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Abstract. We give an explicit upper bound for the number of isolated inter-
sections between an integral curve of a polynomial vector field in Rn and an

algebraic hypersurface. The answer is polynomial in the height (the magnitude
of coefficients) of the equation and the size of the curve in the space-time, with

the exponent depending only on the degree and the dimension.
The problem turns out to be closely related to finding an explicit upper

bound for the length of ascending chains of polynomial ideals spanned by

consecutive derivatives.
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1. Introduction

The main problem that will be addressed in this paper, concerns oscillatory
properties of functions defined by polynomial ordinary differential equations. Ge-
ometrically the question is about the number of isolated intersections between an
integral curve of a polynomial vector field and an algebraic hypersurface in the
Euclidean n-space.

Despite the fact that, to the best of our knowledge, this problem was first dis-
cussed on Arnold’s seminar in Moscow in the seventies, only a limited progress in
this direction has been achieved so far. The most advanced contribution to this
area, an upper bound for the multiplicity of contact between an integral curve and
an algebraic hypersurface, solving the Risler problem [23], is due to A. Gabrièlov
[4] (the two-dimensional case was studied earlier in [6]). Another very recent result
[26] concerns the maximal number of infinitesimally close but distinct intersections
(“cyclicity”): Y. Yomdin shows that the above bound established by Gabrièlov for
the order of tangency, holds also for the number of intersections that can coalesce
as the parameters of the problem vary. Still this does not give an explicit answer
for the global number of intersections.

This paper was preceded by the conference paper [22], an extended abstract in
which the main result was announced and the principal ideas of the construction
have been already exposed together with motivations, but the long technical proof
of the main (algebraic) Theorem 4, the cornerstone of the whole construction, was
barely indicated.

Below we give a complete demonstration of the results announced in [22], focusing
more on the issue of chains of polynomial ideals and algebraic varieties, that plays
the key role in the proof. Besides, we improved slightly the estimates and simplified
the proof in several instances. However, for the sake of readability some parts of
the announcement [22] had to be reproduced below in an abridged form.
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1.1. Meandering of integral curves: formulation of the problem and the
main result. Consider a polynomial vector field in the Euclidean space Rn, defined
by a system of n first order polynomial ordinary differential equations, and let
Γ ⊂ Rn be a compact connected piece of a phase trajectory of this field. Since
Γ is a real analytic curve, for any algebraic hypersurface Π ⊂ Rn the following
alternative holds: either Γ ⊂ Π, or the number of intersections #Γ ∩Π is finite and
all of them are isolated on Γ . The problem is to place an explicit upper bound on the
number of isolated intersections between Γ and an arbitrary algebraic hypersurface
of degree 6 d (e.g., an arbitrary affine hyperplane). This bound characterizing the
curve Γ , is a natural measure for its meandering in the ambient space.

It is clear that the bound must depend on several parameters of the problem,
namely:

• the dimension of the phase space,
• the degrees of the polynomial differential equation and the hypersurface,
• the size of the integral trajectory, both with respect to the ambient space

Rn and with respect to the natural parameter (“time”),
• the magnitude of the coefficients of the differential equation.

(These parameters are not all independent, due to the possibility of various rescal-
ings). In order to make the formulation more transparent, it is convenient to
minimize their number, using common bounds, as follows.

Consider the system of polynomial ordinary differential equations of degree d in
n variables with a polynomial right hand side v = (v1, . . . , vn):

ẋ = v(t, x) ⇐⇒ dxj

dt
=

d∑
|α|+k=0

vjkαtkxα, j = 1, . . . , n (1.1)

(the standard multiindex notation is assumed). Suppose that the height (the maxi-
mal absolute value of the coefficients) of the polynomials vj(t, x) ∈ R[t, x] is explic-
itly bounded from above, i.e. all vjkα ∈ R in (1.1) satisfy the inequality |vjkα| 6 R
for some known R < ∞.

Consider an arbitrary integral trajectory Γ of the system (1.1) entirely belonging
to the centered box BR = {|xj | < R, |t| < R} ⊂ Rn+1 of size R in the space-time,
i.e. a solution t 7→ (x1(t), . . . , xn(t)) defined on some interval t ∈ [t0, t1] ⊆ [−R,R]
and satisfying the inequalities |xj(t)| < R on it.

Finally, let Π ⊂ Rn+1 be an algebraic hypersurface determined by an equation
{p(t, x) = 0} in the space-time, where p ∈ R[t, x] is a polynomial of degree 6 d:

Π = {p(t, x) = 0}, p(t, x) =
d∑

k+|α|=0

pkαtkxα. (1.2)

Since the polynomial p is defined modulo a nonzero constant factor, without loss
of generality we may always assume that the height of p is also bounded by the
same R, i.e. all coefficients pkα satisfy the inequality |pkα| 6 R. Note that R is a
common bound for the coefficients and for the “size” of Γ , whereas d is a common
bound for the degrees of the vector field and the hypersurface.

Theorem 1. For any integral trajectory Γ of a polynomial vector field of degree d
and height 6 R in Rn and any algebraic hypersurface of the same degree, the number
of isolated intersections between Γ and Π, counted with multiplicities inside the box
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BR, admits an upper bound of the form

#(Γ ∩Π ∩ BR) 6 (2 + R)B , B = B(n, d) ∈ N, (1.3)

where B = B(n, d) is a primitive recursive function of the integer arguments n and
d. As n, d →∞, the function B grows no rapidly than the tower of four stories:

B(n, d) 6 exp exp exp exp(4n ln d + O(1)). (1.4)

The assertion of this theorem means the strongest form of effective computability
of the bound. In principle, one can derive from the proof below an expression for
B(n, d) in the closed form (and not only the asymptotical growth rate (1.4), as
above). But there are many reasons to believe that this bound is highly excessive,
so we did not strive for such closed form bounds.

1.2. Complex intersections. The method of the proof of Theorem 1 works also
in the complex settings and yields a similar upper bound for the number of isolated
zeros of an arbitrary polynomial p(t, x) ∈ C[t, x] restricted on the holomorphic
integral curve Γ C inside a polydisk BR = {|x|j 6 R, |t| 6 R} ⊂ Cn × C (replacing
the box of size R). One has to exercise a special care concerning domains of
definitions of Γ .

Notice that solutions (integral curves) of polynomial systems can blow up in
finite time and hence may exhibit the so called movable singularities (ramifications
at infinity). If we take the integral curve {t 7→ x(t)} ∈ Cn+1 passing through a
certain initial point (t0, x0) ∈ BR, then the set of t in the disk {|t| < R} ⊂ C, for
which the curve remains in BR, may be not simply connected, therefore one has to
specify the choice of the branches.

In order to avoid these complications, we formulate the complex theorem in the
“dual form”, namely, for every initial point (t0, x0) ∈ BR ⊂ Cn+1 we will explicitly
specify the size of a small disk in the t-plane, in which the curve has no more
than the given number (large than n, in general) of intersections with a polynomial
hypersurface.

Theorem 2. For any n and d one can explicitly specify an integer number ` =
`(n, d) and a positive radius ρ = ρ(R,n, d) in such a way that the integral curve of
the polynomial vector field (1.1) of height 6 R in Cn+1 through any point (t0, x0) ∈
BR extends analytically on the disk Dρ = {|t− t0| < ρ} and, restricted on this disk,
can have no more than ` isolated intersections with any polynomial hypersurface of
degree d in Cn+1.

The radius ρ depends polynomially on R: ρ(R,n, d) = (2 + R)−B(n,d), where the
functions B(n, d) and `(n, d) admit primitive recursive majorants growing no faster

than (1.4) and dnO(n2)
respectively.

1.3. The discrete Risler problem and its ramifications. A polynomial vector
field is a dynamical system in continuous time, whose discrete time analog is a
polynomial map (endomorphism or automorphism of Rn or Cn). The following is
an analog of the original problem on intersections between integral curves (orbits
of the vector field) and polynomial hypersurfaces for the discrete time case. Recall
that an orbit of P is the sequence of points {xi}∞i=0 ⊂ Rn obtained by iterations of
the map:

xi+1 = P (xi), i = 0, 1, . . . . (1.5)
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Let P : Rn 7→ Rn be a polynomial map of degree d and Π ⊂ Rn an algebraic
hypersurface defined by the equation {p(x) = 0}, p ∈ R[x], deg p 6 d. The problem
is to find an upper bound (in terms of d and n) for the maximal number of consecu-
tive zeros in the infinite numeric sequence {p(xi) : i = 0, 1, . . . }, on the assumption
that not all members of this sequence are zeros. Geometrically this problem con-
cerns with the number of intersections between an orbit of the dynamical system
and the hypersurface Π. This problem is the discrete analog of the Risler problem
on the maximal order of contact, and the result is largely parallel to the Gabrièlov
theorem.

Definition. A polynomial map P : Cn → Cn is called dimension-preserving , if the
image of any semialgebraic k-dimensional variety is again k-dimensional.

This property is generic, so the theorem below holds for almost all polynomial
maps. If X and Y are two semialgebraic varieties with P (X) ⊂ Y , then the
assumption that P is dimension-preserving, guarantees that dim X 6 dim Y .

Theorem 3. Any orbit {xi}∞i=0 ⊂ Rn of a dimension preserving dynamical system
(1.5) of degree 6 d that belongs to a polynomial hypersurface Π = {p = 0} of degree
6 d for i = 0, 1, . . . , ` = `(n, d), where

`(n, d) 6 MM ··
·M︸ ︷︷ ︸

n times

, M = 1 + dn, (1.6)

necessarily remains on Π forever.

Remark. A particular case of the discrete Risler problem was studied in [3], with
P being a linear map and the surface Π = {p = 0} being an algebraic sphere of
degree d. However, this case differs radically from the general one, because the
degrees of the polynomials pk(x) = p(P (· · · (P (x)) · · · )) (k times) remain bounded
by d = deg p for all k, and hence the length of the corresponding chain of ideals (see
below) is obviously bounded by the dimension of the linear space of polynomials of
degree d, using linear algebraic tools only.

The discrete Risler problem appears naturally in an attempt to solve the (origi-
nal) Risler problem, see Appendix B.

1.4. Chains of polynomial ideals: effective Noetherianity. The proof of
Theorem 1 is based on two arguments. The first one is a nonoscillation condition
for high order linear ordinary differential equations (Lemma 1). An easy Corollary 1
to this lemma allows to place an explicit upper bound on the number of isolated
zeros of any solution of a linear differential equation in terms of the magnitude of
its coefficients.

To reduce our problem on nonlinear systems of differential equations to that
on linear high order scalar equations, we construct an auxiliary ascending chain of
ideals in the appropriate ring of polynomials and use the Noetherianity of this ring.
(This reduction is explained in §2.3 below).

The second argument of the proof is an explicit upper bound on the length of
ascending chains of polynomial ideals generated by adding consecutive derivatives,
given in Theorem 4 (see also [22, Lemma 6]). The precise formulation follows.
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Let R = C[x] = C[x1, . . . , xn] be the ring of polynomials in n variables and
L : R → R a derivation of this ring of degree d. This means that for some polyno-
mials v1, . . . , vn ∈ R of degree d + 1 we have

∀p ∈ R Lp =
n∑

j=1

vj∂jp, ∂j =
∂

∂xj

In other words, L is the Lie derivative along the polynomial vector field v =
(v1, . . . , vn) in Cn.

