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Abstract. We prove that for any degree d, there exist (families of) finite se-

quences {λk,d}0≤k≤d of positive numbers such that, for any real polynomial

P of degree d, the number of its real roots is less than or equal to the number
of the so-called essential tropical roots of the polynomial obtained from P by

multiplication of its coefficients by λ0,d, λ1,d, . . . , λd,d respectively. In partic-

ular, for any real univariate polynomial P (x) of degree d with a non-vanishing

constant term, we conjecture that one can take λk,d = e−k2
, k = 0, . . . , d. The

latter claim can be thought of as a tropical generalization of Descartes’s rule

of signs. We settle this conjecture up to degree 4 as well as a weaker statement

for arbitrary real polynomials. Additionally we describe an application of the
latter conjecture to the classical Karlin problem on zero-diminishing sequences.

1. Introduction

The famous Descartes’ rule of signs claims that the number of positive roots
of a real univariate polynomial does not exceed the number of sign changes in
its sequence of coefficients. In what follows, among other things, we suggest a
conceptually new conjectural upper bound on the number of real roots of real
univariate polynomial applicable in the situation when Descartes’ rule of signs gives
a trivial restriction.

Recall that a sequence λ = {λk}∞k=0 of real numbers is called a multiplier se-
quence (of the first kind) if the diagonal operator Tλ : R[x] → R[x] defined by
xk 7→ λkx

k, for k = 0, 1, . . . , and extended to R[x] by linearity, preserves the set
of real-rooted polynomials, see e.g., [CC04]. To formulate our results, we need to
introduce tropical analogs of multiplier sequences.

The following classical notion is borrowed from the Wiman-Valiron theory, see
[Hay74]. A non-negative integer k is said to be a central index of P if there exists
a number xk ≥ 0 such that

|ak|xkk ≥ max
i 6=k
|ai|xik. (1)

The next notion is analogous to the central index. A non-negative integer k is
called a dominating index of a polynomial

P (x) =

d∑
i=0

aix
i

if there exists a real number xk ≥ 0 such that

|ak|xkk ≥
∑
i 6=k

|ai|xik. (2)

Condition (2) appeared earlier in the context of amoebas, see, e.g., [Rul03].
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Notice that (1) is an analog of (2) if the right-hand side of (2) is interpreted as
a tropical sum. We will say that a polynomial P of degree d is tropically real-rooted
if each integer k = 0, . . . , d is a central index of f .

To relate property (2) to real-rootedness of univariate polynomials, we say that a
real-rooted polynomial P is called strongly real-rooted if each polynomial obtained
by an arbitrary sign change of the coefficients of P (x) is real-rooted as well, see
[PRS11].1 In loc. cit. the following statement was proven.

Proposition 1. A real polynomial P of degree d is strongly real-rooted if and only
if every integer k = 0, . . . , d is a dominating index of P .

By the (standard) tropicalization of a real polynomial P (x) =
∑d
i=0 aix

i we
mean the tropical polynomial given by:

trP (ξ) = max
0≤i≤d

(iξ + ln |ai|), ξ ∈ R. (3)

(In the literature the function trP (ξ) is also referred to as the Archimedean tropical
polynomial associated to P .) If ai = 0, then the corresponding term in trP (ξ) should
be interpreted as −∞, and thus it can be ignored when taking the maximum.

Remark 2. One can describe trP (ξ) using the Newton-Hadamard polygon, an
important object in Wiman-Valiron theory, see [Hay74]. This description amounts
to the duality between a tropical hypersurface and a convex polyhedral subdivision
of its Newton polytope. Define the set AP of points in the (u, v)-plane corresponding
to the monomials of P as

AP = {(i,− log |ai|), 0 ≤ i ≤ d, ai 6= 0}.

Let AP (u) be a piecewise-linear continuous function on [0, d] such that

AP (i) = − log |ai|

whenever ai 6= 0 and linear on the segment between two consecutive indices corre-

sponding to non-zero coefficients ai. Denote by ÃP (u) the greatest convex minorant
of AP (u) on [0, d]. Finally, define the Newton-Hadamard NAP polygon of P as

NAP = {v ≥ ÃP (u), 0 ≤ u ≤ d}.

Observe that k is a central index of P if and only if (k,− log |ak|) is a boundary point
of NAP , and trP (ξ) = maxz∈NAP (ξ,−1) · z, i.e., trP (ξ) is the support function of

NAP . Alternatively, trP (ξ) is the Legendre transform of ÃP (u).

Any corner of the graph of trP (ξ), i.e., a value of ξ at which its slope changes,
is called a tropical root of trP (ξ). These are precisely the slopes of the edges of
NAP . We define Descartes’ multiplicity of a tropical root ζ of trP to be one less
than the number of terms of (3) for which the maximum in the right-hand side of
(3) is attained at ζ. (Notice that this definition differs from the standard definition
of root multiplicity in tropical geometry which is equal to the length of the edge
in NAP with slope ξ, comp. [RGST05]. This illustrates our focus on real rather
than complex-valued polynomials.) With our definition of Descartes’ multiplicity
of a tropical root, the number of tropical roots of trP (ξ) counted with multiplicities
is one less than the number of central indices of P . In particular, the number of
tropical roots of trP (ξ) is at most by one less than the number of monomials of P .
The latter circumstance is analogous to the fact that the number of real roots of P
is at most one less than its number of monomials.

1The same class of polynomials was called sign-independently real-rooted in [PRS11].



A TROPICAL ANALOG OF DESCARTES’ RULE OF SIGNS 3

We will now define positive and negative tropical roots of P by using the signs
of its coefficients. Let k0 ≤ k1 ≤ · · · ≤ km be the central indices of P . Consider
two sequences {sgn(aki)}0≤i≤m and {sgn((−1)kiaki)}0≤i≤m.

Take two consecutive central indices ki−1 and ki of the polynomial P ; to this
pair we associate the tropical root ξi = − ln(ai−1/ai)/(ki−1 − ki) of trP (ξ). If the
difference ki−1− ki is odd, then the pair (ki−1, ki) contributes a sign alternation in
exactly one of the above sequences. In this case, we will say that ξi is a positive
(respectively negative) essential tropical root of P . If the difference ki−1 − ki is
even, then either the pair (ki−1, ki) does not contribute a sign alternation in any
of the above sequences, or it contributes a sign alternation in both. In the former
case we will say that ξi is a non-essential tropical root of P , and in the latter
case we will say that ξi is a positive-negative essential tropical root of P . By the
number of positive essential tropical roots of P we mean the sum of the numbers of
positive and positive-negative tropical roots of P . Analogously, by the number of
negative essential tropical roots of P we mean the sum of the numbers of negative
and positive-negative tropical roots of P . Finally by the total number of essential
tropical roots of P we call the sum of the latter two numbers.

