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ABSTRACT. We give a new proof of the Gromov theorem: For any C > 0
and integer n > 1 there exists a function Ac , such that if the Gromov—
Hausdorff distance between complete Riemannian n-manifolds V' and W is
not greater than 4, absolute values of their sectional curvatures |K,| < C, and
their injectivity radii > 1/C, then the Lipschitz distance between V and W is
less than A¢ ,(8) and Ag,, — 0as § — 0.

1. INTRODUCTION

Denote by 9t(p, C, n) the class of complete n-dimensional Riemannian manifolds
V with section curvatures |K,| < C' < co and the injective radii 74, (V) > p, where
C, p are some positive constants. There are two well-known metrics on this class:
the Lipschitz metric and the Gromov-Hausdorff metric.

Recall that the Lipschitz distance dz;,(X,Y’) between metric spaces X, Y is
defined as

drip(V,W) = Ininf{k : Bilip, (V, W) # 0},
where Bilip, (V, W) denotes the class of all bi-Lipschitz homeomorphisms between
V and W with bi-Lipschitz constant £ > 1. By bi-Lipschitz constant of a homeo-
morphism ¢ we mean maximum of Lipschitz constants for ¢ and (1.

Instead of the Gromov—Hausdorff metric, we use a metric, equivalent to it (see,
for instance, [1]). We preserve notation dgy for this metric. By definition, the
distance dg g (V, W) is the infimum of all 6 > 0 with the property that there exists
a mapping x : V. — W such that x(V) is a -net in W and x changes distances by
at most on 9:

ldw (x(#), x(y)) — dv (z,y)] <&
for any points x,y € V. Note that x is not supposed to be continuous.

The purpose of this paper is to give a direct proof for the following Gromov

theorem.

Theorem 1 (Gromov [4], page 379). For given p > 0, C > 0 and an integer n > 1,
there exists a positive function A = A(c p ) such that A(6) — 0 as § — +0 and if
V,W € M(p,C,n) satisfy the condition dgg(V,W) < § then

drip(V, W) < A(9).

In contrast to Gromov’s proof using axillary embeddings of the manifolds V, W
into an Euclidean space of a large dimension, we directly construct a bi-Lipschitz
diffeomorphism h(z) between V' and W with a required bi-Lipschitz constant A(9).
The map h(z) is obtained by gluing together “local maps” ¢; with help of partition
of unity. The maps ; are defined on some balls Bs.(v;) C V' which form a locally
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finite covering of V. This gluing is based on Karcher’s center of mass technique [6].
The resulting map turns out to be bi-Lipschitz with the required constant since the
mappings ; are C'-close one to another on the intersection of their domains.

To justify publishing our proof, note that though ideas of Gromov’s proof ex-
plained very clear in his book, some details are omitted in his exposition.

Later on C' denotes different constants depending on n = dim V' = dim W only.
We always assume ¢ to be sufficiently small, § < dg, where §y depends on n only.
All these constants can be computed explicitly, if such a need arises.

2. PREPARATIONS

By a suitable rescaling of V, W, one can get rid of one parameter and assume
that the absolute values of section curvatures smaller than § and the injectivity
radii are bigger than §~1. Also we can assume that and dgy < J.

We always suppose that 0 < § < 1 and denote

2 =01 (1)
2.1. e-Orthonormal base. We say that a basis {ey, ..., e,} C R™ is e-orthonormal
if |(e;,e5) — 6;5] < e for all 4,5 = 1,...,n, where §;; is the Kronecker symbol. A

linear map L: M — N of two Euclidean spaces is e-close to isometry if |[L— Q| < ¢
for some isometry @Q: M — N.

Lemma 1. Let {;} be an e-orthonormal base of R", & < 5. Let L : R™ — R" be
a linear operator.

If L&) < 6, i=1,...,n then | L] < 2y/nd.

Assume that 8ny/nd < 1 and

Then L is 8n\/nd-close to an isometry.