Take an arbitrary seed polynomial p0 ∈ R and the sequence {pk}∞k=1 of its
derivatives obtained by iterating L,

pk+1 = Lpk, k = 0, 1, 2, . . . (1.7)

Having this sequence, one can construct the ascending chain of polynomial ideals

I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ Ik+1 ⊂ · · · ⊂ R,

Ik+1 = Ik + (pk+1), k = 0, 1, . . . , I0 = (p0).
(1.8)

For simplicity we will assume that the seed polynomial also has the same degree d.
The chain of polynomial ideals (1.8) must eventually stabilize, as the ring R is

Noetherian: starting from some ` one should have I`−1 = I` = I`+1 = · · · . The
number ` is referred to as the length of the ascending chain (1.8).

Theorem 4. The length of any ascending chain of polynomials generated by iter-
ated derivatives along a polynomial vector field as in (1.7)–(1.8), is bounded by a
primitive recursive function ` = `(n, d) of n (the number of variables) and d (the
degree of the derivation L and the seed polynomial p0).

As n and d are large, this function grows polynomially in d and doubly exponen-
tial in n2 lnn:

` = `(n, d) 6 dnO(n2)
. (1.9)

As with the inequalities given in Theorem 1, the term O(n2) can be made explicit,
but the asymptotic upper bound (1.9) seems to be rather excessive.

This result, being a cornerstone for proof of the bound (1.4), deserves several
comments. The rule (1.7) implies explicit bounds for the degrees of pk: obviously,
deg pk 6 (k + 1)d. Thus one can in principle apply an algorithm by A. Seidenberg
[25] to obtain a constructive bound for the length of the chain (1.8). However,
the construction of Seidenberg proves only that the bound ` = `(n, d) is a general
recursive function (not necessarily a primitive recursive one). It was only relatively
recently established by G. Moreno Soćıas [20] that the estimates implied by the
Seidenberg algorithm, cannot be improved.

More precisely, he constructed an example of ascending chain of polynomial
ideals as in (1.8) with degrees of homogeneous generators pk growing linearly,
deg pk = d + k, whose length is given by the Ackermann generalized exponen-
tial. Recall that the latter is a classical example of a recursive (constructive) but
not primitively recursive function growing faster than any primitive recursive func-
tion (hence faster than any explicit expression involving n and d). From this we
can conclude the bound (1.9) indicates that the rule (1.7) forces the chains of ideals
stabilize much faster (in some sense, infinitely faster) than in the general case.

Remark. Strictly formally, the results by Seidenberg and Moreno refer to strictly
ascending chains and place bounds on the maximal length of the chain until the
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first equality I`−1 = I` is encountered. On the contrary, Theorem 4 gives an upper
bound for the length of the chain until its complete stabilization occurs.

This peculiarity can be easily explained: the rules (1.7)–(1.8) are very specific
and the very first equality I`−1 = I` of the chain constructed using this rule, implies
inductively that I` = I`+1 and so far. The details can be found in [22] and in §4
below.

1.5. Descending chains of algebraic varieties. The above bound on the length
of ascending chains of polynomial ideals has a geometric counterpart for descending
chains of algebraic varieties, formulated below. This counterpart is remarkable for
two circumstances. First, it allows for an easy visualization of the reasons why the
algorithm of Seidenberg implies so slow stabilization (as this was explained in [22])
and how a condition parallel to (1.7) forces it to occur much sooner. Second, this
result plays the same role in the proof of Theorem 3 as Theorem 4 does in the proof
of Theorem 1 (and the former reduction is even simpler than the latter).

Preserving notation of the preceding section, consider a sequence of polynomials
obtained from a seed polynomial p0 ∈ R by iterations of a ring homomorphism
H : R → R. As this is well-known, all homomorphisms of R are produced by
polynomial transformations: H = P ∗, where P : Cn → Cn is a polynomial map, in
other words,

pk+1 = Hpk ⇐⇒ pk+1(x) = pk(P (x)) ∀k = 0, 1, 2, . . . (1.10)

Using this sequence of polynomials, one can define the descending chain of their
common zero loci

Cn ⊃ X0 ⊃ X1 ⊃ · · · ⊃ Xk ⊃ · · · , Xk =
k⋂

j=0

{pj = 0}. (1.11)

Since the ring R = C[x] is Noetherian, the chain must stabilize (which means that
X`−1 = X` = X`+1 = · · · = X`+k = · · · for some ` < ∞). The problem is to
determine the moment `.

Theorem 5. Let P : Cn → Cn be a polynomial map of degree d, p0 ∈ R a poly-
nomial of degree 6 d and the sequence of polynomials pk ∈ R is defined using the
rule (1.10). Then the descending chain of algebraic varieties built as in (1.11) is
strictly descending: X`−1 = X` implies that X` = X`+1 = X`+2 = · · · forever.

Under the additional assumption that P is dimension preserving, the length of
this chain is bounded by the primitive recursive function `(n, d) as in (1.6).

This result is actually a simple reformulation of Theorem 3 (the equivalence is
established in §3). It already appeared in [22] with a sketchy proof. We had to
reproduce it briefly here, since the demonstration of a more technical Theorem 4 is
largely parallel to that of Theorem 5. Besides, we formulate in §3 a simple theorem
that places an upper bound for the length of an arbitrary descending chain of
algebraic varieties of known (growing) degrees: it can be considered as a geometric
counterpart of the Seidenberg algebraic algorithm.

1.6. The structure of the paper. In §2 we derive Theorem 1 and Theorem 2
from Theorem 4. The construction consists in a series of reductions. As this part
was already discussed in the announcement [22], the exposition in §2 is rather brief
and concise. All motivations can be found in [22]. It is worth mentioning that
instead of referring to a result from [14] concerning zeros of solutions of linear
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equations, we prove by elementary methods a nonoscillation criterion in Lemma 1
and Corollary 1 bounding the number of roots. This makes the exposition more
transparent compared to [22].

The next section §3, also rather brief, contains the proofs of the bounds con-
cerning chains of algebraic varieties (Theorem 5 and a geometric counterpart of the
Seidenberg result, Theorem 6) and a reduction of Theorem 3 to Theorem 5.

The last section of the main body, §4, contains a complete detailed proof of
Theorem 4 on lengths of ascending chains of ideals. This is the core of the paper.

Two subjects somewhat aside are moved to appendices. Appendix A contains the
proof of Gabrièlov theorem on maximal order of tangency between trajectories and
algebraic hypersurfaces. Appendix B describes several refinements and improve-
ments of the main results for the particular case of systems of linear differential
equations.

Acknowledgement. This work would never be done without help and support of our
friends and colleagues who patiently explained us some basics and fine points of com-
mutative algebra. We are grateful to Alexander Braverman, Marie-Françoise Coste-Roy,
Maria Gorelik, Vladimir Hinich, Anna Melnikov, André Reznikov, Bernard Teissier, Victor
Vinnikov, Amnon Yekutieli.

Yosef Yomdin, Vladimir Golubyatnikov and Andrei Gabrièlov were among the first who
discussed this problem with us and by showing constant and strong interest provided us
with additional stimuli.

Our special and cordial gratitude goes to Joos Heintz: he introduced us into the beau-
tiful realm of effective commutative algebra and taught us many fundamental results. In
particular, he supplied us with the explicit estimate of the complexity of primary decom-
position.

Finally, we are very grateful to the referees for the remarks concerning the style of
presentation of the material and the suggested corrections.

2. From nonlinear systems to linear equations

2.1. Disconjugacy and oscillatory character of ordinary linear differential
equations. We start with a sufficient condition for a linear ordinary differential
equation of order n to have no solutions with more than n− 1 isolated roots on a
given real interval I. Such equations are called disconjugate on I.

Consider a linear equation

y(`) + a1(t) y(`−1) + · · ·+ a`−2(t) y′′ + a`−1(t)y′ + a`(t)y = 0 (2.1)

on a real interval I = [t0, t1] of length r = t1 − t0 with real bounded coefficients:
|ak(t)| < ck < ∞ for all t ∈ I.

Lemma 1. If
n∑

k=1

ck rk

k!
< 1, (2.2)

then any Cn-smooth function f(t) satisfying a linear equation (2.1) may have at
most `− 1 isolated roots on I, counted with multiplicities.

Breaking an arbitrary finite real interval on sufficiently short subintervals satis-
fying the above lemma, we obtain the following corollary.

Corollary 1. If all coefficients of the equation (2.1) are bounded by the common
constant C > 1 on I, then any nontrivial solution cannot have more than (`− 1) +
1

ln 2 `rC isolated zeros there.
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Proof of the Corollary. Obviously, our choice of C implies that ck 6 Ck, and there-
fore for any interval of length h the inequality

∑`
1 ckhk/k! 6 expCh − 1 < 1

guarantees that the equation on this interval is disconjugate: resolved with re-
spect to h, this gives h < h0(C) = ln 2/C. Subdividing the given interval into
br/h0c + 1 6 1

ln 2rC + 1 subintervals of disconjugacy, we establish the required
upper bound for the number of roots. �

Lemma 1 has a complex counterpart. Assume that the equation (2.1) is de-
fined on a convex domain D ⊂ C and the coefficients of this equation are analytic
functions bounded by ck therein. Denote by r the diameter of D.

Lemma 2 (W. J. Kim [15]). If the diameter r and the magnitudes ck of coefficients
of the linear equation (2.1) with holomorphic coefficients in the complex domain D
satisfy the inequality (2.2), then any solution has no more than `− 1 isolated roots
in D.

The proof of Lemma 2 is based on a rather complicate identity from the complex
interpolation theory, that allows to estimate the norm of an analytic function via
the norm of its `th derivative, provided that it has at least ` zeros [15]. On the
contrary, the real version is completely elementary.

Proof of Lemma 1. Assume that f has ` or more isolated roots on I. Then by the
Rolle theorem, each derivative f ′, f ′′, . . . , f (`−1) must have at least one root on the
interval I.

If f (`) ≡ 0, then f is a polynomial of degree 6 `− 1 and the claim is obviously
true. Otherwise without loss of generality we may assume that |f (`)| 6 1 on I, and
the equality |f (`)(t∗)| = 1 holds at some point t∗.

For an arbitrary point a ∈ I and any k between 1 and n one has the identity
f (k−1)(x) = f (k−1)(a) +

∫ x

a
f (k)(t) dt (the Newton–Leibnitz formula). The choice

of the base point a in each case can be made arbitrary, so we put it at xk−1, one of
the roots of f (k−1). Then the first term disappears, and majorizing the integral we
conclude with the recurrent inequalities ‖f (k−1)‖ 6 r · ‖f (k)‖ for all k = 1, . . . , n,
between the sup-norms of the derivatives.

Iterating these inequalities, one can prove that ‖f (`−k)‖ 6 ‖f (`)‖ rk. In fact,
a stronger assertion holds: ‖f (`−k)‖ 6 ‖f (`)‖ rk/k!. To see this, we write the
expression for f (`−k) as the multiple integral and use the mean value theorem for
the symplex with sides hj = |tj − xj | 6 r, so that for an arbitrary t`−k ∈ I

|f (n−k)(t`−k)| =

∣∣∣∣∣
∫ t`−k

x`−k

dt`−k+1 · · ·
∫ t`−1

x`−1

dt` · f (`)(t`)

∣∣∣∣∣
6 ‖f (`)‖ ·

∫ h`−k

0

dt`−k+1 · · ·
∫ h`−1

0

dt` 6 ‖f (`)‖ · rk

k!
.

