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a b s t r a c t

Let F ∈ C[x, y] be a polynomial, γ (z) ∈ π1(F−1(z)) a non-trivial cycle in a generic fiber of F and let
ω be a polynomial 1-form, thus defining a polynomial deformation dF + ϵω = 0 of the integrable
foliation given by F .

We study different invariants: the orbit depth k, the nilpotence class n, the derivative length d
associated with the couple (F , γ ). These invariants bind the length ℓ of the first nonzero Melnikov
function of the deformation dF+ϵω along γ . We analyze the variation of the aforementioned invariants
in a simple but informative example, in which the polynomial F is defined by a product of four lines.
We study as well the relation of this behavior with the length of the corresponding Godbillon–Vey
sequence. We formulate a conjecture motivated by the study of this example.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction, main results and conjectures

This work is motivated by the 16th Hilbert’s problem or rather
ts infinitesimal version. As it is known, the second part of Hilbert’s
6-th problem asks for an upper bound in terms of the degree
or the number of real limit cycles, i.e. isolated periodic orbits of
olynomial vector fields in the plane. The problem is far from
een solved and the existence of such a number is open even for
uadratic vector fields.
Arnold formulated the infinitesimal Hilbert’s problem, which

sks for a bound on the number of (real) limit cycles that can arise
nder polynomial deformations from an integrable polynomial
ifferential equation in the plane. This bound must be uniform
n the sense that it must depend exclusively on the degree of the
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integrable 1-form defining the corresponding foliation, and the
degree of the polynomial that realizes the perturbation.

In one of its forms Arnold’s infinitesimal Hilbert problem [1]
studies the following situation.

Let F (x, y) ∈ R[x, y] be a square-free polynomial, z a regular
value of F and γ (z) ⊂ F−1(z) a continuous family of real cycles of
F−1(z). We will consider the complexification of the polynomial
F which, for the sake of simplicity, we will denote again by F .
he polynomial F defines a singular fibration and hence a singular
oliation given by the integrable one-form

F = 0 . (1.1)

Consider the polynomial deformations depending on the pa-
ameter ϵ

F + ϵω = 0 . (1.2)

As usual, one defines the displacement function (holonomy
ap minus identity) ∆ϵ of the deformation (1.2) along γ (z). The

isolated zeros of the displacement map ∆ϵ are in correspondence
with the limit cycles of (1.2).

The Taylor series expansion with respect to ϵ at 0 of ∆ϵ is
iven by

ϵ(z) =

∑
ϵ iMi(z). (1.3)
i=µ
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he functions Mi are called Melnikov functions. We assume Mµ ̸≡

and call it the first non-zero Melnikov function. By the implicit
unction theorem, for regular values of z, it carries the main
nformation on the number of limit cycles that can arise under
he deformation. This motivates the study of this function Mµ,
he subject of the infinitesimal Hilbert 16th problem.

It is known that Mµ is an iterated integral [2]. Let ℓ denote
ts iterated integral length, or shorter, simply length. It measures
he complexity of Mµ. Bounding this length, would be a key step
owards the bound of the limit cycles arising under perturbation.
n [3], Gavrilov and Iliev gave a condition which guarantees that

µ is an abelian integral (iterated integral of length 1). We
howed the necessity of this condition in [4].
Let z be a generic value of F . Consider the fundamental group

1 of F−1(z), and let Lj be its lower central sequence;

j = [Lj−1, π1], where L1 = π1. (1.4)

sing the fibration given by F , we define the monodromy group,
which is a subgroup of the group of automorphisms of π1. Then
enote by O = Oγ the normal subgroup of π1 generated by the
rbit of γ under the action by the monodromy group (see [4]).
In [4], we defined the orbit depth k of the cycle γ of F by

= sup{j ≥ 1|O ∩ Lj ̸⊂ [O, π1]} = min{j ≥ 1|O∩Lj+1 ⊂ [O, π1]},

(1.5)

nd showed that the orbit depth k bounds the length of the iter-
ted integral Mµ, for the displacement map ∆ϵ of any polynomial
eformation (1.2), i.e. that

≤ k. (1.6)

In [5], we gave an example of a system having unbounded
epth and formulated the following conjectures:

onjecture 1.1.

(i) For any polynomial F and any non-trivial cycle γ of F , either
the depth is unbounded, or it is 1, or 2.