It is easy to see that the number of essential tropical roots of P is at most d.

Example 3. Consider P1(x) = 1 + x2. The central indices of P1 are k0 = 0 and
k1 = 2. As ln |a1| = ln |0| = −∞, the polynomial P1 has (with our definition of
Descartes’ multiplicity) exactly one simple tropical root. To count the number of
positive and negative tropical roots of P1 we need to count the number of sign
alternations in the sequences {1, 1} and {1, (−1)2} = {1, 1} respectively. That is,
the number of essential tropical roots of P is equal to 0.

Consider now the polynomial P2(x) = 1 − x2. Similarly to P1, the polynomial
P2 has one tropical root. However, to count the number of positive and negative
tropical roots of P2 we count the number of sign alternations in the sequences
{1,−1} and {1,−(−1)2} = {1,−1} respectively. That is, the number of essential
tropical roots of P2 is equal to 2.

As the definitions of the central and the dominating indices only depend on the
moduli |ai|, for i = 0, . . . , d, they immediately extend to complex-valued polyno-
mials. However, below we restrict ourselves only to real polynomials and positive
sequences λ.

A sequence λ = {λk}∞k=0 is called log-concave if λ2
k ≥ λk−1λk+1 for all k.

In [PRS11] using discriminant amoebas, it is proven that the diagonal operator
Tλ : R[x] → R[x] preserves the set of strongly real-rooted polynomials if and only
if λ is log-concave. For this reason, log-concave sequences were called multiplier
sequences of the third kind in loc. cit. We prefer to refer to log-concave sequences
λ as tropical multiplier sequences.

Definition 4. A positive sequence λ = {λk}∞k=0 is said to be a central (resp.
dominating) index preserver if, for each polynomial P, the set of central (resp.
dominating) indices of P is a subset of the set of central (resp. dominating) indices
of the polynomial Tλ[P ].

Our first result is as follows.

Theorem 5. For positive sequences λ, the following three conditions are equivalent:

(1) λ is log-concave, i.e. λ is a tropical mutliplier sequence;
(2) λ is a central index preserver;
(3) λ is a dominating index preserver.
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In particular, Theorem 5 provides an alternative (and elementary) way to settle
[PRS11, Theorem 1] as requested in Problem 2 of loc. cit.

Corollary 6 (Theorem 1, [PRS11]). A positive sequence λ preserves the set of
strongly real-rooted polynomials if and only if it is log-concave.

In what follows, we will need a slightly more general definition of a tropicalization
of P . Given an arbitrary triangular sequence λ = {λk,j}0≤k≤d, d∈N of positive

numbers, and a univariate polynomial P (x) =
∑d
i=0 aix

i of any degree d, we define
its λ-tropicalization as

trλP (ξ) = max
0≤k≤d

(kξ + ln |ak|+ lnλk,d), ξ ∈ R. (4)

Remark 7. Here is another description of trλP (ξ). Let Θd(u) be a continuous
piecewise-linear function on [0, d], linear on intervals [k, k + 1] for k = 0, ..., d − 1

and such that Θd(k) = − log λk,d for k = 0, ..., d. Define ÃλP (u) as the greatest
convex minorant of AP (u) + Θd(u). Then trλP is the Legendre transform of AλP (u),
see Remark 2.

Definition 8. A finite sequence {λk,d}0≤k≤d, of positive numbers is called a de-
gree d (positive) real-to-tropical root preserver if for any polynomial P of degree d
(with positive coefficients), the number of essential tropical roots of (4) is greater
than or equal to the number of non-zero real roots of P . A triangular sequence
λ = {λk,j}0≤k≤j, j∈N is called a (positive) real-to-tropical root preserver if, for each
d, its finite subsequence {λk,d}0≤k≤d, is a degree d (positive) real-to-tropical root
preserver.

We recall that the recession cone of a set X ⊂ Rd+1 is the largest pointed (i.e.
including the origin) cone C ⊆ Rd+1 such that if x ∈ X, then x + c ∈ X for all
c ∈ C. Our main result is as follows.

Theorem 9. The set Λd ⊂ Rd+1
+ (respectively Λ+

d ⊂ Rd+1
+ ) of all degree d (positive)

real-to-tropical root preservers {λk,d}0≤k≤d is a nonempty closed full-dimensional

subset of Rd+1
+ . Moreover, the recession cone of its logarithmic image Ln(Λd)

(respectively Ln(Λ+
d )) coincides with the cone of all concave sequences of length

d+ 1. (Here for any Ω ⊂ Rk+, by Ln(Ω) we mean the set in Rk obtained by taking
natural logarithms of points from Ω coordinatewisely.)

Theorem 9 shows that there exist large families of real-to-tropical root preservers
in each degree, and therefore large families of real-to-tropical root preserving trian-
gular sequences.

First we show that, if λ = {λk,d}0≤k≤d is sufficiently log-concave, then λ is a
degree d real-to-tropical root preserver:

Theorem 10. Assume that a sequence λ = {λk,d}0≤k≤d of positive numbers satis-
fies the condition:

log
λ2
k,d

λk−1,dλk+1,d
> 2∆d :=

d2

4
log 36d+ (d+ 1) log d+ log 4, 1 ≤ k ≤ d− 1. (5)

Then, for any real polynomial P , the number of positive (negative) tropical roots
of trλP is greater than or equal to the number of positive (negative) roots of P . In
particular, λ is a real-to-tropical root preserver.

Next we show that to be a real-to-tropical root preserver, the sequence λ =
{λk,d}0≤k≤d should be sufficiently log-concave.
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Theorem 11. There exists c > 0 with the following property. Assume that for
some k < d− 100

log
λ2
j,d

λj−1,dλj+1,d
< 2c, j = k, ..., k + 100. (6)

Then there exists a polynomial P of degree d with positive coefficients such that trλP
has three tropical roots, and P has four negative roots. In particular, {λk,d}0≤k≤d
cannot be a degree d (positive) real-to-tropical root preserver.

