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SIMPLE EXPONENTIAL ESTIMATE FOR THE NUMBER

OF REAL ZEROS OF COMPLETE ABELIAN INTEGRALS

by D. NOVIKOV(1) and S. YAKOVENKO(1),(2)

1. Abelian integrals and polynomial
envelopes of linear ordinary differential
equations with meromorphic coefficients

One of the main results of this paper is an upper bound for the total
number of real isolated zeros of complete Abelian integrals, exponential in
the degree of the form (Theorem 1 below). This result improves a previously
obtained in [IY1] double exponential estimate for the number of real isolated
zeros on a positive distance from the singular locus. In fact, the theorem
on zeros of Abelian integrals is a particular case of a more general result
concerning the number of zeros in polynomial envelopes of irreducible and
essentially irreducible differential operators and equations (see §1.3 below).

The first announcement of these and other results proved below was in
[NY]. In §1 all principal results are formulated and all necessary definitions
gathered, §2 explains connections between Abelian integrals and polynomial
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envelopes: since the most part of preparatory work was already done else-
where [IY1], [IY2], [Y], we give only the principal definitions, referring for
motivations, examples and detailed explanations to the above mentioned
papers. The next section, §3, is the core of the paper. It contains the
notion of the Rolle index of a differential operator, and provides tools for
estimating this index explicitly. In §4, §5 the other results are proved, and
the concluding section §6 deals with possible generalizations.

1.1. Complete Abelian integrals: statement of the problem

Let H ∈ R[x, y] be a real polynomial in two variables, ΣR
H b R the set

of real critical values of H, and t ∈ R r ΣR
H a regular value. Each (real

affine nonsingular) level curve ϕt = {H(x, y) = t} is a union of connected
components, some of them compact ovals ϕt,1, . . . , ϕt,s, their number s =
s(t) in general depending on t.

If ω = P (x, y) dx+Q(x, y) dy is a differential 1-form with real polynomial
coefficients, then this form can be integrated along each oval ϕt,i, yielding
a real multivalued function

IH,ω : R r ΣR
H → R, t 7→ IH,ω(t) =

∮
ϕt,i

ω, i = 1, . . . , s. (1)

Obviously, this multivalued function allows for selection of continuous bran-
ches over each interval from the domain R r ΣR

H , and one may easily see
that in fact each continuous branch is real analytic. The collection of all
branches of the function (1) is called the complete Abelian integral of the
form ω over the level curves of the polynomial H. The problem of finding an
upper bound for the number of real isolated zeros of the Abelian integrals
was repeatedly posed since early seventies: we refer the reader to the paper
[IY1] where the principal references are given.

1.2. Exponential upper bound for the number of zeros
of complete Abelian integrals: remarks and discussion

Theorem 1. Suppose that the polynomial H satisfies the following two
properties:

(1) its complexification is a Morse function (i.e. all critical points of
H, including the nonreal ones, are nondegenerate and all complex
critical values are pairwise distinct), and
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(2) each complexified level curve ϕt after projective compactification in-
tersects transversally the projective line CP 1

∞ ⊂ CP 2 at infinity.
Then there exists a constant c = c(H) < ∞ such that any real branch

of the complete Abelian integral may have at most exp(cdeg ω) real iso-
lated zeros on R r ΣR

H , where the degree of the form deg ω is defined as
max(deg P,deg Q).

Remarks. 1. The second assumption on H is equivalent to saying that the
principal homogeneous part of H factors as a product of pairwise different
linear terms.

2. For any degree m the set of all polynomials of degree 6 m, satisfying
the conditions of the Theorem, is an open dense semialgebraic subset of the
linear space of all polynomials of degree 6 m. Thus Theorem 1 gives an
upper bound for a generic polynomial.

3. In fact, it follows from the proof of Theorem 1 that either all branches
of the integral are identically zero, or all of them may have only isolated
zeros on R.

4. The assertion of the Theorem means that for any choice of the form
ω the number of different ovals on the plane R2

x,y, over which the integral
of ω may vanish, is at most exp(cdeg ω), unless this integral is zero for any
oval.

5. In the previous publication [IY1], it was proved that for almost all
polynomials satisfying the above two conditions and for any compact subset
K b R r ΣR

H the number of real isolated zeros of the Abelian integral on
the compact K can be at most exp exp(c′(H,K) deg ω), where the constant
c′(H,K) depends not only on H, but also on K. Thus Theorem 1 improves
the upper estimate, at the same time extending the domain of its validity,
as compared to [IY1].

Another important case is that of hyperelliptic curves. Recall that a
polynomial H is called hyperelliptic, if it has the form

H(x, y) = y2 + p(x), p ∈ R[x], deg p > 5. (2)

(for deg p = 3, 4 one has the elliptic case, completely studied by G. Petrov).
It is known (also due to Petrov) that if p is a Morse polynomial with all
critical points on the real axis, then the number of real isolated zeros of the
corresponding hyperelliptic integral can be at most O(deg ω), see [Pe]. We
establish a weaker result, but drop away the assumption on critical points.

Theorem 1′. Assertion of Theorem 1 holds for a hyperelliptic polynomial
(2), provided that p(x) is a Morse polynomial in one variable.
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1.3. Linear ordinary differential operators and
equations. Polynomial and rational envelopes

Consider the field of (complex) rational functions k = C(t) and the (non-
commutative) ring D = k[∂] of linear ordinary differential operators with
rational coefficients and the operation of composition (L1, L2) 7→ L1 ◦ L2,
also denoted by L1L2. An operator

D 3 L =
n∑

j=0

aj(t)∂n−j , Lu = a0 u(n)+a1 u(n−1)+ · · ·+an−1 u′+an u, (3)

is called unitary , if the principal coefficient a0(t) is equal to 1. We say that
L ∈ D is real , if all coefficients of L belong to the subfield R(t) ⊂ k. We
denote by ordL the order of the operator L, that is, the degree of L in
∂. Note that nonzero rational functions are units (invertible elements) of
the ring D, so we will implicitly consider all multiplicative formulas in D
modulo such units.

The singular locus ΣL of a unitary operator L ∈ D is the union of the
polar loci of all its coefficients. A singular point t ∈ ΣL is said to be
a regular, or Fuchsian singularity , if each coefficient aj(·) in (3) has the
pole of order at most j at that point (the Fuchs condition). It is natural to
consider the coefficients as functions on the Riemann sphere CP 1 = C∪{∞},
in which case t = ∞ can belong to the singular locus ΣL, and the Fuchs
condition at infinity is to be verified in the chart τ = 1/t. An operator is
said to be Fuchsian, if the Fuchs condition holds for all singular points on
CP 1. A Fuchsian differential equation is the one of the form Lu = 0, where
the operator L becomes Fuchsian after multiplication by an appropriate
rational function 0 6= ϕ ∈ k.

It is well known that any solution of the equation Lu = 0 can be ana-
lytically continued along any path γ avoiding the singular locus ΣL, thus
giving rise to an analytic multivalued function ramified over ΣL. If L is a
real operator and K ⊂ R r ΣL a real interval, then one may always choose
a fundamental system of solutions f1(t), . . . , fn(t), a string of analytic func-
tions, taking real values on K and linear independent over C. Any other
fundamental system of n solutions to the same equation can be obtained
from the original one by a nondegenerate linear transformation. All those
simple results can be found in many textbooks, for example, in [H].

