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Abstract. Based on a new explicit upper bound for the number of zeros of expo-

nential polynomials in a horizontal strip, we obtain a uniform upper bound for the

number of zeros of solutions to an ordinary differential equation near its Fuchsian
singular point, provided that any two distinct characteristic exponents at this point

have distinct real parts. The latter result implies that a Fuchsian differential equation
with polynomial coefficients is globally non-oscillating in CP 1 if and only if every its

singular point satisfies the above condition.

1. Introduction

Let us recall the classical notion of non-oscillation of a linear ordinary differential
equation, see e.g. [4].

Definition 1. A linear ordinary differential equation of order k

ak(z)y(k) + ak−1(z)y(k−1) + ...+ a0(z)y = 0, (1)

with continuous coefficients aj(z), j = 0, . . . , k defined in some finite or infinite interval
I ⊆ R is called non-oscillating in I, if every nontrivial solution of (1) has finitely many
zeros in I counted with multiplicities. Assuming that coefficients aj(z), j = 0, . . . , k are
analytic, one can define the same notion in a simply-connected domain Ω ⊆ C. 1

Observe that in the real case, every equation (1) is non-oscillating in any compact
interval I ⊂ R free from the roots of ak(z). Analogously, in the complex-analytic case,
every equation (1) is non-oscillating in any compact simply-connected domain Ω ⊂ C free
from the roots of ak(z).

In this paper, for a linear differential equation with polynomial coefficients, we in-
troduce the notion of its global non-oscillation in CP 1. By this, we mean its classical
non-oscillation in an arbitrary open contractible domain obtained after the removal from
CP 1 of an appropriate cut connecting all the singular points. Although oscillation/non-
oscillation in the complex domain have been studied since the 1920’s, (see e.g. [6]), the
notion of global non-oscillation seems to be new.

Consider a linear homogeneous differential equation

Pk(z)y(k) + Pk−1(z)y(k−1) + · · ·+ P0(z)y = 0, (2)

with polynomial coefficients Pk(z), Pk−1(z), . . . , P0(z), and GCD(Pk, Pk−1, . . . , P0) = 1.
Let S be the set of all singular points of (2) in CP 1, i.e., the set of all roots of Pk(z)
(together with∞ if some of the limits limz→∞ z2jPk−j(z)/Pk(z), j = 1, . . . , k are infinite).
For a given equation (2), let d denote the cardinality of S.
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Definition 2. A system C := {Cj}d−1
j=1 of smooth Jordan curves in CP 1, each of them

connecting a pair of distinct singular points, is called an admissible cut for equation (2)
if and only if: a) for any i 6= j, the intersection Ci ∩ Cj is either empty or consists of their

common endpoint; b) a union ∪d−1
j=1Cj is topologically a tree in CP 1, i.e., the complement

CP 1 \ ∪jCj is contractible; c) each Cj has a well-defined tangent vector at each of its two
endpoints.

In particular, there exist admissible cuts consisting of straight segments connecting the
singular points of (2).

Definition 3. Equation (2) is called globally non-oscillating if, for any its admissible cut
C, each nontrivial solution has finitely many zeros in CP 1 \ C.

The main result of this paper is the following criterion of global non-oscillation.

Theorem 4. Equation (2) with only Fuchsian singularities is globally non-oscillating
if and only if at each singular point all distinct characteristic exponents have pairwise
distinct real parts.

The major part of the proof of Theorem 4 is a local non-oscillation result dealing with
a sufficiently small neighbourhood of a Fuchsian singular point. Namely, assume that the
coefficients aj(z) of (1) are holomorphic in some neighborhood of p ∈ CP 1 which is a
Fuchsian singular point of (1).

Proposition 5. Assume that the real parts of any two distinct characteristic exponents
of (1) at p are pairwise different. Then for any α > 0, there exists ε > 0 and an integer
N > 0 such that the number of zeros of any solution of (2) in the sector {|z − p| <
ε, | arg(z − p)| < α} is at most N .

Example 6. Consider Euler equation:

t2y′′ + aty′ + by = 0.