In this direction, we present the following tantalizing conjecture. Consider the
sequence λ† given by

λ†k := e−k
2

, k = 0, 1, . . . .

We will denote by tr†P (ξ) the corresponding tropical polynomial associated to any
real polynomial P , i.e.,

tr†P (ξ) = max
0≤k≤d

(kξ + ln |ak| − k2), ξ ∈ R. (7)

Conjecture 12 (Conjectural tropical analog of Descartes’ rule of signs). For any
real univariate polynomial P (x), the number of its positive (negative) roots does not

exceed the number of positive (negative) essential tropical roots of tr†P (ξ).

We have the following partial result supporting Conjecture 12.

Proposition 13. Conjecture 12 holds for d ≤ 4.

Remark 14. Conjecture 12 can be partially explained by the following argument.
If an infinite real-to-tropical root preserving sequence {λk}∞k=0 exists, then it must

necessarily be close to the form {e−αk2}, for some positive α. Indeed, Theorems 10
and 11 suggest that, for a sequence to be a real-to-tropical root preserver for any

degree d, the expression log
λ2
j

λj−1λj+1
should bounded from below by a certain pos-

itive constant. The operation Q → xdQ(x−1) acts on NAQ by reflection with
respect to u = d/2 while preserving the number of positive and negative roots.

This additionally suggests that log
λ2
j

λj−1λj+1
should be the same for j = 1 and for

j = d−1, i.e., independent of j. Finally, the choice α = 1 is additionally supported
by our numerical experiments.

Besides the fact that Conjecture 12 looks quite appealing, it might also shed
light on possible extensions of the classical Newton inequalities from the case of
real-rooted polynomials to the case of polynomials with a non-maximal number of
real roots and positive coefficients. Additionally, (if settled) it also gives interesting
consequences in the classical Karlin problem on zero-diminishining sequences, see
[Ka68] and § 5.

Acknowledgements. The third author wants to thank Professors A. Eremenko of
Purdue University and V. P. Kostov of Université de Nice for discussions.

2. Introductory results and Theorem 9

We will begin with the following statement. Given a sequence λ = {λk}∞k=0, de-
fine its symbol as the formal series Sλ(x) :=

∑∞
k=0 λkx

k. Define the d-th truncation
Sλ(x) as

S
{d}
λ (x) :=

d∑
k=0

λkx
k.
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Lemma 15. A positive sequence λ is log-concave if and only if, for each d, the d-th

truncation S
{d}
λ (x) is a tropically real-rooted polynomial.

Proof of Lemma 15. Assume first that λ is log-concave. For each m ≥ 1, set
xm :=

√
λm−1/λm+1. Then,

xm+1

xm
=

λm√
λm−1λm+1

λm+1√
λmλm+2

≥ 1,

so that {xm}∞m=1 is a non-decreasing sequence of positive real numbers. Further
more,

λmx
m
m

λm−1x
m−1
m

=
λmx

m
m

λm+1x
m+1
m

=
λm√

λm−1λm+1

≥ 1.

Since both binomials λkx
k − λk+1x

k+1 and λkx
k − λk−1x

k−1 have exactly one
positive real root, we conclude that λkx

k
m ≥ λk+1x

k+1
m if k ≥ m and that λkx

k
m ≥

λk−1x
k−1
m if k ≤ m. Hence,

λmx
m
m ≥ max

k 6=m
λkx

k
m.

For the converse, assume that λ is not log-concave. That is, there exists an index
m for which λ2

m < λm−1λm+1. Then, for x ≥ 0,

λmx
m <

√
λm−1xm−1 λm+1xm+1 ≤ max

(
λm−1x

m−1, λm+1x
m+1

)
.

In particular, m is not a central index of Sλ(x). �

Proof of Theorem 5. Let us first prove that a sequence λ = {λk}∞k=0 is log-concave
if and only if it is a central index preserver. Assume first that λ is log-concave. Let
m be a central index of P , and let xm ≥ 0 be such that

amx
m
m ≥ max

k 6=m
akx

k
m.

By Lemma 15 we can find ζm such that

λmζ
m
m ≥ max

k 6=m
λkζ

k
m.

Then, for all k,

λmam(zmζm)m = λmx
m
m amζ

m
m ≥ λkxkm akζkm.

Hence, m is a central index of Tλ[P ]. For the converse, it suffices to consider the
sequence of polynomials 1 + x+ · · ·+ xd, which are tropically real-rooted for all d,
and use Lemma 15.

Let us now prove that λ is log-concave if and only if it is a dominating index
preserver. Assume first that λ is log-concave, and let ζm be as in the proof of
Theorem 5. Let m be a dominating index of P , and let xm be such that

amx
m
m ≥

∑
k 6=m

akx
k
m.

Then,

λmam(xmζm)m ≥
∑
k 6=m

λmζ
m
makx

k
m ≥

∑
k 6=m

λkζ
k
makx

k
m,

implying thatm is a dominating index of Tλ[P ]. For the converse, assume that λ2
m <

λm−1λm+1, and consider the action of Tλ on the trinomial xm−1 +2xm+xm+1. �

Using Lemma 15, we can rephrase Theorem 5 in a manner similar to the classical
result of Pólya and Schur, see [PS14]. Given a sequence λ of real numbers, we say
that its symbol Sλ(x) is tropically real-rooted if, for each d = 0, 1, . . . , the d-th

truncation S
{d}
λ (x) is tropically real-rooted.
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Corollary 16. A positive sequence λ is a dominating index and central index pre-
server if and only if its symbol Sλ(x) is tropically real-rooted. �

Proof of Proposition 1. To prove the only if -part, consider the polynomial

Q(x) = |ak|xk −
∑
i 6=k

|ai|xi,

for some 1 ≤ k ≤ d− 1. Notice that Q is obtained from P by flipping signs of the
coefficients and hence, by assumption, Q is real-rooted. In particular, Q has exactly
two positive roots counted with multiplicity. (This fact follows from the observation
that Q has all d roots real of which at most d− 2 are negative by Descartes’s rule
of signs.) Let xk be the mean value of the positive roots of Q. Then,

|ak|xkk −
∑
i 6=k

|ai|xik ≥ 0,

with equality if and only if Q has a positive root of multiplicity two. In particular,
k is a dominating index of P .

