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Abstract. We prove an effective form of Wilkie’s conjecture in the structure

generated by restricted sub-Pfaffian functions: the number of rational points

of height H lying in the transcendental part of such a set grows no faster than
some power of logH. Our bounds depend only on the Pfaffian complexity of

the sets involved. As a corollary we deduce Wilkie’s original conjecture for

Rexp in full generality.

1. Introduction

1.1. Sharply o-minimal structures. Our general results in this paper are stated
in the context of sharply o-minimal structures admitting sharp derivatives. For a
complete definition of these notions see §2. Briefly, a sharply o-minimal structure
(abbreviated #o-minimal) is a pair (S,Ω) where S is an o-minimal expansion of
the real field and we identify S with the collection of all definable sets in S; and
Ω = {ΩF,D ⊂ S}F,D∈N is filtration on S depending on the format F and degree D.
The filtration is increasing with respect to each parameter, and S = ∪F,DΩF,D. If
X ∈ ΩF,D we say that X has format F and degree D (but note that these are not
uniquely defined, as Ω is a filtration rather than a decomposition). One can roughly
think of F as encoding the “logical complexity”, e.g. the length of a formula used to
define X; and of D as the sum of the algebraic degrees of all polynomials appearing
in such a representation. A system of axioms analogous to the standard axioms of
o-minimality control how the format and degree grows under the standard logical
operations, and give upper bounds on the number of intervals in a definable subset
of R in terms of F and D.

The structure (S,Ω) is said to have sharp derivatives if the following holds. Let
f : Rn → R be definable with format F and degree D, meaning that its graph
is in ΩF,D, and let α ∈ Nn. Then the derivative f (α) (wherever it is defined)
has format depending only on F, and degree depending polynomially on D and
|α|. The structure RrPfaff of restricted sub-Pfaffian sets is an example of a #o-
minimal structure with sharp derivatives, see §3. The unfamiliar reader may keep
this example in mind in place of the general setting.
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1.2. Asymptotic notation and effectivity. In this paper each appearance of an
expression Z = OX(Y ) should be interpreted as shorthand notation for Z ⩽ CX ·Y
where X → CX is a universally fixed, positive valued real function. Similarly we
write Z = polyX(Y ) as shorthand for Z ⩽ PX(Y ) where X → PX is a universally
fixed mapping and PX is a polynomial with positive coefficients. However we sup-
press dependence of the constants on (S,Ω), which we consider to be universally
fixed throughout the text.

The definition of a sharply o-minimal structure postulates the existence of a
certain upper bound PF(·) for the number of connected components of a definable
set as a function of format and degree. If this upper bound is known effectively,
then all asymptotic constants in this paper are also effectively computable unless it
is explicitly stated otherwise. In particular, this is indeed the case for the restricted
sub-Pfaffian structure RrPfaff .

1.3. Main results. If X ⊂ Rn then following [19, 18] we denote by Xalg the union
of all connected, positive-dimensional semialgebraic sets contained inX, and denote
Xtrans := X \Xalg. For g,H ∈ N we denote

X(g,H) := {x ∈ X : [Q(x) : Q] ⩽ g, H(x) ⩽ H}, X(Q, H) := X(1, H) (1)

where H(·) denotes the multiplicative Weil height on Q̄, extended to Q̄n as the
maximum of the heights of the coordinates. If unfamiliar see §1.2 for the asymptotic
notation used below.

Theorem 1. Let X ∈ ΩF,D. Then

#Xtrans(g,H) ⩽ polyF(D, g, logH). (2)

This establishes, in the restricted Pfaffian setting, a conjecture by Pila [21, Con-
jecture 1.5]. As a direct corollary we obtain Wilkie’s conjecture. Note that since
Rexp is not currently known to be #o-minimal, we allow the asymptotic constant
in (3) to depend on the definable set X, not only its format as in Theorem 1.

Corollary 1 (Wilkie’s conjecture). Let X be definable in Rexp. Then

#Xtrans(g,H) ⩽ polyX(g, logH). (3)

We stress that unlike in Theorem 1, the asymptotic constants here are not effectively
computable.

Proof. We adapt the exhaustion argument introduced in [15] in the quantifier free
setting and in [1] for general definable sets. By Wilkie’s theorem of the complement
[29] we haveX = πn(Y ) where Y ⊂ RN is quantifier-free in Rexp, and πn : RN → Rn

is the projection to the first n coordinates. Let g,H ∈ N and choose M ≫ 1 such
that X(g,H) = XM (g,H) where

XM := πn(YM ), YM := Y ∩ [−M,M ]N . (4)

Now YM is restricted semi-Pfaffian, as it is defined by Pfaffian functions (expo-
nential polynomials) restricted to [−M,M ]N . Crucially, YM ∈ ΩF,D where F, D
depend on Y but not on M . Then the same is true for XM , and we conclude

#Xtrans(g,H) ⩽ #Xtrans
M (g,H) = polyX(g, logH) (5)

by Theorem 1. □
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In fact, by a result of van den Dries and Miller [26] the structure RrPfaff,exp is
also model-complete, and Corollary 1 thus holds in this larger structure with the
same proof. Moreover if X := {Xλ}λ∈Λ is a definable family of sets in this structure
then

#Xtrans
λ (g,H) ⩽ polyX(g, logH), ∀λ ∈ Λ (6)

where the asymptotic constants are independent of λ, by essentially the same ar-
gument. We thank Alex Wilkie and Raf Cluckers for bringing these generalizations
to our attention.

We also have a “blocks” generalization of Theorem 1. Recall from [22] that a
definable set B ⊂ Rn is called a basic block if it is connected and regular (i.e.,
C1-smooth), and contained in a connected regular semialgebraic set of the same
dimension (which we call a semialgebraic closure of B, though this is not uniquely
defined). We denote by Ωalg a filtration making (Ralg,Ω

alg) into a #o-minimal
structure (one can take, e.g., the filtration from [8] for the empty Pfaffian chain).

Theorem 2. Let X ⊂ Rn with X ∈ ΩF,D. Then there exists a collection {Bη ⊂ X}
of basic blocks with semialgebraic closures Sη such that X(g,H) ⊂ ∪ηBη and

#{Bη} = polyF(D, g, logH), ∀η : Sη ∈ Ωalg
On(1),polyn(g,logH). (7)

Theorem 2 clearly implies Theorem 1, since the positive-dimensional basic blocks
Bη are subsets of Xalg by definition.

1.4. A Cr-parametrization lemma. For a Cr-smooth function f : U → R on a
domain U ⊂ Rm we denote

∥f∥ := sup
x∈U

|f(x)|, ∥f∥r := max
|α|⩽r

∥Dαf∥. (8)

For F : U → Rn we set ∥F∥ = maxi ∥Fi∥ and similarly for ∥F∥r. For a set A ⊂ Rn

we write Uε(A) for the ε-neighborhood of A with the ℓ∞-metric. For A,B ⊂ Rn,
we write A⫅εB to mean that A ⊂ B and B ⊂ Uε(A). We say that A is an ε-cover
of B.

The main novelty of our approach is the following version of Yomdin’s algebraic
lemma. Let I := (0, 1).

Lemma 2. Let r ∈ N and ε > 0. Let X ⊂ [0, 1]n be of dimension µ with X ∈
ΩF,D. Then there exists a collection {ϕη : Iµ → X} of Cr-smooth maps such that
∥ϕη∥r ⩽ 1 and ∪η Imϕη⫅εX, and

#{ϕη} ⩽ polyF(D, r, | log ε|), ∀η : ϕη ∈ ΩOF(1),polyF(D,r). (9)

This formulation is similar in spirit to Yomdin’s original formulation [32, 31].
Gromov [13] later refined Yomdin’s work by showing that one can formally take
ε = 0, avoiding ε-covers and covering the set X completely. However, as we will see,
Lemma 2 is sufficient for the applications in Diophantine geometry (as it was for
Yomdin’s original application in dynamics). The weaker formulation with ε-covers
enables us (as was already the case in Yomdin’s original work) to restrict to affine
reparametrizations at some crucial moments, where Gromov’s approach involves
nonlinear terms. The linearity of the reparametrizing maps turns out to allow for
crucial technical simplifications related to achieving polynomial growth of #{ϕη}
as a function of r (specifically in §5.4)
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Remark 3. In [33] Yomdin considers the case where the parameterizing maps are
algebraic, or more generally p-valent with uniform p. He proves that in this case
if one takes ε = 0 then the size of #{ϕη} cannot be taken independent of r. The
same conclusion is established without the valency assumption in [5, Section 1.2.1].
However, with ε > 0 it is still plausible to expect a version of Lemma 2 to hold
with no dependence on r. In fact, one may hope to find parameterizing maps with
∥ϕη∥∞ < 1. This was recently proved in the algebraic category, albeit without
polynomial dependence on D, by Cluckers, Friedland and Yomdin [10]. Improving
this to depend polynomially on D, and possibly to the context of other #o-minimal
structures, would yield an interesting sharpening of Lemma 2.

