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Abstract

Let Π be an open, relatively compact period annulus of real analytic
vector field X0 on an analytic surface. We prove that the maximal
number of limit cycles which bifurcate from Π under a given multi-
parameter analytic deformation Xλ of X0 is finite, provided that X0

is either Hamiltonian, or generic Darbouxian vector field.

1 Statement of the result
Let S be a real analytic surface without border (compact or not), and X0 a
real analytic vector field on it. An open period annulus of X0 is an union of
period orbits of X0 which is bi-analytic to the standard annulus S1 × (0, 1),
the image of each circle S1 × {u} being a periodic orbit of X0.

Let Xλ, λ ∈ (Rn, 0) be an analytic family of analytic vector fields on S,
and let Π be an open period annulus of X0. The cyclicity Cycl(Π, Xλ) of Π
with respect to the deformation Xλ is the maximal number of limit cycles of
Xλ which tend to Π as λ tends to zero, see Definition 2 bellow. Clearly the
vector field X0 has an analytic first integral f in the period annulus Π which
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has no critical points. In what follows we shall suppose that the open period
annulus Π is relatively compact (i.e. its closure Π̄ ⊂ S is compact).

Definition 1. We shall say that X0 is a Hamiltonian vector field provided
that it has a first integral with isolated critical points in a complex neighbor-
hood of Π. We shall say that X0 is a generic Darbouxian vector field provided
that all singular points of X0 in a neighborhood of Π̄ are orbitally analytically
equivalent to linear saddles ẋ = λx, ẏ = −y with λ > 0.

Remark 1. Note that if X0 is a plane vector field with a first integral H as
above, then

X0 = H1(Hy
∂

∂x
−Hx

∂

∂y
)

where H1 is a non-vanishing real-analytic function in some complex neigh-
borhood of Π. In the case when X0 is a generic Darbouxian vector field, as
we shall see in the next section, it can be covered by a planar Darbouxian vec-
tor field with a first integral of the "Darboux type" H =

∏n
i=1 P

λi
i for some

analytic functions Pi in a complex neighborhood of Π.

The main result of the paper are the following

Theorem 1. The cyclicity Cycl(Π, Xλ) of the open period annulus Π of a
Hamiltonian vector field X0 is finite.

Theorem 2. The cyclicity Cycl(Π, Xλ) of the open period annulus Π of a
generic Darbouxian vector field X0 is finite.

The above theorems are a particular case of the Roussarie’s conjecture [12,
p.23] which claims that the cyclicity Cycl(Γ, Xλ) of every compact invariant
set Γ of X0 is finite. Indeed, Cycl(Π, Xλ) ≤ Cycl(Π̄, Xλ). The finite cyclicity
of the open period annulus without the assumptions of Theorems 1 and 2 is
an open question.

To prove the finite cyclicity we note first that it suffices to show the finite
cyclicity of a given one-parameter deformation Xε. This argument is based
on the Hironaka’s desingularization theorem, see [11, 2]. Consider the first
return map associated to Π and Xε

t→ t+ εkMk(t) + . . . , t ∈ (0, 1), ε ∼ 0.

The cyclicity of the open period annulus Π is finite if and only if the Poincaré-
Pontryagin function Mk has a finite number of zeros in (0, 1). It has been
shown in [4] thatMk allows an integral representation as a linear combination
of iterated path integrals along the ovals of Π of length at most k. The finite
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cyclicity follows then from the non-accumulation of zeros of such iterated
integrals at 0 and 1. The proof of this fact will be different in the Hamiltonian
and in the generic Darbouxian case.

In the Hamiltonian case we observe that Mk satisfies a Fuchsian equation
[3, 4]. We prove in section 4 that the associated monodromy representation
is quasi-unipotent, which implies the desired property.

In the Darbouxian case the above argument does not apply (there is no
Fuchsian equation satisfied by Mk). We prove the non-oscillation property
of an iterated integral by making use of its Mellin transformation, along the
lines of [9]. It seems to be difficult to remove the genericity assumption in
the Darbouxian case (without this the Hamiltonian case is a sub-case of the
Darbouxian one).

The paper is organized as follows. In section 2 we recall the definition
of cyclicity and the reduction of multi-parameter to one-parameter deforma-
tions. In section 3 we reduce the case of a vector field on a surface to the
case of a plane vector field.

Theorem 2 in the Hamiltonian case is proved in section 4 according to
the scheme

Proposition 4⇒ Proposition 5⇒ Proposition 3

{Theorem 5 + Proposition 3} ⇒ Theorem 6

Theorem 6⇒ Theorem 2 in the Hamiltonian case.

Theorem 2 in the generic Darbouxian case is proved in section 5 of the
paper.

2 Cyclicity and non-oscillation of the Poincaré-
Pontryagin-Melnikov function

Definition 2. Let Xλ be a family of analytic real vector fields on a surface
S, depending analytically on a parameter λ ∈ (Rn, 0), and let K ⊂ S be a
compact invariant set of Xλ0. We say that the pair (K,Xλ0) has cyclicity
N = Cycl((K,Xλ0), Xλ) with respect to the deformation Xλ, provided that
N is the smallest integer having the property: there exists ε0 > 0 and a
neighborhood VK of K, such that for every λ, such that ‖λ − λ0‖ < ε0, the
vector field Xλ has no more than N limit cycles contained in VK. If K̃ is
an invariant set of Xλ0 (possibly non-compact), then the cyclicity of the pair
(K̃,Xλ0) with respect to the deformation Xλ is

Cycl((K̃,Xλ0), Xλ) = sup{Cycl((K,Xλ0), Xλ) : K ⊂ K̃,K is a compact }.
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The above definition implies that when K̃ is an open invariant set, then
its cyclicity Cycl((K̃,Xλ0), Xλ) is the maximal number of limit cycles which
tend to K̃ as λ tends to 0. To simplify the notation, and if there is no danger
of confusion, we shall write Cycl(K,Xλ) on the place of Cycl((K,Xλ0), Xλ).