For the if -part, choose arbitrary signs of the coefficients of P . We note that
condition (2) implies that

sgn(P (xk)) = sgn(akx
k
k) = sgn(ak),

for x > 0. Using Descartes’ rule of signs, we conclude that the number of positive
roots of P is equal to the number of sign changes in the sequence {ai}0≤i≤d. Simi-
larly, the number of negative roots of P is equal to the number of sign changes in
the sequence {(−1)iai}0≤i≤d. As ai 6= 0 for each i, these two numbers sum up to
d, implying that P (x) is real-rooted. Since the signs of the coefficients were chosen
arbitrary, we are done. �

Proof of Corollary 6. It follows from Proposition 1 that a positive sequence λ pre-
serves the set of strongly real-rooted polynomials if and only if it preserves domi-
nating indices. Additionally, it follows from Theorem 5 that a positive sequence λ
preserves dominating indices if and only if it is log-concave. �

Proof of Theorem 9. As we are only concerned with the number of (real) roots of
the polynomial P , we can consider P up to a non-vanishing scalar, i.e., we identify
P with its coefficient vector (a0 : . . . : ad) ∈ RPd. (This implies that the signs of the
coefficients are not well-defined. However, as sign-alternations between coefficients
are well-defined this introduces no ambiguity in the above defined concepts.)

Let us first show that the set Λd is nonempty. Let λ = {λk}0≤k≤d be a finite

positive strictly log-concave sequence. By Lemma 15 we have that S
{d}
λ (x) is trop-

ically real-rooted. Moreover it follows from the proof of Lemma 15 and the strict

log-concavity that all the tropical roots of S
{d}
λ (x) are of Descartes’ multiplicity

one.
Firstly, for each P ∈ RPd, we claim that there exists a positive number s = s(P )

such that trλ
s

P (ξ) has at least as many distinct negative tropical roots as the number
of negative roots of P . Here, λs denotes the sequence {λsk}0≤k≤d. To prove this,
notice first that, by using the change of variables ξ 7→ sξ, the number of negative
tropical roots of

trλ
s

P (ξ) = max
0≤k≤d

(kξ + ln |ak|+ s lnλk)

is equal to the number of negative tropical roots of the tropical polynomial

max
0≤k≤d

(
s

(
kξ +

ln |ak|
s

+ lnλk

))
.
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Since the factor s does not change which term is maximal, the number of negative
tropical roots of trλ

s

P is equal to the number of negative tropical roots of

max
0≤k≤d

(
kξ +

ln |ak|
s

+ lnλk

)
.

Note that

lim
s→∞

ln |ak|
s

=

{
0 if ak 6= 0
−∞ if ak = 0.

Hence, for s sufficiently large, the number of negative tropical roots of trλ
s

P is equal
to the number of negative tropical roots of

max
ak 6=0

(kξ + lnλk) .

Since the sequence λ is log-concave, it follows from Lemma 15 that each for k
with ak 6= 0 the kth term is dominating for some ξk. In particular, the number of
negative tropical roots of the latter polynomial is equal to the Descartes’ bound on
the maximal number of negative roots of P .

Secondly, we claim that s = s(P ) can be chosen in such a way that there exists

a neighborhood N(P ) ⊂ RPd of P such that, for each Q ∈ N(P ) the number of
negative essential tropical roots of trλ

s

Q is not less than the number of negative roots

of Q. Consider first the case a0 6= 0. Then, there is a neighborhood N1(P ) of P
such that the number of negative roots of Q ∈ N1(P ) is at most equal to the number
of negative roots of P . Since all negative tropical roots of trλ

s

P are distinct, there

is a neighborhood N2(P ) such that the number of negative tropical roots of trλ
s

P is

equal to the number of negative tropical roots of trλ
s

Q , for all Q ∈ N2(P ). (If P has

some vanishing coefficients, then N2(P ) can be chosen so that the corresponding
indices are not central indices of Q, for any Q ∈ N2(P ).) In this case we can take
N(P ) = N1(P ) ∩ N2(P ). Complementarily, consider the case a0 = 0. For each
polynomial Q, let Q′ denote the polynomial obtained by removing the constant
term of Q. Using an inductive argument, we can choose a neighborhood N(P ) of
P such that, for each Q ∈ N(P ), the number of negative tropical roots of trλ

s

Q′ is

not less than the number of negative roots of Q′. Notice that for the first non-zero
coefficient ak of P its index k is a central index of P . Indeed, after division by xk,
which does not change the set of central indices, this correspond to the constant
term. If (−1)kak is positive, then the number of negative real roots of P increases
by one if a0 is perturbed by a small negative number, and similarly the number of
negative tropical roots is increased by one, and vice versa.

Finally, to see that Λd is nonempty, we note that RPd is compact. Therefore, the
open covering ∪P∈RPdN(P ) of RPd has a finite subcovering RPd ⊂ N(P1) ∪ · · · ∪
N(PM ). Let s∗ = max1≤i≤M s(Pi). Since λs

∗−s(Pi) is log-concave, it is a central

index preserver by Theorem 5. Hence, we conclude that λs
∗ ∈ Λd.

Let us now prove that the recession cone C of Ln(Λd) is equal to the set log-
concave sequences of length d + 1. The fact that the latter set is contained in C
follows immediately from Theorem 5, as each log-concave sequence is a central index

preserver. Conversely, if λ is not log-concave, then the d-th truncation S
{d}
λ of its

symbol is not tropically real-rooted. Let P be a tropically real-rooted polynomial,
and let λ∗ be a log-concave sequence. By a similar argument as above, we can
conclude by letting s tend to infinity, that the tropical polynomial

trλ
∗λs

P (ξ) = max
0≤k≤d

(kξ ln |ak|+ lnλ∗k + s lnλk)

is not tropically real-rooted. Hence, λ is not contained in the recession cone of the
set Ln(Λd).

The remaining statements of Theorem 9 follow easily from the above facts. �
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3. Theorems 10 and 11

To settle Theorem 10, recall the following statement proved in e.g., [NoSh15].

Lemma 17. For a given real polynomial P and real x 6= 0, assume that all tropical
roots of trP are more than log 3 away from log |x|. Let k be the central index
corresponding to x. Then k is a dominating index and, in particular, P (x) 6= 0.

Proof. The function ÃP (u) defining the Newton-Hadamard polygon of P , is convex.
Therefore its slopes form an increasing sequence. The condition on the tropical roots

of trP means that the slopes of the edges of ÃP (u) are smaller than − log 3 + log x,
for u < k and greater than log 3 + log x, for u > k. In other words,

− log |ak|+ log |aj |
k − j

< log |x| − log 3 for j < k,

and
− log |aj |+ log |ak|

j − k
> log |x|+ log 3 for j > k.