Assuming that its characteristic exponents λ1, λ2 are distinct, its solutions C1t
λ1 +C2t

λ2

have infinitely many zeros on spirals B ln t + φ ∈ R, B = (λ1 − λ2)/2
√
−1. If Reλ1 =

Reλ2, then B ∈ R; each spiral degenerates into a ray through the origin implying that
solutions have infinitely many zeros in sectors. On the other hand, if Reλ1 6= Reλ2, each
spiral has a non-zero constant angle with each ray through the origin; its intersection
with any sector with apex at the origin is a finite arc. In this case, one can take N =
α
π |B|| sin (argB) |−1 + 1.

Remark 7. If (2) has a non-Fuchsian singularity at p ∈ CP 1, then, for any sufficiently
small ε > 0 and for almost all a ∈ C, almost any solution of (2) has infinitely many a-
values in the ε-neighbourhood of p with a straight segment connecting p with some point
on the bounding circle removed. However, there could be some exceptional cases, like
y′ − y = 0, when the number of zeros is still finite. The question of characterization of
such exceptions is difficult and lies beyond the scope of our paper.

Remark 8. An important class of Fuchsian equations consists of those having only real
characteristic exponents. For example, Abelian integrals appearing in the infinitesimal
Hilbert 16-th problem satisfy Fuchsian equations of this type. For real characteristic
exponents the assumption of Theorem 4 is obviously satisfied, and an analog of Theorem 4
was essentially obtained by M. Roitman and S. Yakovenko, [9]. Their approach is based
on the so-called Petrov operators and seems to be non-applicable in the more general
situation considered in the present paper.

On the other hand, pseudo-Abelian integrals, which generalize Abelian integrals to
Darboux intergrable systems, see [8, 3], can have non-real characteristic exponents, but
their properties are not well-understood.
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Remark 9. Let us also mention that Proposition 14 below, which is an important techni-
cal tool used to prove Theorem 4, is a new result in the classical area of the upper bounds
for the number of zeros of exponential polynomials. Therefore, it is of independent inter-
est. Such upper bounds are required in a wide range of mathematical disciplines, from
applied mathematics to number theory. Essential progress in this area has been made in
the 70’s in the papers [12], [15], [16]. But, to the best of our knowledge, in all the previ-
ous literature one only considered compact subdomains in C, mainly disks and rectangles,
while Proposition 14 considers the case of an infinite strip.

Acknowledgements. The first author wants to thank G. Binyamini and S. Yakovenko for
many inspiring remarks. The second author is grateful to the Department of Mathematics
and Computer Science of the Weizmann Institute of Science for the hospitality in January
2010 and February 2015 when this project was initiated and carried out. Both authors
want to acknowledge the constructive criticism of P. Deligne and A. Eremenko and of
an anonymous referee which allowed us to improve some formulations as well as the
exposition.

2. Proofs

2.1. Necessity of assumptions in Theorem 4. Assume that (2) has a Fuchsian singu-
larity at 0 with two distinct characteristic exponents of the form λj = a+bj

√
−1, j = 1, 2.

Then there exist two solutions of (2) of the form wj(z) = za+bj
√
−1gj(z), j = 1, 2, gj(z)

being holomorphic near the origin and gj(0) = 1. Therefore their sum has the leading

term za+
(b1+b2)

√
−1

2 cos
(
b1−b2

2 ln z
)

near the origin:

w(z) = w1 + w2 = za+
(b1+b2)

√
−1

2 [cos (ρ ln z) + ε(z)] , ρ =
b1 − b2

2
∈ R,

where ε(z) tends to zero as z → 0 uniformly in any sector {| arg z| < α}. Such a function
has infinitely many roots accumulating to 0 and located close to the real line. (In fact,
the arguments of these roots tend either to 0 or to π as they approach the origin). This
contradicts the global non-oscillation.

2.2. Reduction to Proposition 5.

2.2.1. Logarithmic charts and the de la Vallée-Poussin theorem. Set

Πα,β = {Re t ≤ β, | Im t| ≤ α}, Π∞,β = {Re t ≤ β}, Πα,∞ = {| Im t| ≤ α}.