Let d ∈ N be a natural number. We define the polynomial envelope of
degree d of the equation Lu = 0 as the linear space of analytic multivalued
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functions representable in the form
n∑

j,k=1

pjk(t) f
(k−1)
j (t), pjk ∈ C[t], deg pjk 6 d, (4)

where f1, . . . , fn is a fundamental system of solutions for that equation.
Clearly, this definition does not depend neither on the choice of the funda-
mental system of solutions, nor on the choice of branches of the functions
fj . Sometimes we speak about polynomial envelopes of operators rather
than those of differential equations, and use then the notation Pd(L) for
the corresponding linear space.

In the similar way we may introduce the rational envelope of degree d of
the same equation as the collection of functions representable in the form
similar to (4) but with rational rather then polynomial coefficients pjk ∈ k
(recall that the degree of a rational function is the total number of its poles,
counted with multiplicities, including the pole at t = ∞). Note that rational
envelopes of any finite degree d < ∞ are not linear spaces, and in general
do depend on the choice of the fundamental solutions fj and their branches.
The notation used for rational envelopes is Rd(L), and R(L) =

⋃
d>0 Rd(L).

1.4. Irreducible case

Let a /∈ ΣL be a nonsingular point, and γ ∈ π1(CrΣL, a) any closed loop
(more precisely, the homotopy class of some closed loop with the vertex at
a). Choose any fundamental system of solutions f = (f1, . . . , fn) considered
as a row vector. Then after the analytic continuation over γ the vector
function f(t) undergoes a linear transformation:

∆γf = f ·Mγ ⇐⇒ ∆γfj =
n∑

k=1

fkmγ;kj .

Here ∆γ stands for the operator of analytic continuation along γ, and Mγ

is a square (n× n)-matrix with constant complex entries mγ;kj . The corre-
spondence π1(C r ΣL, a) → GL(n, C), γ 7→ M−1

γ , is a linear representation
of the fundamental group, and the image of the fundamental group is called
the monodromy group of the operator L (or the equation Lu = 0).

The operator L ∈ D is called irreducible, if the monodromy group of
this operator is irreducible, i.e. the operators Mγ have no common invari-
ant nontrivial subspace. For Fuchsian operators (equations) an equivalent
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algebraic formulation can be given as follows: L is irreducible if and only
if it admits no nontrivial factorization L = L1L2 in the ring D (as usual,
modulo the multiplicative subgroup of units k∗ ⊂ D). To avoid confusion,
we refer to this property as indecomposability of L in D.

Indeed, if the operator admits a factorization as above, then the fun-
damental system of solutions to the equation L2u = 0 would generate an
invariant linear subspace for all monodromy operators. Conversely, if the
monodromy group is reducible, and f1, . . . , fk, 0 < k < n, span the cor-
responding invariant subspace, then by the classical Riemann theorem one
can construct an operator L2 ∈ D of order k, satisfied by f1, . . . , fk. But
then one can easily show that L is right divisible by L2, using the division
algorithm from [In]: L = L1L2. However, if we do not assume the Fuchsian
property of L, then only the implication “irreducibility =⇒ indecompos-
ability” remains, since the coefficients of the operator L2 will not in general
be rational functions.

The principal result concerning zeros in polynomial envelopes, follows.

Theorem 2. Let L ∈ D be a real irreducible operator, and K b R r ΣL a
compact segment without singular points of L.

Then there exists a finite number c = c(L,K) < ∞ such that any function
u from the polynomial envelope of degree d of the operator L, real on K,
may have at most exp(cd) isolated zeros on that segment :

lim sup
d→∞

{
d−1 · lnNK(f) : f ∈ Pd(L)

}
= c(K, L) < ∞.

Corollary. The same exponential upper bound for the number of isolated
real zeros holds also for all functions from the rational envelope Rd(L) of
degree d.

Indeed, by getting rid of all denominators any function from the ratio-
nal d-envelope may be transformed into an element from the polynomial
envelope of order at most (n2 − 1)d, n = ordL.

Remark. In Theorem 2 no assumption on the nature of the singularities of
the equation is made; it is the global condition of irreducibility which is
crucial for this result. However, we do not know whether the exponential
estimate can be further improved.

Note. A confusion between closely related notions of irreducibility and inde-
composability occurred in [NY]. In all formulations of theorems from that
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paper the irreducibility assumption is to be understood in terms of the
monodromy group (and not as indecomposability). However, the difference
disappears if only the Fuchsian case is considered.

1.5. Regular singularities at the endpoints
and the real spectrum condition

Theorem 2 gives an upper estimate for the number of zeros for polyno-
mial envelopes on a compact segment K. We extend now this result for
semiintervals with singular endpoints. Let

L = tn ∂n + tn−1ã1(t) ∂n−1 + · · ·+ t ãn−1(t)∂ + ãn(t) ∈ D

be a differential operator with a Fuchsian singularity at t = 0. Using the
Euler transformation

x1 = u, x2 = t ∂x1, x3 = t ∂x2, . . . , xn = t ∂xn−1,

one may transform the equation Lu = 0 into the system of first order linear
differential equations

tẋ = A(t)x, x ∈ Cn, t ∈ (C1, 0),

with the matrix function A(t) = A0 + t A1 + t2 A2 + · · · holomorphic at
t = 0 and real on the real axis, if the operator L was real.

Definition. The spectrum of the Fuchsian singularity is the spectrum of
the associated residue matrix A(0) = A0.

One can easily show that the spectrum of the singularity consists of roots
of the so called indicial equation

λ(λ− 1)(λ− 2) · · · (λ− n + 1) + ã1(0)λ(λ− 1) · · · (λ− n + 2) + · · ·
+ ãn−2(0)λ(λ− 1) + ãn−1(0)λ + ãn(0) = 0.

Moreover, the equation Lu = 0 may have a solution of the form u(t) =
tλ h(t) with h(t) holomorphic at t = 0 only if λ is an element from the
spectrum (a straightforward computation).
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Definition. A point α ∈ ΣL is the real Fuchsian singularity for the real
operator L ∈ D, if α ∈ R, the Fuchsian condition holds at α and the
spectrum of the singular point entirely belongs to the real axis.

Remark. The above definitions make sense also for the point t = ∞ after
the change of time t 7→ t−1.

Theorem 3. If L ∈ D is a real irreducible operator, α ∈ ΣL a real Fuchsian
singularity for L and K = (α, β] ⊂ R r ΣL a semiinterval without singular
points, then the assertion of Theorem 2 remains valid on K.

Corollary. If for a real irreducible operator L the locus R ∩ ΣL consists
of real Fuchsian singularities only (including the point t = ∞), then there
exists a constant C = C(L) depending only on L, such that any real branch
of any function from the polynomial d-envelope may have at most exp(Cd)
isolated zeros.