The first inequality means that |ajxj | < 3j−k|akxk| for all j < k. Therefore,∑
j<k

|ajxj | <
1

2
|akxk|.

Similarly, ∑
j>k

|ajxj | <
1

2
|akxk|,

and the claim follows. �

Corollary 18. Let P be a polynomial of degree d and assume that every integer
k = 0, . . . , d is a central index of trP . Assume that all tropical roots of trP are
simple and separated from one another by more than 2 log 3. Then P is strongly
real-rooted.

Proof. Indeed, for x =
√
ak−1/ak+1 the conditions of Lemma 17 are satisfied. So

k is a dominating index and the claim follows from Proposition 1. �

Our proof of Theorem 10 requires two steps. During the first step, we prove
(see Lemma 21) that if a polynomial P = · · ·+ amx

m + · · ·+ anx
n + . . . is a small

perturbation of a polynomial P̃ = amx
m + · · · + anx

n with positive coefficients,
then P has no roots in a positive interval containing exponentials of all tropical
roots of trP̃ (ξ),

During the second step, we group the tropical roots of trP (ξ) into several clusters
of closely located roots. Each cluster corresponds to an interval of the positive axis,
and the monomials corresponding to tropical roots in other clusters are insignificant
on this interval. We treat each interval separately using a generalization of Rolle’s
theorem presented in Lemma 22. Namely, we find first order linear differential
operators Lk which
a) decrease the number of positive tropical roots of trP by one;
b) decrease the number of roots of P on the corresponding interval by at most one;
c) have a controllable effect on the magnitude of the coefficients of P .

After several applications of different L′ks, we arrive at the situation covered by
the first step described above, and conclude that the number of positive roots of P
on this interval does not exceed the number of positive tropical roots in its cluster.
A similar fact holds for the negative roots as well.

Lemma 19. Given a real polynomial P, let U = [α′, α′′] be a real interval such that
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(1) trP has a unique tropical root α ∈ U corresponding to two monomials amx
m

and anx
n, m < n, i.e., α = log |an|−log |am|

n−m ,

(2) α′, α′′ are located more than log 4 away from all tropical roots of trP ,
(3) for all l, m < l < n,

log |al| ≤ v(l)− log d− log 4, (8)

where v(u) = αu + β is the linear function whose graph passes through
(m, log |am|) and (n, log |an|).

Then P has the same number of real roots on the interval [eα
′
, eα

′′
] as the binomial

amx
m + anx

n, and the same holds on the interval [−eα′′ ,−eα′ ].

Proof. The sum
∑
k<m |akxk| is less than 1

3 |amx
m| on {x ∈ C, log |x| > α′}, comp.

the proof of Lemma 17. Similarly,
∑
k>n |akxk| <

1
3 |anx

n| on {x ∈ C, log |x| < α′′}.
Also, |

∑
m<k<n akx

k| ≤ 1
4 (|amxm|+ |anxn|) on {x ∈ C, α′ ≤ log |x| ≤ α′′}.

Consider the case I = [eα
′
, eα

′′
]; the case of I = [−eα′′ ,−eα′ ] is treated similarly.

Assume first that anx
n and amx

m have the same signs on I. This means that their
sum dominates the sum of all other terms. Thus P has no zeros on I at all.

If the signs are different, choose a curvilinear rectangle Π containing I and
bounded by {log |x| = α′}, {log |x| = α′′} and {arg x = ±π/(n−m)}. The inequali-
ties above imply that amx

m dominates the sum of all other terms on {log |x| = α′}.
Similarly, anx

n dominates the sum of all other terms on {log |x| = α′′}.
Moreover, the sum amx

m + anx
n dominates the sum of all other terms on

{log |x| ∈ U, | arg x| = π/(n −m)} as the arguments of amx
m and anx

n are equal
there. In other words, the increment of the argument of P on the boundary of Π
is the same as that of amx

m + anx
n. Therefore P has a unique root in Π, which is

necessarily real. �

Corollary 20. Assume that the tropical roots of trP are at least 2 log 4 apart from
one another. Assume also that, for any l lying between two consecutive central
indices m,n, inequality (8) is satisfied. Then the number of positive (resp. negative)
roots of P is equal to the number of positive (resp. negative) tropical roots of P .

To take into account the signs of tropical roots, we will need a more refined
version of Lemma 19.

Lemma 21. Given a real polynomial P, let m < n be its two central indices with
am, an > 0. Let U = [α′, α′′] be a real interval such that

(1) the central index of any u ∈ U lies in [m,n] and U is more than log 4 away

from the tropical roots of trP corresponding to the edges of ÃP (u) lying
outside of [m,n],

(2) for all l, m < l < n, we have that either al > 0 or

− log |al| ≥ v(l) + log d+ log 4, (9)

where v(u) = αu + β is the linear function whose graph joins the vertices
(m,− log |am|) and (n,− log |an|) of NAP .

Then P has no roots on I = [eα
′
, eα

′′
].

Proof. Take x ∈ I. As before, the sum
∑
k<m |akxk| is at most 1

3amx
m on I,

as in the proof of Lemma 17. Similarly,
∑
k>n |akxk| <

1
3anx

n on I. Also,∑′
m<k<n |ak|xk ≤

1
4 (amx

m + anx
n) on I, where the sum is taken over all mono-

mials with negative coefficients. Therefore P is positive on I. �
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3.1. Generalized Rolle’s theorem. For a given nonnegative integer k, define the
differential operator Lk:

Lk

(∑
ajx

j
)

:=
∑

(j − k)ajx
j .

One can easily check that the latter definition is equivalent to

Lk(P ) := xk+1
(
x−kP

)′
.

The following version of Rolle’s theorem immediately follows from the second
definition of Lk.

Lemma 22. Let I ⊂ R+ be some interval, then

#{x ∈ I, Lk(P (x)) = 0} ≥ #{x ∈ I, P (x) = 0} − 1.

One can define a natural tropical counterpart lk of Lk as

lk({εj}nj=0) = {sgn(j − k)εj}nj=0,

where {εj}nj=0 is any sequence of real numbers. Evidently, the number of sign
changes in {εj} differs from that in lk({εj}) by at most one.

Let αk be tropical roots of trP in the increasing order and let U be a connected
component of the ρ-neighborhood of {αk}, with ρ = log 36d.