1.5. Background.

1.5.1. The Pila-Wilkie theorem. The origin of the area of point-counting in tame
geometry can be traced to the work of Bombieri and Pila [9, 17]. In these papers it
was shown that if Γ ⊂ R2 is a compact analytic curve containing no semialgebraic
curves then for every ε > 0 one has #Γ(Q, H) = OΓ,ε(H

ε). After some work by Pila
on subanalytic surfaces [19, 20], this result was generalized into its canonical form
by Pila and Wilkie [18], who proved that the bound #Xtrans(Q, H) = OX,ε(H

ε)
holds for any X definable in an o-minimal structure. This result has had a profound
impact on arithmetic geometry, and we refer the reader to [25] for a survey. Note
that the asymptotic constants in both of these theorems are not effective.

For Pfaffian surfaces, Jones and Thomas [15] established an effective form of the
Pila-Wilkie theorem. In the general restricted sub-Pfaffian setting, a recent paper
by the first author with Jones, Schmidt and Thomas [1] establishes an effective form
of the Pila-Wilkie theorem: if X ∈ ΩF,D then in fact #Xtrans(Q, H) = polyF,ε(D)
with effective constants. Many of the technical methods for using #o-minimality in
our context are inspired by this prior work. Indeed the paper [8] which inspired the
notion of #o-minimality grew out of an attempt to provide a suitable foundation
for the results in [1].

1.5.2. The Wilkie conjecture. Examples by Pila [19, Example 7.5] show that in
Ran the Pila-Wilkie asymptotic is essentially optimal. However, such examples
involve “hand-crafted” functions and no “natural” example exhibiting this behavior
is known. Wilkie made his conjecture (now Corollary 1) in the original paper [18] as
a concrete formulation of this phenomenon. The case of Pfaffian curves was proved
by Pila [21], and our approach in the one-dimensional case is indeed somewhat
similar to Pila’s approach. Some further examples of surfaces were treated in [23].
Two alternative more sophisticated parametrization techniques were employed in
[11] to establish Wilkie’s conjecture for general families of Ran-definable Pfaffian
surfaces. However, general definable surfaces in Rexp already seem difficult to treat
with the existing approaches.

The key obstacle to progress on Wilkie’s conjecture has been to establish a Cr-
parametrization lemma with polynomial bounds for the number of charts, as a
function of the complexity of the set and the smoothness order r. A part of the
difficulty was that no fully appropriate notion of complexity was available in Rexp

or RrPfaff , and the introduction of sharp o-minimality was meant to remedy this
situation. However the difficulty of efficient Cr-parametrization goes beyond this
issue. In fact, even in the semialgebraic case where suitable notions of format and
degree have long been available, this problem was only recently resolved in [5] using
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complex analytic methods. The problem remains open beyond the semialgebraic
case, and the complex analytic methods seem unlikely to directly carry over to the
unrestricted exponential case. We remark that for general subanalytic sets (and
some more general types of sets), while there is no notion of complexity, one can
still ask for polynomial dependence on r. This is achieved in [11, 27, 28].

For general definable sets in an o-minimal structure, the only previously known
case of the Wilkie conjecture is [4] by the first two authors. This paper established
Wilkie’s conjecture for the structure RRE generated by the exponential and sine
functions restricted to compact domains. The proofs were based on an approach
avoiding smooth parametrizations altogether, replacing it by complex-geometric
ideas. This is only applicable for holomorphic-Pfaffian functions, i.e. holomorphic
functions whose graph, viewed as a real set, is Pfaffian in the real sense. By
comparison, our approach here applies to arbitrary restricted sub-Pfaffian functions
without requiring that the complex-analytic continuation is again Pfaffian. The
complex-geometric ideas also seem much more difficult to carry out in the presence
of unrestricted exponentials. We also point out that a non-archimedean analog of
Wilkie’s conjecture for Pfaffian varieties over the field C((t)) has been established in
[3], and the ideas developed in the present paper may also be of relevance in this
and other non-archimedean contexts.

Remark 4. The proof of Corollary 1 would not be applicable with the methods of [4]
because the complex analytic nature of these methods would require us to consider
ez1 , . . . , ezM restricted to large complex polydiscs D(0,M)N rather than large cubes
[−M,M ]N as we do here. However, while the Pfaffian complexity of ex on [−M,M ]
is bounded independently of M , the Pfaffian complexity of ez on D(0,M) is roughly
M as evidenced by the fact that the Pfaffian equation ez = 1 admits roughly M/π
solutions in D(0,M).

1.5.3. Unrestricted exponentials in arithmetic applications. Unrestricted exponen-
tials are used in many of the most spectacular applications of the Pila-Wilkie the-
orem, where they arise in uniformizing maps of arithmetic quotients around cusps.
Extending the more advanced counting techniques to this case is therefore poten-
tially very useful. In particular, a recent paper by the first author [2] establishes
a polylogarithmic counting result in the spirit of Wilkie’s conjecture for sets de-
fined using algebraic foliations (not necessarily Pfaffian) over number fields. This
result has played an important role in recent progress on the André-Oort conjec-
ture for general Shimura varieties. It was used by the first author, Schmidt and
Yafaev [7] to establish Galois lower bounds for special points conditional on certain
height bounds. These height bounds were subsequently proved by Pila, Shankar and
Tsimerman (with an appendix by Esnault and Groechenig) in [24] thus finishing
the proof of André-Oort in general.

The approach of [2] is based on the complex geometric ideas of [4] and suffers
from the same limitation to restricted analytic situations, and this leads to technical
complications in [7] and in further potential applications of this result in arithmetic
geometry. It seems plausible that the new approach developed in the present paper
could also lead to progress on unrestricted exponentials in this non-Pfaffian situa-
tion, and we have formulated our results in the more general #o-minimal context
with this in mind.
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1.6. Acknowledgments. It is our pleasure to thank Yosi Yomdin for insightful
discussions on the algebraic lemma, and Alex Wilkie for alerting us of the potential
relevance of his notes [30]. In these notes Wilkie introduces a method for obtaining
Cr-parametrizations in the one-dimensional case with a single reparametrization,
rather than by the more traditional induction on r. While we did not eventually
use this directly in our text, our approach is a kind of discrete version of this idea
(so that we can use linear reparametrizations similar to Yomdin’s approach) and
certainly inspired by it. Pila [21] has used a similar approach earlier for Pfaffian
curves, and his idea also inspires our approach. We note further that the interpo-
lation method that we use to control X(g,H) efficiently as a function of g was also
introduced in Wilkie’s important notes [30].

2. Sharply o-minimal structures

2.1. #o-minimal structures. In this section we introduce the notion of a sharply
o-minimal structure (abbreviated #o-minimal). To start, a format-degree filtration
(abbreviated FD-filtration) on a structure S is a collection Ω = {ΩF,D}F,D∈N such
that each ΩF,D is a collection of definable sets (possibly of different ambient di-
mensions), with ΩF,D ⊂ ΩF+1,D ∩ ΩF,D+1 and ∪F,DΩF,D is the collection of all
definable sets in S. We call the sets in ΩF,D sets of format F and degree D. We will
assume ΩF,D only contains subsets of Rn for n ⩽ F.