Most of further considerations will be carried out in logarithmic charts of neighbour-
hoods of singular points. Let z = p be a Fuchsian singular point of (2). Consider the
logarithmic chart t = log(z − p) (or t = − log z for p = ∞) in some neighbourhood of p.
In this chart (2) takes the form

y(k) + c1(t)y(k−1) + ...+ c0(t)y = 0, (3)

where cj(t) are 2π
√
−1-periodic and holomorphic in some Π∞,β . It is well-known that

the Fuchsian condition translates into the requirement that each cj(t) tends to some finite
limit Cj as Re t→ −∞, t ∈ Π∞,β . In particular, cj(t) are uniformly bounded in Π∞,β .

The following complex analog of the classical de la Vallée Poussin theorem [13] is proved
in [17, Corollary 2.7].

Lemma 10. If the coefficients ci(z) of the equation

y(k) + c1(t) y(k−1) + · · ·+ ck(t) y = 0, z ∈ γ ⊂ C
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are analytic on a finite line segment γ ⊂ C of length ` and |cj(t)| ≤ C along γ for some
constant C ≥ 1, then the variation of the argument of any nontrivial solution w(t) of this
equation along γ is bounded by

VarArgw(t)|γ ≤ π(n+ 1)
(

1 + `C
ln 3−ln 2

)
. �

For any sufficiently small ε > 0, construct a simply-connected domain Uε ⊂ CP 1 by:
a) taking the large disk {|z| < ε−1} with the ε-neighbourhoods of all zeros of Pk removed,
b) making cuts by straight segments between the bounding circles so that the obtained
domain becomes contractible.

Corollary 11. There is an explicit upper bound B(ε) for the number of zeros of any
solution w(t) of (2) in Uε.

Proof. Clearly, one can explicitly estimate from above the supremum norm of the co-

efficients aj(z) =
Pk−j
Pk

, j = 1, . . . , k on the straight segments which form one part of
boundary of Uε. By Lemma 10, this gives an explicit upper bound on the increment of
the argument of w(z) along these segments.

To estimate the increment of the argument of w(z) along the arcs of circles forming
the remaining part of the boundary of Uε, use the logarithmic chart t = log(z − p) in
a neighbourhood of each Fuchsian singular point p of (2). The arcs {|z − p| = ε, α1 ≤
arg(z − p) ≤ α2} become straight segments γ = {Re t = log ε, α1 ≤ Im t ≤ α2} ⊂ Π∞,β .
Using Lemma 10, we see that the increment of the argument of w(t) along γ is uniformly
bounded (i.e. independently of the choice of w(t)).

Taken together, it means that the total increment of the argument of w(z) along the
boundary of Uε (and therefore its number of zeros in Uε) is uniformly bounded by an
explicitly given expression. �

Remark 12. The above proof implies that the latter bound is a polynomial in ε−1.

Observe that, for any admissible system of cuts C and any sufficiently small ε, the
domain CP 1 \ C can be covered by finitely many Uε (choosing different straight lines
connecting the bounding circles) and finitely many sectors of finite radii centered at the
singular points of (2). This observation reduces the proof of Theorem 4 to providing
finite upper bounds for the number of zeros of solutions of (2) in these sectors, i.e. to
Proposition 5.

2.3. Proof of Proposition 5. The rest of the paper is devoted to the proof of Propo-
sition 5. Our approach is inspired by the Wiman-Valiron theory. The main construction
below introduced in [14] is called the Newton-Hadamard polygon. It has a strong resem-
blance with the notion of a tropical polynomial in modern tropical geometry, see e.g., [5].
It was occasionally used earlier in the literature on differential equations, see e.g., [11] and
references therein.

2.3.1. Newton-Hadamard polygon. For a given function w(t) =
∑m
j=1 rje

λjt, rj , λj ∈ C,
consider the family

N̂Hw = {κj}mj=1, where κj = (µj ,− ln |rj |)

of m points in the plane R2 with coordinates (µ, φ). Let φ̂w be the piecewise-linear
continuous function defined on [µ1, µm], which is linear on each [µj , µj+1] and satisfies the

requirement φ̂w(µj) = ln |rj |, j = 1, ...,m. In other words, all points κj lie on the graph

of φ̂w.