(ii) For any F and its cycle γ , either there exist deformations ω,
whose first non-zero Melnikov function Mµ is of arbitrary high
length, or for any deformation ω, the length of Mω is 1 or 2.

This conjecture is similar in spirit to the result of Casale [6] ,
concerning the first integral and the length of the corresponding
Godbillon–Vey sequence of a system or the Tits alternative [7].

One of the central components in the study is the orbit com-
plement abelianization group or O-abelianization

πO−ab
1 :=

π1

O ∩ L2
. (1.7)

Note that it is associated to the couple (F , γ ) and does not
epend on the deformation form ω.
In order to give some steps towards the proof of the above

onjecture, we consider some other, more classical invariants
ssociated to the group πO−ab

1 : its nilpotence class n and its
erivative length d, which we relate to the orbit depth k and
ength ℓ of the first nonzero Melnikov function (see Section 2 for
definitions).

Proposition 1.2. Let F ∈ R[x, y] be a polynomial, γ ∈ π1(F−1(z))
be a real cycle and ω a polynomial 1-form as above, and let πO−ab

1
be the group defined in (1.7). Let n be the nilpotence class of πO−ab

1 ,
d the derivative length of πO−ab

1 , k the orbit depth and ℓ the length
of the first nonzero Melnikov function of the deformation (1.2)
along γ . Then the following inequalities hold

ℓ ≤ k ≤ n + 1, d ≤ n. (1.8)
2

Remark 1.3. Although d ≤ n, there is no evident relationship
between d and k.

General approach 1.4. The Poincaré (holonomy) map of a
deformation (1.2) induces a homomorphism

Pω : π1 → C[ϵ] ⊗ Diff (C, 0) , Pω(δ) =

{
z ↦→ z + ϵ

∫
δ

ω + O(ϵ2)
}

,

(1.9)

where Pω(δ) is the Poincaré map with respect to the foliation (1.2)
along the cycle δ.

Assume that the deformation (1.2) preserves the continuous
families of cycles corresponding to elements of O∩L2. This means
that Pω(O ∩ L2) = {Id} and the map (1.9) descends to the
homomorphism

Pω : πO−ab
1 → C[ϵ] ⊗ Diff(C, 0). (1.10)

Moreover, if one defines a deformation form ω in such a way
that the obtained subgroup of diffeomorphisms is parabolic, then
the group πO−ab

1 inherits properties of subgroups of parabolic
diffeomorphisms. Using these properties, one could conclude that
either πO−ab

1 is abelian, and so the orbit depth is less than or equal
to 2, or it is non-solvable.

However, the difficulty here lies in finding a one-form ω such
that, for a cycle σ ∈ [π1, π1] \ O ∩ L2, Pω(σ ) ̸= id, but it is the
identity along any commutator in the orbit.

Here, we realize the above approach in the case of a Hamilto-
nian F given as a product of four real lines

F (x, y) = f1(x, y)f2(x, y)f3(x, y)f4(x, y),
fi = aix + biy + ci, (ai, bi) ̸= (0, 0), (ai, bi) ̸= (aj, bj), for i ̸= j.

(1.11)

Recall that, as studied in [5], in the above case, if fi, i = 1, . . . , 4,
consist of two pairs of parallel lines, the orbit depth k is infinite.
Any Hamiltonian given by a product of four different lines is of
one of the following three types:

(1) The four lines are in generic position (no parallel lines
among fi, i = 1, . . . , 4, for different indices).

(2) One of the bounded domains bounded by these lines is
a quadrilateral with exactly one pair of parallel opposite
sides (we call it a trapezoid).

(3) One of the bounded domains bounded by these lines is a
parallelogram (we call it a parallelogram).

Theorem 1.5. Let F be the product of four real lines (1.11), and
γ ∈ π1(F−1(z)) a continuous family of real cycles of F .

(1) In the case that the four lines are in generic position, then
πO−ab
1 is abelian, so its nilpotence class n and derived length

d are equal to 1. Hence the orbit depth k ≤ 2, and the length
of the first non-zero Melnikov function is ℓ ≤ 2.

(2) In the trapezoid case πO−ab
1 is non-solvable d = n = ∞, but

the orbit depth is k ≤ 2. Hence, the length of the first non-zero
Melnikov function of any deformation is bounded by 2, ℓ ≤ 2.

(3) In the parallelogram case πO−ab
1 is non-solvable d = n = ∞

and the orbit depth is infinite k = ∞.

