF + dR1), . . . ,

and the forms

η̃1 = 2R−1
1 (R2dF + dR1), . . . , η̃i = Ri−1

1 ηi,

form a Godbillon–Vey sequence of dF . This sequence could be infinite.
In classical setting one starts from a given foliation ω = 0 for ε = 0, and looks for 

a simplest perturbation ωε = 0 such that the form dε + ωε is integrable. Results of [2]
say that if the foliation ω = 0 is Darboux integrable, Liouville integrable or Riccati 
integrable, then one can find perturbations such that ωε either does not depend on ε or 
is polynomial in ε of degree 1 or 2, respectively, i.e. that the Godbillon–Vey sequence 
has finite length.
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In this paper, given a perturbation (1.1), and we construct a one-form Ω such that 
its restriction to the planes {ε = const} defines the same foliation as the initial one. 
In other words, unlike the classical settings, here the perturbation of the foliation is 
almost uniquely prescribed, the only freedom being the coefficients G, R in (1.10). Thus 
the length of the corresponding Godbillon–Vey sequence can be infinite even if ωε is 
Liouville integrable for all ε.

Example 5.1. Let F = x2 + y2 and ω = y2dx. For symmetry reasons, the perturbation 
(1.1) is integrable. Computation shows that

gn = (−1)n

n! xn, rn = (−1)n

n!

(
2

n + 2x
n+2 − xny2

)
. (5.2)

Then a first integral is given by

Fε =x2 + y2 +
∞∑

n=1
(−1)n−1εnrn = eεx

(
y2 + 2 x

ε
− 2 ε−2

)
,

d̃Fε =eεx(εy2 + 2x)dx + 2eεxydy,

and therefore the Godbillon–Vey forms ωi are Taylor coefficients in ε of

(
∂

∂ε
Fε

)−1

dFε = dF +
∞∑

n=1
εiωi. (5.3)

One can see that this series is not polynomial in ε, though the first integral Fε is of 
Liouville type. Some authors call this type of functions generalized Darboux.

Example 5.2. For a trivially integrable perturbation ω = gdF , the Françoise pairs are 
given by gi = gi, i = 1, . . ., and r1 ≡ 1, ri = 0 for i = 2, . . .. Therefore the first integral 
is

Fε = F + ε, R ≡ 1, G = 1 +
∞∑
i=1

(−1)iεigi = (1 − εg)−1,

and

Ω = dε + (dF + εgdF )(1 − εg)−1 = dFε.

Example 5.3. For a Darboux integrable perturbation (1.1) with ω = F dr
r we have

gi = (−1)i (log r)i

i! , ri = −Fgi,

so
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Fε = F +
∞∑
i=1

(−1)i−1εiri = F + F
∞∑
i=1

εi
(log r)i

i! = Feε log r = Frε.

Then

d̃Fε = Frε log rdε +
(
rεdF + εFrε−1dr

)
= Frε log r

[
dε +

(
dF

F log r + ε
dr

r log r

)]
.

Therefore the forms

ω1 = dr

r log r , ωi = 0, i = 2, . . .

form a Godbillon–Vey sequence for dF
F log r , and hence

ω̃1 = dr

r log r + dF

F
+ dr

r
, ω̃i = 0, i = 2, . . .

form a Godbillon–Vey sequence for dF , so this Godbillon–Vey sequence for dF + εω has 
length 1.
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