Example 1. Let fε(t) = εe−1/t(tsin(1/t) − ε), fε(0) = 0. One can easily
see that fε(t) = 0 has finite number of isolated positive zeros for each ε, and
this number tends to infinity as ε → 0. Below we construct a germ Xε of a
vector field having a monodromic planar singular point at the origin, with a
return map x → x + fε(x). Since isolated singular points of the return map
correspond to limit cycles, we see that the vector field Xε has a finite number
of limit cycles for each ε, and this number tends to infinity as ε tends to zero.
So the cyclicity of the open period annulus Π = R2 \ {0} is infinity. Note
that, however, the vector field Xε is not analytic at the origin.

Here is a construction: on the strip S = [0, δ]×R consider the equivalence
relation (r, φ) ∼ (r + fε(r), φ − 2π). Let p : S → S/ ∼ be the corresponding
projection, and define X̃ε = p∗(∂φ). One can check that for δ small enough
thus defined X̃ε is a blow-up of a smooth vector field Xε defined near the
origin, and the return map of Xε is as prescribed by construction.

Let ∆ ⊂ S be a cross-section of the period annulus Π which can be
identified to the interval (0, 1). Choose a local parameter u on ∆. Let u 7→
P (u, λ) be the first return map and δ(u, λ) = P (u, λ) − u the displacement
function of Xλ. For every closed interval [a, b] ⊂ ∆ there exists ε0 > 0
such that the displacement function δ(u, λ) is well defined and analytic in
{(u, λ) : a− ε0 < u < b + ε0, ‖λ‖ < ε0}. For every fixed λ there is a one-to-
one correspondance between isolated zeros of δ(u, λ) and limit cycles of the
vector field Xλ.

Let u0 ∈ ∆ and let us expand

δ(u, λ) =
∞∑
i=0

ai(λ)(u− u0)i.

Definition 3 (Bautin ideal [13], [12]). We define the Bautin ideal I of Xλ

to be the ideal generated by the germs ãi of ai in the local ring O0(Rn) of
analytic germs of functions at 0 ∈ Rn.

This ideal is Noetherian. Let ϕ̃1, ϕ̃2, . . . , ϕ̃p be a minimal system of its
generators, where p = dimR I/MI, and M is the maximal ideal of the
local ring O0(Rn). Let ϕ1, ϕ2, . . . , ϕp be analytic functions representing the
generators of the Bautin ideal in a neighborhood of the origin in Rn.
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Proposition 1 (Roussarie, [12]). The Bautin ideal does not depend on the
point u0 ∈ ∆. For every [a, b] ⊂ ∆ there is an open neighborhood U of
[a, b]× {0} in R× Rn and analytic functions hi(u, λ) in U , such that

δ(u, λ) =

p∑
i=0

ϕi(λ)hi(u, λ). (1)

The real vector space generated by the functions hi(u, 0), u ∈ [a, b] is of di-
mension p.

Suppose that the Bautin ideal is principal and generated by ϕ(λ). Then

δ(u, λ) = ϕ(λ)h(u, λ) (2)

where h(u, 0) 6≡ 0. The maximal number of the isolated zeros of h(u, λ)
on a closed interval [a, b] ⊂ (0, 1) for sufficiently small |λ| is bounded by
the number of the zeros of h(u, 0), counted with multiplicity, on [a, b]. This
follows from the Weierstrass preparation theorem, properly applied, see [2].
Therefore to prove the finite cyclicity of Π it is enough to show that h(u, 0)
has a finite number of zeros on (0, 1). Consider a germ of analytic curve
ξ : ε 7→ λ(ε), λ(0) = 0, as well the analytic one-parameter family of vector
fields Xλ(ε). The Bautin ideal is principal, δ(u, ε) = ϕ(ε)h(u, ε), and

δ(u, λ(ε)) = εkMk(u) + . . . ,Mk(u) = c h(u, 0), c 6= 0

where the dots stay for terms containing εi, i ≥ k. Mk is the so called kth
order higher Poincaré-Pontryagin-Melnikov function associated to the one-
parameter deformation Xλ(ε) of the vector field X0. Therefore, if the cyclicity
of the open period annulus is infinite, thenMk has an infinite number of zeros
on the interval (0, 1)

Of course, in general the Bautin ideal is not principal. However, by
making use of the Hironaka’s theorem, we can always principalize it. More
precisely, after several blow up’s of the origin of the parameter space, we
can replace the Bautin ideal by an ideal sheaf which is principal, see [2] for
details. This proves the following

Proposition 2. If the cyclicity Cycl(K,Xλ) of the open period annulus Π is
infinite, then there exists a one parameter deformation λ = λ(ε), such that
the corresponding higher order Poincaré-Pontryagin-Melnikov function Mk

has an infinite number of zeros on the interval (0, 1).

In the next two sections we shall prove the non-oscillation property ofMk

in the Hamiltonian and the Darbouxian case (under the restrictions stated
in Theorem 2).
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3 Reduction to the case of a plane vector field
Let X0 be a real analytic vector field on a real analytic surface S. Let Π be
an open period annulus of X0 with compact closure. Let the map τ : Π →
S1 × (0, 1) be a bi-analytic isomorphism, such that δt = τ−1 (S1 × {t}) is a
closed orbit of X0. We assume that X0 is either Hamiltonian or generalized
Darbouxian in some neighborhood of the closure Π̄ of Π. Theorems 1 and 2
claims that cyclicity of Π in any family of analytic deformation Xλ of X0 is
finite.

This paragraph is devoted to the reduction of this general situation to
the case of a vector field X0 on R2 of Hamiltonian or Darboux type near
its polycycle. Then Theorem 1 and Theorem 2 follow from Theorem 4 and
Theorem 3 below.

First, note that it is enough to prove finite cyclicity of τ−1 (S1 × (0, ε))
only. Indeed, finite cyclicity of τ−1 (S1 × [ε, 1− ε]) follows from Gabrielov’s
theorem, and finite cyclicity of τ−1 (S1 × (1− ε, 1)) can be reduced to the
above by replacing t by 1− t.

Consider the Hausdorf limit Γ = limt→0 τ
−1 (S1 × {t}). It is a connected

union of several fixed points a1, ..., an ofX0 (not necessarily pairwise different)
and orbits Γ1, ...,Γn of X0 such that Γi exits from ai and enters ai+1 (where
an+1 denotes a1).

From now on we consider only a sufficiently small neighborhood U of Γ.
We assume that U ∩Π = τ−1 (S1 × (0, ε)), and denote this intersection again
by Π. We consider first the Darbouxian case. Note that Γ cannot consist of
just one singular point of X0 by assumption about linearizability of singular
points of X0 in this case.