Define φ0(µ) as the greatest convex minorant of φ̂w on the interval [µ1, µm]. We now
define the Newton-Hadamard polygon of w(t) as

NHw = {(φ ≤ φ0(µ), µ ∈ [µ1, µm]}.
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For a given real number t, define

φt(µ) = φ0(µ)− tµ, µ ∈ [µ1, µk], (4)

so |rjeλjt| = exp(−φt(µj)). Note that φt(µj) ≤ − ln |rjeλjt|, and the equality holds if and
only if κj lies on the boundary of NHw.

Define the central index of φt(µ) by the formula:

i(t) := max{i |µi is the point of the global minimum for φt(µ)},
comp. [14, Ch.9]. The central index corresponds to the maximal at the point t termM(t)
in the sum w(t) =

∑
rje

λjt:

M(t) := max
j
{|rjeλjt|} = |ri(t)eλi(t)t|.

Indeed, as the graph of φt(µ) is convex, φt(µ) is strictly monotone decreasing on {µ ≤
µi(t)} and is strictly monotone increasing on {µ ≥ µi(t)}. Thus κi(t) is clearly the boundary
point of NHw, as all other points κj , j 6= i(t), lie above the line {φ = φt(µi(t)) + t(µ −
µi(t))}. Therefore φt(µi(t)) = − ln |ri(t)eλi(t)t| and M(t) = e−φt(µi(t)).

Figure 1. Example of a Newton-Hadamard polygon NHw.

For a piecewise-linear function f , denote by Ψf the set of its slopes. Note that

Ψφt = Ψφ0 − t.
Note that logM(t) = maxµ (tµ− φt(µ)) is the Legendre transform of φ0(µ), so it is a
convex piece-wise linear function of t. The values of t corresponding to its vertices are
exactly the slopes Ψφ0 .

Lemma 13. If, for j = 1, . . . , k − 1,

|φt(µj+1)− φt(µj)| ≥ ln 3, (5)

then ∑
j 6=i(t)

|rjeλjt| < |ri(t)eλi(t)t|.

In particular, w(t) 6= 0.

Proof. As φt(µ) is strictly decreasing on µ < µi(t), for j < i(t) we have

− ln |rjeλjt| ≥ φt(µj) ≥ φt(µi(t)) + (i(t)− j) ln 3,

or, equivalently,

|rjeλjt| ≤ 3j−i(u)|ri(t)eλi(t)t|.
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Summing up over j < i(t), we get∑
0≤j<i(t)

|rjeλjt| ≤ |ri(t)eλi(t)t|
∑
j<i(t)

3j−i(t) <
1

2
|ri(t)eλi(t)t|,

Similarly, for j > i(t) we get ∑
0≤j<i(t)

|rjeλjt| <
1

2
|ri(t)eλi(t)t|.

Taken together, this proves Lemma 13. �

Now we return to our proof of Proposition 5 and first consider the case of Euler equa-
tion. In the logarithmic chart t = log z near z = 0, Euler equation becomes an equation
with constant coefficients, and any solution w(z) becomes an exponential polynomial w(t).
Our goal is to bound the number of its zeros in a strip Πα,∞. Evidently, if for some t one
of the terms of w(t) dominates, i.e. is bigger than the sum of all other terms, then w(t)
cannot vanish. This leads naturally to the Newton-Hadamard polygon introduced above
with slopes corresponding to the domains without dominating term (in the resonant case
considered in § 2.3.4 the situation is slightly more complicated). In this way we prove
that all zeros of w(t) except at most k lie in an effectively bounded number of boxes
{| Im t| ≤ α, β′j ≤ Re t ≤ β′′j }, with an explicit bound on their total width

∑
(β′′j − β′j),

see Lemma 15 below. The key point is that, although the boxes themselves depend on
the choice of a particular solution w(t), the upper bounds on their number and on the
total width of these boxes are independent of w(t).

Applying results of [7] to each box, we get an explicit upper bound on N . This bound
seems to be of correct magnitude if the roots of the characteristic equation are simple.

Secondly, we study a general Fuchsian singularity as a perturbation of Euler equation.
In § 2.3.5 we modify the arguments used for Euler equation to tackle the general case.