Denote by [m,n] the maximal interval such that the restriction of ÃP to it has
edges with slopes equal to the tropical roots of trP lying in U . (We can assume
that n > m+ 1 since the case n = m+ 1 is covered by Lemma 19.)

We choose a sequence λ = {λk,d}dk=0 such that

log
(
λ−1
k−1,dλ

2
k,dλ

−1
k+1,d

)
= 2∆d :=

d2

4
log 36d+ (d+ 1) log d+ log 4, 1 ≤ k ≤ d− 1.

(10)

Let qk = (nk,− log |ank | − log λnk), k = 0, . . . , N , be the vertices of ÃλP on the
interval [m,n] in the increasing order. Note that n0 = n, nN = m. Let αa <
αa+1 < · · · < αb be the tropical roots of trP lying in U .

Denote by ΣU = {sgn(ank)} the sequence of signs of ank . Choose a sequence

{mj}Mj=1, mj ∈ {nk}N−1
k=1 , such that

(i) lm1
· · · lmM (ΣU ) has no sign changes;

(ii) M is equal to the number of sign changes of ΣU .

We can assume that n > m1 > · · · > mM−1 ≥ mM > m.

Proposition 23. The polynomial Q = Lm1
· · ·LmM (P ) has no roots in eU .

Proof. Without loss of generality we can assume an > 0. Moreover, by rescaling of
x and multiplication of P by a constant, we can assume that an = |am| = 1.

Let Q =
∑d
j=0 bjx

j , bj = aj
∏M
k=1(j−mk). We claim that Q satisfies conditions

of Lemma 21.
Let us start with the first condition of Lemma 21. Let l < m and

κQl,m =
− log |al| −

∑M
k=1 log |l −mk|+ log |am|+

∑M
k=1 log |m−mk|

l −m
be the slope of the segment joining the two points on the graph of AQ corresponding
to the monomials of degree l and m. We have

κQl,m = κPl,m +
1

m− l

kU−1∑
k=1

log
|l −mk|
|m−mk|

, (11)
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where

κPl,m =
− log |al|+ log |am|

l −m
is the slope of the segment joining the two points on the graph of AP corresponding
to the monomials of degree l and m.

Elementary computations show that

1

m− l
log
|mk − l|
|mk −m|

=
1

mk −m
(
t−1 log(1 + t)

)
≤ 1

mk −m
, t =

m− l
mk −m

> 0,

as the function t−1 log(1 + t) is monotone decreasing.

Therefore the last sum in (11) is bounded from above by (2 + log d); thus

κQl,m ≤ κ
P
l,m + 2 + log d ≤ αa−1 + 2 + log d.

This means that κQl,m is more than log 4 away from U , as αa−1 is at least ρ away
from U and ρ = log 36d > 2 + log d+ log 4.

Similarly, κQl,n ≥ αb+1 − 2− log d, for l > n. This means that all slopes of ÃQ to

the left or to the right of [m,n] are more than log 4 away from U , i.e., Q satisfies
the first assumption of Lemma 21.

To prove the second assumption, we use the following elementary statement.

Lemma 24. Let φ(u) be a continuous convex piecewise-linear function on [m,n]
which is linear on each segment [k, k + 1], k ∈ Z; we denote by µk its slope on the
latter interval. Assume additionally that φ(m) = φ(n) = 0. Then,

(1) if 0 ≤ µk+1 − µk ≤ 2C, then φ(u) ≥ −C(m− n)2/4;
(2) if 0 ≤ µk+1 − µk = 2∆d, then φ(k) ≤ −(n − m − 1)∆d for all m < k <

n, k ∈ Z.

Corollary 25.

− log |al| ≥ −
d2

4
log 36d, m ≤ l ≤ n. (12)

Proof. By definition of U we have 0 ≤ αj+1 − αj ≤ 2 log 36d, for a ≤ j ≤ b − 1.

Therefore the restriction of ÃP to the segment [m,n] satisfies assumptions of the
first claim of Lemma 24. �

Corollary 26. Choose l ∈ [m,n], l ∈ Z and l 6∈ {nk}. Then

− log |al| ≥ −
d2

4
log 36d+ ∆d,

where ∆d is the same as in Theorem 10.

Proof. Condition l 6∈ {nk} means that − log |al| − log λl,d > αl + β, where α, β are
chosen in such a way that αm+β = − log λm,d and αn+β = − log λn,d. Therefore

− log |al| ≥ −Θd(u) + αu+ β,

and the bound follows from the second claim of Lemma 24 applied to φ(u) =
Θd(u)− αu− β. �

Now, log |bl| = log |al|+
∑

log |mk − l| ≤ log |al|+ d log d. Therefore

− log |bl| ≥ −
d2

4
log 36d+ ∆d − d log d ≥ log d+ log 4.

Recall that we choose a rescaling such that |am| = |an| = 1. This fact implies that
both log |bm|, log |bn| are positive, and the linear function v(l) defined for Q as in
the second condition of Lemma 21, is negative on [m,n]. Therefore Q satisfies the
second condition of Lemma 21 as well, which finishes the proof of Proposition 23.

�
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Corollary 27. Let M be the number of sign changes in {ank}, where {nk} are
central indices of trλP on the interval [m,n]. Then P has at most M roots on eU .

Proof. Follows from Proposition 23, and Lemma 22. �

Proof of Theorem 10. Applying Corollary 27 to each connected component of the
(log 36d)-neighborhood of the set of tropical roots of trP (and using Lemma 17
outside of it), we see that the number of positive roots of P does not exceed the
number of positive tropical roots of trλP .

Changing P (x) to P (−x), we get the same statement for the negative roots.
In particular, we conclude that {λk,d} defined in (10) is a real-to-tropical root
preserver. �

To prove Theorem 11, we need an auxiliary statement.

Lemma 28. There exists a polynomial R of degree 100 with 4 simple negative roots,
whose leading and constant coefficients are equal to 1 and the remaining coefficients
are non-negative and strictly less than 1.

Proof of Lemma 28. Set Q1(x) = x+ 1 and define Qk+1(x) = Qk(x)(xn + 1), k =
2, 3, . . . , where n is the smallest odd number greater than degQk. Note that

(1) all coefficients of Qk are either 1 or 0,
(2) Qk(x) is divisible by (x+ 1)k.