Lemma 1. Assume that Theorem 2 holds if U is orientable and all ai are
different. Then Theorem 2 holds in full generality.

Proof. Assume that for some real analytic surface Ũ there is an analytic
mapping π : Ũ → U which is a finite covering on Π. Then the cyclicity of Π
for Xλ is the same as cyclicity of π−1(Π) for the lifting Xλ to Ũ . The claim
of the Lemma follows from this principle applied to two types of coverings
below.

First, taking a double covering of U as Ũ , we can assume that U is
orientable.

Second, let U be represented as a union of neighborhoods Ui of ai together
with neighborhoods Vi of Γi. Glue Ũ as Ũ = Ũ1 ∪ Ṽ1 ∪ ... ∪ Ṽn, where Ũi
are bianalytically equivalent to Ui and disjoint, and Ṽi are bianalytically
equivalent to Vi, with natural glueing of Ũi to Ṽi, of Ṽi to ˜Ui+1 and of of Ũ1

to Ṽn. In other words, π : Ũ → U is one-to-one away from ai and ki-to-one in
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Figure 1: Proof of Lemma 1.

a neighborhood of ai if ai appears ki times in the list {a1, ...., an}. Evidently,
π is one-to-one on Π, so is bianalytic.

We will now define a first integral H of X0 in U . Take any non-singular
point a ∈ γ1, and let H be a local first integral of X0 in a neighborhood Ua
of a such that H(a) = 0 and dH(a) 6= 0. Since U is orientable, Π lies from
one side of Γ, and we can assume that intersection of Ua with each cycle δt is
connected. This allows to extend H to a first integral of X0 defined on Π∩U .
Changing sign of H if necessary, we can assume that H > 0 on Π ∩ Ua. We
define H(Γ) = 0 by continuity.

Lemma 2. Extension of H to Π ∩ U by flow of X0 can be extended to a
multivalued holomorphic function defined in a neighborhood of Γ in a com-
plexification of U .

Proof. First, H is analytic in some neighborhood of Γ1, as it is an analytic
function extended by analytic flow ofX0. Choose local linearizing coordinates
(x, y) near a2 in such a way that Γ1 = {y = 0}. By assumption, yxµ is the
local first integral of X0 near a2. Therefore H = f(yxµ), and, restricting
to a transversal x = x0 � 1, one can see that f is analytic and invertible.
Therefore H can be extended to a neighborhood of a2.

Moreover, (f−1(H))
1/µ is an analytic local first integral near the point

y = 1 of Γ2. Therefore it can be extended to a neighborhood of Γ2 (here
we use that U is orientable, so Γ2 is different from Γ1), and, as above, to a
neighborhood of a3 (here we use that a2 6= a3), and so on.

Note that from the above construction follows that near each Γi the first
integral H is equal, up to an invertible function, to xλi , where {x = 0} is a
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local equation of γi. Also, near any singular point of Γ the first integral H is
equal, up to an invertible function, to xλyµ.

Corollary 1. The one-form dH
H

is meromorphic one-form in U with loga-
rithmic singularities only.

Assume that n ≥ 3. One can easily construct a C∞ isomorphism of a
sufficiently small neighborhood U of Γ with a neighborhood of a regular n-
gone in R2 in such a way that the image of Π∩U will lie inside the n-gone and
image of Γ coincides with the n-gone. Due to [?], some neighborhood UC of U
in its complexification is a Stein manifold. This implies that this isomorphism
can be chosen bianalytic. Similarly, for n = 2 one can map bianalytically a
neighborhood of U to a union of two arcs {x2 + (|y| − 1)2 = 2} ⊂ R2, which,
for the rest of the paper, will be called "regular 2-gone".

We transfer everything to plane using this isomorphism and will denote
the images on plane of the previously defined objects by the same letters.
The first integral H takes the form H = H1

∏n
i=1 P

λi
i , where Pi are analytic

functions in U with {Pi = 0} = Γi, H1 is an analytic functions non-vanishing
in its neighborhood U and λi > 0. Note that H > 0 in the part of U lying
inside the n-gone. Further we assume that H1 ≡ 1, so H =

∏
P λi
i (one can

achieve this by e.g. taking P1H
1/λ1

1 instead of P1).
The family Xλ becomes a family of planar analytic vector fields defined

in a neighborhood U of a regular n-gone Γ ⊂ R2, and X0 has a first integral
H of Darboux type in U . Let Xε = Xλ(ε) be a one-parametric deformation
of X0 as in Proposition 2. Define meromorphic forms ω2, ωε as

ω2(X0, ·) =
dH

H
, ω2(Xε, ·) = X0 + ωε. (3)

According to [4, Theorem 2.1],Mk can be represented as a linear combination
of iterated integrals over {H = t} of forms which are combinations of Gauss-
Manin derivatives of ωε.

Recall that the Gauss-Manin derivative of a form η is defined as a form η′

such that dη = d(logH)∧ η′. In general, η′ cannot be uniquely defined from
this equation, though its restrictions to {H = t} are defined unambiguously.
However, since UC is Stein, in our situation one can choose a meromorphic
in U representative of η′, with poles on Γ̆ only (where Γ̆ is the union of lines
containing sides of Γ).

Therefore Theorem 2 follows from the following claim

Theorem 3. Let H =
∏n

i=1 P
λi
i be as above, and let γ(t) ⊂ {H = t} be the

connected component of its level set lying inside Γ. Zeros of polynomials in
iterated integrals I(t) =

∫
γ(t)

ω1...ωk corresponding to meromorphic one-forms
ω1, ..., ωk with poles in Γ̆ cannot accumulate to 0.
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From the above discussion it is clear that Theorem 1 follows on its turn
from the following

Theorem 4. Let
X0 = Hy

∂

∂x
−Hx

∂

∂y

where H is a real analytic function with isolated singularities in some com-
plex neighborhood of the closed period annulus Π̄ = {γ(t) : 0 ≤ t ≤ 1},
where γ(t) ⊂ {H = t} is the connected component of the level set of H ly-
ing inside Γ. Zeros of the first non-vanishing Poincaré-Pontryagin function
Mk, corresponding to a one-parameter analytic deformation Xε of X0 cannot
accumulate to 0.