Indeed, in this case one may enumerate as α1, . . . , αs the points of the
locus ΣL∩R, choose once and forever the points βi so that β0 < α1 < β1 <
· · · < βs−1 < αs < βs and apply Theorem 2 to each of the semiintervals
(−∞, β0], [βi−1, αi), (αi, βi] and [βs,+∞). Then taking the sum of the
corresponding upper bounds, one obtains an upper estimate valid for on
the whole real axis (one may count or not count the points αi, this would
not affect the exponential bound).

Remark. In Theorem 3 we do not require the singular points outside the
real axis be real Fuchsian or even just Fuchsian.

1.6. Relaxing the irreducibility condition

If the irreducibility assumption fails, then one can construct an equation
with meromorphic coefficients and an arbitrarily rapidly growing number
of zeros in polynomial envelopes [IY1]. However, at least partially this
condition of irreducibility can be relaxed.

Definition. A linear operator L ∈ D is essentially irreducible with the
irreducible core L∗ ∈ D, if L = L∗P1P2 · · ·Pk, where:

(1) Pi ∈ D are real differential operators of order 1, and
(2) L∗ is a real irreducible operator (of any order).

Remarks. 1. An equivalent definition in terms of the monodromy group is as
follows: the operator is essentially irreducible, if in the linear n-dimensional
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(over C) space Λ of solutions of the equation Lu = 0 a chain of subspaces
(a flag) Λi, i = 0, 1, . . . , k + 1, can be chosen,

{0} = Λk+1 ⊂ Λk ⊂ Λk−1 ⊂ · · · ⊂ Λ1 ⊂ Λ0 = Λ,

such that:
(1) each subspace Λi is invariant by all monodromy operators Mγ ,
(2) dim Λi−1 = dim Λi + 1 for all i = 1, . . . , k (we do not require that

dim Λ0 = dim Λ1 + 1),
(3) the induced quotient representation in Λ0/Λ1 is irreducible (the

other induced one-dimensional quotient representations in Λi−1/Λi,
i = 1, . . . , k + 1, are obviously irreducible),

(4) Λ1 is the null space for a Fuchsian operator.
The equivalence of the two definitions is established using the Riemann
theorem: Λi is the null space for the composition PiPi+1 · · ·Pk.

2. If the initial operator L is Fuchsian, then the last condition in the
above list is automatically satisfied. In this case we can also replace ir-
reducibility of L∗ by indecomposability, so finally the definition of almost
irreducibility can be formulated in terms of orders of factors in the inde-
composable factorization of L in the ring D.

3. The essential irreducibility condition satisfied, one may always choose
a fundamental system of solutions f1, . . . , fn for the equation Lu = 0 in such
a way that the last n− i functions will constitute a basis for Λi. Moreover,
for any real interval free from singularities of L, the functions fi may be
chosen real on that interval. It is this form of the essential irreducibility
assumption, which will be used below.

4. In [Y] a weaker concept appeared, almost irreducibility , which is a
particular case of essential irreducibility. The monodromy group is said
almost irreducible, if there exists an subspace Λtriv ⊂ Λ, on which all mon-
odromy operators are identical (and hence this subspace is invariant), but
the quotient representation in Λ/Λtriv is already irreducible. Obviously, one
can choose any ascending chain of subspaces Λi ⊂ Λtriv to show that almost
irreducibility implies essential irreducibility.

Theorem 4. If L is a real essentially irreducible operator and K b RrΣL

is a compact segment without singular points, then the assertion of Theorem
2 is valid for L.

Theorem 5. If K = (α, β] ⊂ R is a semiinterval with a singular endpoint
(like in Theorem 3 ), and L is an essentially irreducible operator with the
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real Fuchsian singularity at t = α, then the assertion of Theorem 2 is valid
for L on K.

2. From Abelian integrals to polynomial envelopes

In this section we reduce the problem on estimating the number of zeros of
Abelian integrals to that for polynomial envelopes (the proposition below
establishes the implication “Theorem 5 =⇒ Theorem 1”). Except for
Lemma 1, the exposition here reproduces that from [Y] and [IY1].

Proposition. For any real polynomial H satisfying the assumptions of
Theorem 1, one may construct a Fuchsian operator L = LH depending
only on H, with the following properties:

(1) L is a real Fuchsian operator ;
(2) all singular points of L have real spectrum;
(3) the monodromy group of L is almost irreducible (hence essentially

irreducible);
(4) for any polynomial form ω the complete Abelian integral of ω over

the level curves H = const belongs to the rational d-envelope of L
with d = deg ω

deg H + OH(1).

The same result is valid for a hyperelliptic polynomial H = y2 + p(x)
satisfying the assumptions of Theorem 1′.

The rest of this section contains the proof of this assertion. Starting from
§3, we discuss only polynomial envelopes of linear operators.

2.1. The monodromy group of the Gauss–Manin connection

We consider first the case of polynomials described in Theorem 1. A poly-
nomial map H : C2 → C1 defines a topologically locally trivial bundle over
the set of (complex) regular values C r ΣC

H , provided that all level curves
intersect transversally the infinite line after compactification. The fibers
of this bundle are nonsingular affine algebraic curves ϕt = {H = t} ⊂ C2,
hence an induced vector bundle with fibers H1(ϕt, C) ' Cn, n = 2g + s− 1,
is well defined and can be endowed with a locally flat connection, called
Gauss–Manin connection (here g is the genus of the projective compactifi-
cation of ϕt, and s = deg H is the number of points at infinity). The result of
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the parallel translation in the sense of the Gauss–Manin connection defines
a linear representation of the fundamental group π1(CrΣC

H , ·); after choos-
ing an arbitrary basis c1, . . . , cn in some fixed fiber H1(ϕt0 , C), the result of
continuation of the row vector c = (c1, . . . , cn) along an arbitrary loop γ is
the row vector c ·Mγ . Since any polynomial form ω restricted on any ϕt is
holomorphic, it follows that the row vector function I(t) = (I1(t), . . . , In(t))
has the same monodromy group independently of the choice of the form ω:
∆γI = I ·Mγ . Moreover, if we consider the Jacobian matrix I(t) built from
the functions Ij(t) and their derivatives in t up to the order n−1 = 2g+s−2,
then the monodromy of this function will be the same: ∆γI(t) = I(t) ·Mγ .
In other words, the monodromy group of any complete Abelian integral is
determined by the topology of the Hamiltonian only, if we fix a framing of
the bundle.

The representation γ 7→ M−1
γ possesses an additional symmetry due to

the fact that H is a polynomial with real coefficients. Choose the base
point t0 on the real axis. Then, since the critical values of H are symmetric
with respect to the real axis, the fundamental group π1(C r ΣC

H , t0) admits
an involution γ 7→ γ (the mirror symmetry in the real axis), induced by
the standard involution t 7→ t. At the same time the standard involution
(x, y) 7→ (x, y) induces the involution on the homology level, τ : H1(ϕt, C) →
H1(ϕt, C), and without loss of generality we may assume that the basis
cj ∈ H1(ϕt0 , C) was chosen as τ -(anti)real: τ(cj) = ±cj . Then one can
easily see that the representation γ 7→ M−1

γ is τ -symmetric: Mγ = Mγ .
The reducibility properties of the representation γ 7→ M−1

γ were estab-
lished in [Y]: it was shown that if the Hamiltonian satisfies the conditions
of Theorem 1, then this representation is almost irreducible in the sense
explained in §1.6. Moreover, it is known that in this case the monodromy
operators corresponding to small loops around each critical value of H,
have all eigenvalues equal to 1. This guarantees that the spectrum of all
singularities belongs to Z, see below §4.1.