Plugging these estimates into the original equation (2.1) we notice that the lead-
ing term is overtaking at the point t∗ (hence in the sense of the sup-norm) the
sum of all other terms and therefore the equality (2.1) cannot hold everywhere—a
contradiction. �

The remaining part of this section (until §2.5) is devoted to the demonstration
of Theorem 1: we derive it from the assertion of Theorem 4 and Corollary 1. The
proof of Theorem 2 is given in §2.6. The demonstration of Theorem 4 is postponed
until §4.
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2.2. The universal system. The assertion of Theorems 1 and 2 concerns all
integral curves inside the box BR of all vector fields corresponding to a box in the
parameter space (recall that the coefficients vjkα in (1.1) and pkα in (1.2) are the
natural parameters of the problem, provided that n and d are fixed). We reduce
the question about intersections to that for one universal system and one universal
hypersurface.

Consider the coefficients vjkα in (1.1) and pkα in (1.2) as new independent vari-
ables governed by the trivial equations, and add to them the time variable t:

v̇jkα = 0, ṗkα = 0, ṫ = 1 ∀j = 1, . . . , n, k + |α| 6 d. (2.3)

Together with the equations (1.1) they define a system of autonomous polynomial
ordinary differential equations corresponding to a polynomial vector field in the
new phase space of dimension 6 (n + 1)(1 + (d + 1)n+1) and of degree d + 1. Each
particular choice of coefficients of v(t, x) and p(t, x) subject to restrictions on the
height means choosing a particular initial condition for the integral curves of this
universal system in the box BR belonging to the new phase space. Thus without
loss of generality it is sufficient to prove Theorem 1 for one universal vector field
(1.1)–(2.3) and one universal algebraic hypersurface (1.2) of degree d + 1.

Note that all polynomials in the right hand side of the universal equations have
only integer bounded coefficients (in fact, only 0 and 1 are allowed). The same
refers to the equation of the universal hypersurface. This circumstance will play an
important role later, in §2.4.

2.3. Derivation of a linear equation. From now on we consider only the univer-
sal vector field constructed above. To avoid cumbersome notation, we return to the
original notations for state variables and consider a polynomial vector field defined
by the system of autonomous polynomial equations ẋ = v(x) of degree d and height
R in the space Rn (or Cn) and a polynomial hypersurface Π = {p(x) = 0} ⊂ Rn

of the same degree and height. Let L be the Lie derivative of the ring R = C[x]
along the vector field v, and define the sequence of polynomials {pk}∞k=0 as in (1.7),
starting from p0 = p. The corresponding ascending chain {Ik} ⊂ R of ideals (1.8)
will stabilize after at most ` steps (the value of ` is given by Theorem 4).

The equality I`−1 = I` means that for some polynomials h0, h1, . . . , h`−1 ∈ R

p` =
`−1∑
k=0

hkpk, hk ∈ C[x]. (2.4)

Now assume that Γ ⊂ BR is a parameterized integral trajectory of the vector
field v, entirely belonging to the box BR. Recall that by construction of the uni-
versal vector field, the time parameter t on Γ coincides with one of the coordinate
functions, so Γ is parameterized by a subinterval I of the interval [−R,R].

Denote by f(t) the restriction of the polynomial p on Γ : f(t) = p(x(t)), t ∈ I.
Then from the rule (1.7) it follows that the restriction pk(x(t)) of pk on Γ is the kth
derivative f (k)(t). Together with (2.4) this means that f solves the linear ordinary
differential equation (2.1) with coefficients

ak(t) = −h`−k(x(t)), k = 1, . . . , `. (2.5)

For successful application of Corollary 1 it remains to place explicit upper bounds
on the magnitude of the coefficients ak. As the latter are obtained by restriction of
the polynomials hk on the curve Γ lying in the box BR, it is sufficient to estimate
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explicitly the degree and height of all hk. Indeed, if the height H(q) of a polynomial
q ∈ R = C[x1, . . . , xn] of degree D = deg q is known, then obviously

max
x∈BR

|q(x)| 6 H(q) · (D + 1)n(1 + R)D,

and this applied to q = hk would yield an upper bound for all ck = maxt∈I |ak(t)|
from (2.5), that can be plugged into the bound given by Corollary 1.

Remark. The identity (2.4) is independent of the choice of Γ , provided that the
equation remains the same (as this is in our case, since we consider the universal
vector field). But the linear equation (2.1) obtained by restriction of (2.4) on Γ , will
depend explicitly on the choice of the latter. Still the magnitude of the coefficients
of the resulting linear equation can be bounded in terms of R uniformly over all
curves inside the same box BR, which is sufficient for our purposes.

2.4. Bounds for degree and height. The remaining part is purely algebraic.
The degrees of the polynomials pk grow linearly with k, deg pk 6 (k +1)(d−1)+1,
so maxk=0,...,`−1 deg pk 6 `d. Knowing these degrees, one can estimate the degrees
of hk in the decomposition (2.4) by the inequality due to G. Hermann [12] shown
to be essentially sharp by Mayr and Meyer [19]:

deg hk 6 D = (`d)2
n

∀k = 0, 1, . . . , `− 1. (2.6)

(More precisely, one can always replace the initial decomposition (2.4) by a new
one satisfying the above restrictions for the degrees).

To place an upper bound for the height of hk, we use the method of indeterminate
coefficients. Expand hk and pk explicitly as

∑
|α|6D hkαxα and

∑
|α|6`d pkαxα

respectively. Substituting these expansions into the identity (2.4), we obtain a
non-homogeneous system of linear (algebraic) equations that is to be solved with
respect to N 6 `(D + 1)n+1 unknowns {hkα}.

This system is known to possess at least one solution, so one can apply the
Cramer rule to produce it. According to this rule, each component of the solution
can be found as a ratio of two appropriately chosen minors of the extended matrix
of the system, with a nonzero denominator.

All entries of the matrix of this system are integral and explicitly bounded from
above. Indeed, they are expressed in terms of coefficients of the polynomials pk. But
the rule (1.7) preserves integrality of coefficients (as the derivation L has bounded
integer coefficients, see §2.2) and the height of pk grows in a controllable fashion:
the formula pk+1 =

∑n
j=1 vj ∂xj

pk implies that

H(pk+1) 6 deg pk × n(deg pk + 1)n(d + 1)n ×H(pk) (2.7)

for all k = 0, . . . , ` − 1. (The first multiplier comes from computing the partial
derivative ∂xj

pk, the second term majorizes the number of monomials when reduc-
ing similar terms in the products vj∂xj pk and adding them together, and the last
multiplier is equal to the height of pk, since the height of all vj is 1).

The upper bound for H(pk) provides an upper bound for the numerator of the
ratio in the Cramer rule, as the size of the corresponding minor cannot exceed
the dimension N 6 `(D + 1)n+1 of the matrix, and all entries therein are already
explicitly bounded. On the other hand, the denominator of this ratio is a nonzero
integer number, hence at least 1 in the absolute value. Thus we obtain an upper
bound for every |hkα| and hence for all the heights H(hk) by a primitive recursive
function of n and d.
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2.5. Computations and the end of the proof of Theorem 1. The recursive
formulas for the degrees and heights, together with the inequality asserted by Corol-
lary 1 already prove the bound (1.3) with a primitive recursive exponent B(n, d).
To find the asymptotical growth of B(n, d) for large n, d, all computations should
be performed explicitly. In doing that, we use the fact that the bound `(n, d) for the
length of ascending chains is already very large and can be used in the “absorbing”
sense (as the symbol O in the classical calculus):

`(n, d) = dnO(n2)
=⇒ `d = dnO(n2)

� `, `n = dnO(n2)
� `, . . .

Using the inequality deg pk 6 `d for all k = 1, . . . , `, we can simplify (2.7) to the
form H(pk+1) 6 n(d` + 1)2n · H(pk) � `H(pk). Therefore for all k = 0, 1, . . . , ` we
have the inequality

H(pk) 6 `` � d` = ddnO(n2)

. (2.8)

The degrees of the polynomials hk do not exceed (`d)2
n � ` by (2.6).

The size N of the matrix of the linear system described in §2.4 is therefore
bounded by the expression `n+1 � `. This matrix and the column in the right hand
side are filled by integer numbers not exceeding d` by (2.8).

Each component hkα of the solution can be found as a ratio of two minors of
this matrix. But any such minor does not exceed the sum of `! terms, each being
at most (d`)`. Since the denominator of the ratio is > 1, we have the upper bound
for the height of all hk: H(hk) 6 `!(d`)` � d`.

A polynomial of degree ` and height d` restricted on the box BR in Rn, does
not exceed `nd`(1 + R)` � (2 + R)d`

. This expression is also the bound for the
coefficients of the quasilinear equation. By Corollary 1 the number of real zeros
of any solution of this equation does not exceed the upper bound asymptotically
equivalent to (2 + R)d`

. Since d` is asymptotically overtaken by the tower of three
exponents exp exp exp(n3 + d + O(1)), after returning to the initial (i.e. before
passing to the universal equation and hypersurface) values of the parameters n and
d, we arrive to the tower of four exponents (1.4) occurring in Theorem 1. �

2.6. Demonstration of Theorem 2. Let a be the reference point in the box BR

of the phase space of the universal system (this point is obtained by the obvious
suspension of the initial value point (x0, t0) for the original polynomial system).
The complex solution Γ passing through the reference point can blow up in a finite
time (exhibit singularities), but the distance to these singularities can be easily
estimated from below: the polar radius r = ‖x‖ grows at most as the solution of
the equation ṙ = C(n, d)rd+1, where C is a simple expression (the number of terms,
since each term comes with the coefficient 6 1). Thus the trajectory never leaves
the box B2R for all |t| < ρ0 = (C ′(n, d)Rd)−1 (assuming that t = 0 corresponds to
the reference point, as the universal system is autonomous).

Restricting the identity (2.4) on the part of Γ ⊂ B2R parameterized by this small
disk {|t| < ρ0}, we obtain a linear differential equation with bounded coefficients
(in the same way, as before—all those arguments were independent on the ground
field). It remains only to choose ρ � ρ0 in such a way that the inequality of
Lemma 2 be satisfied. Then the equation (2.1) restricted on this small disk, is
disconjugate and hence has no more than ` roots (the number ` is equal to the
order of the equation, i.e. to the length given by Theorem 4). The computations in
this case remain the same as in the real case. �
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3. Discrete Risler problem and descending chains of algebraic
varieties

In this section we prove Theorem 5 and show its equivalence to Theorem 3.
Besides, a geometric analog of Seidenberg theorem [25] will be established. The
main ideas of this section were already discussed in [22]: here we supply the proofs.

3.1. Bézout inequalities after J. Heintz. Recall that any complex algebraic
variety X ⊂ Cn admits a unique irredundant irreducible decomposition X =
X1 ∪ · · · ∪ Xs into the union of irreducible algebraic varieties of various dimen-
sions (the irredundancy means that neither component belongs to the union of the
others). The following result allows to place explicit upper bounds for the number
of irreducible components of different dimensions.