Remark 1.6. We stress that the realization of the length is
required in order to prove the conjecture in [4] that states that
the orbit depth is an optimal bound for the length of Melnikov
functions. In [5] we provide a deformation of the parallelogram
that has a first non-zero Melnikov function of length 3, which
already distinguishes this case from the trapezoid, in terms of the
length, where the length is less than or equal to 2.
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The case of four lines in generic position has been studied
in [4,8]. We recall it here for completeness. In this work, our
aim is to focus on more degenerated situations, the trapezoid and
parallelogram cases.

Since the nilpotence class n of πO−ab
1 provides an upper bound

for the orbit depth k, we also want to understand conditions
under which πO−ab

1 is non-nilpotent (or non-solvable). From the
definition of the homomorphism in (1.10) we see that the nilpo-
tence class of πO−ab

1 is greater than the nilpotence class of its
image under Pω . In this sense, the class of nilpotence of πO−ab

1
is related with the type of deformations preserving centers in
O ∩ L2, and therefore, with the type of integrability of these
deformations.

Theorem 1.7.

(1) In the parallelogram and the trapezoid cases, there exist poly-
nomial 1-forms ω such that the deformations (1.2) preserve
the pairs of parallel lines and have a first integral of Riccati
type.

(2) Moreover, there are deformations, preserving the pairs of
parallel lines, having Godbillon–Vey sequences of any finite
length.

Remark 1.8. In [9] the authors define the length of a foliation as
the minimal length among all Godbillon–Vey sequences for the
foliation. They mention that they do not know any example of
finite length greater than 4. Deformations in the second part of
Theorem 1.7 could provide such examples if one can prove that
its Godbillon–Vey sequence has optimal length.

Conjecture 1.9.

(1) The non-solvability of the group πO−ab
1 is characterized by

the presence of a pair of parallel curves in the Hamiltonian
foliation.

(2) The non-bounded orbit depth is characterized by the presence
of two pairs of parallel curves in the Hamiltonian foliation.

(3) The type of singularity given by a pair of parallel curves at the
line at infinity characterizes the non-solvability of πO−ab

1 .

Here by parallel curves, we mean two level curves f −1(c1)
and f −1(c2), of the same function f , for c1 ̸= c2. Parallel curves
intersect only at the line at infinity.

2. Nilpotence class and derivative length

Definition 2.1.

(i) Given a group G, let Gi be its lower central sequence:

G = G1 ⊃ G2 ⊃ · · · , Gj+1 = [Gj,G].

If there exists j ∈ N such that Gj = {e}, we say that the
group is nilpotent and define its nilpotence class n = n(G)
as

n = min{j ≥ 1|Gj+1 = {e}}, (2.1)

where e is the identity element in G.
(ii) Similarly, the upper central sequence Gj is

G = G0
⊃ G1

⊃ · · · , Gj+1
= [Gj,Gj

].

If there exists j such that Gj
= {e}, we say that the group is

solvable and define its derived length d as

d = min{j ≥ 1|Gj
= {e}}. (2.2)
3

Note that

Gj+1 ⊃ Gj. (2.3)

This gives d ≤ n and in particular any nilpotent group is
solvable.

We apply these two notions to the orbit complement abelian-
ization group πO−ab

1 given in (1.7).

Proof of Proposition 1.2. In order to prove that k ≤ n + 1, it
uffices to prove that (πO−ab

1 )j = {ē} implies O ∩ Lj+1 ⊂ [O, π1],
or any j.

We claim first that the assumption (πO−ab
1 )j = {ē}, implies

j ⊂ O. (2.4)

ndeed, let σ = [[· · · [γ1, γ2], . . . , γj−1], γj] be a generator of
j and let σ̂ ∈ πO−ab

1 be the class of this σi in (πO−ab
1 ). Then

ˆ ∈
(
πO−ab
1

)
j = {e}, i.e. σ ∈ O ∩ L2. We thus have (2.4).