2.2. Lemma on nondegenerate realization

Our local goal is to establish the existence of a differential operator of
order exactly equal to n with the prescribed monodromy group.

Lemma 1. Any τ -symmetric n-dimensional monodromy group is a mon-
odromy group of a real Fuchsian operator of order n: there exists an op-
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erator L and a fundamental system of solutions f = (f1, . . . , fn) such that
∆γf = f ·Mγ .

Proof. By the classical Plemelj–Röhrl theorem [AI], one may always con-
struct a multivalued almost everywhere nondegenerate analytic matrix func-
tion X(t) ramified over Σ, in such a way that ∆γX(t) = X(t)·Mγ . Moreover,
all points of Σ will be regular singularities for X(t), X−1(t): ‖X±1(t)‖ =
O(|t − α|−C) for some C < ∞, as t tends to a point α ∈ Σ, remaining in
any sector with the vertex at α.

We construct the vector function f from the matrix function X in two
steps. First we modify X(t) to become real-valued on the real segment
K containing the real base point t0. Note that if the monodromy is τ -
symmetric, then the matrix function X†(t) = X(t), t = τ(t), will also have
the same monodromy, hence the two functions

ReX(t) =
1
2
(X(t) + X†(t)), ImX(t) =

1
2
√
−1

(X(t)− X†(t)),

will also realize the same monodromy. Besides, both functions are real-
valued on K and X = ReX +

√
−1 ImX. Consider now the function Xz =

ReX + z ImX: the determinant of this function is a polynomial in z, which
is not identically zero, since detXz(t) is not identically zero for z =

√
−1.

Thus there must exist a real z for which the matrix Xz is nondegenerate
almost everywhere on K. Thus without loss of generality one may assume
X being real on K from the very beginning.

We will further modify the matrix function X(t) in such a way that the
first row of this matrix will contain linear independent entries, preserving the
monodromy. Without loss of generality we may assume that detX(t0) 6= 0,
and X−1(t) = Z(t)+O

(
|t−t0|n

)
, where Z(t) is a polynomial matrix function

with real matrix coefficients. Then Z(t)X(t) = E+O
(
|t−t0|n

)
. Take the row

vector function b(t) = (1, t − t0, . . . , (t − t0)n−1) and consider the product
f(t) = b(t)·Z(t)·X(t) which has the same monodromy factors Mγ , since both
Z and b are polynomial. Clearly, fk(t) = (t−t0)k−1+O

(
|t−t0|n

)
, hence the

functions fk are linear independent (their Wronski determinant is nonzero
at t = t0), real on some segment of the real axis and have at most regular
singularities at all points of Σ. Now it follows from the classical Riemann–
Fuchs theorem that the tuple f is a fundamental system of solutions for
a certain Fuchsian equation with coefficients real on some segment of the
real axis. But being rational, these coefficients must be necessarily real
everywhere on R (outside their polar locus). �
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Remark. In [Y] the existence of the tuple f was proved by finding a poly-
nomial form Ω with linear independent integrals. Such a form was proved
to exist for almost all Hamiltonians satisfying the conditions of Theorem 1.
In that case one has an explicit estimate for the term OH(1) in the degree
of the envelope.

2.3. Proof of the Proposition

Let I(t) be the Jacobian matrix for the Abelian integrals of the form
ω over the cycles cj(t) constituting a real basis in the homology space
H1(ϕt, C). Fix an arbitrary tuple of linear independent analytic functions
f(t) = (f1(t), . . . , fn(t)) with the same monodromy matrices Mγ constructed
in Lemma 1, and let F(t) stand for the Jacobian matrix of this tuple. Then
one can easily see that the matrix ratio R(t) = I(t) ·F−1(t) is a single-valued
analytic matrix function. Having only regular singularities, this matrix
function must be rational, and the arguments given in [Y] and similar to
those from [M] give an upper estimate for the degrees of rational entries
of R(t) in the form deg ω

deg H + O(1). The identity I(t) = R(t)F(t) gives the
required representation. �

2.4. The hyperelliptic case

The same arguments establish also the representation of hyperelliptic in-
tegrals in the form of rational envelopes. The only thing which needs to
be verified is the essential irreducibility condition. In [Y] it is shown that
this irreducibility can be deduced from the fact that all vanishing cycles on
the fibers ϕt can be chosen and ordered in such a way that the intersection
index would be ±1 for any two subsequent cycles. The latter assumption
is completely evident if the polynomial p has all real roots: then its crit-
ical points are all real and alternate between maxima and minima, and
this natural order transferred onto the vanishing cycles, satisfies the above
requirement: each real vanishing cycle (corresponding to a maximum) inter-
sects two neighboring imaginary cycles vanishing at the two minima, with
the coefficients ±1 depending on the orientation of the imaginary cycles.

The general case can be reduced to the above particular one by argu-
ments of connectedness: all (complex) Morse polynomials in one variable
constitute a connected subset of the (complex) linear space of polynomi-
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als of the given degree in one variable, while the monodromy group (more
precisely, the matrices Mγ) are locally constant. Thus the assertion of the
Proposition holds also for hyperelliptic Morse Hamiltonians.

Remark. In general, the Fuchsian operator will have singularities not only
on Σ: if the Jacobian matrix F degenerates at a certain point t, then the
coefficients of the operator L may have a pole at that point. However, all
solutions of the equation Lu = 0 extend holomorphically at that point : such
singularities are called apparent , they have trivial local monodromy and
their appearance will not affect our constructions below.

3. Polynomial envelope of an irreducible Fuchsian equation

In this section we prove Theorem 2, the core result of the paper.

3.1. Frobenius–Schlesinger–Polya formula

Let L be an arbitrary linear ordinary differential operator, ordL = n,
and f1, . . . , fn is a fundamental system of solutions of the equation Lu =
0. Introduce the functions Wk(t) as follows: W0(t) ≡ 1, W1(t) = f1(t),
W2(t) = f1(t)f ′2(t)− f ′1(t)f2(t) and in general Wk(t) for k = 1, . . . , n is the
Wronski determinant of the first k functions f1, . . . , fk:

Wk(t) = det


f1 f2 · · · fk

f ′1 f ′2 · · · f ′k
...

...
. . .

...
f

(k−1)
1 f

(k−1)
2 · · · f

(k−1)
k


It turns out that the differential operator L admits “factorization” in terms
of the functions Wk.

Lemma 2 (Frobenius–Schlesinger–Polya). If L is a unitary operator, L =
∂n + · · · , then

L =
Wn

Wn−1
· ∂ ·

W 2
n−1

WnWn−2
· ∂ ·

W 2
n−2

Wn−1Wn−3
· ∂ · · · ∂ · W 2

1

W2W0
· ∂ · W0

W1
(5)
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(composition of operators).

Proof. We follow [In, §5.21], adding the proof for the formula given in the
footnote.