4 Non-oscillation in the Hamiltonian case
Here shall prove Theorem 4. This follows from the following two results

Theorem 5 ([4]). The Poincaré-Pontryagin function Mk satisfies a linear
differential equation of a Fuchs type in a suitable complex neighborhood of
0 ∈ C.

Theorem 6. The monodromy operator of the above Fuchs equation corre-
sponding to a loop encircling the origin in C is quasi-unipotent.

Let us recall that an endomorphism is called unipotent, if all its eigenval-
ues are equal to 1, and quasi-unipotent if all of them are roots of the unity.
The above theorems imply that the Poincaré-Pontryagin-Melnikov function
has a representation in a neighborhood of u = 0

Mk(u) =
N∑
i=0

N∑
j=0

uµi(log(u))jfij(u)

where N ∈ N, µj ∈ Q, and fij are functions analytic in a neighborhood
of u = 0. This shows that the zeros of Mk|(0,1) do not accumulate to 0.
Of course, similar arguments hold in a neighborhood of u = 1, so Mk has a
finite number of zeros on (0, 1). This completes the proof of Theorem 2 in the
Hamiltonian case. To the end of the section we prove Theorem 6. The open
real surface S is analytic and hence possesses a canonical complexification.
Similarly, any analytic family of analytic vector fields Xλ is extended to a
complex family of vector fields, depending on a complex parameter. In this
section, by abuse of notation, the base field will be C. A real object and its
complexification will be denoted by the same letter.
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Let U ⊃ Π̄ be an open complex neighborhood of Π̄ in which the com-
plexified vector field X0 has an analytic first integral f with isolated critical
points. The restriction of f on the interval (0, 1) (after identifying Π to
S1× (0, 1)) is a local variable with finite limits at 0 and 1 Therefore we may
suppose that f(0) = 0, f(1) = 1, and the restriction of f to (0, 1) is the
canonical local variable on (0, 1) ⊂ R. The function f defines a locally trivial
Milnor fibration in a neighborhood of every isolated critical point. There
exists a complex neighborhood U of Π̄ in which F has only isolated critical
points. Moreover the compactness of Π̄ implies that there exists a complex
neighborhood D ⊂ C of the origin, homeomorphic to a disc, such that the
fibration

U ∩ {f−1(D \ {0})} f→ D \ {0} (4)

is locally trivial, and the fibers f−1(t) ∩ U are open Riemann surfaces ho-
motopy equivalent to a bouquet of a finite number of circles. Consider a
one-parameter analytic deformation Xε of the vector field X0. As f is a first
integral of X0, then there exists an unique symplectic two-form ω2, such that

ω2(X0, .) = df.

Indeed, if in local coordinates

X0 = a
∂

∂x
+ b

∂

∂y

then X0.df = 0 implies (a, b) = λ(fy,−fx), where λ is analytic in U and
non-vanishing in Π. It follows that

ω2 =
dx ∧ dy

λ
.

Define a unique meromorphic one-form ωε by the formula

ω2(Xε, .) = df + ωε.

The one form ωε is meromorphic in U , depends analytically on ε, and ω0 = 0.
Its pole divisor does not depend on ε as in the local variables above it is
defined by λ = 0. Therefore ωε =

∑
i≥1 ε

iωi where ωi are given meromorphic
one-forms in U with a common pole divisor which does not intersect the
period annulus Π. In the complement of the singular locus of Xε the vector
field Xε and the one form df + ωε define the same foliation, and therefore
define the same first return map associated to Π. Denote this map by P (t, ε),
where t ∈ (0, 1) is the restriction of f to a cross-section of the period annulus
Π (this does not depend on the choice of the cross-section). We have

P (t, ε) = t+
∑
k≥1

εkMk(t).
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On each leaf of the foliation defined by Xε we have df = −ωε which implies

M1(t) =

∫
γt

ω1

where {γt}t is the family of periodic orbits (with appropriate orientation) of
X0, Π = ∪t∈(0,1)γt, [10]. Thus the first Poincaré-Pontryagin-Melnikov func-
tion is an Abelian integral and its monodromy representation is straight-
forward. Namely, the meromorphic one-form ω1 restricts to a meromorphic
one-form on the fibers of the Minlor fibration (4). We may also suppose that
ω1|f−1(t) has a finite number of poles {Pi(t)}i (after choosing appropriately
the domain U). Denote

Γt = U ∩ {f−1(t) \ {Pi(t)}i}

The Milnor fibration (4) induces a representation

Z = π1(D \ {0}, ∗)→ Aut(H1(Γt,Z)) (5)

which implies the monodromy representation of M1. Suppose first that ω1 is
analytic in U . It is well known that the operator of the classical monodromy
of an isolated critical point of an analytic function is quasi-unipotent, e.g.
[7]. Therefore the representation in Aut(H1(U ∩{f−1(t)},Z)) of a small loop
about 0 in π1(D \ {0}, ∗) is quasi-unipotent. More generally, let ω1 be mero-
morphic one-form with a finite number of poles on the fibers U ∩{f−1(t)}. A
monodromy operator permutes the poles and hence an appropriate power of
it leaves the poles fixed. Therefore this operator is quasi-unipotent too and
Theorem 5 is proved in the case M1 6= 0. Of course, it is well known that an
Abelian integral has a finite number of zeros [8, 15].

Let Mk be the first non-zero Poincaré-Pontryagin-Melnikov function. Its
"universal" monodromy representation was constructed in [3]. For conve-
nience of the reader we reproduce it here. Recall first that Mk(t) depends
on the free homotopy class of of the loop γt in π1(Γt) [3, Proposition 1] and
that this property does not hold true for the first return map P (t, ε) (which
depends on the homotopy class of γt in π1(Γt, ∗)) . Let F = π1(Γt, ∗) be the
fundamental group of Γt. It is a finitely generated free group. Let O ⊂ π1(Γt)
be the orbit of the loop γt under the action of Z2 = π1(D \ {0}, ∗) induced
by (4). The set O generates a normal subgroup of F which we denote by G.
The commutator subgroup (G,F ) ⊂ F is the normal sub-group of F gener-
ated by commutators (g, f) = g−1f−1gf . The Milnor fibration (4) induces a
representation

Z = π1(D \ {0}, ∗)→ Aut(G/(G,F )). (6)
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According to [3, Theorem 1], the monodromy representation of Mk is a sub-
representation of the monodromy representation dual to (6). Unfortunately
the free Abelian group F/(G,F ) is not necessarily of finite dimension. To
obtain a finite-dimensional representation we use the fundamental fact that
Mk has an integral representation as an iterated path integral of length k [4,
Theorem 2.1].