2.3.2. Euler equation. In the logarithmic chart near the origin, Euler equation transforms
into

EQ : y(k) + C1y
(k−1) + · · ·+ Cky = 0, Cj ∈ C, (6)

with constant coefficients Cj . Let λj = µj + νj
√
−1, j = 1, . . . ,m ≤ k, be the roots of its

characteristic equation ordered in the ascending order of their real parts

µ1 = Reλ1 ≤ · · · ≤ µm = Reλm, νj = Imλj .

We assume that all λj are pairwise different and have multiplicities nj + 1.

Proposition 14. For any α ≥ 0 and for any equation (6) such that all its distinct
characteristic roots have distinct real parts

µj < µj+1, j = 1, . . . ,m− 1,

there exists an upper bound ](EQ,α) for the (counted with multiplicities) number of zeros
of any nontrivial solution of (6) in the horizontal strip Πα,∞.

Moreover, if all roots λj = µj + νj
√
−1, j = 1, . . . , k of the characteristic equation of (6)

are simple, then

](EQ,α) ≤ (k − 1)2 +
2

π
(k − 1)L(EQ) [α(Ξ + 1) + Θ ln 3] , (7)

where L(EQ) is the length of the shortest polygonal path passing through all λj . Here

Θ := max
1≤j≤k−1

(µj+1 − µj)−1
, Ξ := max

1≤j≤k−1

∣∣∣∣ νj+1 − νj
µj+1 − µj

∣∣∣∣ .
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Proof of Proposition 14 occupies the rest of § 2.3.2 and § 2.3.4.

Figure 2. The shortest polygonal path passing through all λj has length L(EQ).

General solution of (6) is given by:

w(t) =

m∑
j=1

Rj(t)e
λjt, whereRj(t) =

nj∑
l=0

aj,lt
nj−l,

∑
(nj + 1) = k. (8)

For a solution w(t), define the domain of a single term w-dominance in Πα as

G(w,α) := {t ∈ Πα,∞ | ∃j = j(t), ∃ε > 0 : |Rj(t)eλjt| ≥ (1 + ε)
∑
i6=j

|Ri(t)eλit|}. (9)

Note that G(w,α) may contain at most minnj ≤ k zeros of w, namely the common
zeros of all Rj(t). Indeed, if |Rj(t)eλjt| 6= 0, then evidently w(t) 6= 0. If |Rj(t)eλjt| = 0,
then necessarily Ri(t) = 0 for all i, so t is a common zero of all Ri(t).

In particular, in case of simple characteristic exponents, G(w,α) contains no zeros of
w at all.

The following Lemma is the key part of the proof of Proposition 5. Its proof is given
in § 2.3.4.

Lemma 15. The complement Πα \ G(w,α) can be covered by at most k + k(k + 1)2/2
horizontal boxes (of height 2α) whose total width does not exceed

k(k + 1)2(2Θ ln k + 2αΞ + 2α) + 4k2Θ.

2.3.3. Non-resonant Euler equation. We first consider the basic case of simple character-
istic exponents λj , i.e. m = k. Then the polynomials Rj(t) are constants and we will
denote them by rj . In this case we can give a much better estimate.

Lemma 16. In case of simple characteristic exponents λj, the complement Πα,∞\G(w,α)
can be covered by at most k−1 horizontal boxes (of height 2α) of total width not exceeding

2α(k − 1) Ξ + 2(k − 1)Θ ln 3. (10)

The principal case in Lemma 16 is that of α = 0, i.e. Π0,∞ = R.

Lemma 17. If t lies outside the (ln 3 ·Θ)-neighbourhood of Ψφ0 , then t ∈ G(w, 0).

Proof. As Ψφt = Ψφ0 − t, our assumption implies that the absolute values of all slopes of
φt(µ) exceed ln 3 ·Θ. Therefore

|φt(µj+1)− φt(µj)| ≥ ln 3 ·Θ · |µj+1 − µj | ≥ ln 3,

and the statement follows from Lemma 13. �

Lemma 18. Under the above assumptions, R\G(w, 0) is contained in a union of at most
k − 1 closed intervals of total length less than or equal to 2(k − 1) ln 3 ·Θ.