Introduce the auxiliary differential operators Lk by letting Lku being
equal to the Wronski determinant of the functions f1, . . . , fk, u (in the spec-
ified order). Clearly, Lk = Wk ·∂k + · · · . Therefore L = W−1

n Ln, since both
parts of the equality are unitary differential operators annulated by n linear
independent functions f1, . . . , fn.

First we establish the operatorial identity

∂ · 1
Wk

· Lk−1 =
Wk−1

W 2
k

· Lk. (6)

Indeed, both operators are of order k, and the leading coefficients are the
same, being equal to Wk−1

Wk
. Hence the difference between them is an opera-

tor of order at most k−1. On the other hand, both operators are annulated
by the k linear independent functions f1, . . . , fk: for the first k−1 functions
this is evident, and on fk the left hand side part is zero, since Lk−1fk = Wk.
Thus we conclude that the two parts coincide. The formula (6) remains valid
for k = 1, if we put formally L0 = id.

Now we can iterate the formula (6) as follows:

L = W−1
n Ln

=
Wn

Wn−1
· Wn−1

W 2
n

Ln =
Wn

Wn−1
· ∂ ·W−1

n · Ln−1

=
(

Wn

Wn−1
· ∂ · Wn−1

Wn

)
·W−1

n−1Ln−1

=
(

Wn

Wn−1
· ∂ · Wn−1

Wn

)
·
(

Wn−1

Wn−2
· ∂ · Wn−2

Wn−1

)
·W−1

n−2Ln−2 = · · ·

=
(

Wn

Wn−1
· ∂ · Wn−1

Wn

)
·
(

Wn−1

Wn−2
· ∂ · Wn−2

Wn−1

)
· · ·

. . .

(
W2

W1
· ∂ · W1

W2

) (
W1

W0
· ∂ · W0

W1

)
·W−1

0 L0. �

Remark 1. The representation (5) was first established by G. Frobenius [F];
a simplified proof appeared in the paper of G. Pólya [Pó] who refers to the
handbook of L. Schlesinger. E. Ince [In] gives an independent proof without
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referring to Pólya or Schlesinger [Sch]. A lengthy computational proof can
be found in [H, Ch. IV, §8(ix)]. Our proof seems to be the shortest of all
and the most computation-avoiding.

Remark 2. Decomposition (5) holds even for irreducible operators, since the
Wronskians Wk are in general transcendental rather than rational functions.

3.2. Rolle index of a differential operator

If L is a unitary differential operator with the coefficients which are real
analytic on some segment K ⊂ R, then the fundamental system of solutions
f1, . . . , fn can be also chosen real on K, hence all Wronskians Wk will be
real analytic on K as well.

Consider the nonhomogeneous differential equation

Lu = h, h = h(t), t ∈ K (7)

with the right hand side part h real analytic on K. Let f = f(t) be any
solution of (7). Our goal is now to compare the number of isolated zeros
of h and f on K. The simplest result in this spirit is the classical Rolle
theorem. Denote by NK(ϕ) the number of real isolated zeros of a function
ϕ real analytic on K, counted with their multiplicities. According to this
definition, NK(ϕ) = 0 if ϕ ≡ 0 on K.

Rolle theorem. If L = ∂, then for any real segment K = [α, β]

NK(u) 6 NK(Lu) + 1. �

Remark. In fact, the Rolle theorem deals with zeros counted without mul-
tiplicities, saying that between any two zeros of a differentiable function
there must be at least one zero of its derivative. The general case is reduced
to this particular one without any difficulties: if t0 < t1 < · · · < ts are
real zeros of u of multiplicities 1 + ν0, 1 + ν1, . . . , 1 + νs (νj > 0), then the
derivative ∂u will have zeros of order νj at tj (if νj > 0), and also on any
of s segments (tj , tj+1) there must be at least one zero. Thus

NK(u) =
s∑

j=0

(1 + νj) = 1 +
s∑

j=0

νj + s 6 1 + NK(∂u).
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The case u = const is trivial.
A simple generalization of this result is due to G. Pólya: it concerns differ-

ential equations with the “Property W”: the latter means that the equation
possesses a fundamental system of solutions such that all Wronskians Wk

are nonvanishing on K.

Pólya theorem (1923), see [Pó, Theorem I*]. If the fundamental system
of real analytic solutions f1, . . . , fn for the real equation Lu = 0 is such that
Wk 6= 0 on K for all k = 1, . . . , n = ordL, then

NK(u) 6 NK(Lu) + n.

Proof. Assume that NK(u) > NK(Lu) + n + 1. By virtue of the decom-
position (5), L is the composition of 2n + 1 operators of differentiation
and multiplication by nonvanishing real analytic functions (since the de-
nominators are nonvanishing). By Rolle theorem, each differentiation may
decrease the number of real isolated zeros counted with their multiplicities
by at most 1, while each multiplication cannot change the number of zeros.
Since the number of derivations is n, the number of isolated zeros counted
with their multiplicities, will be decreased at most by n, being thus at least
NK(Lu) + 1, which contradicts the assumptions. �

If we allow for zeros of the Wronskians, then two additional circum-
stances must be taken into consideration: the operators of multiplication
may cancel zeros corresponding to roots of the denominators, and in gen-
eral these multiplications will take analytic functions into functions that are
only meromorphic (with poles), thus making impossible the straightforward
application of the Rolle theorem. However, knowing the number of zeros of
Wronskians allows for establishing a result similar to the Pólya theorem.

Theorem 6. Let L be a unitary differential operator of order n with coef-
ficients that are real analytic on a closed real segment K ⊆ R r ΣL. Then
there exists a finite number ρ = ρ(L,K), such that

NK(u) 6 NK(Lu) + ρ(L, K).

for any real analytic function u.
Moreover, if K is an arbitrary connected subset of R, f1, . . . , fn is a

fundamental system of real analytic on K solutions and Wk are the corre-
sponding Wronskians with

NK(Wk) = νk < ∞, k = 1, . . . , n,
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then

ρ(L,K) 6 (n + 2)ν − 2, ν = 1 +
n∑

k=1

νk.

Proof. We start with the second assertion of the theorem. Construct the
sequence of operators

R0 =
W0

W1
, D1 = ∂ ·R0, R1 =

W 2
1

W0W2
·D1, D2 = ∂ ·R1, . . .

Rn−1 =
W 2

n−1

WnWn−2
, Dn = ∂ ·Rn−1, Rn =

Wn

Wn−1
·Dn = L.

Let u be an analytic on a connected set K. Then any of the functions Rku
or Dku will have at most ν = 1 +

∑
k νk intervals of continuity, since the

total number of poles of all denominators (without multiplicities) is at most∑
k νk.
Thus any of the d differentiations can decrease the number of isolated

zeros (with multiplicities) by at most ν, while each multiplication can elim-
inate at most νk+1 + νk−1 zeros (again counted with multiplicities):

NK(Dku) > NK(Rk−1u)− ν,

NK(Rku) > NK(Dku)− νk−1 − νk+1.

Adding these inequalities, we arrive to the final inequality

NK(Lu) > NK(u)− nν − νn − 2
n−1∑
k=1

νk > NK(u)− (n + 2)ν + 2.