A #o-minimal structure is a pair Σ := (S,Ω) consisting of an o-minimal expansion
of the real field S and an FD-filtration Ω; and for each F ∈ N a polynomial PF(·)
such that the following holds:

(1) If A ∈ ΩF,D with A ⊂ Rn then Ac, πn−1(A), A×R and R×A lie in ΩF+1,D.
(2) If A1, . . . , Ak ⊂ Rn with Aj ∈ ΩF,Dj

then ∪iAi ∈ ΩF,D and ∩iAi ∈ ΩF+1,D

where D =
∑

j Dj .

(3) If P ∈ R[x1, . . . , xn] then {P = 0} ∈ Ωn,degP .
(4) If A ∈ ΩF,D with A ⊂ R then it has at most PF(D) connected components,

Axioms 1-2 bear a close analogy to the standard axioms of a first-order structure,
keeping track of the formats and degrees of sets defined using the logical opera-
tions. Axiom 3 ensures compatibility with the standard notion of degree in the
(semi-)algebraic case. Finally Axiom 4 replaces the mere finiteness postulated in
standard o-minimality by polynomial bounds in degrees.

2.2. Sharp cell decomposition. The following notion is crucial for working with
#o-minimal structures. Below N[D] (resp. N[D, k]) denotes the set of polynomials
in D (resp. in D, k) with coefficients in N.

Definition 5. We say that (S,Ω) has sharp cell decomposition if for every F ∈ N
there are

aF ∈ N, bF ∈ N[D, k], cF ∈ N[D] (10)

such that the following holds. For every k,D ∈ N and every X1, . . . , Xk ∈ ΩF,D

subsets of Rn, there exists a cylindrical decomposition {Cη} of Rn compatible with
X1, . . . , Xk such that

#{Cη} ⩽ bF(D, k), ∀η : Cη ∈ ΩaF,cF(D). (11)
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We use the following notation for cells from [5]. For C ⊂ Rn−1 and a, b : C → R
we set

C ⊙ {a(z)} := {(z, w) : z ∈ C, w = a(z)},
C ⊙ (a(z), b(z)) := {(z, w) : z ∈ C, a(z) < w < b(z)}.

(12)

We will also allow a(z) ≡ −∞ and b(z) ≡ ∞ in the second case above.
In an upcoming paper we prove, based on ideas from [8], that for every #o-

minimal structure (S,Ω) there is another FD-filtration Ω∗ with ΩF,D ⊂ Ω∗
F,D for

every F, D such that (S,Ω∗) is #o-minimal with sharp cell decomposition. This
implies that Theorem 2 and its consequences actually apply without explicitly as-
suming that (S,Ω) has sharp cell decomposition. However to keep matters clear
and avoid dependence on our upcoming text we keep this as an extra condition.
Our main example RrPfaff does, in any case, admit sharp cell decomposition as
explained in §3.

2.3. Some consequences of #o-minimality and sharp cell decomposition.
The axioms of #o-minimality imply that whenever X1, . . . , Xk ∈ ΩF,D and ψ is a
first-order formula of depth ℓ with basic predicates x ∈ Xj then the set X defined
by ϕ satisfies

X ∈ ΩOF,ℓ(1),polyF,ℓ(D,k), (13)

see [8, Section 1.3] for a more precise treatment. Together with sharp cell de-
composition, this can be used to effectivize many of the classical constructions of
o-minimality in a rather routine fashion. We record a few instances used in our
text to familiarize the reader with this technique.

Proposition 6 (Connected components). Let X ∈ ΩF,D. Then each connected
component of X is in ΩOF(1),polyF(D), and their number is polyF(D).

Proof. Perform a cell decomposition. Each connected component is a union of
cells. □

We call a subset S ⊂ Rn regular if it is an embedded C1-smooth submanifold of
Rn.

Proposition 7 (Stratification). Let X ∈ ΩF,D. Then X is a disjoint union ∪ηSη

where each Sη is connected and regular, and

#{Sη} = polyF(D), ∀η : Sη ∈ ΩOF(1),polyF(D). (14)

Proof. Let µ := dimX. Let S ⊂ X be the µ-regular part of X, i.e. the set of
points p ∈ X such that for some linear projection L : Rn → Rµ, the map L|X is
locally invertible at p, and the inverse L′ : (Rµ, L(p)) → X ⊂ Rn is locally C1 with
Jacobian of rank µ. This can be written out explicitly as a first-order formula in
ε-δ-type language, so the axioms of #o-minimality give S ∈ ΩOF(1),polyF(D). Each
connected component of S is a top-dimensional stratum, and the remaining set
X \ S can be handled by induction on µ. □

Below grF denotes the graph of a map F .

Proposition 8 (Definable choice). Let X ⊂ Λ × Rn with X ∈ ΩF,D, and sup-
pose Xλ ̸= ∅ for every λ ∈ Λ. Then there is a map F : Λ → Rn with grF ∈
ΩOF(1),polyF(D) such that grF ⊂ X.
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Proof. Note that by our assumptions Λ is the projection of X to the first set of
variables, and is hence definable. Perform a cylindrical decomposition of Λ × Rn

compatible with X. In particular we obtain a cylindrical decomposition {Cη} of
Λ, and over each Cη a cylindrical decomposition of Cη × Rn by cells projecting to
Cη. It will be enough to handle each Cη separately and then take the unions of
the corresponding graphs. Moreover, we may as well consider just one of the cells
over Cη that is contained in X for the purpose of defining the choice function. So
assume without loss of generality that X is a cell.

Write X = C ⊙ (a(z), b(z)) where C ∈ ΩOF(1),polyF(D) is a cell in Λ×Rn−1 and
a(z), b(z) : C → R. The cases a(z) = −∞, b(z) = ∞ and C ⊙ {a(z)} are treated
similarly. We have gr a(z), gr b(z) ∈ ΩOF(1),polyF(D) since they can be defined using
first-order formulas as the infimum and supremum of the fiber Cz. Then we find a
choice function F̂ (λ) on C by induction on n, and

F (λ) :=

(
F̂ (λ),

a(λ, F̂ (λ)) + b(λ, F̂ (λ))

2

)
(15)

is a choice function for X. □

2.4. Sharp derivatives. If f : X → Y is a definable function we will write f ∈
ΩF,D as shorthand for gr f ∈ ΩF,D.

Definition 9. We say that (S,Ω) has sharp derivatives if for every F ∈ N there
are

aF ∈ N, bF ∈ N[D, k] (16)

such that the following holds. Given a definable f : Rn → R with f ∈ ΩF,D, we
have for every α ∈ Zn

⩾0

f (α) ∈ ΩaF,bF(D,|α|). (17)

Here f (α) denotes the α-partial derivative of f (in multiindex notation) with
domain of definition taken to be equal to the interior of the locus where f is con-
tinuously differentiable to order |α|.

Remark 10. In every #o-minimal structure we have f (α) ∈ ΩaF,|α|,bF,|α|(D) with

bF,|α| ∈ N[D]. Sharp derivatives means that as we take derivatives of high order,
the format remains fixed and the degree depends polynomially on the order. We do
not know whether this holds for general #o-minimal structures.

3. The restricted sub-Pfaffian structure RrPfaff

In this section we let Ω denote the #o-minimal filtration on RrPfaff introduced
in [8]. The main result of loc. cit. is that (RrPfaff ,Ω) is a #o-minimal structure
admitting sharp cell decomposition.

Remark 11. A small technical issue is that in [8] we considered only subsets of
[0, 1]n, whereas in the o-minimal setting it is of course customary to work in Rn.
It is a routine matter to translate the results of [8] to this alternative context. Say
Ω′ denotes the FD-filtration introduced in [8]. Fix an algebraic diffeomorphism
ϕ : R → (0, 1), and by abuse of notation also write ϕ : Rn → (0, 1)n for ϕ×n. Then
one can define

ΩF,D := {ϕ−1(X) : X ∈ Ω′
F,D}, (18)
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and deduce #o-minimality and sharp cell decomposition for (RrPfaff ,Ω) from the
results of [8] for Ω′.

Another small issue is that the *-format and *-degree introduced in [8] does not
exactly satisfy the axioms of #o-minimality as defined in §2.1, though this is a matter
of a simple re-indexing. To obtain a #o-minimal structure one can consider ΩF,D

to be given by the collection of restricted sub-Pfaffian sets defined by first-order
formulas of *-format F and *-degree D, as defined in [8, Definition 7].