Lemma 3 (see [11]). Assume that an algebraic variety in Cn is defined by any
number of polynomial equations of degree 6 d, and has an irreducible decomposition
with m0 > 0 isolated points, m1 > 0 one-dimensional varieties, . . . , mn−1 > 0
irreducible (n− 1)-dimensional components.

Then mn−1 + mn−2 + · · ·+ mn−k 6 dk for all k = 1, . . . , n.

In particular, the number of isolated points of any such variety, regardless of its
dimension and the number of determining equations, does not exceed dn. Thus one
can consider Proposition 3 as a generalization of the Bézout theorem.

3.2. Algorithmic finiteness. Consider a descending chain of algebraic varieties
(1.11) without any information about the polynomials pj except for an explicit
control over their degrees. Assume that deg pj = φ(j), where φ(j) is a given
computable (nondecreasing) function of j. We produce a recurrent formula for the
length of strictly descending chain of varieties, that would define this length as a
general recursive (but not primitive recursive already in the case of φ(j) = j + 2)
function of n.

Let wr
k ∈ Z+ be the number of r-dimensional irreducible components of the vari-

ety Xk, and denote wk = (wn−1
k , . . . , w0

k) ∈ Z+. We shall use the strict lexicographic
order on Z+, writing wk ≺ wj if wn−1

k = wn−1
j , . . . , wr+1

k = wr+1
j but wr

k < wr
j for

some r between n− 1 and 1.

Proposition 1. If the chain (1.11) is strictly decreasing, then wk+1 ≺ wk.

Proof. This is obvious: since Xk+1 = Xk ∩ Πk+1, where Πk+1 = {pk+1 = 0},
then each r-dimensional irreducible component of Xk either entirely belongs to the
hypersurface Πk+1 and hence enters as a component of Xk+1, or intersects the
Πk+1 by the union of irreducible varieties of dimensions strictly inferior to r, in
which case there will be fewer r-dimensional components in the decomposition of
Xk+1. �

This is already sufficient to prove finiteness, as every lexicographically decreasing
sequence of vectors (“words”) from Zn

+ must eventually stabilize. If in addition the
norm ‖wk‖ = wn−1

k + · · · + w0
k admits an algorithmic upper bound in terms of k,

then the termination moment admits an algorithmically computable bound. Notice
that the assumption on the degrees deg pj 6 φ(j) together with Lemma 3 implies
the bound

‖wk‖ 6
(
φ(k)

)n
, ∀k = 0, 1, 2, . . . .
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Theorem 6 (geometric version of Seidenberg theorem [25]). The length of strictly
descending chain (1.11) of common zero loci of a sequence of polynomials pk of
controlled degrees deg pk 6 φ(k), is majorized by a general recursive function.

Proof. Notice that any lexicographically decreasing sequence {wk} can be subdi-
vided into (finite) subintervals in such a way that the first coordinate remains
constant along each subinterval. Then on this subinterval the truncations (the
“subwords” of length n−1 containing all but the first “letter”) again form a strictly
decreasing sequence in Zn−1

+ .
Let us introduce an auxiliary function of three arguments, F (s, n, k) being the

maximal length of a decreasing sequence in Zn
+ that begins with a word of the norm

s and contains no more than k subintervals described above.
Suppose we have a sequence already comprising k subintervals, so that its length

is N = F (s, n, k). Allowing for one more subinterval means adding a new decreasing
sequence of words in Zn−1

+ (as the first letter is fixed), that begins with a word of
norm 6 S = φn(N). Thus the overall length of a sequence comprising k+1 interval,
satisfies the recurrent inequality

F (s, n, k + 1) 6 F (s, n, k) + F (S, n− 1, S), S = φn(F (s, n, k)). (3.1)

The length of a sequence in Zn
+ starting from a word of norm s, can be estimated now

by the expression F (s, n, s), as the number of subintervals cannot exceed wn−1
0 6

‖w0‖ = s. �

Remark. The rule (3.1) defines a computable (general recursive) but not a prim-
itively recursive function, as the right hand contains application of the defined
function to itself. It is this type of recurrent formulas, that leads to the Ackermann
exponential [20]. The arguments given in [20, 22] show that the rule (3.1) indeed
may lead to a function growing faster than any primitive function, hence faster
than any closed form expression.

In fact, it remains to show that there exists a scenario indeed leading to so long
lexicographically decreasing sequences (this is relatively easy) and, moreover, that
this scenario can be realized by an appropriate chain of algebraic varieties. We refer
to [20] for such examples.

3.3. Chains of varieties associated with discrete Risler problem: equiv-
alence of Theorems 3 and 5. Consider the dynamical system (1.5) in Cn and
let X0 = Π be the hypersurface. The common locus of the first k polynomials
p0, p1, . . . , pk defined recurrently by (1.10), is the set of points x on X0 whose
p-orbit remains on X0 for the first k iterations:

Xk =
k⋂

j=0

{pj = 0} = {x ∈ Cn : P [j](x) ∈ Π ∀j = 0, 1, . . . , k}.

This dynamic description immediately implies the inclusion

P (Xk r Xk+1) ⊆ Xk−1 r Xk, k = 1, 2, . . . . (3.2)

Indeed, the difference Xk r Xk+1 consists of points that remain on X0 during the
first k steps of their life, and leave it on the (k + 1)st step. The P -image of any
such point will remain on X0 for k − 1 more steps and then leave it.

This (trivial) observation proves equivalence of Theorem 3 and Theorem 5. �
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3.4. Demonstration of Theorem 5. The strict decrease of the chain (1.11) fol-
lows from (3.2): if the difference X`−1 r X` is empty, then it can contain the
P -image of the difference X` rX`+1 only in case the latter difference is empty, and
so far by induction.

To prove the bound (1.6), we observe that if the polynomial map P is dimension-
preserving, then the sequence of dimensions dim(Xk r Xk+1) is non-increasing.

This observation implies that the chain (1.11) can be subdivided by some mo-
ments kn−1 6 kn−2 6 · · · 6 k1 6 k0 into n segments of finite length,

X0 ⊃ X1 ⊃ · · · ⊃ Xkn−1︸ ︷︷ ︸
dim XkrXk+1=n−1

⊃ Xkn−1+1 ⊃ · · · ⊃ Xkn−2︸ ︷︷ ︸
dim XkrXk+1=n−2

⊃ · · ·

· · · ⊃ Xks+1 ⊃ · · · ⊃ Xks−1︸ ︷︷ ︸
dim XkrXk+1=s

⊃ · · · ⊃ Xk1+1 ⊃ · · · ⊃ Xk0︸ ︷︷ ︸
dim XkrXk+1=0

(3.3)

such that along the sth (from the right) segment the differences Xk rXk+1, ks+1 6
k 6 ks−1, are exactly s-dimensional semialgebraic varieties (some segments can be
eventually empty).

The length of each such segment does not exceed the number of s-dimensional
irreducible components in the starting set Xks+1 of this segment, since this number
must strictly decrease on each step inside the segment. Indeed, inside the segment
all components of dimension > s must be preserved, otherwise the difference will
be more-than-s-dimensional. On the other hand, if all s-dimensional components
are preserved on some step, this means that the difference Xk r Xk+1 is at most
(s− 1)-dimensional, and one starts the next segment.

It remains only to notice that the degrees deg pk grow exponentially deg pk 6
dk+1, whereas the number of irreducible components of Xk can be estimated using
Lemma 3 by the nth power of the maximal degree (deg pk)n = (dn)ks+1. Hence for
the lengths ks − ks−1 we have the recurrent inequality, ks−1 − ks 6 (dn)ks+1 for
downward going values of s = n − 1, . . . , 1, 0 and the initial condition kn = d (the
initial polynomial p0 of degree d may have at most d factors). The solution of this
recurrent inequality is majorized by the solution of a more simple one ks−1 + 1 6
Mks+1, M = dn + 1, that gives the tower of height n for k0 + 1 with M on each
level: thus for the length of the descending chain we obtain the required estimate
(1.6). �

Remark. The only property of the chain (1.11) used in the proof, is the monotonicity
of dimensions of the differences dim(Xk r Xk+1), which is much weaker than the
algebraic rule (1.10).

If (still under the same assumption of monotonicity) we would assume the linear
growth of degrees deg pk 6 kd, as follows from the rule (1.7), then the bound on the
length of the chain would be much lower: the inequalities ks−1 − ks 6 [d(ks + 1)]n

would imply ks−1 + 1 6 M(ks + 1)n and finally a double exponential estimate
k0 6 d2nn+1

.

4. Convex ascending chains of polynomial ideals

This section contains the proof of Theorem 4. This proof is largely parallel to
that of Theorem 5 from §3 and consists in monitoring components of the primary
decomposition of the ideals constituting the chain. The source of additional difficul-
ties is twofold: first, in the algebraic context one has to take care of multiplicities of
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the components and second, the construction should be modified to avoid explicit
and implicit using of the uniqueness of the primary decomposition that is known to
fail in general (in particular, this circumstance prevents one from speaking about
the number of primary components).

The bound on the length of ascending chains of polynomial ideals is obtained
by combining several results. First we establish the property called convexity of
the ascending chain of ideals generated by adding consecutive derivatives, namely,
we prove that in such chain the colon ratios Ik : Ik+1 constitute themselves an as-
cending chain of ideals, hence their (Krull) dimensions must form a non-decreasing
sequence. Then we consider chains in which the ascension can be detected at the
level of the leading terms (primary components of the maximal dimension), so that
dim I0 = dim(Ik : Ik+1) holds along the chain. For such chains we show that their
length is majorized by the number of primary components in the leading term of
the first ideal in the chain, counted with their multiplicities. Here we still can use
the uniqueness part of the primary decomposition theorem. The final bound is
obtained by a certain “surgery”: as soon as the colon ratios Il : Il+1 became less
than ν-dimensional, ν = dim I0, we replace the chain of ideals {Ik} starting from
k = l by another chain, by deleting (in an almost arbitrary fashion) all primary
components of dimension ν and above. As the colon ratio, due to its monotonicity,
should remain always less than ν-dimensional, such components would not have
been affected when adding new derivatives pk in any case, so the ascent of the
newly constructed chain would essentially catch that of the initial one (in particu-
lar, their stabilization must occur simultaneously). Performing such “surgery” at
most n times, we arrive to an upper bound for the length of any convex chain of
polynomial ideals with an explicit control over the degrees of the generators.

4.1. Primary decomposition, leading terms, multiplicity. After describing
the general scheme, we proceed with a formal proof. In this subsection we collect
several technical results which we will need later.

Dimension. Any algebraic subvariety in Cn is a stratified set [18] that has a certain
dimension. If I ⊂ R is an ideal and X = V (I) = {x ∈ Cn : p(x) = 0 ∀p ∈ I} its
zero locus, then we put dim I be the (complex) dimension of its zero locus. This
number (between 0 and n) can be given a purely algebraic description, known as
Krull dimension [27].

Primary decomposition and its uniqueness. One of the basic results of commutative
algebra, known as the Lasker–Noether theorem [27, Ch. IV, §4], asserts that any
polynomial ideal I ⊂ R can be represented as a finite intersection of primary ideals,
I = Q1 ∩ · · · ∩Qs. Recall that an ideal Q is primary, if pq ∈ Q and p /∈ Q implies
that qr ∈ Q for some natural exponent r. The radical

√
Q = {q ∈ R : qr ∈ Q} is a

prime ideal called the associated prime, and by the Nullstellensatz it consists of all
polynomials vanishing on the zero locus V (Q) ⊂ Cn.