To use this, define by induction Fi+1 = (Fi, F ), F1 = F . We will later
consider the associated graded group

grF =
∞⊕
i=1

griF, griF = Fi/Fi+1. (7)

It is well know that an iterated integral of length k along a loop contained in
Fk+1 vanishes identically. Therefore, to study the monodromy representation
ofMk, we shall truncate with respect to Fk+1 and obtain a finite-dimensional
representation. Namely, for every subgroup H ⊂ F we denote

H̃ = (H ∪ Fk+1)/Fk+1.

The representation (6) induces a homomorphism

π1(C \D, ∗)→ Aut(G̃/(G̃, F̃ )) (8)

and the monodromy representation of Mk is a sub-representation of the rep-
resentation dual to (8) [4]. The Abelian group G̃/(G̃, F̃ ) is, however, finitely
generated. Indeed the lower central series of F̃ = F̃1 is

F̃1 ⊇ F̃2 ⊇ . . . F̃k ⊇ {id}

and hence F̃ is a finitely generated nilpotent group. Each sub-group of such
a group is finitely generated too, e.g. [6].

The central result of this section is the following theorem, from which
Theorem 6 follows immediately

Proposition 3. The monodromy representation (8) is quasi-unipotent.

Indeed, Mk satisfies a Fuchsian equation on D, whose monodromy repre-
sentation is a sub-representation of the representation dual to (8) [4, Theorem
1.1] and [3, Theorem 1]. To prove Proposition 3 we recall first some basic
facts from the theory of free groups, e.g. Serre [14], Hall [6]. The graded
group grF (7) associated to the free finitely generated group F is a Lie al-
gebra with a bracket induced by the commutator (., .) on F . The Milnor
fibration (4) induces a representation

Z = π1(D \ {0}, ∗)→ AutLie(grF ) (9)
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where AutLie(grF ) is the group of Lie algebra automorphisms of grF . Let l
be a generator of π1(D \ {0}, ∗). It induces automorphisms l∗ ∈ AutLie(grF )
and l∗|grkF ∈ Aut(grkF ). We note that gr1F = H1(Γt,Z) and hence l∗|gr1F
is quasi-unipotent.

Proposition 4. Let l∗ ∈ AutLie(grF ) be such that l∗|gr1F is quasi-unipotent.
Then for every k ≥ 1 the automorphism l∗|grkF is quasi-unipotent.

The proof is by induction. Let X = {x1, x2, ..., xµ} be the free generators
of F and consider the free Lie algebra LX on X. It is a Lie sub-algebra
of the associative non-commutative algebra of polynomials in the variables
xi with a Lie bracket [x, y] = xy − yx. The canonical map (x, y) 7→ [x, y]
induces an isomorphism of Lie algebras grF → LX , [14, Theorem 6.1]. Let
LkX ⊂ LX be the graded piece of degree k. We shall show that l∗|LkX is
quasi-unipotent. The proof is by induction. Suppose that the restriction
of l∗ on gr1F = L1

X = H1(Γt,Z) is quasi-unipotent, i.e. for some p, q, the
restriction of (lp∗ − id)q on gr1F is 0. The operator V ar∗ = lp∗ − id is a linear
automorphism, but not a Lie algebra automorphism. The identity

V ar∗[x, y] = (lp∗ − id)(xy − yx) = lp∗ xl
p
∗y − lp∗ ylp∗x− xy + yx

= [V ar∗x, V ar∗y] + [V ar∗x, y] + [x, V ar∗y]

shows that the restriction of V ar2q on L2
X vanishes identically. Therefore

The automorphism l∗ restricted to L2
X or gr2F is quasi-unipotent. The case

k ≥ 3 is similar. Proposition 4 is proved.�
According to the above Proposition for every i ∈ N there are integers

mi, ni, such that the polynomial pi(z) = (zmi−1)ni annihilates l∗|grkF . Propo-
sition 3 will follow on its hand from the following

Proposition 5. The polynomial p =
∏k

i=1 pi annihilates l∗ ∈ Aut(G̃/(G̃, F̃ )).

Proof. Let l ∈ π1(D\{0}, ∗). It induces an automorphism of the Abelian
groups G/(G,F ), G∩ Fi/(G∩ Fi, F ), Fi/Fi+1 denoted, by abuse of notation,
by l∗. We denote by pi(l∗) = (lmi∗ − id)ni the corresponding homomorphisms.
It follows from the definitions that the diagram (10) of Abelian groups, is
commutative (the vertical arrows are induced by the canonical projections).
Therefore if an equivalence classe [γ] ∈ G/(G,F ) can be represented by a
closed loop γ ∈ Fi, then pi(l∗)[γ] can be represented by a closed loop in
Fi+1. Therefore for every [γ] ∈ G/(G,F ), the equivalence class p(l∗) can be
represented by a closed loop in Fk+1. In other words p(l∗) indices the zero
automorphism of Aut(G̃/(G̃, F̃ )).�
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Fi/(Fi, F )
pi(l∗) // Fi/(Fi, F )

G ∩ Fi/(G ∩ Fi, F )
pi(l∗) //

π2

OO

π1

��

G ∩ Fi/(G ∩ Fi, F )

π2

OO

π1

��
G/(G,F )

pi(l∗) // G/(G,F )

(10)

5 Non-oscillation in the Darboux case
In this section we prove Theorem 3. First, we consider elementary iterated
integrals - the iterated integrals over the piece of the cycle lying near the
saddles. We give a representation of the Mellin transform of the elementary
iterated integral as a converging multiple series. This representation provides
an asymptotic series for the elementary iterated integral, with some explicit
estimate of the error, see Theorem 7 below.

The general iterated integral of length k turns out to be a polynomial
(depending on X0 and k only) in elementary iterated integrals, by Lemma 3.
We give analogue of the estimates of Theorem 7 for such polynomials. This
allows to prove a quasianalyticity property: if the asymptotic series corre-
sponding to the iterated integral is zero, then the integral itself is zero. This
implies Theorem 3 since the zeros of the partial sums of the asymptotic series
do not accumulate to 0, see Corollary 3.