In the remainder of the section we will prove the following.

Theorem 3. The structure (RrPfaff ,Ω) has sharp derivatives.

Let U ⊂ Rn and f : U → R with f ∈ ΩF,D and Γ := gr f . By the definition
from [8],

Γ = ∪iπn+1X
◦
i (19)

where i) each X◦
i is a connected component of a semi-Pfaffian Xi ⊂ RN of degree

polyF(D) for some N = N(F), and ii) the number of Xi is polyF(D). Moreover
according to [8, Lemma 18] we may assume that the projection πn+1|Xi

has finite
fibers.

Fix one X = Xi with πn+1(X
◦
i ) of full dimension in Γ. The general case easily

reduces to this at the end. By [12] we may further assume that X is effectively
smooth, i.e. is defined by a semi-Pfaffian system

{F1 = . . . = FN−n = 0} ∩ {G1 > 0, . . . , GM > 0} (20)

where Fi, Gj Pfaffian functions and the differential dF1∧· · ·∧ dFN−n non-vanishing
on X. The degrees of the Pfaffian functions Fi, Gj in (20) are polyF(D). Removing
a smaller-dimensional part, we may assume that the projection πn|X is everywhere
submersive.

Denote the coordinates on RN by (x, y) where

x = (x1, . . . , xn), y = (y1, . . . , yN−n). (21)

By the implicit function theorem and our setup above, around every point in X
one can express y as a smooth function of x, and

F (x, y) = 0 =⇒ ∂F
∂x + ∂F

∂y · ∂y
∂x = 0 =⇒ ∂y

∂x = −
(

∂F
∂y

)−1
∂F
∂x , (22)

where F = (F1, . . . , FN−n). Note that ∂F
∂y is invertible everywhere on X by our

setup. Note f(x) = y1(x) on πn(X
◦). Since F is a vector of Pfaffian functions,

all the derivatives in the right hand side are again Pfaffian, and using A−1 =
det−1(A) adj(A) we can write each ∂yi

∂xj
in the form Pij/Q where Pij is a Pfaffian

function and Q = det ∂F
∂y . Using this, one can rewrite f (α)(x) = y

(α)
1 (x) as a

ratio of Pfaffian functions Pα/Q
2|α| with degPα = polyF(D) · |α|, the asymptotic

constants depending on the Pfaffian chain used to define f (which are part of the
format F). This ratio is not formally Pfaffian, but adding a variable z and an
equation Q2|α|z = Pα to the equations of X gives a set Z ⊂ RN+1 with a connected
component Z◦ lying over X◦, such that the projection of Z to (x, z) is the graph
of f (α) over πn(X

◦).
Recall that the union of polyF(D) sets X◦ as above define a dense subset of Γ.

We have thus seen how to define a dense subset of gr f (α) with format OF(1) and
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degree polyF(D, |α|). By #o-minimality, the closure of this dense subset, Γα, has
similarly bounded format and degree.

Finally, the open set Dα ⊂ U equal to the interior of the locus where Γα is
the graph of a continuously differentiable function is also in ΩOF(1),polyF(D,|α|) by
#o-minimality. Setting

Γ′
α = Γα ∩

⋂
|β|<|α|

Dβ (23)

defines the graph of y(α) with the correct domain of definition, and the format and
degree bounds follow by #o-minimality.

4. Norms on Cr-functions

For
P =

∑
|α|⩽r

aαt
α ∈ R[t1, . . . , tm] (24)

we denote by MP =
∑

|α|⩽r |aα|tα the majorant. We set ∥P∥M := MP (1, . . . , 1).

For a Cr-smooth function f : U → R on a domain U ⊂ Rm and x0 ∈ U we
denote by

jrx0
f =

∑
|α|⩽r

f (α)(x0)

α!
tα (25)

the r-jet of f at x0. Recall from (8) that ∥f∥ denotes the supremum norm. We
define two further norms on f as follows,

∥f∥r := max
|α|⩽r

∥Dαf∥, ∥f∥T,r := sup
x∈U

∥jrxf∥M. (26)

As in §1.4 we extend this to F : U → Rn by coordinate-wise maximum.
For our purposes these two norms are essentially equivalent. Indeed, on the one

hand we have
∥f∥T,r ⩽ em∥f∥r. (27)

On the other hand the following lemma is immediate.

Lemma 12. Suppose f : In → R with ∥f∥T,r ⩽ 1. Let ϕ : In → In be a diagonal
affine map with Imϕ a cube of side-length 1/r. Then ∥f ◦ ϕ∥r ⩽ 1.

As a consequence of Lemma 12, given functions of unit (T, r)-norm on In we can
always rescale to obtain bounded r-norms using rn charts.

We usually state our results with ∥f∥r, but in some cases ∥f∥T,r is more techni-
cally convenient, mainly because of the following submultiplicativity and subcom-
positionality properties.

Lemma 13. The following estimates for products and compositions hold:

(1) Let f, g : U → R be Cr-smooth. Then ∥fg∥T,r ⩽ ∥f∥T,r · ∥g∥T,r.
(2) Let F : U → Rn and g : V → R be Cr-smooth with ImF ⊂ V . Suppose

∥Fi∥T,r ⩽ 1 for i = 1, . . . , n. Then ∥g ◦ F∥T,r ⩽ ∥g∥T,r.

Proof. Part (1) follows from

[Mjrx(fg)](1, . . . , 1) ⩽ [Mjrxf ](1, . . . , 1) · [Mjrxg](1, . . . , 1) (28)

which holds since jrx(fg) is just j
r
x(f)j

r
x(g) truncated to degree r. Part (2) follows

in a similar fashion, this time noting that jrx(g ◦F ) is just jrF (x)(g)(j
r
xF1, . . . , j

r
xFn)

truncated to degree r. □
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We record another simple lemma comparing ∥f∥T,r+1 and ∥f ′∥T,r.

Lemma 14. Let f : U → R with U ⊂ R be Cr+1-smooth. Then

∥f ′∥T,r ⩽ (r + 1)∥f∥T,r+1. (29)

Proof. By direct computation,

∥f ′∥T,r = sup
x∈U

r∑
k=0

∣∣f (k+1)(x)
∣∣

k!
⩽ sup

x∈U

r+1∑
k=0

k

∣∣f (k)(x)∣∣
k!

⩽ (r + 1)∥f∥T,r+1. (30)

□

5. Proof of the algebraic lemma

We will prove the algebraic lemma (Lemma 2) in the following equivalent form
which is more suitable for an inductive argument. Recall that below we always
work in an #o-minimal structure admitting sharp cell decomposition and sharp
derivatives (S,Ω). We think of maps F : Λ× In → Ik as definable families of maps
{Fλ : In → Ik}λ∈Λ, where Fλ := F (λ, ·).

Lemma 15. Let r ∈ N and ε > 0. Let F : Λ × In → Ik with Fj ∈ ΩF,D for
j = 1, . . . , k. Then there exists a collection {ϕη : Λ× In → In} such that for every
λ ∈ Λ we have i) ∥Fλ ◦ ϕη,λ∥r ⩽ 1, ii) ∪η Im(Fλ ◦ ϕη,λ)⫅ε ImFλ, and iii)

#{ϕη} ⩽ polyF(D, r, k, | log ε|), ∀η : ϕη ∈ ΩOF(1),polyF(D,r). (31)

Lemma 15 with a given n implies the following family version of Lemma 2 with
the same n.