Now return to the first part: if K is a compact segment without sin-
gularities, then for any choice of a fundamental system of solutions, the
Wronskians Wk will be real analytic, hence the number of their zeros will
be finite. Thus we have νk < ∞, and the above arguments prove finiteness
of ρ. �

Note that for νk = 0 the assertion of the Theorem coincides with the
Pólya inequality. If instead of analytic function u we would start with
a meromorphic function with p poles, then the corresponding inequality
would take the form

NK(u) 6 NK(Lu) + ν(n + 2)− 2 + np.

The inequality obtained in Theorem 6, makes meaningful the following
notion of the Rolle index of a linear differential operator.
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Definition. The Rolle index of a linear operator L on a connected real set
K without singularities, is the supremum

sup
u

(NK(u)−NK(Lu)) ,

taken over all functions real analytic on K and having at most a finite
number of isolated zeros.

Remark. The Rolle index is also well defined if the equation Lu = 0 has only
apparent singularities on K, that is, singular points at which all solutions
are in fact analytic (see the last Remark in §2).

We will never deal with the Rolle index itself, but rather with upper
estimates for it.

3.3. Generalized Jensen inequality

Theorem 6 reduces the question about the number of isolated zeros of an
arbitrary solution for a linear equation to that about the number of zeros of
the Wronskians Wk. It turns out that the latter problem admits a natural
solution in the complex domain. The result below is a generalization of
the classical Jensen formula, which gives an upper estimate for the number
of isolated zeros of an analytic function in terms of its growth in the gap
between two nested sets.

Let U ⊂ C be an open connected and simply connected set (a topological
open disk) with a smooth boundary Γ, and K b U a compact subset of U
(this means that the distance from K to Γ is strictly positive). For an
arbitrary function f holomorphic in a neighborhood of the closure U one
may define two numbers,

M(f) = max
t∈U

|f(t)|, m(f) = max
t∈K

|f(t)|,

which are always related by the inequality m 6 M , and the equality is
possible if and only if f = const.

Lemma 3 [IY2]. There exists a finite constant γ = γ(K, U) depending only
on the relative position of the two sets K and U , such that for any f analytic
in a neighborhood of U , the number NK(f) of complex isolated zeros of f
on K admits an upper estimate

NK(f) 6 γ(K, U) · ln M(f)
m(f)

. �
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Remark. If f ≡ 0, then it is convenient to define M(f)/m(f) = 1 as for
any other constant: then the above inequality will remain valid in this
exceptional case as well.

3.4. Two-sided estimates for the Wronskians

Let U ⊂ C be any open connected domain (not necessarily simply con-
nected) and A(U) the ring of functions analytic (single-valued) in U . Con-
sider a unitary linear operator L ∈ DU = A(U)[∂] of order n with coeffi-
cients in A(U). In the same way as for operators with rational coefficients,
the monodromy group of the equation Lu = 0 can be introduced and the
canonical representation π1(U, t0) → GL(n, C), γ 7→ M−1

γ defined (here t0
is an arbitrary point from U). If L ∈ D is an operator with rational coeffi-
cients, then one may put U = C r ΣL. Denote by z : D → U the universal
covering (in most cases the universal covering space will be the unit disk).

Let f1, . . . , fn be a fundamental system of solutions for the equation
Lu = 0, and d ∈ N a natural number. The polynomial envelope of the
equation Lu = 0 is defined as the linear space of functions spanned by the
monomials

Fαjk(t) = tα f
(k−1)
j , α = 0, 1, . . . , d, j, k = 1, . . . , n.

As in the case of L ∈ D, this space is well defined and can be considered
as a subspace of the space of analytic functions on D (since solutions are in
general multivalued on U).

We arrange the monomials Fαjk lexicographically according to the or-
dering of indices as follows: k is the first letter, α the second and j the
third one. Thus all n2(d + 1) monomials will be numbered sequentially,
Fαjk receiving the number

β = β(α, k, j; d) = (k − 1)(d + 1)n + αn + j. (8)

Let Wβ(t) be the Wronskian of the first β monomials. From now on we fix
L and the system fj and investigate the behavior of Wronskians in their
dependence on the large natural parameter d.

Remark. The notation Wβ is somewhat ambiguous, since the meaning of
this symbol depends on the choice of d: if we replace d by d+1, then all Wβ

will be changed starting from β = n(d + 1). Thus a more accurate notation
would be Wβ,d(t). However, we will not use this cumbersome construction.

As before, we say that an operator L ∈ DU is irreducible if the represen-
tation γ 7→ M−1

γ is irreducible.
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Lemma 4 [IY1]. Let L ∈ DU be an irreducible differential operator and
D b D an arbitrary compact subset of the universal covering. Denote

A(d, D) = max
β

max
z∈D

|Wβ(t(z))|, B(d, D) = min
β

max
z∈D

|Wβ(t(z))|,

where the exterior maximum and minimum are taken over all β = 1, . . . ,
n2(d + 1).

Then
A(d, D) 6 exp expOL,D(ln d), as d →∞,

and if D has a nonempty interior, then also

B(d, D)−1 6 exp expOL,D(d), as d →∞,

where the terms OL,D(d) grow at most linearly in d, with the slope depending
only on the choice of the solutions fj and the compact D. �

Remark. This statement is a quantitative generalization of the fact that
solutions of an irreducible equation are linear independent over the field of
rational functions. No assumption of realness is required whatsoever.

3.5. Proof of Theorem 2

Let now L ∈ D be as before a real irreducible differential operator with
rational coefficients. Take any compact segment K b R r ΣL free from
singularities of the irreducible equation Lu = 0. Let K∗ b C be the closure
of some open neighborhood of K and U another open connected simply
connected set containing K∗ strictly inside. From Lemma 4 it follows that
each Wronskian Wβ(t) for all β = 1, . . . , n2(d + 1) admits the estimate

max
t∈U

|Wβ(t)| 6 A(d, U) 6 exp expOL,U (ln d),

max
t∈K∗

|Wβ(t)| > B(d, K∗) > exp
(
− expOL,K∗(d)

)
,

which by Lemma 3 implies that the number of complex isolated zeros of Wβ

in K∗ (and hence the number of real isolated zeros on K) can be at most
exponential:

NK(Wβ) 6 expOL,K,K∗,U (d) = exp OL,K(d)
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(we fix the choice of K∗ and U together with that of K).
By Theorem 6, the number of zeros of any linear combination of the

monomials Fαjk is at most exponential in d as well. But this is exactly the
result we need, since the polynomial d-envelope of Lu = 0 consists of linear
combinations of the monomials. �

Remark. In fact, we proved that for the differential operator Ld annulating
the polynomial d-envelope of an irreducible real operator L, the Rolle index
grows at most exponentially in d on any real segment K free from singular
points of L. Note that the operator Ld may have singularities on K, but
all these singularities will be apparent: all solutions of Ldu = 0 extend
analytically at those points.

4. Singular endpoints

Assume that L ∈ D is a real operator with a real Fuchsian singularity at
t = 0, and K = (0, t∗] is a real semiinterval without singularities: K ∩ΣL =
∅. In this section we extend the exponential upper estimate for the number
of zeros in polynomial envelopes to cover also such case.