Proof. Lemma could be easily proved by straightforward calculation. We give a
proof to the first part, the second part can be obtained the same way.
Let x = " x;&; be a unit vector. Then

n n 2
L= (v,a) =) waj(&.&) 2 ) of—¢ (Z |in> > (1—ne)) af.
i, i=1 i=1 i

Therefore Y 2? < (1 —en)~! < 2. Thus

|Lall = S weL(€)]) < 6 feal < 8y/n Y a2 < 257/
i=1 i=1
g

2.2. On comparison theorems and exponential mappings. Denote by J a
Jacobi vector field along a geodesic v: [0,2] — V. As usually, J(t) = %J means
the covariant derivative of J along v. We need a known comparison theorem of
Rauch-style, see [3], 7.4, or the original Karcher’s paper [6]. We formulate the
theorem in the form adopted to our case.
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Theorem 2. Suppose that all section curvatures |K| < § and 0 < & < 1 (it is
enough to have § < 1072).
Then

|7(0)] cos(V8t) + |J(0)|6~ /2 sin(V/6t) < |J(t)]
< |J(0)] cosh(V/dt) + [J(0)[6~1/2 sinh(V/t).  (2)

As usually, we apply this estimate to the exponential and logarithmic mappings.
The latter, log,, is the inverse of the exponential mapping exp, : 1T,V — V. By
assumptions, it is well defined on balls of the radius 61 > 1.

Denote by 7y, 0,1 T,V — T,V the parallel translation along the minimal ge-
odesic (which is always unique in our conditions) joining points v1,v € V. Let
a,&,n € T,V, with ||a|| = r < 2, and denote v" = exp, a. Let v be the geodesic
connecting v with o', y(t) = exp, (ta/r). Obviously, d, exp,(§) = J(r), where J is
the Jacobi field along ~ with the initial values J(0) = 0,.J(0) = £/r.

Denote by n(t) the parallel translation of 1 to () along ~, so 7 = 0, and denote

(1) = (1(0). J(2). Evidently, £(0) = 0. £(0) = (¢/r.n). and
Ol = {o(0). 30 = ), B3 <5l fel (14 5¢2) <25 e

by Theorem 2. This implies that

[f(r) = (& m] < or® nll ll€]]-
Therefore, ||d, exp,(£) — Ty €| < 672[/€]], which proves the following Lemma.
Lemma 2. Let a € T,V, v/ = exp,a. If r = dist(v,v") < 2, then the parallel
translation T, T,V — TV and the differential (dexp,)q: T,V — TyV are
r28-close one to the other. In particular, exp, is (1 + 6r?)-bi-Lipschitz on balls
B, (v) € V of radius r < 2.
Similar statements hold for dlog,, and Ty ..

Lemma 3. Let z,y,z € By(v). Then
llog, y —log, x — 7y, log, y|| < C'6 (3)

Proof. This lemma is a simple consequence of one Karcher’s estimate ([6], inequality
(C2.3) on the page 540).
Indeed, substituting a = log, x, v = log, y — log, x, p = z to formula (C2.3)[6],
and taking into account that section curvatures K, < J, one gets
d(y7 €XPy (10gz Yy— 1ng .'17) < Co.

Since logarithmic mapping has very small distortion (Lemma 2), we obtain desired
inequality by replacing points to their log, -images in the last inequality .
|

3. LOCAL MAPS ¢;(x)

3.1. Construction of ¢;. Let {v;} be a e-separated e-net in V. By definition of
the Gromov—Hausdorff metric, there exists a mapping x : {v;} — W such that
Us(Im x) =W and

|disty (v, v;) — distw (x (vi), x(v;))] < 0 (4)

for all 7, 5. We will call such mappings by e-approximations.
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The construction of mappings ; is the same for all i, so we choose some v = v;
and drop the index 7 till the end of the subsection.

(1) Choose B = {b1,ba,...,b,} C T,V be some orthonormal basis of the Eu-
clidean space T, V.

(2) Pick ey € {v;} such that dist(eg, exp, by) < € for k =1,...,n. Denote by &
the basis {log, e} of T}V, and let § be the basis {log,, fx} of T,/, where
w = x(v), fr = x(ex) € W

(3) Denote by L the linear mapping 7,V — T,,W such that

L(logv(ek)) :1ng(fk)7 kzla“w”' (5)
In the other words, L is the linear extension of the restriction to the basis
¢ of the mapping log,, ox o exp,, : T,V — T,,W (the latter is defined on a
discreet set of points only).
(4) We define mapping ¢ as:

¢ = (exp, oL olog, )|, (v), (6)
where By.(v) C V is a ball of radius 4¢ with center in v.
Evidently, L = d,p. Also, p(ex) = fr for k=1,...,n.