Lemma 16. Let r ∈ N and ε > 0. Let X ⊂ Λ × In with µ := maxλ dimXλ and
X ∈ ΩF,D. Assume X has no empty fibers. Then there exists a collection {ϕη :
Λ×Iµ → X} such that for every λ ∈ Λ we have i) ∥ϕη,λ∥r ⩽ 1, ii) ∪η Imϕη,λ⫅εXλ,
and iii)

#{ϕη} ⩽ polyF(D, r, | log ε|), ∀η : ϕη ∈ ΩOF(1),polyF(D,r). (32)

Proof. First perform a cell decomposition of Λ × In compatible with X, to cover
Xλ by polyF(D) images ImFθ,λ for Fθ : Λ × Iµ → In. The non-empty fibers are
required to guarantee we can always do this. Then apply Lemma 15 to each of
these maps. The collection of all resulting Fθ ◦ ϕη establishes the conclusion the
lemma. □

Remark 17. Suppose Λ = Λ1 ∪ · · · ∪ ΛN is a definable subdivision of Λ with
N = polyF(D, r, k, | log ε|) and Λi ∈ ΩOF(1),polyF(D,r). Suppose we prove Lemma 15
for F restricted to each Λi separately, say giving collections

{ϕi,j : Λi × In → In} i = 1, . . . , N, j = 1, . . . ,M (33)

allowing repetitions to make these collections have the same size M . Fix some
arbitrary c ∈ In and define

ϕ̃i,j : Λ× In → In, ϕ̃i,j(λ, x) =

{
ϕi,j(λ, x) if λ ∈ Λi

c otherwise.
(34)

Then the collection {ϕ̃i,j}i,j proves Lemma 15 for Λ (the degree and format bounds
follow from #o-minimality). A similar remark applies for Lemma 16. In the proof
below we will often use this subdivision argument without explicit mention.
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To make the notation more suggestive, we sometimes denote the coordinates
on Rn by (x, y1, . . . , yn−1). The proof of Lemma 15 will occupy the remainder of
this section. We proceed by induction on n, treating the base case n = 1 in the
following subsection. We record a simple lemma that is useful in many stages of
our argument.

Lemma 18. Let F : X → Y be 1-Lipschitz, and suppose {ϕη : Uη → X} satisfies
∪η Imϕη⫅εX. Then ∪η Im(F ◦ ϕη)⫅ε ImF .

In particular this implies that when every Fλ is 1-Lipschitz we can replace the
condition ∪η Im(Fλ ◦ϕη,λ)⫅ε ImFλ in Lemma 15 by ∪η Imϕη,λ⫅εI

n. We will often
use this remark after performing a pullback to satisfy the 1-Lipschitz condition.

5.1. The case n = 1 in Lemma 15. The main difficulty in proving Lemma 15
is to get polynomial growth with respect to r and D simultaneously. For a fixed r
the classical proof of Yomdin-Gromov gives the same statement, even with a true
cover in place of the ε-cover. We record below the C1-version that we will need in
the sequel.

Lemma 19. Let F : Λ × I → Ik with Fi ∈ ΩF,D. Then there exists a collection
{ϕη : Λ × I → I} such that for every λ ∈ Λ we have i) ∥Fλ ◦ ϕη,λ∥1 ⩽ 1, ii)
∪ηϕη,λ(I) = I, and iii)

#{ϕη} ⩽ polyF(D, k), ∀η : ϕη ∈ ΩOF(1),polyF(D). (35)

Proof. Assume without loss of generality that f(x) = x is among the Fi. Denote
(·)′ = ∂

∂x (·). Perform a cell decomposition of Λ×I compatible with the sets of zeros
of all the functions |F ′

i | − |F ′
j | for i, j = 1, . . . , k as well as with the sets of points

where F ′
i is undefined. We have polyF(D, k) cells, each in ΩOF(1),polyF(D).

It will suffice to handle each cell separately. For cells of the form C⊙{a(λ)} one
can cover their image by a constant map, so consider a cell C ⊙ (a(λ), b(λ)). Since
each |F ′

i | − |F ′
j | is either identically vanishing or identically non-vanishing on the

cell, there is one Fi, without loss of generality F1, such that

|F ′
1| ⩾ |F ′

j | ∀j = 2, . . . , k (36)

uniformly over the cell. In particular |F ′
1| ⩾ 1. Set

F1(λ, I) = (A(λ), B(λ)) (37)

and define ϕ̃ : C ⊙ (A(λ), B(λ)) → I by ϕ̃(λ, s) = F−1
1,λ(s). By (36) we have

|(Fj,λ ◦ ϕ̃λ(s))′| = |F ′
j,λ(ϕ̃λ(s))ϕ̃λ(s)

′|

= |F ′
j,λ(ϕ̃λ(s))/F

′
1,λ(ϕ̃λ(s))| ⩽ 1

(38)

so ∥Fλ ◦ ϕ̃λ∥1 ⩽ 1. Finally, let ϕ : C × I → I be the pullback of ϕ̃ by a linear
rescaling map C×I → C⊙(A(λ), B(λ)). Since (A(λ), B(λ)) ⊂ I this only decreases
derivatives, so the collection of maps ϕ thus obtained satisfies the conditions of the
lemma. □

To prove Lemma 15 in the n = 1 case, we first apply Lemma 19 to F . Pulling
back F by each of the ϕη thus obtained, we may assume without loss of generality
that ∥Fλ∥1 ⩽ 1 for every λ ∈ Λ. In particular, each Fλ is 1-Lipschitz (with respect
to the ℓ∞-norm).
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Perform a cell decomposition of Λ × I compatible with the sets of zeros of all

the functions F
(j)
i for i = 1, . . . , k and j = 0, . . . , r + 1, as well as the sets of

points where these functions are undefined. We have polyF(D, k, r) cells, each in
ΩOF(1),polyF(D,r). It will suffice to handle each cell separately. For cells of the form
C ⊙ {a(λ)} there is nothing to prove, so we consider cells C ⊙ (a(λ), b(λ)). Pulling
back by the affine map C ⊙ I → C ⊙ (a(λ), b(λ)) only decreases derivatives, so
without loss of generality it now suffices to prove Lemma 15 assuming each Fλ is
1-Lipschitz and has constant-signed derivatives up to order r + 1. The result now
follows from the following lemma.

Lemma 20. Let f : I → I be Cr+1-smooth and suppose that f (j) has constant sign
for j = 0, . . . , r + 1. Then for every M > 1 and j = 0, . . . , r we have

|f (j)(x)| < M j whenever dist(x, ∂I) > j/M. (39)

Proof. We proceed by induction, the case j = 0 being trivial. Suppose the claim is
proved for f (j). Assume f (j+1) is weakly-increasing (or weakly-decreasing, which
is analogous) and suppose toward contradiction that f (j+1)(x) ⩾M j+1 for some x
with dist(x, ∂I) > (j+1)/M (the case f (j+1)(x) ⩽ −M j+1 being analogous). Then
f (j+1) > M j+1 throughout the interval [x, x+1/M ]. Thus f (j)(x+1/M)−f (j)(x) ⩾
M j . This contradicts the inductive hypothesis, since both x and x + 1/M have
distance at least j/M to ∂I, and f (j) is constant-signed and bounded in absolute
value by M j at both points. □

It follows from Lemma 20 that if ϕ : I → I is an affine translation with the
length of ϕ(I) smaller than dist(ϕ(I), ∂I)/r then ∥Fλ ◦ϕ∥r ⩽ 1 for every λ. It is an
elementary exercise that with poly(r, | log ε|) such maps we can cover Iε := (ε, 1−ε).
Finally, since Fλ is 1-Lipschitz for every λ ∈ Λ we have Fλ(Iε)⫅εFλ(I) so this
covering satisfies the conditions of Lemma 15.

We record a corollary of the proof above for later use, where we cover the domain
I by linear maps but skip the 1-Lipschitz preparation step, so we only get an ε-cover
of the domain I but not necessarily of the image under F .

Corollary 21. Let r ∈ N and ε > 0. Let F : Λ × I → Ik with Fj ∈ ΩF,D for
j = 1, . . . , k. Then there exists a collection {ϕη : Λ × I → I} such that for every
λ ∈ Λ we have i) ∥Fλ ◦ ϕη,λ∥r ⩽ 1, ii) ∪ηϕη,λ(I)⫅εI, iii) ϕη,λ is affine, and iv)

#{ϕη} ⩽ polyF(D, r, k, | log ε|), ∀η : ϕη ∈ ΩOF(1),polyF(D,r). (40)

5.2. Reduction to bounded y-derivatives. We now continue inductively with
the case of general n, assuming that Lemma 15 and Lemma 16 are already estab-
lished for n− 1.