Take Q4(x5) (which has a root of multiplicity 4 at −1), add some small positive
multiple of (x+ 1)3 to split of a simple real root from the 4-tuple root at −1, then
add an even smaller positive multiple of (x + 1)2 to split of another simple root
from −1, and then add an even smaller multiple of x+ 1 to split of the third simple
root. (Note that Q4(x5) has no monomials of degree 1, 2, 3.)

The resulting perturbation Q̃4 has four negative roots, is of degree 100, has a
leading term equal to 1, the constant term a0 > 1, and all the remaining coefficients
at most 1. (All of them are equal to either 0 or 1 except in degrees 1, 2, 3, where

they are small positive numbers). Define R = a−1
0 Q̃4(a

1/100
0 x) = x100 + · · · + 1,

with all other coefficients non-negative and smaller than a
−1/100
0 . �

Proof of Theorem 11. Starting with the above polynomial R, we construct a poly-
nomial P with 4 negative roots and with only three tropical roots. Note that

AR(u) ≥ ÃR(u) ≡ 0 for 0 ≤ u ≤ 100,

with equality, for u = 0 and 100 only.
Choose c > 0 in Theorem 11 such that AR(u) ≥ cu(100 − u), for 0 ≤ u ≤ 100.

Inequality (6) implies that Θd(u) is almost flat on the interval [k, k + 100], see
Remark 7. More exactly, there exists a linear function `(u) such that,

Θd(u) ≥ `(u)− cu(100− u), k ≤ u ≤ k + 100,

with equality for u = k, k+100. Therefore AxkR(u)+Θd(u) ≥ `(u) for 0 ≤ u ≤ 100,
with equality for u = k, k+ 100 (i.e., lies below its chord on [k, k+ 100]). Therefore
AλxkR(u) is linear, and trλxkR(ξ) has just one tropical root.

Now, choose δ > 0 so small that P = δ(xd + 1) + xkR still has 4 negative simple
roots. Then trλP (ξ) has at most 3 tropical roots, since only two extra monomials
were added. The latter choice of P settles Theorem 11. �
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4. Proposition 13

We start with some explicit information about Λd and Λ+
d for small d, comp.

Theorem 9.

Lemma 29. (1) For d = 1, Λ+
1 = Λ1 = R+;

(2) For d = 2, Λ+
2 = Λ2 = {λ | 4λ2

1 ≥ λ0λ2}.

Proof. (1) Note that it is enough to consider only fully supported polynomials P .
Then, by normalization, we can assume that a0 = a1 = 1. For d = 1 there is
nothing to prove.
(2) For d = 2, consider P (x) = 1 + x + ax2. Then, P (x) has two real roots if and

only if a ≤ 1
4 . If a < 0, then tr†P (ξ) has two essential tropical roots for all a. Thus

it suffices to consider only the case a > 0. We need to compare the above inequality
to the condition that the tropical polynomial

trλP (ξ) = max
(

lnλ0, ξ + lnλ1, 2ξ + ln a+ lnλ2

)
,

has two tropical roots. One can easily check that this happens if and only if
λ2

1 ≥ aλ0λ2. This inequality holds for all 0 ≤ a ≤ 1
4 if and only if 4λ2

1 ≥ λ0λ2.
Clearly, the latter inequality is also necessary and sufficient if we restrict ourselves
to polynomials with positive coefficients. �

Lemma 30. For d = 4, Λ+
4 contains the set defined by the system of inequalities:{

2λ2
1 ≥ λ0λ2, 9λ2

2 ≥ 4λ1λ3, 2λ2
3 ≥ λ2λ4,

2( 4
√

3− 1)λ4
1 ≥

4
√

3λ3
0λ4, 2( 4

√
3− 1)λ4

3 ≥
4
√

3λ0λ
3
4.

(13)

Proof. As we consider only P with positive coefficients, we can without loss of
generality restrict ourselves to the case a0 = a4 = 1, i.e.,

P (x) = 1 + a1x+ a2x
2 + a3x

3 + x4.

We compare the appearance of its real roots with the appearance of tropical roots
of the tropical polynomial

trλP (ξ) = max
(

lnλ0, ξ+ln a1 +lnλ1, 2ξ+ln a2 +lnλ2, 3ξ+ln a3 +lnλ3, 4ξ+lnλ4

)
,

where λ0, . . . , λ4 are variables. For real-rooted polynomials, we obtain the inequal-
ities:

8λ2
1 ≥ 3λ0λ2, 9λ2

2 ≥ 4λ1λ3, 8λ2
3 ≥ 3λ2λ4.

Let us now consider polynomials P (x) with exactly two real roots. When decreasing
a1, a2, and a3 simultaneously, one can only decrease the number of essential tropical
roots. Therefore it suffices to prove the statement for polynomials P (x) with a real
double root only. With our normalization, such a polynomial can be written as

P (x) = (r + x)2
(
r−2 + sx+ x2

)
= 1 +

(
2r−1 + sr2

)
x+

(
r−2 + 2sr + r2

)
x2 + (2r + s)x3 + x4.

Associated tropical polynomials are of the form

trP (ξ) = max
(

lnλ0, ξ + ln
(
2r−1 + sr2

)
+ lnλ1,

2ξ + ln
(
r−2 + 2sr + r2

)
+ lnλ2,

3ξ + ln (2r + s) + lnλ3, 4ξ + lnλ4

)
.

We will split our consideration into two cases. If r ≤ 1, then we will require that
the first order term dominates the even order terms at some point. If r ≥ 1 we will
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require that the third order term dominates the even order terms at some point.
In the first case, we take the point

ξ1 = − ln(2r−1 + sr2)− lnλ1 + lnλ0

and obtain the inequalities

λ2
1

λ0λ2
≥ 1 + 2sr3 + r4

(2 + sr3)2
and

λ4
1

λ3
0λ4
≥ r4

(2 + sr3)4
.

Since we require the coefficients of P to be positive, it is sufficient that these
inequalities are valid for all 0 < r ≤ 1 and s ≥ − 2

4√3
. We obtain

sup
r,s

1 + 2sr3 + r4

(2 + sr3)2
= sup

r

1

3− r4
=

1

2
,

and

sup
r,s

r

2 + sr3
= sup

r

r

2− 2
4√3
r3

=
4
√

3

2( 4
√

3− 1)
.

Thus, in case r ≤ 1 we get

2λ2
1 ≥ λ0λ2 and 2(

4
√

3− 1)λ4
1 ≥

4
√

3λ3
0λ4.