Lemma 4. The base € and § are Ce-orthonormal. The mapping L : T,V — T, W
is C'd-close to an isometry.

Let €' € {vp} CV be a point in the net {v;}, dist(e/,v) < 2, and let f' = x(€’).
Then || L(log, €') —log,, f'|| < C4.

Proof. The norms of the vectors log, e, — by are less than 2e by the choice of ey
and Lemma 2. Therefore € is Ce-orthonormal basis.

The pairwise distances between v, e, €’ change by at most Cé by log,, ox, due
to Lemma 2 and the main property (4) of x. This implies that the scalar products
(log, ek, log, e;) differ from the scalar products (log,, fx,log,, fi) by at most C9,

|(log, ek, log, e;) — (log,, fx,log, f1}] < C4, (7
due to the cosine theorem
2(a,b) = |la]|* + [[b]1> — [l — b, (8)

By the same reasons,

[(l0g, ¢/, log, ) — (1og,, f',log,, fi)| < C3. (9)
The (7) means that the difference of the Gram matrices G¢, Gz of the base €
and § correspondingly, is C'é-small,

|Ge — Gell < C9,

and, by Ce-orthogonality of &, this implies that both matrices are C'e-close to the
identity matrix. This implies that the basis § is a C'e-orthonormal basis.

Also, it implies that their inverses Ggl, Ggl are C'd-close as well, so L is C'd-close
to an isometry.

Together with (9), this implies that the coefficients for decomposition of vec-
tors log, €',log,, f' in bases € and § correspondingly are Cd-close, since one can
restore these coefficients from the tuples {(log, €', log, e;)} and {(log,, f',log,, fi)}
using GEI,G? correspondingly. Since LE = §F by definition, the coefficients of
decomposition of L(log, ¢’) and log,, f’ in the basis § are C'd-close, which proves
the Lemma. (]
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Corollary 1. There is some constant C' > 0 which depends on n only, such that for
each i, @; is a (1+C9)-bi-Lipschitz map and its differential is Cd-close to isometry.

This follows immediately from the previous Lemma and Lemma 2.

3.1.1. Maps {@;} are C'-close one to another. Let vi,vy € {v;} be two points of
the e-net on V', and assume that dist(v1,v2) < 4e. Here we prove that the mappings
©1 and o are Cé-close in C'-sense in Bo.v; N Bo.vy.

Lemma 5. For every © € Bac(v1) () Bae(v2)
dist(p1(z), p2(z)) < C6. (10)
Moreover, the parallel translation Ty, (z),p.(z) ©dztp1 of dzpy is Cd-close to dyipo.
Proof. By Lemma 2:
[Tw;,2 © L1 © Taw, — dp(z)|| < CO (11)
The vector Li(7y ., log, e;) is C'd-close to

Ll(logvl r — logvl 62') = logwl QDl(fﬂ) - logwl f’ia
by Lemma 3. The parallel translation of the right part of the last equation to the
point ¢1(x) by Ty, ¢, (2) is Cd-close to log,, (. fi, again by the same Lemma 3.
Summing up, we get

||d1,<,01 (logx 61‘) - loggal(a:) le < 9,
and similarly for d, 2.
Therefore by Lemma 3 the vectors

Tp1(x),p02(x) © dz@l (logx ei) — dl.gog(logx ei), 1= 1, e,y

are Cd-close to log, () p2(x); ie., to zero, if the dist(¢1(z), p2(z)) < C4. Since
{log, e;} is a Ce-orthonormal basis of T,V this means that the first claim of the
Lemma implies the second.

Now, by Lemma 4,

dist(p1(v2), p2(v2)) < C6. (12)

Therefore, |74, (v,)w, © dv,p1 — La|| < CO.