4.1. Local properties of the Wronskians
and a special lexicographical ordering

The lexicographical ordering (8) of the monomials Fαjk was determined
by the ordering of the functions fj constituting the fundamental system
of solutions. For the upper/lower estimates established in Lemma 4, the
ordering of the functions fj was inessential. But if we want to analyze a
small neighborhood of the singularity at t = 0, then this ordering must be
chosen in a specific way.

Lemma 5. If t = 0 is a real Fuchsian singularity for a real differential
equation Lu = 0, then the monodromy operator ∆0 corresponding to a small
loop around t = 0, can be put into the upper triangular form by a real linear
transformation: this means that a fundamental system of solutions fj can
be chosen so that

(1) fj(t) are real on the segment K, and
(2) ∆0fj =

∑
i6j mjifi.
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(3) mjj = exp 2π
√
−1λi, where λi are points of the spectrum, repetitions

allowed.

Remark. The matrix M = bmjic in general is nonreal. In the simplest ex-
ample of an equation with all distinct real roots λi 6= λj ∈ R the monodromy
matrix is diagonal: M = diag(exp 2π

√
−1 λi). In the general case M will

have the same exponential entries on the diagonal. If the spectrum is not
simple, then the Jordanian basis for M may be nonreal, as the example of
the equation (tu′)′ = 0 shows.

This equation has a fundamental system of solutions f1 ≡ 1 and f2 = ln t,
real on (0,+∞), and the monodromy matrix at the point t = 0 is

[
1 2π

√
−1

0 1

]
.

Clearly, any Jordanian basis for the monodromy will be nonreal.

Proof. The monodromy group of a real equation is τ -symmetric in the sense
of §2. Hence for a monodromy matrix M corresponding to a singularity on
the real axis, the identity M−1 = M holds. This means that the spectrum
of M is symmetric with respect to the unit circle: if µ is an eigenvalue,
then µ−1 also is. If |µ| = 1 is an eigenvalue on the unit circle, then the
corresponding eigenvector can be chosen real. Indeed, if Mz = µz, then
M−1z = Mz = µz = µ−1 z, hence z is also an eigenvector with the same
eigenvalue µ. But then either Re z = 1

2 (z + z) or Im z = 1
2
√
−1

(z − z)
will be a real nonzero eigenvector. This argument shows that in case of a
simple spectrum the monodromy matrix M can be diagonalized by a real
invertible transformation. By induction one may easily prove that in the
case of multiple eigenvalues on the unit circle one may put M into an upper-
triangular (though not Jordanian) form by a real transformation (see the
remark above).

Now we show that if the singularity is real Fuchsian, then the monodromy
operator has the spectrum on the unit circle. Indeed, if |µ| 6= 1, then there
exists λ /∈ R such that exp 2π

√
−1λ = µ. Take an eigenfunction (the eigen-

vector of the monodromy operator) corresponding to µ: this eigenfunction
must have a form tλ h(t), where h(t) is single-valued (hence meromorphic)
in a small punctured neighborhood of t = 0. But then, according to §1.5,
λ+n must belong to the spectrum of the singularity for some integer n ∈ Z.
This contradicts to the assumption that the spectrum is real. Hence SpecM
belongs to the unit circle, and we can apply the first argument to prove the
Lemma. �

If the fundamental system of solutions is chosen according to Lemma 5,
then the Wronskians Wβ(t) associated with the corresponding ordering, will
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satisfy the following monodromy condition:

∆0Wβ(t) = exp(2π
√
−1 Λβ) Wβ(t), β = 1, . . . , n2(d + 1),

where Λβ ∈ R are real numbers. Indeed, the linear subspace spanned by
the first β monomials Fαjk will be then invariant by ∆0. More exactly,
the monodromy matrix factor for the monomials Fαjk after the specified
ordering will be the block diagonal matrix of the size n2(d+1)×n2(d+1) with
the upper-triangular block M of the size n×n occurring n(d+1) times on the
diagonal. The diagonal entries of the matrix factor M are the exponentials
exp 2π

√
−1 λi (see the remark above), while the numbers exp 2π

√
−1 Λβ are

the upper-left β × β-minors of that large matrix. Moreover, without loss of
generality one may assume that 0 6 Λβ < 1, since integer parts of Λβ are
inessential.

Corollary. The functions

W̃β(t) = t−Λβ Wβ(t), 0 6 Λβ < 1,

are single-valued in a punctured neighborhood of the origin.

4.2. Zeros of Wronskians near Fuchsian singularities

Since fj have a regular singularity at t = 0, the functions W̃β may have
at most poles at t = 0, being real on the real axis. In order to estimate the
order of this pole, we introduce the growth exponent for a real function ϕ
as

G0 [ϕ] = lim sup
t→0+

ln |ϕ(t)|
ln t−1

.

Due to the known analytic structure of the fundamental solutions fj , one
has the following estimates:

G0

[
f

(k−1)
j

]
6 OL(1),

G0

[
tαf

(k−1)
j

]
6 OL(1)− α,

G0

[
∂β

(
tα f

(k−1)
j

)]
6 OL(1)− α + β 6 OL(1) + β,

G0 [Wβ ] 6 β ·OL(1) +
1
2
β(β − 1),

G0

[
W̃β

]
6 β ·OL(1) +

1
2
β(β − 1).

These arguments prove the following result.
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Lemma 6. There exists a sequence of real numbers θβ satisfying the esti-
mate

θβ 6 OL(d2) ∀β = 1, 2, . . . , n2(d + 1) (9)

such that the functions
Ŵβ = tθβ Wβ(t)

are holomorphic at t = 0. �

Remark. We always choose the branches of Wβ and tθ real on the positive
semiaxis.

Remark. The similar estimates can be done in a neighborhood of t = ∞ for
G∞ [ϕ] = lim supt→+∞ ln |ϕ(t)|/ ln t:

G∞

[
tαf

(k−1)
j

]
6 d · d

n
+ OL(1),

G∞ [Wβ ] 6 OL(d2) ∀β = 1, . . . , n2(d + 1).

This proves analyticity of t−θβ Wβ(t) in a neighborhood of infinity for an
appropriate choice of θβ subject to the same asymptotic estimate.

4.3. Proof of Theorem 3

First consider the case of a finite real singularity; without loss of gener-
ality we may put it being at the origin t = 0.

Let K = (0, t∗] be the semiinterval, U ⊂ Cr (ΣL r0) an open connected
simply connected neighborhood of K = [0, t∗] and D ⊂ U a small open disk
on a positive distance from t = 0 and the boundary of U .

From Lemma 4 it follows that for all β = 1, . . . , n2(d + 1)

max
t∈D

|Wβ(t)| > exp(− expOD,L(d)),

max
t∈U

|Wβ(t)| 6 exp expOU,L(ln d),

For any compact subset D of the universal covering over C r 0 the function
tθ (or more precisely, the branch of tθ+, real on the positive semiaxis) on D
admits the two-sided estimate:

exp(−|θ| ·OD(1)) 6 min
t∈D

∣∣tθ+∣∣ 6 max
t∈D

∣∣tθ+∣∣ 6 exp(|θ| ·OD(1)). (10)
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These estimates imply that for all β and for the proper choice of branches

max
t∈K∪D

|Ŵβ(t)| > max
t∈D

|Ŵβ(t)| > exp(− expOD,L(d)),

max
t∈∂U

|Ŵβ(t)| 6 exp expOU,L(ln d),

But the functions Ŵβ(t) are in fact analytic in U . Hence the generalized
Jensen lemma can be applied to Ŵβ , yielding an exponential upper estimate
for the number of complex isolated zeros of the latter. But since tθβ are
invertible on the positive semiaxis, the same estimate holds also for the
original Wronskians Wβ(t) on K. Thus one may apply Theorem 6 to the
semiinterval K, to prove the simple exponential estimate for the number of
isolated zeros in this case. The proof of Theorem 3 in the case of a finite
singularity is complete.