The primary decomposition in general is not unique, even if we assume that it
is irredundant . However, in an irredundant primary decomposition the primary
components whose associated primes are minimal (i.e. contain no prime ideals as-
sociated with other components), are uniquely defined [27, Theorem 8, p. 211]. In
particular, the leading term

l. t. (I) =
⋂
j

{Qj : dim Qj = dim I}, (4.1)
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the intersection of all upper-dimensional primary components, is uniquely defined,
since the corresponding prime ideals are minimal for dimensionality reasons. As an
application of the uniqueness part we have the following simple fact on monotonicity
of the leading terms.

Lemma 4. Suppose that J ⊂ J ′ are two polynomial ideals of equal dimensions with
the leading terms

l. t. (J) = Q1 ∩ · · · ∩Qs, l. t. (J ′) = Q′
1 ∩ · · · ∩Q′

s′ (4.2)

(as usual, the decomposition is assumed to be irredundant).
Then each component Q′

j contains one of the components Qi.

Proof. We start with the obvious identity J = J∩J ′ and consider the decomposition
of the leading terms:

Q1 ∩ · · · ∩Qs = Q1 ∩ · · · ∩Qs ∩Q′
1 ∩ · · · ∩Q′

s′ . (4.3)

The decomposition in the right hand side is not irredundant. However, all prime
ideals associated with the primary terms Q′

j , must be among the primes associated
with Qj . Indeed, this follows from the simple fact that all m-dimensional irreducible
components of the variety X ′ = V (J ′) ⊂ X = V (J) should be among those of X.

Rearranging if necessary the components of l. t. (J ′), we can assume that Q′
j and

Qj have the same associated prime for all j = 1, . . . , s′ and s′ 6 s. After collecting
“similar terms” in the right hand side of (4.3), we observe that it becomes

(Q1 ∩Q′
1) ∩ · · · ∩ (Qs′ ∩Q′

s′) ∩Qs′+1 ∩ · · · ∩Qs.

From the uniqueness theorem it follows that Qj = Qj ∩ Q′
j for all j = 1, . . . , s′,

which implies that Qj ⊂ Q′
j for all such j. �

Multiplicity. The notion of multiplicity of an ideal is rather subtle. However, for
our purposes it would be sufficient to use it only in a restricted environment, where
the following construction works.

Let I ⊂ R be an ideal and assume that 0 ∈ Cn is an isolated point of its locus
V (I). Denote by m = (x1, . . . , xn) ⊂ R the maximal ideal of the ring and let Rm be
the corresponding localization (the ring of rational fractions whose denominators
do not vanish at the origin). Then I is cofinite at the origin, which means that
the dimension of the quotient ring Rm/I · Rm over C is finite [1], i.e. µ0(I) =
dimC Rm/I · Rm < ∞. The number µ0(I) is called the multiplicity of I at the
origin 0 ∈ Cn. In the similar way one may define the multiplicity µa(I) of any ideal
I at any isolated point a ∈ V (I) of its zero locus.

Let a be a regular (smooth) point of the zero locus of a polynomial ideal I ⊂ R
of some dimension r between 0 and n. Let Π be an affine subspace in Cn of
codimension r, transversal to V (I) at a, and L the corresponding ideal generated
by r affine forms. Then the ideal I + L is zero-dimensional at a and hence cofinite.

Definition. The multiplicity µa(I) of I at a is the multiplicity of I + L at a (the
complex dimension of the corresponding quotient algebra in the local ring). The
multiplicity µ(I) is the generic value of µa(I) (the minimum over all smooth points
a ∈ V (I)), and this definition will be applied to primary ideals only.

The multiplicity of an ideal in R = C[x1, . . . , xn] generated by polynomials of
degree 6 d, can be easily estimated from above: by virtue of the Bézout theorem,
the multiplicity of such ideal never exceeds dn.
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The following (obvious) property of multiplicity allows to control the length of
ascending chains of primary ideals with the same associated prime: the multiplici-
ties should strictly decrease along such a chain.

Lemma 5. If I ⊂ J are two non-equal primary ideals in R with the same associated
prime, then µ(I) > µ(J).

Proof. Denote by Ia (resp., Ja) the localizations of the two ideals (i.e. their images
in the local ring Ra). The proof consists of two steps: first we show that if for
two primary ideals with the same associated prime the equality Ia = Ja holds after
localization at almost all points, then in fact I = J , and the second observation
is that if for I ⊂ J the equality µa(I) = µa(J) holds for almost all points, then
Ia = Ja for almost all points also.

1. If p1, . . . , ps are generators of I, and q is an arbitrary polynomial in J , then
the condition Ia = Ja implies that q =

∑
rjpj , where rj are rational fractions with

the denominators not vanishing at a, hence (by getting rid of the denominators)
we arrive to the representation hq =

∑
hjpj , where h ∈ R is a polynomial not

vanishing at a, and hj are polynomials as well. Consider the colon ideal I : q. The
above conclusion means that for almost all a ∈ X the colon ideal I : q contains
a polynomial with h(a) 6= 0. For obvious reasons, for a /∈ X this is valid as well.
Since I is primary, then by [27, Ch. III, §9, Theorem 14] the ideal I : q, if not trivial,
is also primary with the same associated prime. But from the above assertion it
follows that the zero locus of I : q is strictly contained in X, so the only possibility
left is that I : q = R, i.e. q ∈ I. Since q ∈ J was chosen arbitrary, this proves the
first assertion (note that we used only the fact that I is primary; the bigger ideal
J could in fact be arbitrary).

2. Let a ∈ X be a smooth point, Ra and Ia being the corresponding localizations.
Since the situation is local, without loss of generality we may assume that X is a
coordinate subspace. Choose T being the complementary coordinate subspace and
denote by L the corresponding ideal. Let (x, ε) be the associated local coordinates,
so that X = {x = 0}, and T = {ε = 0}. The point a is the origin (0, 0). We will
prove that Ia ( Ja implies the inequality µa′(I) 6= µa′(J) for all nearby points a′.

Let µ = µa(I). If the germs f1, . . . , fµ ∈ R(0,0) generate the local algebra of the
cofinite ideal (I + L)(0,0), then any germ q(x) from the restriction of R(0,0) on T
can be represented as

q(x) =
µ∑

j=1

cj fj(x, 0) +
s∑

i=1

hi(x)pi(x, 0), (4.4)

where pi = pi(x, ε) are generators of the ideal I, and pi(x, 0) are their respective
restrictions on the transversal L. If this representation is minimal (i.e. the number
of germs fj cannot be reduced), then µ is the multiplicity of I at the point a = (0, 0).

By the Preparation theorem in the Thom–Martinet version [18, Chapter I, §3],
the representation (4.4) can be “extended” for all small nonzero ε: any element
q ∈ R(0,0) admits a representation

q(x, ε) =
µ∑

j=1

cj(ε) fj(x, ε) +
s∑

i=1

hi(x, ε)pi(x, ε). (4.5)
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Now assume that the localization J(0,0) is strictly bigger than I(0,0) and take an
element q ∈ J(0,0) r I(0,0). By (4.5), it can be expanded after a certain choice of
the coefficients cj(ε).

The situation when all cj(ε) are identical zeros, is impossible, since this would
mean that q ∈ I(0,0) contrary to our assumptions. Therefore for almost all values
of ε the equality

µ∑
j=1

cj(ε)fj(x, ε) = q +
s∑

i=1

hipi ∈ Ja

means a nontrivial linear dependence between the generators fj(·, ε) of the corre-
sponding local algebra R(0,ε)/J(0,ε) ·R(0,ε), so that its dimension is strictly smaller
than µ. By definition this means that the multiplicity µa′(J) is strictly smaller
than µ = µ(I) = µa′(I) for all nearby points a′ = (0, ε). The proof of the second
step (and together with it the proof of the lemma) is achieved. �

Illustration: chains of ideals of homogeneous dimension. The above two lemmas
already imply an upper bound for the length of an ascending chain under rather
specific restrictions. We will use this particular case as a building block for the
general construction.

Let P = {P1, P2, . . . , Pν} be a finite collection of pairwise different prime ideals,
Pi ⊂ R, of the same dimension m. Consider a strictly ascending (finite) chain of
ideals

J0 ( J1 ( J2 ( · · · ( J`−1 ( J` (4.6)
under the additional assumption that each ideal from this chain is an intersec-
tion of primary ideals with associated primes only from the predefined collection P.
Denoting by Qkj the primary component of Jk with the associated prime Pj (if
there is no such component, we introduce a fictitious term Qkj = (1) to make our
considerations uniform), we can write

Jk = Qk1 ∩ · · · ∩Qkν ,

Qkj is either (1) or primary with
√

Qkj = Pj .

By the uniqueness part of the Noether–Lasker theorem, all ideals Qkj , whether
fictitious or not, are uniquely determined.

Lemma 6. The length ` of the strictly ascending chain (4.6) does not exceed the
number of primary components of J0, counted with their multiplicities:

` 6
ν∑

j=1

µ(Q0j).

Proof. This is an obvious corollary to Lemma 4 and Lemma 5. Indeed, by Lemma 4,
the monotonicity of the chain (4.6) implies the monotonicity of all the chains

Q01 ⊂ Q11 ⊂ · · · ⊂ Q`1,

Q02 ⊂ Q12 ⊂ · · · ⊂ Q`2,

...
...

...
Q0ν ⊂ Q1ν ⊂ · · · ⊂ Q`ν .

Moreover, in every column k at least one inclusion must be strict (otherwise Jk =
Jk+1). Since all ideals in each line are primary with the same associated prime
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(unless they become trivial), the assertion of Lemma 5 applied to each line, shows
that the numbers µ(Qkj) are nonincreasing (by definition we put µ((1)) = 0), and
their sum

∑ν
j=1 µ(Qkj) is strictly decreasing as k ranges from 1 to `. Since all

multiplicities are nonnegative, this last observation proves the claim. �

4.2. Effective commutative algebra. The chain (1.8) consists of ideals given by
their generators pk. On the other hand, application of results such as Lemma 6
requires knowing some numbers (the number of primary components, their multi-
plicities). Moreover, our constructions below would require determining (or rather
estimations) of similar numbers for ideals obtained by certain algebraic procedures
(intersections, colon ratios etc) from the initial ideals Ik. Thus we need some tools
for performing explicitly all these manipulations.

We agree that to construct (or define) an ideal in the polynomial ring R means
to construct (or specify) a set of generators of this ideal. Then many operations
on ideals become algorithmically implementable. In particular, given polynomials
generating some input ideals I and J , one can explicitly do the following [24]:

• construct the intersection I ∩ J and the colon ratio A : B;
• decide whether a given polynomial belongs to I and if so, construct an

explicit expansion for the former in the generators of the latter;
• construct some primary decomposition of I and the intersection of all pri-

mary components of upper and lower dimensions,
• and many other (but not all) algebraic operations.

The algorithms performing the above mentioned operations, are discussed and per-
fected in a number of works. However, we are interested here not in the manipula-
tions themselves, but rather in the upper bounds for the degrees of the generators of
polynomial ideals. The result that will be used in the proof of Theorem 4, describes
the algorithmical complexity of the primary decomposition.