Proof of Lemma 18. Lemma 17 implies that the complement of G(w, 0) lies inside the
(ln 3 ·Θ)-neighbourhood of Ψφ0 . But it consists of a union of at most k − 1 intervals of
total length not exceeding 2(k − 1) ln 3 ·Θ. �
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Proof of Lemma 16. Set t = u + v
√
−1 and repeat the above construction of Lemma 18

for every horizontal line Im t = v with |v| ≤ α.
Note that

w(u+ v
√
−1) =

∑
rje

(µj+νj
√
−1)(u+v

√
−1) =

∑
rj(v)eµju,

where

rj(v) = rje
−νjv+(µju+νjv)

√
−1, ln |rj(v)| = ln |rj | − νjv.

As before, for every fixed v, in R2 with coordinates (µ, φ), consider the point set

N̂Hvw = {κvj}kj=1 where κvj = (µj ,− ln |rj(v)|) .

Define φv0(µ) similarly to the definition of φ0(µ), but with N̂Hvw instead of N̂Hw. Lemma 17
now implies that t = u+ v

√
−1 ∈ G(w,α) if u lies outside the (ln 3 ·Θ)-neighbourhood of

Ψφv0 . Taking a union over all v ∈ [−α, α], we get the following.

Lemma 19. The interval [u−α
√
−1, u+α

√
−1] lies entirely in G(w,α) if u lies outside

the (ln 3 ·Θ)-neighbourhood of Ψα := ∪−α≤v≤αΨφv0 .

Figure 3. A segment of the set Ψα.

We claim that Ψα is a union of at most k−1 closed intervals, with an explicit bound on
their total length. Indeed, the set of slopes Ψφv0 changes continuously with v, and consists
of no more than k − 1 points for each fixed v.

Moreover, let

k(v) = − (ln |ri| − νiv)− (ln |rj | − νjv)

µi − µj

be a slope of Ψφv0 . Evidently,∣∣∣∣∂k(v)

∂v

∣∣∣∣ = |ξij | =
∣∣∣∣ νj − νiµj − µi

∣∣∣∣ ≤ Ξ.

Therefore the total length of Ψα is at most 2α(k − 1)Ξ.

Thus the (ln 3 ·Θ)-neighbourhood of Ψα := ∪−α≤v≤αΨφv0 is a union of at most k − 1
intervals of total length at most 2α(k−1)Ξ+2(k−1)Θ ln 3. Taken together with Lemma 19,
this proves Lemma 16. �
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2.3.4. Resonant Euler equation. In this situation the dependence of analogs of points κvj
on v is more complicated. We are forced to consider the slopes of all chords connecting
these points, and not only those forming the Newton-Hadamard polyline, i.e. those lying
on the boundary of NHw. This circumstance apparently results in an excessive upper
bound of the total width of boxes covering Πα,∞ \G(w,α).

Proof of Lemma 15. Consider the absolute value

rij(t) =

∣∣∣∣Ri(t)eλitRj(t)eλjt

∣∣∣∣
of the ratio of any two terms in (8). The complement Πα,∞ \G(w,α) lies in a union Σ of
the sets Σoij = {| ln rij(z)| ≤ ln k} and our goal is to cover Σoij by a union of boxes. We
will always assume that i > j.

We can write

ln rij(t) = ln |Ri/Rj | − vξijθij + θiju, (11)

where

t = u+ v
√
−1, θij = µi − µj , ξij = θ−1

ij (νi − νj).

Recall that θij > 0, as i > j, and Θ = maxi>j θ
−1
ij , Ξ = maxij |ξij |.

Let Z = ∪j{Rj = 0} be the set of all zeros of all Rj and define

W = {t ∈ Πα,∞ | ∀ti ∈ Z |Re(t− ti)| ≥ 2kΘ}. (12)

Evidently, Πα,∞ \W is a union of at most k boxes of total width at most 4k2Θ, so it
remains to study W ∪ Σoij .