If the singularity is at t = ∞, then the estimates established in the remark
above should be used. �

5. Almost irreducible equations
and their polynomial envelopes

In this section we prove that the simple exponential estimate for the
number of real isolated zeros holds also for polynomial envelopes of linear
equations with essentially irreducible monodromy. The proof is based on
the well-known procedure of depression (reduction) of the order of a linear
differential equation provided that some of its solutions are known [In].

5.1. Depression of the order of a linear equation

Assume that the operator L admits a nontrivial factorization, L = L′P ,
with L′, P ∈ D, ordP = 1, P = ∂ + a(t), a ∈ k. Then the fundamental
system of solutions for Lu = 0 can be chosen in the form

f1, f2, . . . , fn,

where fn is a nontrivial solution for the equation Pu = 0.
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For an arbitrary function f from the rational envelope R(L) we find a
differential operator R = Rf ∈ D, depending on f , such that Rf ∈ R(L′),
and estimate the Rolle index of Rf . Let

f =
n∑

j,k=1

rjkf
(k−1)
j , rjk ∈ k, deg rjk 6 d,

be an arbitrary function from the rational d-envelope of L. Since fn satisfies
a first order equation, all derivatives of fn up to order n − 1 are propor-
tional to fn with coefficients from k of degrees OP (1). Thus without loss of
generality one may assume that rnk = 0 for k = 2, . . . , n, and deg rn1 6 d.
Then the operator R0 = P · r̂0, r̂0 = r−1

n1 , applied to f , will eliminate the last
term while preserving the form of the combination

∑n−1
j=1

∑n
k=1 rjkf

(k−1)
j :

the degrees of the new coefficients will be at most 4d + OL(1) = OL(d).
The functions f̃j = Pfj = f ′j + afj constitute a fundamental system

of solutions for the equation L′u = 0, since 0 = Lfj = L′Pfj = L′f̃j .
Moreover,

f
(k−1)
j = bkfj +

k−1∑
`=1

c`f̃
(`−1)
j , k = 2, . . . , n, bk, c` ∈ k,

and even more generally, for any operator A ∈ D the operator division with
remainder A = c + BP [In] gives

Afj = cfj + Bf̃j , c ∈ k, B ∈ D, ordB 6 ordA− 1, (11)

The degrees of the coefficients bk, c` are at most OP (1), hence the function
R0f can be expressed as

R0f =
n−1∑

j,k=1

r̃jkf̃
(k−1)
j +

n−1∑
j=1

qjfj ,

with all rational coefficients of degrees OL(d).
The first sum is an element from the rational OL(d)-envelope of L′, as

required. To eliminate the second sum, we apply the operator R1 = L · r̂1 ∈
D, r̂1 = q−1

1 ∈ k, deg r̂1 = OL(d). By (11),

R1f1 ≡ 0 mod R(L′), R1fj ≡ q̃jfj mod R(L′) j = 2, . . . , n− 1,
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thus the total number of terms in the second sum is decreased by 1. Iterating
the last step n− 1 times, one may construct operators R2, . . . , Rn−1 ∈ D in
such way that Rj = L · r̂j , r̂j ∈ k, deg r̂j = OL(d) and

Rn−1 · · ·R2 ·R1

n−1∑
j=1

qjfj ≡ 0 mod R(L′).

Evidently, the degrees of the coefficients of all combinations and operators
will be at most O(d). Finally we put

R = r̂n ·Rn−1 · · ·R2 ·R1 ·R0,

where the rational coefficient r̂n ∈ k is chosen in such a way that R is an
operator with polynomial coefficients.

Then Rf ∈ R(L′), and

(1) the degrees of the coefficients of Rf represented as an element from
R(L′) will be at most OL(d),

(2) R = r̂n ·L · r̂n−1 ·L · · · r̂2 ·L · r̂1 ·P · r̂0, with r̂0 = r−1
n1 , deg r̂j = OL(d).

5.2. Demonstration of Theorems 4 and 5

Let f be an analytic function on a segment K from the polynomial d-
envelope of an operator L ∈ D, and L = L′P , ordP = 1. Consider the
operator R constructed in the previous section. This operator transforms f
into the function Rf which is also analytic on K (since the coefficients of
R are polynomial) and belongs to the rational envelope of L′.

The same arguments that proved Theorem 6, show that the Rolle index
of the operator R on K is at most OL(d) provided that the Rolle index of
L is finite on K and independent of d. Indeed, the number of poles of each
rational factor is at most OL(d). Thus if L′ is already irreducible, then the
simple exponential estimate for the number of zeros of Rf and the upper
estimate for the Rolle index of R imply the simple exponential estimate for
the number of zeros of f on K.

If L′ = L′′P ′, then the above arguments may be iterated, and we conclude
by induction that the simple exponential estimate for the number of zeros
holds on K for polynomial envelopes of any operator L = L∗P1P2 · · ·Pm, if
it holds for L∗ on K.
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In assumptions of Theorem 4 the segment K is compact and on a positive
distance from ΣL, so the Rolle index of L is automatically finite. If K is a
semiinterval with a real Fuchsian singularity at the endpoint, then the real
spectrum assumption guarantees that the Rolle index of L will be also finite
on K despite the presence of the singularity. On the other hand, the real
spectrum assumption for L implies that the spectrum of the last irreducible
factor L∗ will be also real at the endpoint so that the simple exponential
estimate holds for the polynomial envelope of L∗ on K. �

6. Generalizations

Theorem 2, the principal result which implies all other assertions of this
paper, has a global nature and is valid in a much more general settings.
Let U ⊆ C be any open domain symmetric by the involution τ : t 7→ t, and
k̃ = Aτ (U) the field of single-valued analytic functions in U , symmetric
by the involution τ . Then we may consider an arbitrary unitary linear
differential operator L with coefficients from k̃:

L =
n∑

k=0

an−k(t) ∂k, ai ∈ k̃, a0 ≡ 1.

Then there naturally arises the monodromy representation of the fundamen-
tal group of U by (n×n)-matrices γ 7→ M−1

γ , and one can define irreducible
operators as in §3.4.

Theorem 2′. If K is a compact subset of U ∩R and L ∈ k̃[∂] is irreducible,
then the assertion of Theorem 2 about the simple exponential bound for
the number of real isolated zeros remains valid in this extended setting as
well. �

In other words, coefficients of the operator L may have even essential
singularities on the Riemann sphere. In fact, even the assumption that all
coefficients are real on the real axis, can be dropped away (however, this
would require different type of arguments). Theorem 4 also is valid in this
extended setting as well; in both cases one should reproduce literally the
same proof.
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