Hence, Lj+1 = [Lj, π1] ⊂ [O, π1], showing that O ∩ Lj+1 ⊂

O, π1].
The relation d ≤ n comes from expression (2.3). On the other

and, it is known from [4] that the length ℓ of the first non-zero
elnikov function is bounded by the orbit depth k. Therefore,
≤ k ≤ n + 1. □

. Germs of diffeomorphisms

Given a germ of diffeomorphism f ∈ Diff(C, 0), we say that
t is parabolic if it is of the form f (z) = z + o(z). If f is not the
dentity, then f = z + azp+1

+ o(zp+1), with a ̸= 0. We call p
he level of f . Let Diff1(C, 0) ⊂ Diff(C, 0) denote the subgroup of
arabolic germs.
The general approach given in 1.4 is based on the following

ell-known facts about the solvability of the group of parabolic
erms Diff1(C, 0).

emma 3.1 (Proposition 6.11, [10]). Let f = z + azp+1
+ · · · and

= z+bzq+1
+· · ·. Then [f , g](z) = z+ab(p−q)zp+q+1

+o(zp+q+1).

roposition 3.2 (Lemma 6.13 [10]). Let G be a finitely generated
ubgroup of parabolic germs Diff1(C, 0). Then (i) or (ii) holds

(i) G is abelian, i.e. of nilpotence class n(G) ≤ 1.
(ii) G is not solvable (hence not nilpotent).

emma 3.3 ([10]). Let G be a finitely generated subgroup of
arabolic germs Diff1(C, 0). Then G is solvable if and only if it is
belian. Moreover, one of the following statements holds:

(i) G is not abelian and there exist two diffeomorphisms f and g
in G of different levels.

(ii) G is abelian and all diffeomorphisms in G are of the same level.

roof. Suppose G ̸= {id}. We now consider two cases: either
here exist two germs f = z + azp+1

+ o(zp+1) and g = z +

zq+1
+ o(zq+1) in G of different level q ̸= p, or all germs are of

he same level.
In the first case, by Lemma 3.1, h = [f , g](z) = z + ab(p −

)zp+q+1
+ o(zp+q+1) ̸= z. Therefore, G1 = [G,G] ̸= {id}. Applying

inductively the same reasoning on h and g , one can show that
Gℓ ̸= {id} and Gℓ

̸= {id}, for all ℓ. Thus, G is neither nilpotent, nor
solvable.

Now, suppose that all the elements of G have the same level
p. Then, by Lemma 3.1, given f = z + azp+1

+ o(zp+1) and g =

z + bzp+1
+ o(zp+1), the element [f , g] is either of a level strictly

greater than p or the identity. The first option is impossible by
the assumption, so it follows that G2 = G1

= {id}. Thus G is
abelian. □
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Fig. 1. The real loops γ (z) and γ1(z) and the complex vanishing loops δi(z) as
lements of π1

(
F−1(z), p0

)
.

. Proof of Theorem 1.5

roof. In the case (1), of product of lines in generic position, it
as been proved in [8] that [π1, π1] ⊆ O. Therefore, πO−ab

1 is
belian, and k ≤ 2. Hence, the orbit depth of the real cycle, as
ell as the length of the first non-zero Melnikov function for any
eformation, is bounded by 2, by [4].
To prove that πO−ab

1 is non-solvable for cases (2) and (3) we
ollow the same strategy. In both cases, by an affine change of
oordinates we can assume that the Hamiltonian is given by F =

x − 1)(x + 1)f3f4, where f3 and f4 are linear factors (non-parallel
n case (2) and parallel in case (3)).

Now, consider the foliation Fω = {dF + ϵω = 0}, where
= F 2( dx

x−1 + F dx
x+1 ), and the homeomorphims defined by the

olonomy with respect to Fω:

Pω : πO−ab
1 → C[ϵ] ⊗ Diff 1(C, 0).

We define the subgroup G := Pω(πO−ab
1 ) of the group of

parabolic diffeomorphism with coefficients depending on ϵ. Note
hat the morphism Pω is well defined. Namely, since Fω has
a reflexion symmetry with respect to y-axis, then it preserves
he center at the origin. Moreover, since Pω[δ1, δ2] = z +
2W (z2, z3)

∫
[δ1,δ2]

dx
x−1

dx
x+1 + O(ϵ3) ̸= z, where W is the Wron-

skian, then G is not Abelian, and therefore non-solvable.
In [5] it is proved that the parallelogram has unbounded orbit

depth.
It remains to prove that for the trapezoid the orbit depth is

k ≤ 2. By an affine change of coordinates we may assume that F
s defined by

= (x − 1)(x + 1)f3f4 , (4.1)

nd has the configuration given in Fig. 1. The zero level F−1(0)
consists of four lines, enclosing a quadrilateral and a triangle. Let
γ be the real cycle in F−1(z ′), z ′ > 0, close to zero and enclosed by
the quadrilateral, and let γ1 be the real cycle in F−1(z ′′), z ′′ < 0,
close to zero and enclosed by the triangle, both with positive
orientation. Let pi be the vertices of the quadrilateral oriented
positively with p2 and p3 the common vertices with the triangle
and let p5 be the last vertex of the triangle. Let δi, be the vanishing
cycles at the vertices pi, i = 1, . . . , 5 taken so that the intersection
numbers verify (γ , δi) = 1, i = 1, . . . , 4 and (γ1, δ5) = 1.