The arguments follow the pattern of [9], so the proofs are replaced by a
reference whenever possible.

5.1 Iterated integral as a polynomial in elementary it-
erated integrals.

Let γ(u), u ∈ [0, 1], be a parameterization of the cycle γt ⊂ {H = t} (we
fix some t > 0 for a moment). As in [9], the cycle of integration can be
split into several pieces γj, those lying near the sides of the polycycle, and
those near the vertices. We assume that the vector field can be linearized
in the charts containing these pieces, and call these pieces elementary. Let
0 = v0 < v1 < ... < vm < 1 be the parameterization of the ends of these
pieces.

The iterated integral in the parameterized form is equal to∫
∆

g1(u1)...gk(uk)du1...duk,

14



where ∆ = {0 ≤ u1 ≤ ... ≤ uk ≤ 1} ⊂ Rk is a simplex.
Consider connected components of the complement of ∆ to the union of

hyperplanes ∪i,j{uj = vi}. Each connected component can be defined as

{0 ≤ u1 ≤ ... ≤ ui1 < v1 < ui1+1 ≤ ... < vm < uim+1 ≤ ... ≤ uk ≤ 1},

i.e. is a product ∆1 × ... × ∆m of several simplices of smaller dimension of
the form ∆j = {vj < uij+1 ≤ ... ≤ uij+1

< vj+1}. Therefore, by Fubini
theorem, integral of g1(u1)...gk(uk) over this connected component is equal
to the product of integrals

∫
∆j
gij+1...gij+1

duij+1...duij+1
, i.e. to the product

of iterated integrals
∫
γj
ωij+1...ωij+1.

Let us call the iterated integral over an elementary piece γj an elementary
iterated integral. The above arguments show that

Lemma 3. Iterated integral is a polynomial with integer coefficients in el-
ementary iterated integrals. The polynomial depends on the length of the
iterated integral only.

The above arguments give an explicit form of this polynomial (though we
will not need it).

5.2 Mellin transform of elementary iterated integrals

There are two types of elementary pieces: those lying in charts covering sides
of the polycycle, and those lying in charts covering saddles. Similarly to [9],
the elementary iterated integrals corresponding to the pieces of the first type
are just meromorphic functions of the parameter on the transversal, i.e. of
t1/λi .

From this moment we assume that the elementary piece lies near the
saddle {P1 = P2 = 0}. In other words, we assume that γ(t) = {xλ1yλ2 =
t} ∩ {0 ≤ x, y ≤ 1}.

We give description of iterated integrals in terms of their Mellin trans-
forms. Recall that the Mellin transform of a function f(t) on the interval
[0, 1] is defined as M f(s) =

∫ 1

0
ts−1f(t)dt. To describe the Mellin transform

of the elementary iterated integrals over γ(t) let us introduce a generalized
compensator. We denote in this section by l the length of the elementary
iterated integral. For l ∈ N and α = (m1, n1, ....,ml, nl) ∈ Z2l we define
`lα(s;λ1, λ2) as

`lα(s;λ1, λ2) =
l∏

j=0

(
s+ λ−1

1

j∑
i=1

mi + λ−1
2

l∑
i=j+1

ni

)−1

. (11)

15



We call M−1`lα(s;λ1, λ2) a generalized compensator. Particular case of l = 1
corresponds to the Ecalle-Roussarie compensator. Generalized compensator
is a finite linear combination of monomials of type tµ(log t)l

′ , for l′ ≤ l.
We omit λ1, λ2 from the notation till the end of the section.

Lemma 4. After some rescaling of t the Mellin transform of an elementary
iterated integral is given by the following formula:

M

∫
ω1...ωl =

∑
α

cα`
l
α, α ∈ (Z>−M)2l , (12)

where M is an upper bound for the order of poles of ωi. Moreover, |cα| ≤
C2−|α|.

This is a straightforward generalization of the construction of [9], which
corresponds to l = 1.

Proof. In the linearizing coordinates the first integral is written as H =
xλ1yλ2 . The Mellin transform of the iterated integral can be computed ex-
plicitly for monomial forms ωi = xmi−1yni dx:

M

∫
ω1...ωl = (13)∫ 1

0

ts−1

∫ 1

t1/λ1

xm1−1
1 yn1

1

∫ 1

x1

xm2−1
2 yn2

2

∫ 1

x2

...

∫ 1

xl−1

xml−1
l ynldxl...dx1dt = (14)

=

∫ 1

0

t
n1+...+nl

λ2 ts−1

∫ 1

t1/λ1

xm1−1−n1µ
1

∫ 1

x1

...

∫ 1

xl−1

xml−1−nlµ
l dxl...dx1dt = (15)

=

∫ 1

0

xml−1−nlµ
l

∫ xl

0

x
ml−1−1−nl−1µ
l−1 ...

∫ x
λ1
1

0

t
n1+...+nl

λ2
+s−1

dt...dxl = (16)

= λ−l1

l∏
j=0

(
s+ λ−1

1

j∑
i=1

mi + λ−1
2

l∑
i=j+1

ni

)−1

= λ−l1 `
l
α. (17)

Similar formula holds for ωi = xmiyni−1 dy.
After rescaling of H we can assume that the linearizing chart covers the

bidisk {0 ≤ |x|, |y| ≤ 2}. Then the coefficients of the forms ωi are meromor-
phic in the bidisk, with poles on {xy = 0} of order at most M . So ωi can be
represented as a convergent power series

ωi =
∑

mi,ni∈Z>−M

(
c′i,mi,nix

mi−1yni dx+ c′′i,mi,nix
miyni−1 dy

)
,
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with coefficients c′i,mi,ni , c
′′
i,mi,ni

decreasing as O(2−mi−ni). Therefore the el-
ementary iterated integral is a converging sum of elementary iterated inte-
grals of monomial forms, with coefficients being products of c′i,mi,ni , c

′′
i,mi,ni

,
i = 1, ..., l and mi, ni ∈ N. From (13) one gets upper bounds for the elemen-
tary iterated integrals of monomial forms, which guarantees that one can
perform Mellin transform termwise, and we get the required formula.