Apply the inductive hypothesis to F : (Λ× Ix)× In−1
y → Ik with ε/2 in place of

ε, viewing x as an additional parameter (the subscripts Ix, Iy are introduced only
for clarity). Let {ϕη} be the resulting collection. It will suffice to establish the
conclusion of Lemma 15 with ε/2 in place of ε and each F ◦ (λ, x, ϕη) in place of F .
In other words, without loss of generality it suffices to prove Lemma 15 assuming
that ∥Fλ(x, ·)∥r ⩽ 1 for every λ ∈ Λ and every x ∈ I. In particular, the derivatives
up to order r with respect to the y-variables are defined everywhere. Below we
keep working with ε rather than ε/2 to simplify notations, and we make similar
reductions later in the proof.
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5.3. Reduction to 1-Lipschitz. Our goal in this section is to reduce to the
case where Fλ is 1-Lipschitz for every λ ∈ Λ, while still preserving the bound
∥Fλ(x, ·)∥r ⩽ 1 for every λ ∈ Λ established in the previous section.

Recall the following lemma from [6]. For the convenience of the reader we also
give a proof using Corollary 21 in §5.6.

Lemma 22 ([6, Lemma 16]). Let f : Ix × In−1
y → I be definable and suppose that

for each i = 1, . . . , n− 1 the derivative fyi
(x, y) is bounded by a finite number c(x)

for all y where it is defined, for almost every x ∈ Ix. Then fx(x, y) is similarly
bounded by a finite number c̃(x) for all y where it is defined, for almost every x ∈ Ix.

For i = 1, . . . , k we define Si ⊂ Λ× In by

Si :=
{
(λ, x, y) : |∂Fi

∂x (λ, x, y)| ⩾ 1

2
sup

ỹ∈In−1

|∂Fi

∂x (λ, x, ỹ)|
}

(41)

where the supremum is taken over the points where ∂Fi

∂x (λ, x, ỹ) is defined. By
Lemma 22, the supremum is finite, for each λ ∈ Λ, for almost every x. For x
where the supremum is infinite we consider that the condition is vacuous, i.e. every
(λ, x, y) is included in Si in this case. Clearly Si ∈ ΩOF(1),polyF(D).

By definable choice we may choose subsets Γi ⊂ Si such that Γi contains exactly
one (λ, x, y) for every (λ, x). In particular, sharp cylindrical decomposition shows
that Γi ∈ ΩOF(1),polyF(D). By definition Γi is a graph of an (n−1)-tuple of functions

γi,1, . . . , γi,n−1 : Λ× Ix → I (42)

and γi,j ∈ ΩOF(1),polyF(D) as well.
We apply Lemma 19 to the tuple including the functions γi and x, as well as

F ◦ (λ, x, γi) for every i = 1, . . . , k. For every ϕη thus obtained let

Φη(λ, t, y) = (λ, ϕη(λ, t), y). (43)

Denote Fη := F ◦ Φη. It will suffice to establish the conclusion of Lemma 15 for
each Fη in place of F . Moreover we obviously still have ∥Fη,λ(t, ·)∥r ⩽ 1 for every
λ ∈ Λ and every t ∈ I. Denote Γi,η := Φ−1

η (Γi). Then Γi,η is the graph of an
(n− 1)-tuple of functions γi,j,η := γi,j ◦ (λ, ϕη) with ∥γi,j,η,λ∥1 ⩽ 1 for every λ ∈ Λ.
Note that for every (λ, t, y) ∈ Γi,η we have

|∂Fi,η

∂t (λ, t, y)| = |∂Fi

∂x ◦ Φη(λ, t, y) · ∂ϕη

∂t (λ, t)| ⩾
1

2
sup

ỹ∈In−1

|∂Fi

∂x (λ, ϕλ(t), ỹ) · ∂ϕη

∂t (λ, t)| =

1

2
sup

ỹ∈In−1

|∂Fi,η

∂t (λ, t, ỹ)|. (44)

In other words, Γi,η satisfies the same definition in the (λ, t, y) coordinates as Γi in
the (λ, x, y) coordinates. Clearly the sets and functions defined above have format
OF(1) and degree polyF(D).

We claim that |∂Fi,η

∂t | = On(1) whenever it is defined. According to (44) it is
enough to check this on the curves Γi,η. We compute the derivative of Fi,η along
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this curve,

1 ⩾ | ∂∂tFi,η(λ, t, γi,1,η,λ, . . . , γi,n−1,η,λ)| =

|∂Fi,η

∂t +

n−1∑
j=1

∂Fi,η

∂yj

∂γi,j,η,λ

∂t | ⩾ |∂Fi,η

∂t | − n− 1, (45)

and rearranging we see that |∂Fi,η

∂t | = On(1) as claimed.
According to the following lemma, each Fη(λ, ·) is On(1)-Lipschitz for each λ ∈ Λ

after a subdivision of Ix into intervals. The proof is postponed to §5.6.

Lemma 23. Let f : Ix× In−1
y → I be definable with ∥f(x, ·)∥1 ⩽ 1 everywhere and

|fx| ⩽ 1 whenever fx is defined. Then the locus of discontinuity of f is contained
in finitely many hyperplanes x = x1, . . . , xN , and f is On(1)-Lipschitz on each
(xi, xi+1)× In−1

y (where we take x1 = 0 and xN = 1).

Perform a cell decomposition of Λ × Ix compatible with the projections of the
loci of discontinuity of Fi,η for each i = 1, . . . , k to Λ× Ix, giving cells of the form
either C = Cλ ⊙ {a(λ)} or C = Cλ ⊙ (a(λ), b(λ)) where in the latter case Fη,λ

is On(1)-Lipschitz in (a(λ), b(λ)) × In−1 for every λ ∈ Λ. In the former case we
can handle Fη|C×In−1 by the inductive hypothesis. In the latter case, rescaling
(a(λ), b(λ)) back to (0, 1) only improves the Lipschitz constant in Fη,λ|C×In−1 .
Applying a further linear subdivision in the x, y coordinates we may further reduce
the Lipschitz constant to 1 to simplify our notations.

Returning to the original notation, we conclude that it will suffice to establish
the conclusion of Lemma 15 assuming that ∥Fλ(x, ·)∥r ⩽ 1 for every λ ∈ Λ and
every x ∈ I, and Fλ is 1-Lipschitz for every λ.

5.4. Controlling higher derivatives. We start off similarly to §5.3. For i =
1, . . . , k and α ∈ Zn

⩾0 with |α| ⩽ r we define Si,α ⊂ Λ× In by

Si,α :=
{
(λ, x, y) : |F (α)

i (λ, x, y)| ⩾ 1

2
sup

ỹ∈In−1

|F (α)
i (λ, x, ỹ)|

}
(46)

where the supremum is restricted to those points where F
(α)
i (λ, x, ỹ) is defined.

Repeatedly applying Lemma 22 and using the fact that for α1 = 0 all the F (α) are
defined and bounded everywhere, we again conclude that the supremum is finite,
for each λ ∈ Λ, for almost every x. For x where the supremum is infinite we consider
that the condition is vacuous, i.e. every (λ, x, y) is included in Si,α in this case. By
the sharp derivatives condition one sees that Si,α ∈ ΩOF(1),polyF(D,r).

By definable choice we may choose subsets Γi,α ⊂ Si,α such that Γi,α contains
exactly one (λ, x, y) for every (λ, x). In particular, sharp cylindrical decomposition
shows that Γi,α ∈ ΩOF(1),polyF(D,r). By definition Γi,α is a graph of an (n−1)-tuple
of functions γi,α given by

γi,α,1, . . . , γi,α,n−1 : Λ× Ix → I (47)

and γi,α,j ∈ ΩOF(1),polyF(D,r) as well.