Theorem ([12, 24, 25, 8, 9, 16, 17]). If an ideal I of the polynomial ring R =
C[x1, . . . , xn] is generated by polynomials of degree 6 d, then one can effectively
construct polynomial bases of all ideals in the primary decomposition of I. The
number of primary components and the degrees of polynomials in the bases can be
majorized by primitive recursive functions of n and d, and each of these functions
grows no faster than dnO(n)

as n →∞.

This theorem in fact constitutes a synopsis of several references, see [12, 24, 25]
for the primitive recursivity of the bound, [8, 9] for explicit estimates and [16, 17] for
more precise bounds. Combination of this result with our definition of multiplicity
and Bézout inequalities implies the following.

Corollary 2. For an ideal I generated by polynomials of degree d in C[x1, . . . , xn],
and any dimension m < n one can construct a decomposition I = I ′ ∩ S, where
I ′ is of dimension 6 m and all primary components of S are of dimension m + 1
or more, in such a way that the number of primary components in l. t. (I), counted
with their multiplicities, is majorized by a primitive recursive function ν(n, d) of
variables d and n, growing no faster than dnO(n)

as n →∞. �

4.3. Convexity of chains generated by adding consecutive derivatives.
The key property of ascending chains, on which the proof of Theorem 4 is based,
is that of convexity: the “multiplicative first differences” of the ideals in the chain
monotonously “nondecrease”.
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Definition. An ascending chain of ideals (1.8) is called convex if

Ik−1 : Ik ⊂ Ik : Ik+1 ∀k = 1, 2, . . . . (4.7)

Lemma 7. Any chain of polynomial ideals {Ik} generated by adding consecutive
derivatives as in (1.7)–(1.8), is convex.

Proof. Obviously, Ik : Ik+1 = Ik : (pk+1). If q ∈ Ik−1 : (pk), then qpk =
∑k−1

i=0 hipi.
Applying L, we conclude:

qpk+1 = q · Lpk = L(qpk)− Lq · pk

=
k−1∑
i=0

Lhi · pi +
k∑

i=1

hi−1pi + Lq · pk =
k∑

i=0

h̃ipi ∈ Ik,

which implies that q ∈ Ik : (pk+1). �

Corollary 3. A convex ascending chain is strictly ascending: if I`−1 = I` for some
`, then I` = I`+1 = I`+2 = · · · =

⋃∞
j=0 Ij.

Proof. If I` = I`+1, then I` : I`+1 = (1) (the unit ideal, i.e. the whole ring R), so
by (4.7) all other colon ratios I`+s : I`+s+1 for any natural s > 1 are also trivial as
they must contain the ideal (1). �

Corollary 4. The sequence of dimensions dim(Ik : Ik+1) is non-increasing. �

4.4. Length of convex chains with strictly ascending leading terms. Con-
sider the ascending chain (1.8) with an additional assumption that the colon ratios
have the same dimension as the ideals Ik themselves. We show then that the length
of this chain is completely determined by the leading term of the first ideal in the
chain.

Lemma 8. Consider a finite strictly ascending chain of ideals has the form (1.7)–
(1.8). Assume that all colon ratios have the same dimension as the starting ideal
of this chain:

dim I0 = dim I0 : I1 = · · · = dim Ik : Ik+1 = · · · = dim I`−1 : I`.

Then the length ` of this chain does not exceed the number of primary components
of the leading term J0 = l. t. (I0) of the starting ideal (counted with multiplicities).

Proof. This is a simple corollary to Lemma 6. Indeed, consider the chain of leading
terms {Jk}`

k=0, Jk = l. t. (Ik). Denote by m the common dimension of all colon
ratios.

1. The chain {Jk} is ascending by Lemma 4: all upper-dimensional primary com-
ponents of Ik+1 can be obtained by enlarging primary components of Jk (sometimes
making them trivial).

2. Moreover, the chain {Jk} is in fact strictly ascending and this is where we
use the assumption on dimensions. Indeed, if Jk = Jk+1 for some k, then

pk+1 ∈ Ik + (pk+1) = Ik+1 ⊂ l. t. (Ik+1) = Jk+1 = Jk = l. t. (Ik),

which means that pk+1 in fact belongs to all upper-dimensional primary components
of Ik. Writing Ik = Jk∩Rk, where Rk is the intersection of all primary components
of dimension strictly inferior to m, we conclude that

Ik : Ik+1 = Ik : (pk+1) =
(
Jk : (pk+1)

)
∩

(
Rk : (pk+1)

)
= (1) ∩

(
Rk : (pk+1)

)
⊃ Rk,

therefore dim Ik : Ik+1 6 dim Rk < m. This contradicts the second assumption.
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3. It remains only to verify that the collection of prime ideals associated with all
primary components of the ideals Jk, is non-expanding (in particular, contained in
that of J0). We note that the upper-dimensional associated primes can be detected
as ideals of upper-dimensional irreducible components of the loci Xk = V (Kk) ⊂
Cn. The chain of algebraic varieties Xk is descending, Xk ⊃ Xk+1.

Each irreducible upper-dimensional component of Xk either belongs to Xk+1,
if pk+1 vanishes identically on this component, or becomes an algebraic variety of
dimension strictly inferior to m after intersection with the hypersurface {pk+1 =
0} ⊂ Cn. Thus the collections of irreducible upper-dimensional components of
the varieties Xk are non-expanding as k grows from 0 to `, and the same holds
for the collections of prime ideals associated with the leading terms Jk. Thus all
assumptions of Lemma 6 are verified for the chain {Jk}. �

4.5. Revealed growth. The next step is to get rid of the assumption that the
dimension of the colon ratios coincides with that of the starting ideal in the chain
in Lemma 8. Using the lemma below, one can transform any chain with a constant
dimension of colon ratios, into another chain with strictly increasing leading terms.

Assume that the dimension of the colon ratios Ik : Ik+1 remains the same along
the strictly ascending chain (1.8):

dim I0 : I1 = · · · = dim I`−1 : I` = m. (4.8)

Consider any primary decomposition of the starting ideal I0 written in the form

I0 = I ′0 ∩ S, (4.9)

where I ′0 is the intersection of all primary components of dimension m and below,
and S is the intersection of all primary components of I0 of dimensions > m + 1.

Lemma 9. If the chain of ideals {I ′k}`
k=0 is built from I ′0 using the same rule

I ′k+1 = I ′k + (pk+1), k = 0, 1, . . . , `− 1, (4.10)

and the condition (4.8) holds, then for all k = 0, 1, . . . , `− 1

pk+1 ∈ S, (4.11)

Ik = I ′k ∩ S, (4.12)

Ik : Ik+1 = I ′k : I ′k+1. (4.13)

Proof. 1. If (4.11) is not true for some k, then pk+1 would not belong to at least
one primary component of S of dimension m + 1 or more. But then the colon ratio
will be at least (m + 1)-dimensional, contrary to our assumption. Indeed, for a
P -primary ideal Q ⊂ R and any p ∈ R we have the following alternative:

Q : (p) =


(1), if p ∈ Q,

P -primary, if p ∈ P r Q,

Q, if p /∈ P.

In all nontrivial cases the dimension is preserved.
2. The proof of (4.12) goes by induction: for k = 0 it coincides with (4.9). The

induction step is an application of the modular law [27]: since pk+1 ∈ S by the
previous argument, we have (pk+1) ∩ S = (pk+1) and hence

I ′k+1 ∩ S = (I ′k + (pk+1)) ∩ S = I ′k ∩ S + (pk+1) = Ik+1.
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3. The last identity (4.13), equivalent to Ik : (pk+1) = I ′k : (pk+1), follows from
(4.11) and (4.12). This completes the proof of Lemma 9. �

4.6. Demonstration of Theorem 4. According to Corollary 4, any finite strictly
ascending convex chain (1.8) can be subdivided into no more than n finite strictly
ascending segments in such a way that along each segment the dimension of the
colon ratios is the same and equal to n− s, where s = 1, 2, . . . , n is the number of
the segment:

I0 ⊂ I1 ⊂ · · · ⊂ Ik1︸ ︷︷ ︸
dim Ik:Ik+1=n−1

⊂ Ik1+1 ⊂ · · · ⊂ Ik2︸ ︷︷ ︸
dim Ik:Ik+1=n−2

⊂ · · ·

· · · ⊂ Iks+1 ⊂ · · · ⊂ Iks+1︸ ︷︷ ︸
dim Ik:Ik+1=n−s+1

⊂ · · · ⊂ Ikn−1+1 ⊂ · · · ⊂ Ikn︸ ︷︷ ︸
dim Ik:Ik+1=0

(4.14)

The length of each segment can be majorized using Lemma 8 and Lemma 9. Let
I = Iks+1 be the initial ideal of the sth segment. We decompose it as I = I ′∩S and
build an auxiliary (finite) chain I ′k for k = ks + 2, . . . , ks+1 using the rule (4.10), as
described in Lemma 9.

This new chain satisfies all conditions of Lemma 8, so its length ks+1 − ks can-
not exceed the number of primary components of I ′ = I ′ks+1, counted with mul-
tiplicities. This number, by Corollary 2, does not exceed ν(n, (ks + 1)d), as the
decomposed ideal Iks+1 is generated by polynomials of degree 6 (ks + 1)d.

It remains only to remark that the length of the auxiliary chain majorizes the
length of the sth segment of the initial chain, according to Lemma 9: as soon as the
auxiliary colon ratios become less than m-dimensional with m = n − s, the same
would occur for the initial chain as well, which means that the new segment in fact
began.

This argument proves the following bound for the length of each segment:

ks+1 − ks 6 ν(n, (ks + 1)d) � (ksd)nO(n)
. (4.15)

This recurrent identity immediately proves that the length of the chain ` = `(n, d) =
kn is a primitive recursive function of d and n and grows as asserted in the theorem.

Indeed, the growth of the sequence {ks} as in (4.15) is overtaken (for large
values of d and n) by the growth of the linear difference equation ls+1 = Mlαs
with M = dnO(n)

, α = nO(n), l0 = 1, whose solutions can be found and estimated
explicitly: since one can always assume α > 2, we have log ls 6 2 log M ·αs so that
ln 6 M2αn � MnO(n2) � dnO(n2)

. �

Appendix A. Gabrièlov theorem

A.1. Formulation and general remarks. Recall that the Risler problem consists
in estimating the maximal order of contact between a trajectory of a polynomial
vector field and an algebraic hypersurface in Cn. The answer is to be given in terms
of the dimension n and degree d of the polynomials defining the vector field and
the hypersurface.

In the particular case n = 2 an upper bound for the order of contact was found
in [6] by A. Gabrièlov, J.-M. Lion and R. Moussu. Later in [4] Gabrièlov solved the
problem in the general case and proved that this order does not exceed (2d)2

n+1
if

the degrees of the field and hypersurface are both equal to d.
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The order of contact between a parameterized trajectory t 7→ x(t) and a hyper-
surface {p = 0} is the order of zero of the restriction p(x(t)). As this restriction
was shown in §2 to satisfy a linear ordinary differential equation of order ` = `(n, d)
(the length of an ascending chain), the multiplicity of a root cannot exceed ` − 1,
unless the solution is identically zero.

Note that, while solving the Risler problem, one can skip the universalization
step of §2.2: indeed, the magnitude of coefficients is not important, only the order
of the resulting equation (2.1) matters.

However, this approach gives the bound of order of magnitude dnO(n2)
for the

maximal order of tangency, which is substantially worse than the Gabrièlov bound.
Below we show how the answer can be improved.