Using the Gauss–Manin connection, we continue analytically
γ , γ1, δi to a non-singular curve F−1(z), 0 < |z| ≪ 1, along
segments [z ′, z] and [z ′′, z]. Recall that, by [11], the intersection
numbers verify:
(γ , γ1) = 1 (4.2)

4

and

(γ1, δ2) = (γ1, δ3) = 1. (4.3)

Remark 4.1. Theorem 1.5 is also true in the complex case if
conditions (4.2) and (4.3) are fulfilled.

In [4], we obtained the orbit of the real cycle for a first integral
of triangle type, that is

Oγ1 =< γ1, δ2δ3δ5, [δ2, δ3] > mod [Oγ1 , π1],

and in [5], for the quadrilateral type. The quadrilateral case
in a neighborhood of the quadrilateral is the same as in the
parallelogram case. Now, due to (4.2), in our case (4.1), the orbit
of γ is generated by the union of the orbits in these two cases.
This gives:

Oγ

[Oγ , π1]
=

=< {γ , δ1δ2δ3δ4, [δ1δ2, δ2δ3], [δ1δ2, [δ2, δ2δ3]], . . . ,

δ1δ2, [δ2, . . . [δ2, δ2δ3]], . . .} ∪ Oγ1 > .

We know that [δ2, δ3] belongs to the orbit of γ1 and hence to
Oγ . Hence, [δ2, δ2δ3] = δ2[δ2, δ3]δ

−1
2 belongs to the orbit as

well. This gives that in the above expression for the orbit Oγ

the commutator [δ1δ2, [δ2, δ2δ3]] belongs to [O, π1]. The same
is therefore true for all terms which contain it (all the terms
following it in the above braces). We know [4] that the depth
of Oγ1 is two. All the terms following the term [δ1δ2, δ2δ3] are in
[O, π1], showing that the depth k verifies k ≤ 2 and hence by [4]
the length of the first non-zero function Mµ of any deformation
ω is ℓ ≤ 2. □

5. Types of integrability of the deformations

We will study the Godbillon–Vey sequence for the foliation

dF + ϵω = 0, (5.1)

with F = f1f2f3f4 and ω = p1(F )
df1
f1

+ p2(F )
df2
f2
, where f1 = x − 1,

f2 = x+1, p1, p2 are polynomials in F , and f3, f4 are linear factors
different from f1 and f2. For the parallelogram, f3 and f4 define
parallel lines, while for the trapezoid they do not. By explicit
computation of Godbillon–Vey sequences we will show that the
foliation dF + ϵ

(
df1
f1

+ F df2
f2

)
= 0 is Liouville integrable, while

dF+ϵ

(
F df1

f1
+ F 2 df2

f2

)
= 0 is Riccati integrable. Moreover, for ω =

1(F )
df1
f1

+ p2(F )
df2
f2
, with n = deg{deg p1, deg p2}, foliation (5.1)

admits a Godbillon–Vey sequence of length ≤ n, which increases
omplexity of the first integral for those cases. Therefore, for

≥ 3 the foliation (5.1) could have a first integral which is
ot of Riccati type, with infinite dimensional pseudo-group of
olonomy.
We recall that a Godbillon–Vey sequence for a meromophic

-form η0 is a sequence {η0, η1, . . .}, such that

dη0 = η0 ∧ η1

dη1 = η0 ∧ η2

dη2 = η0 ∧ η3 + η1 ∧ η2

dη3 = η0 ∧ η4 + 2η1 ∧ η3

...

dηn = η0 ∧ ηn+1 +

n∑
k=1

(
n
k

)
ηk ∧ ηn−k+1

(5.2)

t is of length ℓ if ηj = 0 for all j ≥ ℓ.
It is known that η0 has a first integral of Liouville type (respec-

ively of Riccati type), if and only if, it admits a Godbillon–Vey
equence of length 2 (respectively of length 3).
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.1. Degree on F equals 1