We apply Corollary 21 to the tuple including the functions γi,α as well as F (β) ◦
(λ, x, γi,α) for every i = 1, . . . , k, every α ∈ Zn

⩾0 satisfying |α| ⩽ r, and every

β ∈ Zn
⩾0 satisfying |β| ⩽ r and β1 = 0. Note that F (β) is indeed bounded by 1
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according to our previous steps, so the corollary applies. For every ϕη thus obtained
let

Φη(λ, t, y) = (λ, ϕη(λ, t), y). (48)

Denote Fη := F ◦Φη. It will suffice to establish the conclusion of Lemma 15 for each
Fη in place of F : indeed, ∪ηϕη,λ(I)⫅εI for every λ ∈ Λ, and since Fλ is 1-Lipschitz
for every λ it follows that ∪ηFλ ◦ Φη,λ(I

n)⫅εFλ(I
n). Moreover we obviously still

have ∥Fη,λ(t, ·)∥r ⩽ 1 for every λ ∈ Λ and every t ∈ I.
Denote Γi,α,η := Φ−1

η (Γi,α). Then Γi,α,η is the graph of an (n−1)-tuple γi,α,η :=
γi,α ◦ (λ, ϕη) of functions γi,α,j,η := γi,α,j ◦ (λ, ϕη) with ∥γi,α,η,λ∥r ⩽ 1 for every

λ ∈ Λ. Denote ∂
∂t (·) = (·)′ and recall that

ϕ′′η = 0 (49)

since these maps are affine in t. Then for every (λ, t, y) ∈ Γi,α,η we have

|F (α)
i,η (λ, t, y)| = |F (α)

i ◦ Φη(λ, t, y) · (ϕ′η(λ, t))α1 | ⩾
1

2
sup

ỹ∈In−1

|F (α)
i (λ, ϕλ(t), ỹ) · (ϕ′η(λ, t))α1 | =

1

2
sup

ỹ∈In−1

|F (α)
i,η (λ, t, ỹ)|. (50)

In other words, Γi,α,η satisfies the same definition in the (λ, t, y) coordinates as Γi,α

in the (λ, x, y) coordinates. Note that (49) was crucial at this point: otherwise we
would get numerous additional terms involving mixed derivatives of Fi and ϕη. As
before, the sets and functions defined above have format OF(1), and their number
and degree are bounded by polyF(D, r). Recall the norm ∥f∥T,r introduced in (26).

Lemma 24. Let λ ∈ Λ. Let Γ be one of (Γi,α,η)λ and γ : I → Γ be the tuple
γi,α,η,λ. Let G = Fl,η,λ for some l = 1, . . . , k. Then for each β ∈ Zn

⩾0 with |β| ⩽ r
we have

∥G(β) ◦ (t, γ)∥T,r−β1
⩽ E(β1), E(β1) := e · (r + (n− 1)e)β1 . (51)

Proof. We will work by induction on β1. For β1 = 0 the estimate (51) follows
from the fact that F (β) ◦ (λ, x, γi,α) was included in the tuple of functions to which

Corollary 21 was applied. Indeed, F (β) ◦ Φη = (F ◦ Φη)
(β) and it follows that

G(β) ◦ (t, γ) = (Fl ◦ Φη)
(β) ◦ (λ, t, γi,α,η,λ)

= F
(β)
l ◦ Φη ◦ (λ, t, γi,α,η,λ)

= F
(β)
l ◦ (λ, ϕη(λ, t), γi,α ◦ ϕη(λ, t))

= F
(β)
l ◦ (λ, x, γi,α) ◦ ϕη(λ, t).

(52)

so the (T, r)-norm of the left hand side is bounded according to Corollary 21
and (27).

Suppose now that (51) is proved for all β′ with β′
1 < β1. Compute

(G(β−e1) ◦ (t, γ))′ = G(β) ◦ (t, γ) +
n∑

j=2

(G(β−e1+ej) ◦ (t, γ)) · γ′j , (53)
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where e1, . . . , en ∈ Zn
⩾0 and ei,j = δi,j . We will use this to bound the first summand

on the right hand side. By the inductive hypothesis

∥G(β−e1) ◦ (t, γ)∥T,r−β1+1 ⩽ E(β1 − 1). (54)

Thus using Lemma 14 the left-hand side of (53) has (T, r − β1)-norm bounded by
rE(β1 − 1). Similarly

∥G(β−e1+ej) ◦ (t, γ))∥T,r−β1
⩽ E(β1 − 1) (55)

by induction and ∥γ′j∥T,r−β1
⩽ e since ∥γj∥r ⩽ 1. Rearranging and using Lemma 13

we conclude that

∥G(β) ◦ (t, γ)∥T,r−β1
⩽ rE(β1 − 1) + (n− 1)eE(β1 − 1) (56)

as claimed. □

Finally we conclude that |F (α)
i,η,λ| = On(r

|α|) whenever it is defined, for every

λ ∈ Λ, every i = 1, . . . , k and every |α| ⩽ r. Indeed, according to (50) it is enough

to check this on the curve Γi,α,η, and there it holds by Lemma 24 taking G = F
(α)
i,η,λ

since the (T, r)-norm bounds the maximum norm. A further linear subdivision into
cubes of length On(1/r) as in Lemma 12 one can replace the upper bound On(r

|α|)
by 1.

Returning again to the original notation, we conclude that it will suffice to

establish the conclusion of Lemma 15 assuming that Fλ is 1-Lipschitz and ∥F (α)
λ ∥ ⩽

1 wherever it is defined, for every λ ∈ Λ and every |α| ⩽ r.

5.5. Final clean up. By now we have satisfied the conclusions of Lemma 15,
except that some derivatives of F may be undefined at some points. Let Vi,α

denote the locus where F
(α)
i is undefined, for i = 1, . . . , k and |α| ⩽ r. Perform a

cell decomposition of Λ× In compatible with every Vi,α giving polyF(D, r, k) cells,
each in ΩOF(1),polyF(D,r). This induces a cell decomposition {Cν} of Λ× In−1.

By Lemma 16 for families in Λ×In−1, which is part of our inductive hypothesis,
we get a collection {ϕν,η : Λ× In−1 → Cν} such that

∪η(ϕν,η,λ(I
n−1))⫅εCν,λ (57)

and ∥ϕν,η,λ∥r ⩽ 1. Moreover,

#{ϕν,η} ⩽ polyF(D, r, | log ε|), ∀ν, η : ϕν,η ∈ ΩOF(1),polyF(D,r). (58)

Since Fλ is 1-Lipschitz for every λ it will be enough to prove the conditions of
Lemma 15 for each pullback F ◦ (ϕν,η, xn), and we may further restrict to the case
where Cν,λ has full dimension in In−1. Then ∥Fλ ◦ (ϕν,η,λ, xn)∥r is bounded for
every λ by Lemma 13, and by linear subdivision as in Lemma 12 one can return to
unit r-norms (and after further subdivision to 1-Lipschitz).

In other words we may replace F by each F ◦ (ϕν,η, xn) and assume without loss
of generality that V := ∪i,αVi,α, i.e. the locus of non-smoothness of F , is already
given by graphs of functions G1, . . . , Gq ∈ ΩOF(1),polyF(D,r) with q = polyF(D, k, r),

where Gi : Λ× In−1 → I. We also may assume G1 = 0 and Gq = 0 for simplicity.
Now apply the inductive hypothesis, i.e. Lemma 15 in dimension n − 1, to the

tuple x1, . . . , xn−1 and to G1, . . . , Gq on Λ × In−1. Making the same reduction as
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above, we may now assume without loss of generality that ∥G1,λ∥r, . . . , ∥Gq,λ∥r ⩽ 1
for every λ. We cover

(Λ× In) \ V =

q⋃
i=1

(Λ× In−1)⊙ (Gi, Gi+1) (59)

by images of affine maps

(λ, x1, . . . , xn−1, t) → (λ, x1, . . . , xn−1, tGi+1 + (1− t)Gi) (60)

with similarly bounded r-norms, and finally by another pullback step as above
reduce to the case V = ∅, finishing the proof.