As in [9], one can check that the inverse Mellin transform of Mellin trans-
forms of elementary iterated integrals can be defined as

M−1g =
1

2πi

∫
∂Π

t−sg(s)ds, Π = {<s ≤M < +∞, |=s| ≤ 1}, (18)

where M is sufficiently big. Indeed, |`lα(s)| ≤ 1 on Π, so (12) converges
uniformly on this contour, so one can integrate the series (13) termwise.
However, for each term (18) does define the inverse Mellin transform, as
each term is just a rational function in s.

Corollary 2. An elementary iterated integral can be represented as a con-
vergent sum ∫

ω1...ωl =
∑
α

cαM
−1`lα. (19)

The following estimate is the keystone of the proof, since it allows to esti-
mate the difference between the elementary iterated integral and the partial
sum of its asymptotic series.

Lemma 5. Let I =∈ ω1...ωl be an elementary iterated integral, and let C be
defined as in 4. For any s ∈ C denote by ρ(s) the minimal distance from S
to the poles of M I.

Then |M I(s)| ≤ Cρ(s)−l.

Proof. Indeed, the absolute value of each term in the sum in (12) can be
estimated from above as |cα|ρ(s)−l, and the estimate follows from |cα| <
C2−α.

5.3 Asymptotic series of elementary iterated integrals

Inverse Mellin transform of `lα is a linear combination of monomials of the
type tµ(log t)j, where µ ∈ λ−1

1 Z + λ−1
2 Z and 0 ≤ j ≤ l. Collecting similar

terms in the expression for the elementary iterated integral I together, we
get a formal series Î of such terms, possibly divergent:

Î =
∑
µ,j

ĉµ,jt
µ(log t)j, where µ ∈ λ1Z>−M + λ2Z>−M , 0 ≤ j ≤ l. (20)
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Theorem 7. Î is an asymptotic series of I. Moreover, for each p ∈ N there
exists sp ∈ [p, p + 1] such that the partial sums Îp =

∑
j,µ<sp

ĉµ,jt
µ(log t)j of

Î satisfy the following:

|I(t)− Îp(t)| ≤ Csl
2

p t
sp , t ∈ [0, 1] (21)

where C depends on I but not on p.

The proof is a generalization of the proof of the corresponding statement
from [9].

Proof. Poles of M I are of the form −λ−1
1

∑j
i=1mi − λ−1

2

∑l
i=j+1 ni. Since

λ1, λ2 > 0, there are O(pl−1) poles on the interval Jp = [−p− 1,−p], p ∈ N.
Therefore on each interval Jp one can find a point −sp such that ρ(−sp) >
O(p1−l) = O(s1−l

p ).
For each p ∈ N let us split the contour of integration ∂Π into two parts:

boundary of Π′p = {−sp ≤ <s ≤ M, |=s| ≤ 1} and boundary of Πp =
{<s ≤ −sp, |=s| ≤ 1}. Computing residues, we see that 1

2πi

∫
∂Π′p

t−sM Ids

is a partial sum Îp(t) of Î as defined above. Therefore I(t) − Îp(t) =
1

2πi

∫
∂Πp

t−sM Ids. By Lemma 5, |M I(s)| ≤ O(pl
2
) on ∂Πp, and (21) fol-

lows.

5.4 Iterated integrals

Here we extend the Theorem 7 to the algebra A generated by elementary
iterated integrals.

Let f = P (I1, ..., Ik) ∈ A be an element in A, where P ∈ C[u1, ..., uk]
and I1, ..., Ik are elementary integrals. Substitution of convergent series from
(19) instead of I1, ..., Ik gives a representation of f as a converging multiple
sum of products (of length at most k) of generalized compensators. Collecting
similar terms, we obtain a formal series f̂ similar to (20), probably divergent.

Theorem 8. For any p ∈ N there exists sp ∈ [p, p + 1] such that the partial
sum f̂p of f̂ satisfies the following

|f − f̂p| ≤ Csdpt
sp (22)

for some C, d independent of p.

Before proof of Theorem 8 let us show that it implies Theorem 3.

Corollary 3. Let f ∈ A. If f̂ = 0, then f ≡ 0 on [0, 1]. Also, isolated zeros
of f cannot accumulate to 0.
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Proof. To prove the first claim, take a limit as sp → +∞ in (22.
Now, if f 6≡ 0, then for some µ we have |f − tµP (log t)| = o(tµ) with

some non-zero polynomial P (where −µ is the rightmost pole of M f). This
clearly implies the second claim.

The proof of Theorem 8 occupies the rest of the paper.

5.4.1 Mellin transform of a product of several generalized com-
pensators

For V = (v1, ..., vn) ∈ Rn define `v(s) =
∏n

i=1(s+vi)
−1. Let V j = (vj1, .., v

j
nj

) ∈
Rnj , j = 1, .., k and define Φ(V 1, ..., V k)(s) = M [

∏
(M−1`V j)].

This is a rational function of s. We want to show that it depends poly-
nomially on {V j}. Let K denotes the set of function κ : {1, ..., k} → Z with
the condition κ(j) ∈ {1, ..., nj}, and define wκ = v1

κ(1) + ...+ vkκ(k).

Lemma 6. Let S = S(V 1, ..., V k) =
∏

κ∈K(s + wκ) be a polynomial in
R[V 1, ..., V k; s]. There exists a polynomial R = Rn1,...,nk ∈ R[V 1, ..., V k; s]
such that Φ(V 1, ..., V k)(s) = RS−1, degsR < degs S.

Proof. By continuity of both sides it is enough to prove this for a dense
subset of

∏
Rnj consisting of non-resonant tuples (V 1, ..., V k), namely for

those those tuples for which all wκ are different.
Let C∞(s) be the ring of rational functions in s vanishing at infinity, and

define convolution f1 ∗ f2 for f1, f2 ∈ C∞(s) by extending the rule

1

s+ a
∗ 1

s+ b
=

1

s+ a+ b

by linearity and continuity to the whole C∞(s) (in particular, (s + a)−k ∗
(s + b)−l = (s + a + b)−k−l+1). Thus defined convolution is Mellin-dual to
the usual product. Therefore Φ(V 1, ..., V k)(s) = `V 1 ∗ ... ∗ `V k . Decomposing
each factor into simple fractions

`V j =
∑
i

Resvji
`jV

s+ vji
, Resvji

`jV =

(∏
i′ 6=i

(vji − v
j
i′)

)−1

and opening brackets, we see that

Φ(V 1, ..., V k)(s) =
∑
κ∈K

∏k
j=1 Resvj

κ(j)
`jV

s+ wκ
.
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Reducing to a common denominator, we see that Φ(V 1, ..., V k)(s) is a rational
function in vji , s, with denominator dividing S

∏
i,i′,j(v

j
i − v

j
i′).