The parallel translation along a geodesic triangle Awjwapi(vs) is Cd-close to
identity, so, using (11), we conclude that

HTwl,wz oLjo Tug, 1 — L2|| < C9.
Applying this to the vector log,, x € T,V and using Lemma 3 and (12) we get
[1og,,,, ¢2(x) — log,, ¥1(z)|| < C9,

which, by Lemma 2, proves the first statement of the Lemma as well. [

4. GLUING TOGETHER LOCAL MAPPINGS

Here we glue the mappings ; into one mapping h : V' — W using the center of
mass construction of Karcher.

Suppose that a Riemannian manifold V' is covered by balls B; of radius 2¢, and
that for every i there exists a mapping y; : B; — W which is J-close to isometry.
Assume that the images of ¢; cover W and are d-close in C'!' sense on intersections
of their domains. We prove that there exists a bi-Lipschitz mapping between V'
and W which is C" close to ¢; on B;.
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4.0.2. Partition of unity: construction and estimates. The partition of unity {v;(z)}
is constructed in a standard way. We need some estimates on the norms of their
differentials, so we repeat this classical construction here.

Let ¥(r) be any non-negative monotonic and C°°—smooth function such that it
is equal to 1 for » < 1 and 0 for 7 > 2. Consider functions ¢;(x) = (e~ |zvy]).
We define

e
i S

It is easy to estimate the differential of ;:

Lemma 6. For everyx € 'V

(1) at least one of the numbers 1;(x) is equal to 1,

(2) at most T of ¥;(x) are different from zero assuming that ¢ is sufficiently
small,

(3) || detti ||< Ce™t with some absolute constant C.

Proof. The first statement follows because {v;} is an e-net.

The Bishop-Gromov upper estimate for the number of non-vanishing ¥;(z) is
VOL(;BE,E/Q/VOL;BE/Q, where Vol.B, denotes the volume of a ball of radius r in the
space form of curvature c. For § < 1 this ratio is smaller than 7", and the second
claim follows.

Let us estimate the differentials:

d; Uy Y di

dy;|| < - 2
WG RS FSra I e

; (13)

< Hd?/?z

|

because Zl;k > 1.
E

But || 9y ||< Ce™', where C is some absolute constant. So the estimate for
|| dip; || follows from the second claim of the Lemma. O

4.1. Definition of ®. Define the function ®: V x W — R as
1 .
O(z,y) =3 D di(w)dist(pi(), ),

This is a smooth function because if dist(y;(z),y)? is big, than the corresponding
coefficient is zero. We define the mapping h(x) by the condition

In the other words, h(x) is the center of mass for the points p;(x) with weights
Lemma 7 (Karcher [6]). The function h(x) is well-defined.

The reason is that for a fixed x € V, the points ¢;(z) corresponding to non-zero
¥;(z) are Cd-close one to another by Lemma 5. Therefore ®(x,y) > 40252 for y
outside a ball Bscsp;(x) C W of radius 3C¢ centered at one of ¢;(z), and is less
that C242 for this ¢;(x). Therefore the minimum lies in Bzcs;(z). On the other
hand, one can show that ®(z,exp(-)) is a convex function in Bys(0) C Ty, oW,
similar to Corollary 2 below, so the minimum is unique. In particular, we see that

dist(h(z), pi(x)) < 3C4. (14)
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Since for each x € V, the function ® reaches minimum at y = h(z), we have
d.® =0, (15)

at all points (z, h(x)), where d, means the restriction of d® to the subspace {0} x
TW C T(V x W). Below we will prove that the restriction Hess,® of the hessian
of ® to TW x TW is not degenerate at points satisfying (15). Then the function
h is smooth by the implicit function theorem. Substituting y = h(z) in (15) and
differentiating, we obtain

d*®(a,b) + d*®(dh(a),b) = 0.
As a result
dh = d?® o d2,®, (16)

where d?® and d?,® mean the restrictions of d?® to TW x TW and TV x TW,
accordingly, understood as mappings d?® : TW — T*W and d2,® : TV — T*W.

Lemma 8. The mapping h : V. — W is smooth.
Moreover, its differential is non-degenerate for each x € V and has a bi-Lipschitz

constant A(8) = O(e), where €2 = 6.

Theorem 1 easily follows from Lemma 8, see Section 5 below.

The first assertion of the lemma is already proved up to non-degeneracy of
Hess, ®.