5.6. Proofs of auxiliary lemmata. In this section we prove the two auxiliary
Lemmata 22 and 23.

Proof of Lemma 22. This is essentially [6, Lemma 16], but we sketch the argu-
ment to illustrate the connection with the material above, especially Corollary 21.
Suppose toward contradiction that fx(x, y) is unbounded in y for every x in some
infinite interval J ⊂ I. Without loss of generality assume J = I. Then by defin-
able choice one can choose a function γ : I → In−1 such that each fyi

(x, γ(x)) is
defined and fx(x, γ(x)) > M for every x ∈ I (or fx(x, γ(x)) < −M , which is anal-
ogous). Moreover, treating M as an additional parameter, we see that the format
and degree of γ can be taken to be bounded independently of M . By Corollary 21
applied to γ and f(x, γ(x)) with r = 1 and say ε = 0.1 we find a subinterval I ′ ⊂ I
where both ∥γ′(x)∥ and |f(x, γ(x))′| are bounded from above by a constant inde-
pendent of M . One can take the longest of the intervals ϕη(I) for example, which
has length bounded from below uniformly in M . This is now a contradiction for
M ≫ 1 because

M < fx(x, γ(x)) = f(x, γ(x))′ −
n−1∑
i=1

fyi
(x, γ(x))γ′i(x) (61)

and the right-hand side is uniformly bounded. □

Proof of Lemma 23. Since f is On(1)-Lipschitz in the y-direction, it is easy to check
that if f is discontinuous at (x0, y0) it is also discontinuous at every point of {x0}×
Uδ(y0) for some δ ≪ 1. Since the locus of discontinuity has empty interior, the first
claim follows.

Let V ⊂ (xi, xi+1)× In−1
y denote the locus where fx is undefined. Consider two

points in (xi, xi+1)×In−1
y and the straight line γ connecting them. If γ∩V is finite

then f |γ is piecewise On(1)-Lipschitz and continuous, so it is On(1)-Lipschitz. In
general, we deform γ into a curve γ + v with v ∈ Rn. For the same reason as
above, we can choose ∥v∥ arbitrarily small so that (γ + v) ∩ V is finite, and f is
On(1)-Lipschitz on γ + v. The claim follows by continuity of f . □

6. Point counting

In this section we give the proof of Theorem 2. Since the argument is fairly
standard by now we focus mostly on the novel parts. The key proposition is the
following. Recall the notation X(g,H) from (1).
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Proposition 25. There are appropriate choices of r, d = polym(g, logH) and
log(1/ε) = polym(g, logH) such that the following holds. Let ϕ : Im → X such
that ϕ(Im)⫅εX ⊂ Im+1 and ∥ϕ∥r ⩽ 1. Then there exists a polynomial P ∈
R[x1, . . . , xm+1] \ {0} of degree d such that X(g,H) ⊂ {P = 0}.
Proof. There are two approaches to proving such a statement. The first, due to
Bombieri-Pila [9], is based on interpolation determinants. The second, due toWilkie
[30] is based on the Siegel lemma. Both of these are normally stated with ϕ(Im) =
X. We briefly show that for both methods the weaker assumption ϕ(Im)⫅εX is
sufficient. After cutting into 2m pieces we may assume that the domain of ϕ is Jm

where J := (0, 1/2) instead of Im.
We start with the interpolation determinant method, which directly applies to

the case g = 1 (see Remark 26 for a discussion). Recall that an interpolation
determinant is

∆d(p1, . . . , pµ) = det(pαi ) for
i=1,...,µ

α∈Zm+1
⩾0

,|α|⩽d (62)

where pi ∈ Rm+1 and µ is the dimension of the space of polynomials of degree
at most d in m + 1 variables. By linear algebra, the existence of a polynomial
P ∈ R[x1, . . . , xm+1] \ {0} of degree d such that X(Q, H) ⊂ {P = 0} is equivalent
to the vanishing of ∆d(·) for every µ-tuple of points in X(Q, H). The vanishing of
this determinant is proved as follows.

First, for any such tuple p one estimates the height of ∆d(p), concluding that
either ∆d(p) = 0 or |∆d(p)| ⩾ H−dµ. On the other hand, using Taylor expansions
of order r for ϕ (crucially using the assumption ∥ϕ∥r ⩽ 1) one shows that for an
appropriate choice of r, d as above we have |∆d(p)| < 1

2H
−dµ. These contradicting

estimates force ∆d(p) = 0 on ϕ(Jm) and finish the proof.
In our context, we would like to extend this to the case p1, . . . , pµ ∈ Uε(ϕ(J

m)).
Let q1, . . . , qµ ∈ ϕ(Jm) with dist(pi, qi) ⩽ ε. Then ∆d(q) < 1

2H
−dµ as above, and

if we show |∆d(q)−∆d(p)| < 1
2H

−dµ we can finish as above. One easily estimates

∥∂∆d(p)/∂p∥ ⩽ dµ! in Iµ×(m+1), so choosing ε ∼ 1
2H

−dµ/[d(µ+ 2)!] suffices.
We now consider Wilkie’s approach. Using Siegel’s lemma one constructs a

polynomial P ∈ Z[x1, . . . , xm+1] of degree d and coefficients bounded by some N
such that P (ϕ1, . . . , ϕm+1) has many small Taylor coefficients. Liouville’s inequality
gives for any x ∈ X(g,H) that either P (x) = 0 or

|P (x)| ⩾ (dm+1NHd(m+1))−g. (63)

Denote the right-hand side by R. Wilkie shows that for an appropriate choice of
r, d as above (and also logN = polym(g, logH)) we have |P (x)| < R/2 whenever
x ∈ ϕ(Jm), thus forcing P to vanish on x.

In fact Wilkie [30] considered only sets of the form X(Q, H) with X a definable
curve. We remark that in the special case where X is the graph of the Riemann
zeta function, a similar idea was used earlier by Masser [16]. A similar method
was later used for X(g,H) and X of arbitrary dimension in [14, Proposition 16]
and in [2, Proposition 28]. The polynomial dependence d = polym(g, logH) is
explicitly demonstrated in this latter reference, though it follows easily also from
the computations of the earlier work by Wilkie and Habegger.

If we now take x ∈ Uε(ϕ(I
m)) instead, and x0 ∈ ϕ(Im) with dist(x, x0) ⩽ ε, then

as above it will suffice to show that |P (x0) − P (x)| < R/2. The bounds on d,N
easily imply log ∥∂P/∂x∥ < polym(g, logH) in [0, 1]n, so choosing an appropriate
log(1/ε) = polym(g, logH) suffices to finish the proof. □
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Remark 26. The first proof sketched above applies directly to the g = 1 case. In
[22] Pila reduces the general case of X(g,H) to the g = 1 case Y (1, H) for an
auxiliary set Y using his blocks formalism. The coordinates of Y essentially encode
the coefficients for the minimal polynomials for the coordinates of X. Unfortunately
this means that the dimension, and in particular the format, of Y depends on g,
and we are thus unable to establish bounds polynomial in g with this method.

We proceed to the proof of Theorem 2, which is very similar to [22] and [1] modulo
the sharper Proposition 25. We proceed by induction on dimensionm := dimX, the
zero-dimensional case being trivial by #o-minimality. Suppose the claim is proved
for X of dimension smaller than m.

Up to inverting and negating some coordinates (which does not affect height) one
can cut X into pieces contained in [0, 1]n, so assume this without loss of generality.
Apply Lemma 2 to X to obtain a collection {ϕη} of size polyF(D, g, logH) and
∪ηϕη(I

m)⫅εX where m = dimX. It will be enough to consider each ϕη(I
m)

separately, so fix one ϕ = ϕη and suppose ϕ(Im)⫅εX. Using Proposition 25 we
can find for each T ⊂ {1, . . . , n} of size m + 1 a polynomial PT of degree d =
polyn(g, logH) in the coordinates (xi : i ∈ T ) vanishing on X(g,H). The zero
loci of these polynomials cut out an algebraic variety V of dimension at most m
in Rn. Stratify V (e.g. using #o-minimality of Ralg) and let {Si} denote the top

dimensional strata and S′ the union of the rest. Note Si, S
′ ∈ Ωalg

On(1),polyn(d)
by

#o-minimality. The points in S′ ∩X are handled by induction on m. Now stratify
X ∩ Si and denote by {Bij} the top dimensional strata and by B′ the union of
the rest (over all Si). Note #{Bij} is again polyF(D, g, logH) by #o-minimality.
Finally B′ ∩X is similarly handled by induction on m, while Bij are by definition
basic blocks with semialgebraic closures Si, which finishes the proof.
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