By symmetry, for r ≥ 1, we obtain the inequalities

2λ2
3 ≥ λ2λ4 and 2(

4
√

3− 1)λ4
3 ≥

4
√

3λ0λ
3
4.

Altogether, we derived the system (13). �

Proof of Proposition 13. Up to degree 3, the statement is covered by Lemma 29, as
there is nothing to prove in the case of a cubic polynomial with one real root. The
case of degree 4 follows immediately from Lemma 30. �

5. Application to zero-diminishing sequences

We start with the following standard definition, see e.g., [CC80], [CC95].

Definition 31. A sequence Γ = {λk}dk=0 of real numbers is called a complex zero
decreasing sequence in degree d (a CZDS in degree d, for short) if, for any poly-
nomial P = a0 + a1x + · · · + adx

d with real coefficients, the polynomial Tλ(P ) =
λ0a0 + λ1a1x+ · · ·+ λdadx

d has no more non-real roots than P .
A sequence Γ = {λk}∞k=0 of real numbers is called a complex zero decreasing

sequence (a CZDS, for short) if for every d ∈ N the sequence Γ = {λk}dk=0 is a
CZDS in degree d.

Laguerre’s classical result from 1884 gives the best so far recipe how to generate
such sequences. Namely,

Theorem 32 (p. 116 of [La84]). For any real polynomial f(z) with all strictly
negative roots, the sequence {f(n)}, n = 0, 1, . . . is a CZDS.

On p. 382 of his well-known book [Ka68], S. Karlin posed the problem of charac-
terizing the inverses of CZDS which are called zero-diminishing sequences (ZDS, for
short). This problem is sometimes referred to as the Karlin problem.2 Substantial
information about CZDS can be found in section 4 of [CC96] and a number of ear-
lier papers. Several interesting attempts to find the converse of Laguerre’s theorem
and to solve the Karlin problem were carried out over the years, the most successful

2In [CC80] the authors initially claimed that they have solved Karlin’s problem, but later they
discovered a mistake in the presented solution.
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of them apparently being [BCC01] and [BR08]. (For the history of the subject con-
sult [CC80] and [Pi02].) But inspite of some hundred and thirty years passed since
the publication of [La84] and certain partial progress, satisfatory characterization
of the sets of all complex zero decreasing sequences and/or of all zero-diminishing
sequences is still unavailable at present. In particular, it is still unknown whether
the rapidly decreasing sequence {e−kα}∞k=0 with α > 2 is a CZDS.

We will now illustrate how the theory developed in this paper can be applied to
obtain new results regarding CZDS.

Theorem 33. Let λ∗ = {λ∗k,j}0≤k≤j,j∈N be a triangular real-to-tropical root pre-

server. Let λ = {λk}dk=0 be a sequence of positive numbers. If the set of dominating
indices of the polynomial

Qd(x) =

d∑
k=0

λk
λ∗k,d

xk

is equal to {0, 1, . . . , d}, i.e., Qd(x) is strongly real rooted, then λ is a CZDS in
degree d.

In particular, if any initial segment {λk}dk=0 of a sequence {λk}∞k=0 satisfies this
condition, then {λk}∞k=0 is a CZDS.

Proof. Consider a polynomial P (x) =
∑d
i=0 aix

i, and its image

Tλ[P ] =

d∑
i=0

λiaix
i =

d∑
i=0

λi
λ∗i,d

λ∗i,daix
i

under the action of the operator Tλ. Since λ∗ is a triangular real-to-tropical root
preserver, the number of essential tropical roots of the polynomial

R(x) =

d∑
i=0

λ∗i,daix
i

is at least equal to the number of real roots of P . Let 0 = k0 < k1 < · · · < km = d
be the central indices of R(x), and let x0, . . . , xm > 0 be such that the central index
kj is dominating at xj , that is

λ∗j,d|aj |x
j
j ≥ max

i 6=j
λ∗i,d|ai|xij . (14)

Since each kj is a dominating index of the polynomial Qd(x), we can find points
y1, . . . , ym such that

λj
λ∗j,d

yjj ≥
∑
i 6=j

λi
λ∗i,d

yij . (15)

Inequalities (14) and (15) imply that

λj |aj |(xjyj)j =
λj
λ∗j,d

yjj λ
∗
j,d|aj |x

j
j ≥

∑
i6=j

λi
λ∗i,d

yij λ
∗
i,d|ai|xij =

∑
i 6=j

λi|ai|(xjyj)i.

Thus, each kj is a dominating index of Tλ[P ]. In particular, the number of real
roots of Tλ[P ] is at least equal to the number of essential tropical roots of R(x),
which in turn is at least equal to the number of real roots of P . �

Theorem 34. Assume that the sequence {e−k2}∞k=0 is a real-to-tropical root pre-

server. Then, the sequence {e−kα}∞k=0 is a CZDS for all α ≥ 3.
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Proof. For the corresponding polynomial Qd(x) =
∑d
k=0 e

−kα+k2xk the tropical
roots are γk = 2k − 1 + (k − 1)α − kα. We see that

γk − γk+1 = −2 + (k − 1)α + (k + 1)α − 2kα > −2 + α(α− 1)kα−2

as soon as α > 3. Already for α > 2.608 . . . and k ≥ 1, the latter expression is
bigger than 2 log 3. Therefore Corollary 18 implies that Qd(x) is a strongly real
rooted for any α > 3. Then Theorem 33 implies the result. �

Remark 35. The lower bound α ≥ 3 for the sequence {e−kα}∞k=0 to be a CZDS
is apparently not sharp. In particular, computer experiments show that conclusion
of Theorem 33 holds for α > 2.437623 . . . . But since we do not currently see how
to prove Conjecture 12, we were not trying to get the optional lower bound with
the help of Theorem 33.
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4 (1884), 97–120.

[NoSh15] D. Novikov, B. Shapiro, On global non-oscillation of linear ordinary differential equa-
tions with polynomial coefficients, arXiv: 1503.04026.

[PRS11] M. Passare, J. M. Rojas, and B. Shapiro, New multiplier sequences via discriminant
amoebae, Mosc. Math. J. 11 (2011), no. 3, 547–560, 631.

[Pi02] A. Pinkus, Some remarks on zero-increasing transformations. Approximation theory, X

(St. Louis, MO, 2001), 333–352, Innov. Appl. Math., Vanderbilt Univ. Press, Nashville,

TN, 2002.
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