Let us start by analyzing the case ω = F df1
f1
. We denote η0 :=

dF + ϵF df1
f1
. Then

η0 = ϵdF ∧
df1
f1

.

hus, we can take η1 := ϵ
df1
f1

=
df ϵ1
f ϵ1

. Then, dη1 = 0, which means
2 = 0. Hence, η0 admits a Godbillon–Vey sequence of length
, and therefore (5.1) is Liouville integrable. Moreover, Casale’s
rticle [6] provides a way to compute from this sequence the first
ntegral. This is given by dH = Gη0, where η1 =

dG
G . In this case,

e have G = f ϵ
1 . Therefore the first integral H is given by

ϵ
1 η0 = f ϵ

1 (dF + F
df ϵ

1

f ϵ
1

) = f ϵ
1 dF + Fdf ϵ

1 = d(f ϵ
1 F );

thus, H = f ϵ
1 F , which lies in a Liouvillian extension.

Now we analyze the following case η0 := dF + ϵ

(
df1
f1

+ F df2
f2

)
,

hich will give us a way to proceed for higher degree. By substi-
uting f1 = x−1, f2 = x+1, we obtain η0 = dF+ϵ

( 1
x−1 +

F
x+1

)
dx.

enote ϕ(x, F ) =
1

x−1 +
F

x+1 . Then η0 = dF + ϵϕdx, and

dη0 = ϵdϕ ∧ dx. (5.3)

ote that dϕ = ϕFdF + ϕxdx, where ϕF =
∂ϕ

∂F (x, F ) =
1

x+1 , and
x =

∂ϕ

∂x (x, F ) =
−1

(x−1)2
−

F
(x+1)2

. Then, (5.3) is equal to

dη0 = ϵϕFdF ∧ dx. (5.4)

Define η1 := ϵϕFdx. It satisfies the equation dη0 = η0 ∧ η1 =

(dF + ϵϕdx) ∧ ϵϕFdx. On the other hand, dη1 = ϵdϕF ∧ dx, where
dϕF = ϕFFdF + ϕFxdx. That is, dη1 = ϵϕFFdF ∧ dx, which is zero
ecause ϕFF = 0. Then, we can take η2 = 0. Thus, η0 admits
Godbillon–Vey sequence of length 2, and therefore is Liouville

ntegrable. To compute the first integral H , we have to solve the
quations dH = Gη0, and η1 =

dG
G . For this purpose, we note that

1 = ϵ dx
x+1 =

df ϵ2
f ϵ2

. Then, dH = f ϵ
2 η0 = f ϵ

2

(
dF + ϵ

(
df1
f1

+ F df2
f2

))
,

hich corresponds to

ϵ
2

(
dF +

df ϵ
1

f ϵ
1

+ F
df ϵ

2

f ϵ
2

)
= f ϵ

2 dF + f ϵ
2
df ϵ

1

f ϵ
1

+ Fdf ϵ
2

= d
(
f ϵ
2 F +

∫
f ϵ
2
df ϵ

1

f ϵ
1

)
.

Therefore, H = f ϵ
2 F +

∫
f ϵ
2

df ϵ1
f ϵ1

. By substituting the expressions of

1, f2, we get
∫
f ϵ
2

df ϵ1
f ϵ1

=
∫

ϵ(x + 1)ϵ dx
x−1 .

We stress that the construction above is analogous for f1 and
2 defining two arbitrary parallel lines.

. Proof of Theorem 1.7

roof.
We consider the deformation dF + ϵ(F df1

f1
+ F 2 df2

f2
), where

f1 = x − 1, f2 = x + 1, and define

η0 := dF + ϵ

(
F

x − 1
+

F 2

x + 1

)
dx. (6.1)

Denote ϕ(x, F ) =
F

x−1 +
F2
x+1 . Then η0 = dF + ϵϕdx, and since

dϕ = ϕFdF + ϕxdx, where ϕF is the partial derivative of ϕ with
respect to F : ϕF =