For t = u+ v
√
−1 ∈W, we have∣∣∣∣ ∂∂t ln

Ri
Rj

(t)

∣∣∣∣ ≤∑
tl∈Z

∣∣∣∣ 1

t− tl

∣∣∣∣ ≤ k

2kΘ
≤ θij

2
,

implying ∣∣∣∣ ∂∂u ln |Ri/Rj |
∣∣∣∣ ≤ θij

2
, (13)∣∣∣∣ ∂∂v ln |Ri/Rj |

∣∣∣∣ ≤ θij
2
. (14)

We claim that

Σoij ∩W ⊂ Σij = {u+ v
√
−1 ∈W : | ln rij(u)| ≤ ln k + α|ξij |θij + αθij}.

Indeed, from (11), (14) it follows that∣∣ln rij(u+ v
√
−1)

∣∣− |ln rij(u)| ≤

α|ξijθij |+
∣∣∣∣ln ∣∣∣∣RiRj (u+ v

√
−1)

∣∣∣∣− ln

∣∣∣∣RiRj (u)

∣∣∣∣∣∣∣∣ ≤
α|ξijθij |+ α

θij
2
.

Note that Σij is a union of boxes, since its definition is independent of v, and it is enough
to bound their number and the total width.

Now, (11), (13) imply that

∂ ln rij
∂u

(u) ≥ θij −
∣∣∣∣ ∂∂u ln |Ri/Rj |

∣∣∣∣ ≥ θij
2
, u ∈W, (15)

i.e. ln rij is monotone increasing on each connected component of R∩W faster than
θij
2 u.
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This implies that Σij intersects each connected component of R ∩W in an interval of

length at most 4θ−1
ij ln k + 4α|ξij | + 4α. In other words, Σij ∩W is a union of at most

k + 1 boxes of total width not exceeding (k + 1)
(
4|θij |−1 ln k + 4α|ξij |+ 4α

)
.

Taking a union over all possible pairs i > j, we conclude that Σ \W lies in a union of
at most k(k + 1)2/2 boxes of total width at most k(k + 1)2(2Θ ln k + 2αΞ + 2α). Adding
the boxes Πα,∞ \W , we find that Σ lies in a union of at most k + k(k + 1)2/2 boxes
of total width at most k(k + 1)2(2Θ ln k + 2αΞ + 2α) + 4k2Θ. This finishes the proof of
Lemma 15. �

Finally let us explain how Lemmas 15 and 16 imply Proposition 14. For a given finite
set Λ = {λj} ⊂ C, consider the space consisting of exponential polynomials

QPΛ =

∑
j

Rj(t)e
λjt, Rj ∈ C[t]

 .

(Dimension of QPΛ equals k =
∑

(1 + degRj).) The following result was proven in [7].

Theorem 20 ([7]). The number of zeros of any function w ∈ QPΛ in a bounded convex
domain U does not exceed

k − 1 +
1

π
L(Λ) diam(U), (16)

where L(Λ) is the length of a shortest polygonal path passing through all points of Λ.

Theorem 20 immediately implies an estimate on the number of zeros of w(t) in the
boxes Bj of Lemma 15 and Lemma 16. We do not write it explicitly in the resonant
case of Lemma 15 as we believe it to be too excessive. However, in the case of simple
characteristic exponents of Lemma 16 and the second part of Proposition 14, we get∑

diamBj ≤ 2(k − 1) [αΞ + Θ ln 3] + 2(k − 1)α,

and (7) follows.

2.3.5. Equation with non-constant coefficients in a semistrip. In general, solutions of (1)
considered in the logarithmic chart t = log(z − p) near its Fuchsian singular point p have
the form

w̃(t) =

m∑
j=1

R̃j(t)e
λjt, (17)

where

R̃j(t) =

nj∑
l=0

aj,lt
nj−l(1 + εj,l(t)),

εj,l(t) being 2π
√
−1-periodic, εj,l(t) = O(eu), t = u+v

√
−1, in some left half-plane Π∞,β .

We will consider w̃ as a perturbation of (8) with the same aj,l, and will continue to
use the objects defined for w in §2.3.4.

Lemma 21. There exists β < 0 such that∣∣∣log |R̃j/Rj |
∣∣∣ ≤ 1/2 in W ∩Ππ,β . (18)

Proof. Let E = E(β) be a common upper bound for all |εj,l(t)| e−u, t ∈ Π∞,β .