So to prove the lemma, it is enough to check that at points (z,h(z)), both d?, &
and d?® are Ce-close to isometries.

Denote dist(z,y) by |z,y|. We claim that it is enough to prove that, first, the
similarly defined d2, |p;(z),y| : TV — T*W are all Ce-close and also Ce-close to an
isometry, and, second, that the same statements hold for d2|p;(z),y| : TW — T*W.

Indeed, for a € T,V we have d2,®(a) € T*W, and

N
=D deti(a) - dyli(e y|+Z¢z &, ei(@)yl(@), (A7)

where y = h(z). If all d2,|p;(x),y| are all Ce-close to some isometry then the
second sum, being their convex combination, is also C'e-close to the same isometry.
But the first sum in (17) is Ce-small: by Lemma 6 there are no more than 7"
non-zero terms in the first sum, and |dgt;(a)| < C5~Y2 |p;(x), h(x)| < C§ and
lldyl@i(x), h(x)||| <1 in each of them.

For d?® the proof is similar.

So Lemma 8 follows from the next lemma, and its Corollary.

Lemma 9. Let |x,y| be the distance function of a Riemannian manifold M. Sup-
pose, that points x, y are joined by a unique geodesic v: [0,1] — M and no one
point of v is conjugate with x, y. Let a € T,M, b€ T, M, b is obtained by parallel
translation of b along v to x. Then at the point (xz,y) € M x M we have:

(i) d%|z,y|(a)(a) = (J( ), J' (1)), where J is the Jacobi field along v with initial
data J(0) =0, J(1) =

(i) d2, |z, yl(a )(b) = ( (t), J' (t))|§, where the Jacobi field J satisfies the condi-
tions J(0) = b, J(1) =

In the lemma, notations d?, d2, have the same sense as in formula (16).



8 YU. D. BURAGO, S. G. MALEV, D. I. NOVIKOV*

Proof. In the case (i) d?|z,y|(a)(a) is equal to the second variation of energy for
geodesic variation o of  such that o(0,7) = v(0) and £2 = a, and Dj;’ =0 at

~(1). It is well known that this second variation is equal (J(1), J'(1)).
The case (ii) is proved similarly.

Corollary 2. d2|z,y|(a)(a) and d2,|z,y|(a)(b) are Cd-close to ||al|> and (a,b),
correspondingly.

Indeed, in the case of the Euclidean metric (J(1),.J'(1)) is equal a? in the first
case. The Rauch theorem shows that(J(1), J'(1)) is Cd-close to a? in our assump-
tions.

The second case is similar.

Corollary 3. The mappings d?|p;(x),y| : TW — T*W are all Ce-close one to
another and Ce-close to some isometry. The same holds for d2 |pi(x),y| : TV —
W .

Indeed, d?|p;(z),y| are Cd-close to b — (-,b) by previous corollary, so the first
claim is trivial.

Similarly, d2,|p;(z),y| are Cd-close to b — (-, dp;(b)), which are Céd-close by
Lemma 5 and C§ close to isometry by Corollary 1.

5. PROOF OF THEOREM 1

The differential of the mapping h : V' — W defined by Lemma 7 is Ce-close to
isometry, in particular non-degenerate by Lemma 8. This means that (V') is open,
and, as V' is compact, also closed. Therefore h(V) = W, and h is a covering.

Now, if y = h(z1) = h(z2), then choosing v; such that dist(v;, z;) < €, we get
dist(h(v;),y) < 3¢/2, which means that dist(vy, v2) < 2¢, so dist(v1, z2) < 3e.

The mapping h is smoothly homotopic to ¢1 on the ball B7€/2(U1)2 one can
smoothly deform the partition of unity in such a way that i1 becomes identical
1 on Byr./2(v1). During this homotopy the mapping A remains smooth, and also
h(0B7.2(v1)) remains Cd-close to ¢1(0B7./2(v1)), by Corollary 2 and (14) hold for
any partition of unity. This means that the number of preimages of y € Ba.(x(v1))
in Byr./2(v1) remains the same during the homotopy. For ¢ this number is equal
to 1, as ¢ is a diffeomorphism on Byc(v1)), so 1 = z3.

Therefore h is a diffeomorphism, which, together with Lemma 8, proves Theo-
rem 1.
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