1
x−1 +

2F
x+1 , we have

η = ϵϕ dF ∧ dx. (6.2)
0 F

5

Thus, we define η1 := ϵϕFdx. It satisfies the equation dη0 = η0 ∧

η1. Now we consider dη1 = ϵdϕF ∧dx. Then, again, writing dϕF =

ϕFFdF + ϕFxdx, we have dη1 = ϵϕFFdF ∧ dx. So, we can take η2 :=

ϵϕFFdx. It satisfies the equation dη1 = η0 ∧ η2. Continuing with
the Godbillon–Vey sequence we consider dη2 = ϵdϕFF ∧ dx. But,
since the degree of ϕ in F is 2, ϕFF depends only on x, therefore
dϕFF ∧dx = 0. Now, for the equation dη2 = η0∧η3+η1∧η2, since
η1 ∧ η2 = 0, we can take η3 = 0. Hence, η0 admits a Godbillon–
Vey sequence of length 3, and therefore it has a first integral of
Riccati type.

According to Casale’s method [6] we can compute the first
integral by solving the following equations:

dH = G1η0

dG1 = G1

(
η1 +

2
G2

η0

)
dG2 = −

G2
2

2
η2 − G2η1 − η0,

(6.3)

ith η0 = dF + ϵ

(
F

x−1 +
F2
x+1

)
dx, η1 = ϵ

( 1
x−1 +

2F
x+1

)
dx, and

η2 = ϵ
( 2
x+1

)
dx.

One can check that H =
−1
Ff ϵ1

+
∫ df ϵ2

f ϵ1 f ϵ2
, G1 =

1
F2f ϵ1

and G2 = −F
atisfy Eqs. (6.3).
Now, we analyze what happens when we increase the degree

n F for the foliation (5.1). Let

0 := dF + ϵ

(
F 2 df1

f1
+ F 3 df2

f2

)
. (6.4)

ubstituting f1 = x − 1, f2 = x + 1, we obtain η0 = dF +(
F2
x−1 +

F3
x+1

)
dx. Following the same process as before, we write

η0 = dF + ϵϕdx, where ϕ(x, F ) =
F2
x−1 +

F3
x+1 . Since dϕ =

ϕFdF + ϕxdx, we have

dη0 = ϵϕFdF ∧ dx, (6.5)

here ϕF =
2F
x−1 +

3F2
x+1 .

Thus, we define η1 := ϵϕFdx, note that degF ϕF = 2. It satisfies
he equation dη0 = η0 ∧ η1. Now we consider dη1 = ϵdϕF ∧ dx.
Writing dη1 = ϕFFdF + ϕFxdx, we have dη1 = ϵϕFFdF ∧ dx. So, we
can take again η2 := ϵϕFFdx, where now degF ϕFF = 1. It satisfies
the equation dη1 = η0∧η2. Then dη2 = ϵdϕFF ∧dx = ϵϕFFFdF∧dx.
We want η3 to be such that dη2 = η0∧η3+η1∧η2. Since η1∧η2 =

, we can take η3 = ϵϕFFFdx. Consider dη3 = ϵdϕFFF ∧ dx. This is
ero, since ϕFFF depends only on x. We want now η4 verifying the
quation dη3 = η0 ∧ η4 + 2η2 ∧ η3. But, since η2 ∧ η3 = 0, we
an take η4 = 0. Moreover, from this construction ηk ∧ ηℓ = 0
or all k, ℓ ≥ 1, hence this Godbillon–Vey sequence has length
. Therefore, η0 could have a first integral which is not of Riccati
ype. With the same procedure we can obtain a deformation with
Godbillon–Vey sequence of any finite length n, by taking the
egree in F of the deformation equal to n − 1.
We stress that the above computations do not depend on the

actors f3 and f4, therefore they are valid for the parallelogram, as
ell as for the trapezoid. □

emark 6.1. From these cases one can observe that the length
f the Godbillon–Vey sequence for the foliation (5.1) increases
ith the degree in F of the function ϕ(x, F ). So, increasing the
egree in F for the deformation, we can have a first integral of
ore complicated type.
In particular, for n = degF ϕ > 4 one should obtain a

odbillon–Vey sequence of finite length n higher than 4. In the
aper [9] (p. 25) the authors say they do not know any example of
inite length greater than 4. However, the length is defined as the
inimal length among all the Godbillon–Vey sequences that the
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oliation can admit. So, in order to prove that these examples for
> 4 have Godbillon–Vey length higher than 4, one should prove

hat the constructed Godbillon–Vey is optimal. That is that there
oes not exist some other Godbillon–Vey sequence of smaller
ength.
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