We claim that the factors (vji−v
j
i′) do not enter denominator of Φ(V 1, ..., V k)(s).

Indeed, presence of such factor would mean that Φ(V 1, ..., V k)(s) becomes
unbounded as vji tends to v

j
i′ for each s ∈ C , which is not true: for any tuple

(V 1, ..., V k) and every sufficiently big s ∈ R the function Φ(V 1, ..., V k)(s) is
locally bounded near (V 1, ..., V k, s).

5.5 Mellin transform of a product of elementary iter-
ated integrals

Let I = I1...Ik be a product of several elementary iterated integrals, and let
order of Ij be lj. Then using representation (19) for Ij and opening brackets,
we see that

M I =
∑

α1,...,αk

cα1 ...cαkM

(
k∏
j=1

M−1(`ljαj)

)
, (23)

where αj ∈ (Z>−M)2lj .

Lemma 7. Let ρ(s) be the distance from s to the set of poles of M I. Then
|M I(s)| ≤ Cρ−

∏
lj(|s|+ 1)d for some d > 0.

Proof. Let us estimate from above the terms M
(∏k

j=1 M−1(`
lj
αj

)
from (23).

By Lemma 6 it is equal to R(V 1, ..., V k; s)/S(V 1, ..., V k; s), where V j =
(vj1, ..., v

j
lj

) is defined by

vji = −λ−1
j1

i∑
p=1

mj
p − λ−1

j2

lj∑
p=i+1

njp, αj = (mj
1, ..., n

j
lj

) ∈ Zlj
>−M ,

as in (11). This means that V j = Ljαj for some linear map Lj : Rlj → Rlj .
Therefore R is a polynomial in (s;α1, ..., αk), and

|R(s)| ≤ const(1 + s)d(1 +
∑
|αj|)d, for d = degR ≥ 0.

From the other side, S is a monic polynomial in s of degree
∏
lj with

roots in the poles of M I, so |S(s)| ≥ (ρ(s))
∏
lj . Taken together, this means

that∣∣∣∣∣M
(

k∏
j=1

M−1(`ljαj)

)∣∣∣∣∣ ≤ const (ρ(s))−
∏
lj (1 + s)d(1 +

∑
|αj|)d. (24)
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Now, we know that |cαj | ≤ C2−|α| by Lemma 4, so we estimate |M I(s)|
from above as

|M I(s)| ≤ const (ρ(s))−
∏
lj (1 + s)d

∑
α1,...,αk

2−
∑
|αj |(1 +

∑
|αj|)d, (25)

which, by convergence of the series, proves the Lemma.

5.5.1 Proof of Theorem 8

Let I now be a polynomial in several elementary iterated integrals, I =
P (I1, ..., Ik). The set of poles of the Mellin transform M I of I is the union
of sets of poles of Mellin transforms of each monomial of P , so the number
of poles of M I on an interval Jp = [−p− 1,−p] counted with multiplicities
grows as some power of p.

This means that for each p ∈ N one can find sp ∈ Jp such that the
distance ρ(sp) from p to the set of poles of M I will be bigger than |sp|−d

′ for
some d′ > 0. Then splitting the contour of integration of the inverse Mellin
transform as in Theorem 7, we conclude from Lemma 7 that |M I| < C|sp|d

′′

on the ∂Πp for some fixed d′′ > 0, and the claim follows.

References
[1] V. I. Arnold, Arnold’s problems, Springer, 2004.

[2] L. Gavrilov, Cyclicity of period annuli and principalization of Bautin
ideals, Ergodic Th. and Dyn. Systems, 2008, to appear.

[3] L. Gavrilov, I.D. Iliev, The displacement map associated to polynomial
unfoldings of planar Hamiltonian vector fields, American J. of Math.,
127 (2005) 1153-1190.

[4] L. Gavrilov, Higher order Poincare-Pontryagin functions and iterated
path integrals, Ann. Fac. Sci. Toulouse Math. (6) 14 (2005), no. 4, pp.
663-682.

[5] H. Grauert: On Levi’s problem and the imbedding of real-analytic man-
ifolds. Ann. Math. 68 (1958) 460-472.

[6] M. Hall,The Theory of Groups, AMS Chelsea Publishing, 1976.

[7] N. Katz, Nilpotent connections and the monodromy theorem,Publ.
Math. I.H.E.S., 39 (1970) 175-232.

21



[8] A.G. Khovanskii, Real analytic manifolds with the property of finiteness,
and complex abelian integrals, Funktsional. Anal. i Prilozhen. 18 (1984),
no. 2, 40–50.

[9] D. Novikov, On limit cycles appearing by polynomial perturbation of
Darbouxian integrable systems, to appear in GAFA.

[10] L.S. Pontryagin, Über Autoschwingungssysteme, die den Hamiltonis-
chen nahe liegen, Phys. Z. Sowjetunion 6 (1934), 25–28; On dynamics
systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz. 4 (1934)
234-238, in russian.

[11] R. Roussarie, Melnikov functions and Bautin ideal. Qual. Theory Dyn.
Syst. 2 (2001), no. 1, 67–78.

[12] R. Roussarie, Bifurcation of planar vector fields and Hilbert’s sixteenth
problem, Progress in Mathematics, vol. 164, Birkhäuser Verlag, Basel
(1998).

[13] R. Roussarie, Cyclicité finie des lacets et des points cuspidaux, Nonlin-
earity 2 (1989), no. 1, 73–117.

[14] J.-P. Serre, Lie algebras and Lie groups,1500 Lecture Notes in Mathe-
matics, Springer-Verlag, Berlin, 2006.

[15] A.N. Varchenko, Estimation of the number of zeros of an abelian inte-
gral depending on a parameter, and limit cycles. Funktsional. Anal. i
Prilozhen. 18 (1984), no. 2, 14–25.

22