A.2. Chain of varieties associated with Risler problem. The Risler prob-
lem occupies in some sense an intermediate place between algebraic and geometric
versions of the problem on ascending/descending chains.

Namely, assume that {Ik} is the ascending chain of ideals (1.8) generated by
consecutive derivations (1.7). Then one can associate with this chain of ideals the
chain of their respective zero loci {Xk}, Xk = V (Ik). Despite the fact that the
chain of ideals must be strictly ascending by Corollary 3, the descent of the chain
of varieties should not necessarily be strict. The easiest example is the sequence
of derivatives of the polynomial xµ in one variable, corresponding to n = 1 and
L = ∂/∂x. The chain of the respective zero loci drops after µ stable steps: {0} =
X0 = X1 = · · · = Xµ−1 6= Xµ = ∅.

However, one may estimate the length of the chain {Xk} along which the ultimate
stabilization must occur. The considerations below provide arguments sufficient for
proving the result described in §A.1. We start with the following trivial observation.

Let L : R → R be a Lie derivation, v the corresponding polynomial vector field
in Cn and Y a submanifold in Cn with the coordinate ring R′ = R/I(Y ). Denote
by π : R → R′ the canonical projection. Then L “covers” a well-defined derivation
L′ of the ring R′ if Y is invariant by the flow of the field v. This claim admits a
local reformulation with all rings being the rings of germs.

A.3. Demonstration of Gabrièlov theorem. Denote by X∞ the stable limit,
the intersection of all varieties Xk, and consider the decreasing chain of semialge-
braic varieties X ′

k = Xk r X∞. The chain {X ′
k} eventually vanishes. Suppose that

on some step k = ks the variety X ′
ks

is s-dimensional (recall that each semialgebraic
variety has dimension), and denote by X the set of points at which the field v is
transversal to X ′

ks
.

The complement X ′
ks

rX is less-than-s-dimensional. Indeed, since the tangency
condition is algebraic, its violation on a relatively open set would mean that this set
is locally invariant by the flow of v and hence belongs to X∞. But this contradicts
the definition of X ′

ks
as a part of the complement to X∞.

We show that after some number m of steps, any point a on X will not be-
long to X ′

ks+m, and hence the latter semialgebraic variety should be less-than-s-
dimensional. The number m can be explicitly majorized.

Since the integral curve of v through a is transversal to X at a, we can construct
the germ of a codimension s analytic surface (Y, a) in Cn such that X ∩ Y = {a}
and Y be invariant by the flow of v. Let R′ be the local ring of germs on (Y, a). The
ascending chain of ideals {Ik} restricted on Y , yields an ascending chain of ideals
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{I ′k} ⊂ R′, k = ks, ks + 1, . . . , in the local ring, generated by adding consecutive
derivatives πLkp0 = (L′)kπp0 (by virtue of the above observation). Therefore this
chain is convex and hence, by Corollary 3, strictly ascending.

The difference between the type of ascent of the chains {Ik} and {I ′k} is twofold:

(1) all ideals of the latter chain are cofinite, so the numbers µk = dimC R′/R′·I ′k
are finite, and

(2) the chain {I ′k} must terminate by the trivial ideal I ′ks+m = (1) ∈ R′, since
a /∈ X∞.

Now it is obvious that the codimensions µk of the cofinite ideals must be strictly
decreasing: otherwise we would have the equality I ′k = I ′k+1 6= (1). However, this is
impossible since by Corollary 3 this would mean that Ik stabilize on a non-trivial
ideal. Therefore after no more than m = µks

steps the chain of local ideals must
stabilize on the trivial ideal (1) = R′.

To place an upper bound for the number of steps m after which the variety
X ′

ks+m must become less-than-s-dimensional, we need to estimate the multiplicity
µks . Note that this multiplicity does not depend on the choice of the transversal
section Y as soon as the latter remains transversal to X at a. Choosing Y being
an affine subspace in Cn, we can majorize the multiplicity of the ideal (by virtue
of Bézout theorem).

The easiest way to do that is by the inequality µks
6 (ksd)s × 1n−s, since ksd is

the maximal degree of 6 s polynomials determining Xks (the equations for Y are
linear, hence do not contribute to µks). This estimate leads to recurrent inequalities
ks−1−ks 6 (ksd)s for s = n−1, . . . , 2, 1 and finally to an upper bound fro k0 growing
as (2d)n!, as an easy computation shows.

More accurate arguments (using the fact that each X ′
ks

is defined by equations
of different degrees, from k1d to ksd), leads to an upper bound (2d)2

n+1
, exactly as

in [4].

A.4. Final remark. Very recently, using completely different arguments, A. Gab-
rièlov proved in [5] that the order of tangency does not exceed (2nd)2n, which is a
simply exponential in n upper bound.

Appendix B. Linear systems

The principal result of the paper, Theorem 1, is formulated for arbitrary poly-
nomial vector fields. However, the case of linear (nonautonomous) systems is of
a particular interest, first because linear systems often naturally arise in problems
concerning the number of zeros, and second because in this case one may improve
slightly the constructions compared to the general case.

Three instances are discussed in this appendix. We show that for a system
of linear first order differential equations rationally depending on time, one can
derive a linear equation satisfied by all linear combinations of components of any
trajectory, with the same collection of singular points. Second, we obtain a simple
exponential in n (the number of variables) bound for lengths of chains of ideals
generated by linear forms polynomially depending on t. Finally, we notice that
for linear systems the continuous Risler problem can be reduced to its discrete
counterpart and vice versa.
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B.1. Hyperelliptic integrals and Picard–Fuchs system. The main source of
applications (in fact, the problem that motivated the whole research summarized in
this paper) is the problem on zeros of complete Abelian integrals, sometimes called
tangential or weakened Hilbert 16th problem. Recall that the problem consists in
finding an upper bound for the number of real zeros of a (multivalued) function

I(t) = IH,ω(t) =
∮

H(x,y)=t

ω, ω = P (x, y) dx + Q(x, y) dy (B.1)

where H,P, Q ∈ C[x, y] are polynomials of known degrees, and the integration is
carried over a continuous family of real ovals of the level curves {H = c} ⊂ R2.
The bound is to be given in terms of the degrees only.

Almost all approaches to this problem use to a certain extent the fact that the
function I(t) satisfies certain linear differential equations, Picard–Fuchs equations.
However, in one particular case when H has the form

H(x, y) = y2 + p(x), p ∈ R[x], deg p = n + 1 > 3,

these equations can be written absolutely explicitly. More precisely, the column
vector I(t) formed by the integrals of the forms xky dx, k = 0, 1, . . . , n − 1, was
shown in [10] to satisfy the system of n first order linear differential equations

(tE − C) İ(t) = BI(t), C,B ∈ Matn×n(C). (B.2)

Here B,C are two constant n × n-matrices depending on the polynomial p only
(and E the identity matrix). By examination of the algorithm suggested in [10]
one can verify that the norms of the matrices are bounded in terms of the height of
p, provided that the latter is a unitary polynomial (with the leading coefficient 1),
and the spectrum of C coincides with the set of critical values of the polynomials
p and H. Notice that the height of p can be assumed to be bounded by 1 without
loss of generality.

The system (B.2) is not polynomial, but becomes rational after a simple transfor-
mation (multiplication by the adjugate matrix to tE −C). By this transformation
it can be reduced to the form (we replace I(t) by x(t) to return to the notations
used throughout the paper)

∆(t) · ẋ(t) = A(t)x(t), ∆(t) =
n∏

j=1

(t− tj), A(t) =
d∑

k=0

Ak tk, (B.3)

where ∆(t) ∈ C[t] is the characteristic polynomial of the matrix C, and t1, . . . , tn
the critical values of p (counted with multiplicities). The right hand side contains
the matrix polynomial A(t) ∈ Matn×n(C[t]) of degree d = n − 1 and controlled
height. The system (B.3) has singular points t1, . . . , tn (and t = ∞). These points
are Fuchsian if the critical values tj are pairwise distinct.

We show that, despite the presence of singular points and occurrence of denomi-
nators, a positive information about zeros of hyperelliptic integrals can be obtained
by applying Theorem 1.

Remark. The results by L. Gavrilov [7] show that a similar system of first order
equations can be derived also for a general polynomial H provided that its principal
homogeneous part is generic. However, the resulting system will not be explicit,
and there are almost no chances that the height of the right hand side would admit
an upper bound uniform over all generic H.
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B.2. Reduction from linear systems to linear equations. Applied to systems
of linear equations, the procedure of derivation of a high order equation described
in §2.3, results in a more accomplished answer. We formulate it for the case of
equations of the form (B.3) eventually possessing singularities.

Theorem 7. With any linear polynomial system (B.3) of degree 6 d having at
most d Fuchsian singularities in the finite plane, one can associate a single `th
order differential equation of the form

∆`(t)y(`) + a1(t)∆`−1(t)y(`−1) + · · ·+ a`−1(t)∆(t)y′ + a`(t)y = 0 (B.4)

with the following properties:
(1) all finite singular points of the equation (B.4) are Fuchsian and coincide

with the singularities of the initial system;
(2) the coefficients ak(·) of (B.4) are polynomial in t and polynomially depend

on the parameters of the problem (matrix elements of Ak and the coordinates
of singular points tj);

(3) the order of the equation (B.4), the degrees and heights of the polynomial
coefficients ak are bounded by primitive recursive functions of n, d;

(4) any linear combination y(t) = 〈ξ, x(t)〉 = ξ1x1(t)+ · · ·+ ξnxn(t), ξi ∈ C, of
coordinate functions of any solution x(t) of the initial system (B.3) satisfies
the equation (B.4).

Corollary 5. The number of isolated intersections between any trajectory x(t) of
a linear system (B.3) of height 6 R and an arbitrary linear hyperplane 〈ξ, x〉 = 0
over any simply connected subdomain of the set {t ∈ C : |t− tj | > 1/R, |t| < R} is
bounded by (2 + R)B, where B = B(n, d) is a primitive recursive function of n, d
growing no faster than (1.4).

In other words, the assertion of Theorem 1 for linear polynomial systems admits
direct complexification provided that zeros are counted away from eventual singular
points. In this case one can also suppress all requirements on the geometric size of
the trajectory, except for proximity to singular points in the t-plane.

Proof of Theorem 7. The system (B.3) after introducing the new independent vari-
able τ can be put into the “true” polynomial form{

x′ = A(t)x,

t′ = ∆(t),

x ∈ Cn, t ∈ C1,

′ = d
dτ .

(B.5)

As in §2.2, we consider the system (B.5) as a single polynomial vector field
whose right hand sides belong to the polynomial ring C[t, x, ξ, A, Σ], where A =
{A0, . . . , Ad} is the collection of all coefficients of the matrix polynomial A(t) and
Σ = {t1, . . . , tm} the variables replacing coordinates of all singular points.

Let ξ = ξ0 ∈ Cn∗ be an arbitrary linear functional and p0(x) = 〈ξ, x〉 ∈ C[t, x, ξ]
the corresponding polynomial. The rule (1.7) for the extended system (B.5) yields
a sequence of polynomials pk ∈ C[t, x, ξ, A, Σ], that are all bilinear in x and ξ
simultaneously.