Let R̊(t) =
∑
|aj,l||t|nj−l. Vieta’s formulas imply that R̊j(t) ≤

∏
m(|t|+ |tj,m|), where

tj,m are the roots of Rj(t). Also,∣∣∣R̃j −Rj∣∣∣ ≤ nj∑
l=0

∣∣aj,ltnj−lεj,l∣∣ ≤ EeuR̊j(t).
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Therefore, for t ∈W, we get∣∣∣∣∣ R̃j −RjRj

∣∣∣∣∣ ≤ Eeu R̊j(t)|Rj(t)|
≤ Eeu

∏ |t|+ |tm|
||t| − |tm||

≤

≤ Eeu|t|`
∏

|tm|<2|t|

1 + |tm|/|t|
||t| − |tm||

∏
|tm|>2|t|

|t/tm + 1|
1− |t/tm|

≤

Eeu|t|`
(

3

2kΘ

)`
3k−` ≤ Eeβ/2Mk,

where ` = #{tm | |tm| < 2|t|} and

Mk = max
0≤`≤k

max
t∈Ππ,0

eu/2|t|`
(

3

2kΘ

)`
3k−` <∞

(recall that |t− tm| ≥ 2kΘ, as t ∈W ).
Choose β < 0 small enough to obtain EMke

β/2 < 1− e−1/2. Then∣∣∣log |R̃j/Rj |
∣∣∣ =

∣∣∣∣∣log

∣∣∣∣∣1 +
R̃j −Rj
Rj

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

2
.

�

Lemma 22. For β as in Lemma 21 and α ≤ π, the zeros of w̃ in Πα,β lie in at most
k + k(k + 1)2/2 boxes of total width at most

k(k + 1)2

2
(4Θ ln k + 4αΞ + 4α+ 4Θ) + 4k2Θ.

Proof. We repeat the proof of Lemma 15. Namely, consider the absolute value r̃ij of the
ratio of two terms in (17). The complement Πα,β \G(w̃, α) lies in a union Σ of the sets

Σ̃oij = {| ln r̃ij(t)| ≤ ln k}.

Again, we consider only the set W . By Lemma 21, | log r̃ij − log rij | ≤ 1 . So it is
enough to require | ln rij(z)| ≤ ln k + 1, i.e.

Σ̃oij ⊂ Σ̃ij = {u+ v
√
−1 ∈ Πα : | ln rij(u)| ≤ ln k + α|ξijθij |+ α|θij |+ 1}.

Repeating the same arguments as in Lemma 15 with Σ̃ij instead of Σij , we arrive at the
required estimates. �

2.3.6. Final punch.

Proof of Theorem 4. Let

y(k) + a1(t)y(k−1) + · · ·+ ak(t)y = 0

be the reduced form of (2) (i.e. aj(t) = Pk−j(t)/Pk(t), j = 1, . . . , k) in the logarithmic
chart near its Fuchsian singularity. Choose β as in Lemma 21 and denote by C the
common upper bound on |aj(t)| in Πα,β .

The example illustrating Corollary 2.7 of [17] (Lemma 10 above) claims that if D is a
rectangle of perimeter ` and the coefficients of (3) are bounded by C ≥ 1 in this rectangle,
then any nontrivial solution of (3) has at most

2(k + 1) + (k+1)`C
2(ln 3−ln 2)

isolated zeros in D.

Applying this estimate to each of the boxes of Lemma 22, we conclude that w(t) has

at most 2(k + 1)(k + k(k + 1)2/2) + (k+1)`C
2(ln 3−ln 2) zeros in Πα,β , where

` ≤ k(k + 1)2(4Θ ln k + 4αΞ + 4α+ 4Θ) + 8k2Θ + 4(k + k(k + 1)2/2)α,
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is the total perimeter of all boxes appearing in Lemma 22.

In the original coordinates this translates to an upper bound for the number of zeros of
any solution of (2) in the sector p+ exp Πα,β = {|z−p| ≤ eβ , | arg z| ≤ α} at the Fuchsian
singular point p. This bound proves Proposition 5 and, therefore, settles Theorem 4. �
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