Let ` = `(n, d) be the moment of termination of the chain (1.8) and h0, . . . , h`−1 ∈
C[t, x, ξ, A, Σ] the coefficients of the decomposition (2.4). Apriori the constructions
of §4 do not guarantee that the polynomials hk in do not depend on x and ξ, but
one can always achieve this independence. Indeed, expanding all polynomials pk
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and hk in x and using the fact that all pk are linear homogeneous, we see immedi-
ately that after replacing hk by their free (with respect to x) terms preserves the
identity (2.4): all higher order terms must cancel each other. In the same way one
can get rid of the dependence of hk on ξ. Thus we see that the identity (2.4) after
substitution pk 7→ dky/dτk, y(t) = 〈ξ, x(t)〉, yields the equation

d`y

dτ `
+ a1(t, A,Σ)

d`−1y

dτ `−1
+ · · ·+ a`(t, A, Σ) y = 0

for the function y. Returning to the initial independent variable t, we obtain the
equation(

∆(t)
d

dt

)`

y + a1(t)
(

∆(t)
d

dt

)`−1

y + · · ·+

a`−1(t)
(

∆(t)
d

dt

)
y + a`(t) y = 0, ak ∈ C[t, A, Σ]. (B.6)

It is obvious that:
(1) this equation has only Fuchsian singular points in the finite plane, provided

that ∆(t) has only simple roots,
(2) the magnitude of the coefficients ak = ak(t, A,Σ) is bounded in terms of

the height of the matrix polynomial A(t) and the maximal modulus of the
singular points: if ‖Ak‖ 6 R and |tj | 6 R for all k, j, then |aj(t, A,Σ)| 6
(2 + R)B(n,d) on the disk BR = {|t| 6 R} (see (1.3)–(1.4));

(3) after reduction to the standard form y` + b1(t) y(`−1) + · · · + b`−1(t) y′ +
b`(t)y = 0 the (rational) coefficients bk(t) of the reduced equation are
bounded by similar expressions on the set |t− tj | > 1/R, |t| < R.

This allows for application of Lemma 1 or Lemma 2, implying upper bounds for
the number of zeros away from singular points of the linear system (B.3). �

Remark. The singular point at infinity of the equation (B.6) is in general non-
Fuchsian, as the degrees of the polynomials ak(t) are in general greater than allowed
by the Fuchs conditions at infinity.

Remark. One can generalize results of this subsection for intersections between
trajectories of linear systems with arbitrary polynomial hypersurfaces as follows.
The collection of all monomials {xα}|α|6d of degree 6 d satisfies a Fuchsian system
of linear polynomial equations, provided that (B.3) holds:

∆(t) · d

dt
xα =

n∑
j=1

αj
xα

xj

n∑
k=1

Ajk(t)xk =
∑

|β|=|α|

Aαβ(t)xβ .

Theorem 7 can be applied to count zeros of arbitrary linear combinations of mono-
mials ξαxα, i.e. arbitrary polynomials in x.

B.3. Ascending chains of ideals generated by linear forms. The problem
on length of ascending chains of polynomial ideals under additional assumption
that the degrees of polynomials are bounded, belongs to linear algebra. If d is a
uniform upper bound for deg pk, then the chain (1.8) must stabilize after at most
N = (d + 1)n steps: indeed, the space of all polynomials in n variables of degree
6 d is less than N -dimensional, therefore at that step or before the newly added
polynomial will be a linear combination of preceding ones.
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If the degrees deg pk are growing, this argument fails and the bound depends in
the most heavy manner on the dimension n (the number of variables). For n = 1,
obviously, the number of points in the zero loci of ideals, counted with multiplicities,
should decrease monotonously, therefore the length of the chain cannot exceed
deg p0. The case n > 1 is in general completely different, however, in one particular
case the problem can be reduced to the univariate case.

We already noted that for a system of linear equations the chain of polynomials
generated by the rule (1.7) will be linear in x, provided that p0(x) = 〈ξ, x〉 is a
linear form.

Proposition 2. The chain of linear forms pk(x) =
∑n

i=1 ξk,i(t)xi ∈ C[t, x] =
C[t, x1, . . . , xn] whose degrees degt pk grow at most linearly in k,

degt pk 6 (k + 1)d, degxi
pk = 1, i = 1, . . . , n,

stabilizes after at most (n + 1)!dn steps.

Proof. An identity p`(t, x) =
∑`−1

k=0 hk(t, x)pk(t, x) with hk ∈ C[t, x] implies that
p`(t, x) =

∑`−1
k=0 λk(t)pk(t, x), if we let λk = hk(·, 0) ∈ C[t], which means that the

chain stabilizes if the non-homogeneous system of linear algebraic equations

ξ`,i(t) =
`−1∑
k=0

λkξk,i(t) (B.7)

possesses a polynomial solution λ(t) = (λ1(t), . . . , λn(t)).
Let Ξk ∈ Matk×n(C[t]) be the rectangular matrix with n rows and k columns,

formed by the first k column vectors ξ1(t), . . . , ξk(t): its entries are polynomials
in one variable. Consider the auxiliary ideals Wk,i ⊂ C[t] formed by all i × i-
minors of the matrix Ξk. (For i < k we put Wk,i = {0} by definition). The
following criterion of solvability of linear systems over the ring C[t] generalizes the
well-known Kronecker–Capelli criterion for systems over fields.

Lemma 10 ([13, Bk I, Ch. II, §9]). The system (B.7) possesses a solution if and
only if W`,i = W`−1,i for all i = 1, . . . , n.

In other words, application of Lemma 10 reduces the problem on chains of ideals
spanned by linear forms, to that of simultaneous stabilization of n chains of uni-
variate ideals.

Recall that the ring C[t] is a principal ideal domain, therefore for each ideal
Wk,i we can define the “number of points counted with multiplicities” µk,i, equal
to deg qk,i if C[t] ⊇ (qk,i) = Wk,i. For Wi,k = {0} we put µk,i = +∞ by definition.
The obvious monotonicities

Wk,i ⊆ Wk+1,i, Wk,i+1 ⊆ Wk,i

(the second follows from the expansion formula for minors) imply the inequalities

µk,i > µk+1,i, µk,i+1 6 µk,i, (B.8)

and the moment when the system (B.7) is solvable, occurs when µ`,i = µ`−1,i for
all i = 1, . . . , n.

Denote by µk = (µ1, . . . , µn) ∈ (Z+ ∪ {∞})n the sequence of vectors, and let
‖µk‖ be the sum of all finite coordinates of the vector µk. The integer sequence
‖µk‖ is monotonically decreasing with k unless one of the infinite coordinates of
the vector becomes finite (and hence remains finite for larger k).
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Let i be between 1 and n and denote ki the first time when µk,i becomes finite.
The second inequality in (B.8) implies that k1 6 k2 6 · · · 6 kn. On the interval
between ki and ki+1 the “norms” ‖µk‖ decrease monotonously by definition of the
moments ki, and at each of the moments ki the “norm” ‖µk‖ may increase by µki,i.
As the degrees of the polynomials pk generating the ideals Wk,i are known, we can
estimate µki,i 6 i(ki + 1)d. Thus, as ‖µk‖ must remain nonnegative, we have the
balance inequality

0 6 d(k1 + 2k2 + · · ·+ iki)− ki+1, (B.9)
which means that the sum of all jumps of ‖µk‖ occurring at the moments ki, should
match the number of regular steps when ‖µk‖ decreases at least by 1.

The growth of the sequence majorized by the inequalities (B.9) can be easily
estimated: if we introduce Si = k1 + 2k2 + · · ·+ iki, then (B.9) implies

Si+1 = Si + (i + 1)ki+1 6 Si + (i + 1)dSi = Si(1 + d(i + 1)),

so that Sn 6 (1 + d)(1 + 2d) · · · (1 + nd) 6 2d · 3d · · · (n + 1)d = (n + 1)!dn. This
implies the upper bound claimed in the Proposition. �

Remark. Notice that the established bound is roughly simple exponential in n and
polynomial in d, and does not depend on the rules determining the sequence of
polynomials pk, provided only that the latter remain linear in x an of degrees in t
growing linearly with k.

Remark. The method can obviously be generalized for chains of ideals spanned by
homogeneous forms of any degree in x, that are polynomial in one variable t. It is
important that the degrees in all variables but one are bounded. Linear systems
constitute an example when such situation occurs naturally.

Remark. One cannot in general majorize the height of polynomials λk(t) occurring
as the coefficients of the decomposition p`(t, x) =

∑`−1
0 λk(t)pk(t, x). Unless the

coefficients were integral from the very beginning (i.e. if the matrix polynomial A(t)
had all integer coefficients), the procedure of universalization from §2.2 is required.
But this procedure increases the number of independent variables, therefore the
approach developed above becomes unapplicable. Working instead over the field
of rational functions of the parameters A,Σ, see §B.2, we can construct a linear
equation

a0(A,Σ)y(`) + a1(t, A, Σ)y(`−1) + · · ·+ a`(t, A,Σ)y = 0
with the leading coefficient independent of t, all other polynomial in t, A, Σ of
bounded degrees and heights. The values of the parameters for which the leading
coefficient a0 is vanishing, correspond to singularly perturbed linear equations which
require additional considerations for study.

B.4. Discrete and continuous Risler problem for linear systems. We con-
clude this appendix by a simple observation: for linear systems the continuous
Risler problem can be reduced to discrete one and vice versa.

Consider a system of nonautonomous linear differential equations ẋ = A(t)x,
polynomially depending on time (so that A is a matrix polynomial of degree d).
Let Π = {p = 0} ⊂ Rn be a linear hyperplane: p(x) = 〈ξ, x〉, where ξ ∈ Rn∗.
Any solution of this system can be expanded in a convergent Taylor series x(t) =∑∞

k=0
tk

k! xk where xk ∈ Rn are vector coefficients, k = 0, 1, . . . . Substituting this
expansion into the equation, we obtain recurrent formulas for coefficients {xk} of
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order d, xk+1 = A0xk + kA1xk−1 + · · · + k(k − 1) · · · (k − d + 1)Adxk−d, that can
be easily reduced to a first order linear difference scheme in Rnd with coefficients
polynomially depending on the number k of the step. After the obvious suspension
by the map t 7→ t+1 we see that the Risler problem on how many Taylor coefficients
of the function p(x(t)) =

∑
〈ξ, xk〉 tk/k! can vanish, gets reduced to the question

on how many points of the orbit {xk}∞k=0 of the suspended polynomial map can
belong to the (properly suspended) hyperplane {〈ξ, x〉 = 0}.

Remark. The Taylor coefficients of the restriction p(x(t)) for linear systems are
obtained by iterating the ring homomorphism as in (1.10). If ` is the moment of
stabilization of the corresponding chain of ideals (1.8), then vanishing of the first `
Taylor coefficients c0, c1, . . . , c`−1 of p(x(t)) =

∑
cktk implies identical vanishing of

the latter series. If the expansion (2.4) is known explicitly, this in principle allows
to majorize the magnitude of all coefficients ck for any k = `, ` + 1, . . . via the
maximum among the first ` of them. Then the methods developed in [2, 26] would
allow for certain explicit bounds for the number of zeros of the restriction.

Remark. For systems of the form (B.2) the recurrent system is simpler than in the
general case: the recurrent formulas take the form

Cxk+1 = (kE −B)xk, k = 0, 1, . . . ,

that are “dual” to the discrete time system (B.2).
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